llvmpipe: clamp fragment shader depth write to the current viewport depth range.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "os/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_swizzle.h"
84 #include "gallivm/lp_bld_flow.h"
85 #include "gallivm/lp_bld_debug.h"
86 #include "gallivm/lp_bld_arit.h"
87 #include "gallivm/lp_bld_pack.h"
88 #include "gallivm/lp_bld_format.h"
89 #include "gallivm/lp_bld_quad.h"
90
91 #include "lp_bld_alpha.h"
92 #include "lp_bld_blend.h"
93 #include "lp_bld_depth.h"
94 #include "lp_bld_interp.h"
95 #include "lp_context.h"
96 #include "lp_debug.h"
97 #include "lp_perf.h"
98 #include "lp_setup.h"
99 #include "lp_state.h"
100 #include "lp_tex_sample.h"
101 #include "lp_flush.h"
102 #include "lp_state_fs.h"
103 #include "lp_rast.h"
104
105
106 /** Fragment shader number (for debugging) */
107 static unsigned fs_no = 0;
108
109
110 /**
111 * Expand the relevant bits of mask_input to a n*4-dword mask for the
112 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
113 * quad mask vector to 0 or ~0.
114 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
115 * quad arguments with fs length 8.
116 *
117 * \param first_quad which quad(s) of the quad group to test, in [0,3]
118 * \param mask_input bitwise mask for the whole 4x4 stamp
119 */
120 static LLVMValueRef
121 generate_quad_mask(struct gallivm_state *gallivm,
122 struct lp_type fs_type,
123 unsigned first_quad,
124 LLVMValueRef mask_input) /* int32 */
125 {
126 LLVMBuilderRef builder = gallivm->builder;
127 struct lp_type mask_type;
128 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
129 LLVMValueRef bits[16];
130 LLVMValueRef mask;
131 int shift, i;
132
133 /*
134 * XXX: We'll need a different path for 16 x u8
135 */
136 assert(fs_type.width == 32);
137 assert(fs_type.length <= Elements(bits));
138 mask_type = lp_int_type(fs_type);
139
140 /*
141 * mask_input >>= (quad * 4)
142 */
143 switch (first_quad) {
144 case 0:
145 shift = 0;
146 break;
147 case 1:
148 assert(fs_type.length == 4);
149 shift = 2;
150 break;
151 case 2:
152 shift = 8;
153 break;
154 case 3:
155 assert(fs_type.length == 4);
156 shift = 10;
157 break;
158 default:
159 assert(0);
160 shift = 0;
161 }
162
163 mask_input = LLVMBuildLShr(builder,
164 mask_input,
165 LLVMConstInt(i32t, shift, 0),
166 "");
167
168 /*
169 * mask = { mask_input & (1 << i), for i in [0,3] }
170 */
171 mask = lp_build_broadcast(gallivm,
172 lp_build_vec_type(gallivm, mask_type),
173 mask_input);
174
175 for (i = 0; i < fs_type.length / 4; i++) {
176 unsigned j = 2 * (i % 2) + (i / 2) * 8;
177 bits[4*i + 0] = LLVMConstInt(i32t, 1 << (j + 0), 0);
178 bits[4*i + 1] = LLVMConstInt(i32t, 1 << (j + 1), 0);
179 bits[4*i + 2] = LLVMConstInt(i32t, 1 << (j + 4), 0);
180 bits[4*i + 3] = LLVMConstInt(i32t, 1 << (j + 5), 0);
181 }
182 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, fs_type.length), "");
183
184 /*
185 * mask = mask != 0 ? ~0 : 0
186 */
187 mask = lp_build_compare(gallivm,
188 mask_type, PIPE_FUNC_NOTEQUAL,
189 mask,
190 lp_build_const_int_vec(gallivm, mask_type, 0));
191
192 return mask;
193 }
194
195
196 #define EARLY_DEPTH_TEST 0x1
197 #define LATE_DEPTH_TEST 0x2
198 #define EARLY_DEPTH_WRITE 0x4
199 #define LATE_DEPTH_WRITE 0x8
200
201 static int
202 find_output_by_semantic( const struct tgsi_shader_info *info,
203 unsigned semantic,
204 unsigned index )
205 {
206 int i;
207
208 for (i = 0; i < info->num_outputs; i++)
209 if (info->output_semantic_name[i] == semantic &&
210 info->output_semantic_index[i] == index)
211 return i;
212
213 return -1;
214 }
215
216
217 /**
218 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
219 */
220 static LLVMValueRef
221 lp_llvm_viewport(LLVMValueRef context_ptr,
222 struct gallivm_state *gallivm,
223 LLVMValueRef viewport_index)
224 {
225 LLVMBuilderRef builder = gallivm->builder;
226 LLVMValueRef ptr;
227 LLVMValueRef res;
228 struct lp_type viewport_type =
229 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
230
231 ptr = lp_jit_context_viewports(gallivm, context_ptr);
232 ptr = LLVMBuildPointerCast(builder, ptr,
233 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
234
235 res = lp_build_pointer_get(builder, ptr, viewport_index);
236
237 return res;
238 }
239
240
241 /**
242 * Generate the fragment shader, depth/stencil test, and alpha tests.
243 */
244 static void
245 generate_fs_loop(struct gallivm_state *gallivm,
246 struct lp_fragment_shader *shader,
247 const struct lp_fragment_shader_variant_key *key,
248 LLVMBuilderRef builder,
249 struct lp_type type,
250 LLVMValueRef context_ptr,
251 LLVMValueRef num_loop,
252 struct lp_build_interp_soa_context *interp,
253 struct lp_build_sampler_soa *sampler,
254 LLVMValueRef mask_store,
255 LLVMValueRef (*out_color)[4],
256 LLVMValueRef depth_ptr,
257 LLVMValueRef depth_stride,
258 LLVMValueRef facing,
259 LLVMValueRef thread_data_ptr)
260 {
261 const struct util_format_description *zs_format_desc = NULL;
262 const struct tgsi_token *tokens = shader->base.tokens;
263 LLVMTypeRef vec_type;
264 LLVMValueRef mask_ptr, mask_val;
265 LLVMValueRef consts_ptr;
266 LLVMValueRef z;
267 LLVMValueRef z_value, s_value;
268 LLVMValueRef z_fb, s_fb;
269 LLVMValueRef stencil_refs[2];
270 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
271 struct lp_build_for_loop_state loop_state;
272 struct lp_build_mask_context mask;
273 /*
274 * TODO: figure out if simple_shader optimization is really worthwile to
275 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
276 * code since tests tend to take another codepath than real shaders.
277 */
278 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
279 shader->info.base.num_inputs < 3 &&
280 shader->info.base.num_instructions < 8) && 0;
281 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
282 util_blend_state_is_dual(&key->blend, 0);
283 unsigned attrib;
284 unsigned chan;
285 unsigned cbuf;
286 unsigned depth_mode;
287
288 struct lp_bld_tgsi_system_values system_values;
289
290 memset(&system_values, 0, sizeof(system_values));
291
292 if (key->depth.enabled ||
293 key->stencil[0].enabled) {
294
295 zs_format_desc = util_format_description(key->zsbuf_format);
296 assert(zs_format_desc);
297
298 if (!shader->info.base.writes_z) {
299 if (key->alpha.enabled || shader->info.base.uses_kill) {
300 /* With alpha test and kill, can do the depth test early
301 * and hopefully eliminate some quads. But need to do a
302 * special deferred depth write once the final mask value
303 * is known. This only works though if there's either no
304 * stencil test or the stencil value isn't written.
305 */
306 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
307 (key->stencil[1].enabled &&
308 key->stencil[1].writemask)))
309 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
310 else
311 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
312 }
313 else
314 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
315 }
316 else {
317 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
318 }
319
320 if (!(key->depth.enabled && key->depth.writemask) &&
321 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
322 (key->stencil[1].enabled &&
323 key->stencil[1].writemask))))
324 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
325 }
326 else {
327 depth_mode = 0;
328 }
329
330
331 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
332 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
333
334 vec_type = lp_build_vec_type(gallivm, type);
335
336 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
337
338 lp_build_for_loop_begin(&loop_state, gallivm,
339 lp_build_const_int32(gallivm, 0),
340 LLVMIntULT,
341 num_loop,
342 lp_build_const_int32(gallivm, 1));
343
344 mask_ptr = LLVMBuildGEP(builder, mask_store,
345 &loop_state.counter, 1, "mask_ptr");
346 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
347
348 memset(outputs, 0, sizeof outputs);
349
350 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
351 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
352 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
353 lp_build_vec_type(gallivm,
354 type),
355 num_loop, "color");
356 }
357 }
358 if (dual_source_blend) {
359 assert(key->nr_cbufs <= 1);
360 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
361 out_color[1][chan] = lp_build_array_alloca(gallivm,
362 lp_build_vec_type(gallivm,
363 type),
364 num_loop, "color1");
365 }
366 }
367
368
369 /* 'mask' will control execution based on quad's pixel alive/killed state */
370 lp_build_mask_begin(&mask, gallivm, type, mask_val);
371
372 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
373 lp_build_mask_check(&mask);
374
375 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
376 z = interp->pos[2];
377
378 if (depth_mode & EARLY_DEPTH_TEST) {
379 lp_build_depth_stencil_load_swizzled(gallivm, type,
380 zs_format_desc, key->resource_1d,
381 depth_ptr, depth_stride,
382 &z_fb, &s_fb, loop_state.counter);
383 lp_build_depth_stencil_test(gallivm,
384 &key->depth,
385 key->stencil,
386 type,
387 zs_format_desc,
388 &mask,
389 stencil_refs,
390 z, z_fb, s_fb,
391 facing,
392 &z_value, &s_value,
393 !simple_shader);
394
395 if (depth_mode & EARLY_DEPTH_WRITE) {
396 lp_build_depth_stencil_write_swizzled(gallivm, type,
397 zs_format_desc, key->resource_1d,
398 NULL, NULL, NULL, loop_state.counter,
399 depth_ptr, depth_stride,
400 z_value, s_value);
401 }
402 /*
403 * Note mask check if stencil is enabled must be after ds write not after
404 * stencil test otherwise new stencil values may not get written if all
405 * fragments got killed by depth/stencil test.
406 */
407 if (!simple_shader && key->stencil[0].enabled)
408 lp_build_mask_check(&mask);
409 }
410
411 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
412
413 /* Build the actual shader */
414 lp_build_tgsi_soa(gallivm, tokens, type, &mask,
415 consts_ptr, &system_values,
416 interp->inputs,
417 outputs, sampler, &shader->info.base, NULL);
418
419 /* Alpha test */
420 if (key->alpha.enabled) {
421 int color0 = find_output_by_semantic(&shader->info.base,
422 TGSI_SEMANTIC_COLOR,
423 0);
424
425 if (color0 != -1 && outputs[color0][3]) {
426 const struct util_format_description *cbuf_format_desc;
427 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
428 LLVMValueRef alpha_ref_value;
429
430 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
431 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
432
433 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
434
435 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
436 &mask, alpha, alpha_ref_value,
437 (depth_mode & LATE_DEPTH_TEST) != 0);
438 }
439 }
440
441 /* Late Z test */
442 if (depth_mode & LATE_DEPTH_TEST) {
443 int pos0 = find_output_by_semantic(&shader->info.base,
444 TGSI_SEMANTIC_POSITION,
445 0);
446
447 if (pos0 != -1 && outputs[pos0][2]) {
448 LLVMValueRef viewport, min_depth, max_depth;
449 LLVMValueRef viewport_index;
450 struct lp_build_context f32_bld;
451
452 assert(type.floating);
453 lp_build_context_init(&f32_bld, gallivm, type);
454
455 /*
456 * Assumes clamping of the viewport index will occur in setup/gs. Value
457 * is passed through the rasterization stage via lp_rast_shader_inputs.
458 *
459 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
460 * semantics.
461 */
462 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
463 thread_data_ptr);
464
465 /*
466 * Load the min and max depth from the lp_jit_context.viewports
467 * array of lp_jit_viewport structures.
468 */
469 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
470
471 /* viewports[viewport_index].min_depth */
472 min_depth = LLVMBuildExtractElement(builder, viewport,
473 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH),
474 "");
475 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
476
477 /* viewports[viewport_index].max_depth */
478 max_depth = LLVMBuildExtractElement(builder, viewport,
479 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH),
480 "");
481 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
482
483 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
484
485 /*
486 * Clamp to the min and max depth values for the given viewport.
487 */
488 z = lp_build_clamp(&f32_bld, z, min_depth, max_depth);
489 }
490
491 lp_build_depth_stencil_load_swizzled(gallivm, type,
492 zs_format_desc, key->resource_1d,
493 depth_ptr, depth_stride,
494 &z_fb, &s_fb, loop_state.counter);
495
496 lp_build_depth_stencil_test(gallivm,
497 &key->depth,
498 key->stencil,
499 type,
500 zs_format_desc,
501 &mask,
502 stencil_refs,
503 z, z_fb, s_fb,
504 facing,
505 &z_value, &s_value,
506 !simple_shader);
507 /* Late Z write */
508 if (depth_mode & LATE_DEPTH_WRITE) {
509 lp_build_depth_stencil_write_swizzled(gallivm, type,
510 zs_format_desc, key->resource_1d,
511 NULL, NULL, NULL, loop_state.counter,
512 depth_ptr, depth_stride,
513 z_value, s_value);
514 }
515 }
516 else if ((depth_mode & EARLY_DEPTH_TEST) &&
517 (depth_mode & LATE_DEPTH_WRITE))
518 {
519 /* Need to apply a reduced mask to the depth write. Reload the
520 * depth value, update from zs_value with the new mask value and
521 * write that out.
522 */
523 lp_build_depth_stencil_write_swizzled(gallivm, type,
524 zs_format_desc, key->resource_1d,
525 &mask, z_fb, s_fb, loop_state.counter,
526 depth_ptr, depth_stride,
527 z_value, s_value);
528 }
529
530
531 /* Color write */
532 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
533 {
534 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
535 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
536 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
537 {
538 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
539 if(outputs[attrib][chan]) {
540 /* XXX: just initialize outputs to point at colors[] and
541 * skip this.
542 */
543 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
544 LLVMValueRef color_ptr;
545 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
546 &loop_state.counter, 1, "");
547 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
548 LLVMBuildStore(builder, out, color_ptr);
549 }
550 }
551 }
552 }
553
554 if (key->occlusion_count) {
555 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
556 lp_build_name(counter, "counter");
557 lp_build_occlusion_count(gallivm, type,
558 lp_build_mask_value(&mask), counter);
559 }
560
561 mask_val = lp_build_mask_end(&mask);
562 LLVMBuildStore(builder, mask_val, mask_ptr);
563 lp_build_for_loop_end(&loop_state);
564 }
565
566
567 /**
568 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
569 *
570 * Fragment Shader outputs pixels in small 2x2 blocks
571 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
572 *
573 * However in memory pixels are stored in rows
574 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
575 *
576 * @param type fragment shader type (4x or 8x float)
577 * @param num_fs number of fs_src
578 * @param is_1d whether we're outputting to a 1d resource
579 * @param dst_channels number of output channels
580 * @param fs_src output from fragment shader
581 * @param dst pointer to store result
582 * @param pad_inline is channel padding inline or at end of row
583 * @return the number of dsts
584 */
585 static int
586 generate_fs_twiddle(struct gallivm_state *gallivm,
587 struct lp_type type,
588 unsigned num_fs,
589 unsigned dst_channels,
590 LLVMValueRef fs_src[][4],
591 LLVMValueRef* dst,
592 bool pad_inline)
593 {
594 LLVMValueRef src[16];
595
596 bool swizzle_pad;
597 bool twiddle;
598 bool split;
599
600 unsigned pixels = type.length / 4;
601 unsigned reorder_group;
602 unsigned src_channels;
603 unsigned src_count;
604 unsigned i;
605
606 src_channels = dst_channels < 3 ? dst_channels : 4;
607 src_count = num_fs * src_channels;
608
609 assert(pixels == 2 || pixels == 1);
610 assert(num_fs * src_channels <= Elements(src));
611
612 /*
613 * Transpose from SoA -> AoS
614 */
615 for (i = 0; i < num_fs; ++i) {
616 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
617 }
618
619 /*
620 * Pick transformation options
621 */
622 swizzle_pad = false;
623 twiddle = false;
624 split = false;
625 reorder_group = 0;
626
627 if (dst_channels == 1) {
628 twiddle = true;
629
630 if (pixels == 2) {
631 split = true;
632 }
633 } else if (dst_channels == 2) {
634 if (pixels == 1) {
635 reorder_group = 1;
636 }
637 } else if (dst_channels > 2) {
638 if (pixels == 1) {
639 reorder_group = 2;
640 } else {
641 twiddle = true;
642 }
643
644 if (!pad_inline && dst_channels == 3 && pixels > 1) {
645 swizzle_pad = true;
646 }
647 }
648
649 /*
650 * Split the src in half
651 */
652 if (split) {
653 for (i = num_fs; i > 0; --i) {
654 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
655 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
656 }
657
658 src_count *= 2;
659 type.length = 4;
660 }
661
662 /*
663 * Ensure pixels are in memory order
664 */
665 if (reorder_group) {
666 /* Twiddle pixels by reordering the array, e.g.:
667 *
668 * src_count = 8 -> 0 2 1 3 4 6 5 7
669 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
670 */
671 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
672
673 for (i = 0; i < src_count; ++i) {
674 unsigned group = i / reorder_group;
675 unsigned block = (group / 4) * 4 * reorder_group;
676 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
677 dst[i] = src[j];
678 }
679 } else if (twiddle) {
680 /* Twiddle pixels across elements of array */
681 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
682 } else {
683 /* Do nothing */
684 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
685 }
686
687 /*
688 * Moves any padding between pixels to the end
689 * e.g. RGBXRGBX -> RGBRGBXX
690 */
691 if (swizzle_pad) {
692 unsigned char swizzles[16];
693 unsigned elems = pixels * dst_channels;
694
695 for (i = 0; i < type.length; ++i) {
696 if (i < elems)
697 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
698 else
699 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
700 }
701
702 for (i = 0; i < src_count; ++i) {
703 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
704 }
705 }
706
707 return src_count;
708 }
709
710
711 /**
712 * Load an unswizzled block of pixels from memory
713 */
714 static void
715 load_unswizzled_block(struct gallivm_state *gallivm,
716 LLVMValueRef base_ptr,
717 LLVMValueRef stride,
718 unsigned block_width,
719 unsigned block_height,
720 LLVMValueRef* dst,
721 struct lp_type dst_type,
722 unsigned dst_count,
723 unsigned dst_alignment)
724 {
725 LLVMBuilderRef builder = gallivm->builder;
726 unsigned row_size = dst_count / block_height;
727 unsigned i;
728
729 /* Ensure block exactly fits into dst */
730 assert((block_width * block_height) % dst_count == 0);
731
732 for (i = 0; i < dst_count; ++i) {
733 unsigned x = i % row_size;
734 unsigned y = i / row_size;
735
736 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
737 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
738
739 LLVMValueRef gep[2];
740 LLVMValueRef dst_ptr;
741
742 gep[0] = lp_build_const_int32(gallivm, 0);
743 gep[1] = LLVMBuildAdd(builder, bx, by, "");
744
745 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
746 dst_ptr = LLVMBuildBitCast(builder, dst_ptr, LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
747
748 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
749
750 lp_set_load_alignment(dst[i], dst_alignment);
751 }
752 }
753
754
755 /**
756 * Store an unswizzled block of pixels to memory
757 */
758 static void
759 store_unswizzled_block(struct gallivm_state *gallivm,
760 LLVMValueRef base_ptr,
761 LLVMValueRef stride,
762 unsigned block_width,
763 unsigned block_height,
764 LLVMValueRef* src,
765 struct lp_type src_type,
766 unsigned src_count,
767 unsigned src_alignment)
768 {
769 LLVMBuilderRef builder = gallivm->builder;
770 unsigned row_size = src_count / block_height;
771 unsigned i;
772
773 /* Ensure src exactly fits into block */
774 assert((block_width * block_height) % src_count == 0);
775
776 for (i = 0; i < src_count; ++i) {
777 unsigned x = i % row_size;
778 unsigned y = i / row_size;
779
780 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
781 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
782
783 LLVMValueRef gep[2];
784 LLVMValueRef src_ptr;
785
786 gep[0] = lp_build_const_int32(gallivm, 0);
787 gep[1] = LLVMBuildAdd(builder, bx, by, "");
788
789 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
790 src_ptr = LLVMBuildBitCast(builder, src_ptr, LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
791
792 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
793
794 lp_set_store_alignment(src_ptr, src_alignment);
795 }
796 }
797
798
799 /**
800 * Checks if a format description is an arithmetic format
801 *
802 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
803 */
804 static INLINE boolean
805 is_arithmetic_format(const struct util_format_description *format_desc)
806 {
807 boolean arith = false;
808 unsigned i;
809
810 for (i = 0; i < format_desc->nr_channels; ++i) {
811 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
812 arith |= (format_desc->channel[i].size % 8) != 0;
813 }
814
815 return arith;
816 }
817
818
819 /**
820 * Checks if this format requires special handling due to required expansion
821 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
822 * SoA conversion.
823 */
824 static INLINE boolean
825 format_expands_to_float_soa(const struct util_format_description *format_desc)
826 {
827 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
828 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
829 return true;
830 }
831 return false;
832 }
833
834
835 /**
836 * Retrieves the type representing the memory layout for a format
837 *
838 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
839 */
840 static INLINE void
841 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
842 struct lp_type* type)
843 {
844 unsigned i;
845 unsigned chan;
846
847 if (format_expands_to_float_soa(format_desc)) {
848 /* just make this a 32bit uint */
849 type->floating = false;
850 type->fixed = false;
851 type->sign = false;
852 type->norm = false;
853 type->width = 32;
854 type->length = 1;
855 return;
856 }
857
858 for (i = 0; i < 4; i++)
859 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
860 break;
861 chan = i;
862
863 memset(type, 0, sizeof(struct lp_type));
864 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
865 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
866 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
867 type->norm = format_desc->channel[chan].normalized;
868
869 if (is_arithmetic_format(format_desc)) {
870 type->width = 0;
871 type->length = 1;
872
873 for (i = 0; i < format_desc->nr_channels; ++i) {
874 type->width += format_desc->channel[i].size;
875 }
876 } else {
877 type->width = format_desc->channel[chan].size;
878 type->length = format_desc->nr_channels;
879 }
880 }
881
882
883 /**
884 * Retrieves the type for a format which is usable in the blending code.
885 *
886 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
887 */
888 static INLINE void
889 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
890 struct lp_type* type)
891 {
892 unsigned i;
893 unsigned chan;
894
895 if (format_expands_to_float_soa(format_desc)) {
896 /* always use ordinary floats for blending */
897 type->floating = true;
898 type->fixed = false;
899 type->sign = true;
900 type->norm = false;
901 type->width = 32;
902 type->length = 4;
903 return;
904 }
905
906 for (i = 0; i < 4; i++)
907 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
908 break;
909 chan = i;
910
911 memset(type, 0, sizeof(struct lp_type));
912 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
913 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
914 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
915 type->norm = format_desc->channel[chan].normalized;
916 type->width = format_desc->channel[chan].size;
917 type->length = format_desc->nr_channels;
918
919 for (i = 1; i < format_desc->nr_channels; ++i) {
920 if (format_desc->channel[i].size > type->width)
921 type->width = format_desc->channel[i].size;
922 }
923
924 if (type->floating) {
925 type->width = 32;
926 } else {
927 if (type->width <= 8) {
928 type->width = 8;
929 } else if (type->width <= 16) {
930 type->width = 16;
931 } else {
932 type->width = 32;
933 }
934 }
935
936 if (is_arithmetic_format(format_desc) && type->length == 3) {
937 type->length = 4;
938 }
939 }
940
941
942 /**
943 * Scale a normalized value from src_bits to dst_bits.
944 *
945 * The exact calculation is
946 *
947 * dst = iround(src * dst_mask / src_mask)
948 *
949 * or with integer rounding
950 *
951 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
952 *
953 * where
954 *
955 * src_mask = (1 << src_bits) - 1
956 * dst_mask = (1 << dst_bits) - 1
957 *
958 * but we try to avoid division and multiplication through shifts.
959 */
960 static INLINE LLVMValueRef
961 scale_bits(struct gallivm_state *gallivm,
962 int src_bits,
963 int dst_bits,
964 LLVMValueRef src,
965 struct lp_type src_type)
966 {
967 LLVMBuilderRef builder = gallivm->builder;
968 LLVMValueRef result = src;
969
970 if (dst_bits < src_bits) {
971 int delta_bits = src_bits - dst_bits;
972
973 if (delta_bits <= dst_bits) {
974 /*
975 * Approximate the rescaling with a single shift.
976 *
977 * This gives the wrong rounding.
978 */
979
980 result = LLVMBuildLShr(builder,
981 src,
982 lp_build_const_int_vec(gallivm, src_type, delta_bits),
983 "");
984
985 } else {
986 /*
987 * Try more accurate rescaling.
988 */
989
990 /*
991 * Drop the least significant bits to make space for the multiplication.
992 *
993 * XXX: A better approach would be to use a wider integer type as intermediate. But
994 * this is enough to convert alpha from 16bits -> 2 when rendering to
995 * PIPE_FORMAT_R10G10B10A2_UNORM.
996 */
997 result = LLVMBuildLShr(builder,
998 src,
999 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1000 "");
1001
1002
1003 result = LLVMBuildMul(builder,
1004 result,
1005 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1006 "");
1007
1008 /*
1009 * Add a rounding term before the division.
1010 *
1011 * TODO: Handle signed integers too.
1012 */
1013 if (!src_type.sign) {
1014 result = LLVMBuildAdd(builder,
1015 result,
1016 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1017 "");
1018 }
1019
1020 /*
1021 * Approximate the division by src_mask with a src_bits shift.
1022 *
1023 * Given the src has already been shifted by dst_bits, all we need
1024 * to do is to shift by the difference.
1025 */
1026
1027 result = LLVMBuildLShr(builder,
1028 result,
1029 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1030 "");
1031 }
1032
1033 } else if (dst_bits > src_bits) {
1034 /* Scale up bits */
1035 int db = dst_bits - src_bits;
1036
1037 /* Shift left by difference in bits */
1038 result = LLVMBuildShl(builder,
1039 src,
1040 lp_build_const_int_vec(gallivm, src_type, db),
1041 "");
1042
1043 if (db < src_bits) {
1044 /* Enough bits in src to fill the remainder */
1045 LLVMValueRef lower = LLVMBuildLShr(builder,
1046 src,
1047 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1048 "");
1049
1050 result = LLVMBuildOr(builder, result, lower, "");
1051 } else if (db > src_bits) {
1052 /* Need to repeatedly copy src bits to fill remainder in dst */
1053 unsigned n;
1054
1055 for (n = src_bits; n < dst_bits; n *= 2) {
1056 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1057
1058 result = LLVMBuildOr(builder,
1059 result,
1060 LLVMBuildLShr(builder, result, shuv, ""),
1061 "");
1062 }
1063 }
1064 }
1065
1066 return result;
1067 }
1068
1069
1070 /**
1071 * Convert from memory format to blending format
1072 *
1073 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1074 */
1075 static void
1076 convert_to_blend_type(struct gallivm_state *gallivm,
1077 unsigned block_size,
1078 const struct util_format_description *src_fmt,
1079 struct lp_type src_type,
1080 struct lp_type dst_type,
1081 LLVMValueRef* src, // and dst
1082 unsigned num_srcs)
1083 {
1084 LLVMValueRef *dst = src;
1085 LLVMBuilderRef builder = gallivm->builder;
1086 struct lp_type blend_type;
1087 struct lp_type mem_type;
1088 unsigned i, j, k;
1089 unsigned pixels = block_size / num_srcs;
1090 bool is_arith;
1091
1092 /*
1093 * full custom path for packed floats and srgb formats - none of the later
1094 * functions would do anything useful, and given the lp_type representation they
1095 * can't be fixed. Should really have some SoA blend path for these kind of
1096 * formats rather than hacking them in here.
1097 */
1098 if (format_expands_to_float_soa(src_fmt)) {
1099 LLVMValueRef tmpsrc[4];
1100 /*
1101 * This is pretty suboptimal for this case blending in SoA would be much
1102 * better, since conversion gets us SoA values so need to convert back.
1103 */
1104 assert(src_type.width == 32);
1105 assert(dst_type.floating);
1106 assert(dst_type.width == 32);
1107 assert(dst_type.length % 4 == 0);
1108 assert(num_srcs % 4 == 0);
1109
1110 for (i = 0; i < 4; i++) {
1111 tmpsrc[i] = src[i];
1112 }
1113 for (i = 0; i < num_srcs / 4; i++) {
1114 LLVMValueRef tmpsoa[4];
1115 LLVMValueRef tmps = tmpsrc[i];
1116 if (dst_type.length == 8) {
1117 LLVMValueRef shuffles[8];
1118 unsigned j;
1119 /* fetch was 4 values but need 8-wide output values */
1120 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1121 /*
1122 * for 8-wide aos transpose would give us wrong order not matching
1123 * incoming converted fs values and mask. ARGH.
1124 */
1125 for (j = 0; j < 4; j++) {
1126 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1127 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1128 }
1129 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1130 LLVMConstVector(shuffles, 8), "");
1131 }
1132 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1133 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1134 }
1135 else {
1136 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1137 }
1138 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1139 }
1140 return;
1141 }
1142
1143 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1144 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1145
1146 /* Is the format arithmetic */
1147 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1148 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1149
1150 /* Pad if necessary */
1151 if (!is_arith && src_type.length < dst_type.length) {
1152 for (i = 0; i < num_srcs; ++i) {
1153 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1154 }
1155
1156 src_type.length = dst_type.length;
1157 }
1158
1159 /* Special case for half-floats */
1160 if (mem_type.width == 16 && mem_type.floating) {
1161 assert(blend_type.width == 32 && blend_type.floating);
1162 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1163 is_arith = false;
1164 }
1165
1166 if (!is_arith) {
1167 return;
1168 }
1169
1170 src_type.width = blend_type.width * blend_type.length;
1171 blend_type.length *= pixels;
1172 src_type.length *= pixels / (src_type.length / mem_type.length);
1173
1174 for (i = 0; i < num_srcs; ++i) {
1175 LLVMValueRef chans[4];
1176 LLVMValueRef res = NULL;
1177
1178 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1179
1180 for (j = 0; j < src_fmt->nr_channels; ++j) {
1181 unsigned mask = 0;
1182 unsigned sa = src_fmt->channel[j].shift;
1183 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1184 unsigned from_lsb = j;
1185 #else
1186 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1187 #endif
1188
1189 for (k = 0; k < src_fmt->channel[j].size; ++k) {
1190 mask |= 1 << k;
1191 }
1192
1193 /* Extract bits from source */
1194 chans[j] = LLVMBuildLShr(builder,
1195 dst[i],
1196 lp_build_const_int_vec(gallivm, src_type, sa),
1197 "");
1198
1199 chans[j] = LLVMBuildAnd(builder,
1200 chans[j],
1201 lp_build_const_int_vec(gallivm, src_type, mask),
1202 "");
1203
1204 /* Scale bits */
1205 if (src_type.norm) {
1206 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1207 blend_type.width, chans[j], src_type);
1208 }
1209
1210 /* Insert bits into correct position */
1211 chans[j] = LLVMBuildShl(builder,
1212 chans[j],
1213 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1214 "");
1215
1216 if (j == 0) {
1217 res = chans[j];
1218 } else {
1219 res = LLVMBuildOr(builder, res, chans[j], "");
1220 }
1221 }
1222
1223 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1224 }
1225 }
1226
1227
1228 /**
1229 * Convert from blending format to memory format
1230 *
1231 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1232 */
1233 static void
1234 convert_from_blend_type(struct gallivm_state *gallivm,
1235 unsigned block_size,
1236 const struct util_format_description *src_fmt,
1237 struct lp_type src_type,
1238 struct lp_type dst_type,
1239 LLVMValueRef* src, // and dst
1240 unsigned num_srcs)
1241 {
1242 LLVMValueRef* dst = src;
1243 unsigned i, j, k;
1244 struct lp_type mem_type;
1245 struct lp_type blend_type;
1246 LLVMBuilderRef builder = gallivm->builder;
1247 unsigned pixels = block_size / num_srcs;
1248 bool is_arith;
1249
1250 /*
1251 * full custom path for packed floats and srgb formats - none of the later
1252 * functions would do anything useful, and given the lp_type representation they
1253 * can't be fixed. Should really have some SoA blend path for these kind of
1254 * formats rather than hacking them in here.
1255 */
1256 if (format_expands_to_float_soa(src_fmt)) {
1257 /*
1258 * This is pretty suboptimal for this case blending in SoA would be much
1259 * better - we need to transpose the AoS values back to SoA values for
1260 * conversion/packing.
1261 */
1262 assert(src_type.floating);
1263 assert(src_type.width == 32);
1264 assert(src_type.length % 4 == 0);
1265 assert(dst_type.width == 32);
1266
1267 for (i = 0; i < num_srcs / 4; i++) {
1268 LLVMValueRef tmpsoa[4], tmpdst;
1269 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1270 /* really really need SoA here */
1271
1272 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1273 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1274 }
1275 else {
1276 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1277 src_type, tmpsoa);
1278 }
1279
1280 if (src_type.length == 8) {
1281 LLVMValueRef tmpaos, shuffles[8];
1282 unsigned j;
1283 /*
1284 * for 8-wide aos transpose has given us wrong order not matching
1285 * output order. HMPF. Also need to split the output values manually.
1286 */
1287 for (j = 0; j < 4; j++) {
1288 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1289 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1290 }
1291 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1292 LLVMConstVector(shuffles, 8), "");
1293 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1294 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1295 }
1296 else {
1297 src[i] = tmpdst;
1298 }
1299 }
1300 return;
1301 }
1302
1303 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1304 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1305
1306 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1307
1308 /* Special case for half-floats */
1309 if (mem_type.width == 16 && mem_type.floating) {
1310 int length = dst_type.length;
1311 assert(blend_type.width == 32 && blend_type.floating);
1312
1313 dst_type.length = src_type.length;
1314
1315 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1316
1317 dst_type.length = length;
1318 is_arith = false;
1319 }
1320
1321 /* Remove any padding */
1322 if (!is_arith && (src_type.length % mem_type.length)) {
1323 src_type.length -= (src_type.length % mem_type.length);
1324
1325 for (i = 0; i < num_srcs; ++i) {
1326 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1327 }
1328 }
1329
1330 /* No bit arithmetic to do */
1331 if (!is_arith) {
1332 return;
1333 }
1334
1335 src_type.length = pixels;
1336 src_type.width = blend_type.length * blend_type.width;
1337 dst_type.length = pixels;
1338
1339 for (i = 0; i < num_srcs; ++i) {
1340 LLVMValueRef chans[4];
1341 LLVMValueRef res = NULL;
1342
1343 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1344
1345 for (j = 0; j < src_fmt->nr_channels; ++j) {
1346 unsigned mask = 0;
1347 unsigned sa = src_fmt->channel[j].shift;
1348 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1349 unsigned from_lsb = j;
1350 #else
1351 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1352 #endif
1353
1354 assert(blend_type.width > src_fmt->channel[j].size);
1355
1356 for (k = 0; k < blend_type.width; ++k) {
1357 mask |= 1 << k;
1358 }
1359
1360 /* Extract bits */
1361 chans[j] = LLVMBuildLShr(builder,
1362 dst[i],
1363 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1364 "");
1365
1366 chans[j] = LLVMBuildAnd(builder,
1367 chans[j],
1368 lp_build_const_int_vec(gallivm, src_type, mask),
1369 "");
1370
1371 /* Scale down bits */
1372 if (src_type.norm) {
1373 chans[j] = scale_bits(gallivm, blend_type.width,
1374 src_fmt->channel[j].size, chans[j], src_type);
1375 }
1376
1377 /* Insert bits */
1378 chans[j] = LLVMBuildShl(builder,
1379 chans[j],
1380 lp_build_const_int_vec(gallivm, src_type, sa),
1381 "");
1382
1383 sa += src_fmt->channel[j].size;
1384
1385 if (j == 0) {
1386 res = chans[j];
1387 } else {
1388 res = LLVMBuildOr(builder, res, chans[j], "");
1389 }
1390 }
1391
1392 assert (dst_type.width != 24);
1393
1394 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1395 }
1396 }
1397
1398
1399 /**
1400 * Convert alpha to same blend type as src
1401 */
1402 static void
1403 convert_alpha(struct gallivm_state *gallivm,
1404 struct lp_type row_type,
1405 struct lp_type alpha_type,
1406 const unsigned block_size,
1407 const unsigned block_height,
1408 const unsigned src_count,
1409 const unsigned dst_channels,
1410 const bool pad_inline,
1411 LLVMValueRef* src_alpha)
1412 {
1413 LLVMBuilderRef builder = gallivm->builder;
1414 unsigned i, j;
1415 unsigned length = row_type.length;
1416 row_type.length = alpha_type.length;
1417
1418 /* Twiddle the alpha to match pixels */
1419 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1420
1421 /*
1422 * TODO this should use single lp_build_conv call for
1423 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1424 */
1425 for (i = 0; i < block_height; ++i) {
1426 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1427 }
1428
1429 alpha_type = row_type;
1430 row_type.length = length;
1431
1432 /* If only one channel we can only need the single alpha value per pixel */
1433 if (src_count == 1 && dst_channels == 1) {
1434
1435 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1436 } else {
1437 /* If there are more srcs than rows then we need to split alpha up */
1438 if (src_count > block_height) {
1439 for (i = src_count; i > 0; --i) {
1440 unsigned pixels = block_size / src_count;
1441 unsigned idx = i - 1;
1442
1443 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1444 (idx * pixels) % 4, pixels);
1445 }
1446 }
1447
1448 /* If there is a src for each pixel broadcast the alpha across whole row */
1449 if (src_count == block_size) {
1450 for (i = 0; i < src_count; ++i) {
1451 src_alpha[i] = lp_build_broadcast(gallivm, lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1452 }
1453 } else {
1454 unsigned pixels = block_size / src_count;
1455 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1456 unsigned alpha_span = 1;
1457 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1458
1459 /* Check if we need 2 src_alphas for our shuffles */
1460 if (pixels > alpha_type.length) {
1461 alpha_span = 2;
1462 }
1463
1464 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1465 for (j = 0; j < row_type.length; ++j) {
1466 if (j < pixels * channels) {
1467 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1468 } else {
1469 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1470 }
1471 }
1472
1473 for (i = 0; i < src_count; ++i) {
1474 unsigned idx1 = i, idx2 = i;
1475
1476 if (alpha_span > 1){
1477 idx1 *= alpha_span;
1478 idx2 = idx1 + 1;
1479 }
1480
1481 src_alpha[i] = LLVMBuildShuffleVector(builder,
1482 src_alpha[idx1],
1483 src_alpha[idx2],
1484 LLVMConstVector(shuffles, row_type.length),
1485 "");
1486 }
1487 }
1488 }
1489 }
1490
1491
1492 /**
1493 * Generates the blend function for unswizzled colour buffers
1494 * Also generates the read & write from colour buffer
1495 */
1496 static void
1497 generate_unswizzled_blend(struct gallivm_state *gallivm,
1498 unsigned rt,
1499 struct lp_fragment_shader_variant *variant,
1500 enum pipe_format out_format,
1501 unsigned int num_fs,
1502 struct lp_type fs_type,
1503 LLVMValueRef* fs_mask,
1504 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1505 LLVMValueRef context_ptr,
1506 LLVMValueRef color_ptr,
1507 LLVMValueRef stride,
1508 unsigned partial_mask,
1509 boolean do_branch)
1510 {
1511 const unsigned alpha_channel = 3;
1512 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1513 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1514 const unsigned block_size = block_width * block_height;
1515 const unsigned lp_integer_vector_width = 128;
1516
1517 LLVMBuilderRef builder = gallivm->builder;
1518 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1519 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1520 LLVMValueRef src_alpha[4 * 4];
1521 LLVMValueRef src1_alpha[4 * 4];
1522 LLVMValueRef src_mask[4 * 4];
1523 LLVMValueRef src[4 * 4];
1524 LLVMValueRef src1[4 * 4];
1525 LLVMValueRef dst[4 * 4];
1526 LLVMValueRef blend_color;
1527 LLVMValueRef blend_alpha;
1528 LLVMValueRef i32_zero;
1529 LLVMValueRef check_mask;
1530 LLVMValueRef undef_src_val;
1531
1532 struct lp_build_mask_context mask_ctx;
1533 struct lp_type mask_type;
1534 struct lp_type blend_type;
1535 struct lp_type row_type;
1536 struct lp_type dst_type;
1537
1538 unsigned char swizzle[TGSI_NUM_CHANNELS];
1539 unsigned vector_width;
1540 unsigned src_channels = TGSI_NUM_CHANNELS;
1541 unsigned dst_channels;
1542 unsigned dst_count;
1543 unsigned src_count;
1544 unsigned i, j;
1545
1546 const struct util_format_description* out_format_desc = util_format_description(out_format);
1547
1548 unsigned dst_alignment;
1549
1550 bool pad_inline = is_arithmetic_format(out_format_desc);
1551 bool has_alpha = false;
1552 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1553 util_blend_state_is_dual(&variant->key.blend, 0);
1554
1555 const boolean is_1d = variant->key.resource_1d;
1556 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1557
1558 mask_type = lp_int32_vec4_type();
1559 mask_type.length = fs_type.length;
1560
1561 for (i = num_fs; i < num_fullblock_fs; i++) {
1562 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1563 }
1564
1565 /* Do not bother executing code when mask is empty.. */
1566 if (do_branch) {
1567 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1568
1569 for (i = 0; i < num_fullblock_fs; ++i) {
1570 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1571 }
1572
1573 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1574 lp_build_mask_check(&mask_ctx);
1575 }
1576
1577 partial_mask |= !variant->opaque;
1578 i32_zero = lp_build_const_int32(gallivm, 0);
1579
1580 #if HAVE_LLVM < 0x0302
1581 /*
1582 * undef triggers a crash in LLVMBuildTrunc in convert_from_blend_type in some
1583 * cases (seen with r10g10b10a2, 128bit wide vectors) (only used for 1d case).
1584 */
1585 undef_src_val = lp_build_zero(gallivm, fs_type);
1586 #else
1587 undef_src_val = lp_build_undef(gallivm, fs_type);
1588 #endif
1589
1590
1591 /* Get type from output format */
1592 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1593 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1594
1595 row_type.length = fs_type.length;
1596 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1597
1598 /* Compute correct swizzle and count channels */
1599 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1600 dst_channels = 0;
1601
1602 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1603 /* Ensure channel is used */
1604 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1605 continue;
1606 }
1607
1608 /* Ensure not already written to (happens in case with GL_ALPHA) */
1609 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1610 continue;
1611 }
1612
1613 /* Ensure we havn't already found all channels */
1614 if (dst_channels >= out_format_desc->nr_channels) {
1615 continue;
1616 }
1617
1618 swizzle[out_format_desc->swizzle[i]] = i;
1619 ++dst_channels;
1620
1621 if (i == alpha_channel) {
1622 has_alpha = true;
1623 }
1624 }
1625
1626 if (format_expands_to_float_soa(out_format_desc)) {
1627 /*
1628 * the code above can't work for layout_other
1629 * for srgb it would sort of work but we short-circuit swizzles, etc.
1630 * as that is done as part of unpack / pack.
1631 */
1632 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1633 has_alpha = true;
1634 swizzle[0] = 0;
1635 swizzle[1] = 1;
1636 swizzle[2] = 2;
1637 swizzle[3] = 3;
1638 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1639 }
1640
1641 /* If 3 channels then pad to include alpha for 4 element transpose */
1642 if (dst_channels == 3 && !has_alpha) {
1643 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1644 if (swizzle[i] > TGSI_NUM_CHANNELS)
1645 swizzle[i] = 3;
1646 }
1647 if (out_format_desc->nr_channels == 4) {
1648 dst_channels = 4;
1649 }
1650 }
1651
1652 /*
1653 * Load shader output
1654 */
1655 for (i = 0; i < num_fullblock_fs; ++i) {
1656 /* Always load alpha for use in blending */
1657 LLVMValueRef alpha;
1658 if (i < num_fs) {
1659 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1660 }
1661 else {
1662 alpha = undef_src_val;
1663 }
1664
1665 /* Load each channel */
1666 for (j = 0; j < dst_channels; ++j) {
1667 assert(swizzle[j] < 4);
1668 if (i < num_fs) {
1669 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1670 }
1671 else {
1672 fs_src[i][j] = undef_src_val;
1673 }
1674 }
1675
1676 /* If 3 channels then pad to include alpha for 4 element transpose */
1677 /*
1678 * XXX If we include that here maybe could actually use it instead of
1679 * separate alpha for blending?
1680 */
1681 if (dst_channels == 3 && !has_alpha) {
1682 fs_src[i][3] = alpha;
1683 }
1684
1685 /* We split the row_mask and row_alpha as we want 128bit interleave */
1686 if (fs_type.length == 8) {
1687 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i], 0, src_channels);
1688 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i], src_channels, src_channels);
1689
1690 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1691 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha, src_channels, src_channels);
1692 } else {
1693 src_mask[i] = fs_mask[i];
1694 src_alpha[i] = alpha;
1695 }
1696 }
1697 if (dual_source_blend) {
1698 /* same as above except different src/dst, skip masks and comments... */
1699 for (i = 0; i < num_fullblock_fs; ++i) {
1700 LLVMValueRef alpha;
1701 if (i < num_fs) {
1702 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1703 }
1704 else {
1705 alpha = undef_src_val;
1706 }
1707
1708 for (j = 0; j < dst_channels; ++j) {
1709 assert(swizzle[j] < 4);
1710 if (i < num_fs) {
1711 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1712 }
1713 else {
1714 fs_src1[i][j] = undef_src_val;
1715 }
1716 }
1717 if (dst_channels == 3 && !has_alpha) {
1718 fs_src1[i][3] = alpha;
1719 }
1720 if (fs_type.length == 8) {
1721 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1722 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha, src_channels, src_channels);
1723 } else {
1724 src1_alpha[i] = alpha;
1725 }
1726 }
1727 }
1728
1729 if (util_format_is_pure_integer(out_format)) {
1730 /*
1731 * In this case fs_type was really ints or uints disguised as floats,
1732 * fix that up now.
1733 */
1734 fs_type.floating = 0;
1735 fs_type.sign = dst_type.sign;
1736 for (i = 0; i < num_fullblock_fs; ++i) {
1737 for (j = 0; j < dst_channels; ++j) {
1738 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
1739 lp_build_vec_type(gallivm, fs_type), "");
1740 }
1741 if (dst_channels == 3 && !has_alpha) {
1742 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
1743 lp_build_vec_type(gallivm, fs_type), "");
1744 }
1745 }
1746 }
1747
1748 /*
1749 * Pixel twiddle from fragment shader order to memory order
1750 */
1751 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
1752 dst_channels, fs_src, src, pad_inline);
1753 if (dual_source_blend) {
1754 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
1755 fs_src1, src1, pad_inline);
1756 }
1757
1758 src_channels = dst_channels < 3 ? dst_channels : 4;
1759 if (src_count != num_fullblock_fs * src_channels) {
1760 unsigned ds = src_count / (num_fullblock_fs * src_channels);
1761 row_type.length /= ds;
1762 fs_type.length = row_type.length;
1763 }
1764
1765 blend_type = row_type;
1766 mask_type.length = 4;
1767
1768 /* Convert src to row_type */
1769 if (dual_source_blend) {
1770 struct lp_type old_row_type = row_type;
1771 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
1772 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
1773 }
1774 else {
1775 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
1776 }
1777
1778 /* If the rows are not an SSE vector, combine them to become SSE size! */
1779 if ((row_type.width * row_type.length) % 128) {
1780 unsigned bits = row_type.width * row_type.length;
1781 unsigned combined;
1782
1783 assert(src_count >= (vector_width / bits));
1784
1785 dst_count = src_count / (vector_width / bits);
1786
1787 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
1788 if (dual_source_blend) {
1789 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
1790 }
1791
1792 row_type.length *= combined;
1793 src_count /= combined;
1794
1795 bits = row_type.width * row_type.length;
1796 assert(bits == 128 || bits == 256);
1797 }
1798
1799
1800 /*
1801 * Blend Colour conversion
1802 */
1803 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
1804 blend_color = LLVMBuildPointerCast(builder, blend_color, LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
1805 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color, &i32_zero, 1, ""), "");
1806
1807 /* Convert */
1808 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
1809
1810 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1811 /*
1812 * since blending is done with floats, there was no conversion.
1813 * However, the rules according to fixed point renderbuffers still
1814 * apply, that is we must clamp inputs to 0.0/1.0.
1815 * (This would apply to separate alpha conversion too but we currently
1816 * force has_alpha to be true.)
1817 * TODO: should skip this with "fake" blend, since post-blend conversion
1818 * will clamp anyway.
1819 * TODO: could also skip this if fragment color clamping is enabled. We
1820 * don't support it natively so it gets baked into the shader however, so
1821 * can't really tell here.
1822 */
1823 struct lp_build_context f32_bld;
1824 assert(row_type.floating);
1825 lp_build_context_init(&f32_bld, gallivm, row_type);
1826 for (i = 0; i < src_count; i++) {
1827 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
1828 }
1829 if (dual_source_blend) {
1830 for (i = 0; i < src_count; i++) {
1831 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
1832 }
1833 }
1834 /* probably can't be different than row_type but better safe than sorry... */
1835 lp_build_context_init(&f32_bld, gallivm, blend_type);
1836 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
1837 }
1838
1839 /* Extract alpha */
1840 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
1841
1842 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
1843 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
1844 if (pad_inline) {
1845 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
1846 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
1847 } else {
1848 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
1849 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
1850 }
1851
1852 /*
1853 * Mask conversion
1854 */
1855 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
1856
1857 if (src_count < block_height) {
1858 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
1859 } else if (src_count > block_height) {
1860 for (i = src_count; i > 0; --i) {
1861 unsigned pixels = block_size / src_count;
1862 unsigned idx = i - 1;
1863
1864 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
1865 (idx * pixels) % 4, pixels);
1866 }
1867 }
1868
1869 assert(mask_type.width == 32);
1870
1871 for (i = 0; i < src_count; ++i) {
1872 unsigned pixels = block_size / src_count;
1873 unsigned pixel_width = row_type.width * dst_channels;
1874
1875 if (pixel_width == 24) {
1876 mask_type.width = 8;
1877 mask_type.length = vector_width / mask_type.width;
1878 } else {
1879 mask_type.length = pixels;
1880 mask_type.width = row_type.width * dst_channels;
1881
1882 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i], lp_build_int_vec_type(gallivm, mask_type), "");
1883
1884 mask_type.length *= dst_channels;
1885 mask_type.width /= dst_channels;
1886 }
1887
1888 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i], lp_build_int_vec_type(gallivm, mask_type), "");
1889 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
1890 }
1891
1892 /*
1893 * Alpha conversion
1894 */
1895 if (!has_alpha) {
1896 struct lp_type alpha_type = fs_type;
1897 alpha_type.length = 4;
1898 convert_alpha(gallivm, row_type, alpha_type,
1899 block_size, block_height,
1900 src_count, dst_channels,
1901 pad_inline, src_alpha);
1902 if (dual_source_blend) {
1903 convert_alpha(gallivm, row_type, alpha_type,
1904 block_size, block_height,
1905 src_count, dst_channels,
1906 pad_inline, src1_alpha);
1907 }
1908 }
1909
1910
1911 /*
1912 * Load dst from memory
1913 */
1914 if (src_count < block_height) {
1915 dst_count = block_height;
1916 } else {
1917 dst_count = src_count;
1918 }
1919
1920 dst_type.length *= block_size / dst_count;
1921
1922 if (format_expands_to_float_soa(out_format_desc)) {
1923 /*
1924 * we need multiple values at once for the conversion, so can as well
1925 * load them vectorized here too instead of concatenating later.
1926 * (Still need concatenation later for 8-wide vectors).
1927 */
1928 dst_count = block_height;
1929 dst_type.length = block_width;
1930 }
1931
1932 /*
1933 * Compute the alignment of the destination pointer in bytes
1934 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
1935 * are always aligned by MIN2(16, fetch_width) except for buffers (not
1936 * 1d tex but can't distinguish here) so need to stick with per-pixel
1937 * alignment in this case.
1938 */
1939 if (is_1d) {
1940 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
1941 }
1942 else {
1943 dst_alignment = dst_type.length * dst_type.width / 8;
1944 }
1945 /* Force power-of-two alignment by extracting only the least-significant-bit */
1946 dst_alignment = 1 << (ffs(dst_alignment) - 1);
1947 /*
1948 * Resource base and stride pointers are aligned to 16 bytes, so that's
1949 * the maximum alignment we can guarantee
1950 */
1951 dst_alignment = MIN2(16, dst_alignment);
1952
1953 if (is_1d) {
1954 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
1955 dst, dst_type, dst_count / 4, dst_alignment);
1956 for (i = dst_count / 4; i < dst_count; i++) {
1957 dst[i] = lp_build_undef(gallivm, dst_type);
1958 }
1959
1960 }
1961 else {
1962 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
1963 dst, dst_type, dst_count, dst_alignment);
1964 }
1965
1966
1967 /*
1968 * Convert from dst/output format to src/blending format.
1969 *
1970 * This is necessary as we can only read 1 row from memory at a time,
1971 * so the minimum dst_count will ever be at this point is 4.
1972 *
1973 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
1974 * this will take the 4 dsts and combine them into 1 src so we can perform blending
1975 * on all 16 pixels in that single vector at once.
1976 */
1977 if (dst_count > src_count) {
1978 lp_build_concat_n(gallivm, dst_type, dst, 4, dst, src_count);
1979 }
1980
1981 /*
1982 * Blending
1983 */
1984 /* XXX this is broken for RGB8 formats -
1985 * they get expanded from 12 to 16 elements (to include alpha)
1986 * by convert_to_blend_type then reduced to 15 instead of 12
1987 * by convert_from_blend_type (a simple fix though breaks A8...).
1988 * R16G16B16 also crashes differently however something going wrong
1989 * inside llvm handling npot vector sizes seemingly.
1990 * It seems some cleanup could be done here (like skipping conversion/blend
1991 * when not needed).
1992 */
1993 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type, row_type, dst, src_count);
1994
1995 /*
1996 * FIXME: Really should get logic ops / masks out of generic blend / row
1997 * format. Logic ops will definitely not work on the blend float format
1998 * used for SRGB here and I think OpenGL expects this to work as expected
1999 * (that is incoming values converted to srgb then logic op applied).
2000 */
2001 for (i = 0; i < src_count; ++i) {
2002 dst[i] = lp_build_blend_aos(gallivm,
2003 &variant->key.blend,
2004 out_format,
2005 row_type,
2006 rt,
2007 src[i],
2008 has_alpha ? NULL : src_alpha[i],
2009 src1[i],
2010 has_alpha ? NULL : src1_alpha[i],
2011 dst[i],
2012 partial_mask ? src_mask[i] : NULL,
2013 blend_color,
2014 has_alpha ? NULL : blend_alpha,
2015 swizzle,
2016 pad_inline ? 4 : dst_channels);
2017 }
2018
2019 convert_from_blend_type(gallivm, block_size, out_format_desc, row_type, dst_type, dst, src_count);
2020
2021 /* Split the blend rows back to memory rows */
2022 if (dst_count > src_count) {
2023 row_type.length = dst_type.length * (dst_count / src_count);
2024
2025 if (src_count == 1) {
2026 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2027 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2028
2029 row_type.length /= 2;
2030 src_count *= 2;
2031 }
2032
2033 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2034 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2035 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2036 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2037
2038 row_type.length /= 2;
2039 src_count *= 2;
2040 }
2041
2042 /*
2043 * Store blend result to memory
2044 */
2045 if (is_1d) {
2046 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2047 dst, dst_type, dst_count / 4, dst_alignment);
2048 }
2049 else {
2050 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2051 dst, dst_type, dst_count, dst_alignment);
2052 }
2053
2054 if (do_branch) {
2055 lp_build_mask_end(&mask_ctx);
2056 }
2057 }
2058
2059
2060 /**
2061 * Generate the runtime callable function for the whole fragment pipeline.
2062 * Note that the function which we generate operates on a block of 16
2063 * pixels at at time. The block contains 2x2 quads. Each quad contains
2064 * 2x2 pixels.
2065 */
2066 static void
2067 generate_fragment(struct llvmpipe_context *lp,
2068 struct lp_fragment_shader *shader,
2069 struct lp_fragment_shader_variant *variant,
2070 unsigned partial_mask)
2071 {
2072 struct gallivm_state *gallivm = variant->gallivm;
2073 const struct lp_fragment_shader_variant_key *key = &variant->key;
2074 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2075 char func_name[256];
2076 struct lp_type fs_type;
2077 struct lp_type blend_type;
2078 LLVMTypeRef fs_elem_type;
2079 LLVMTypeRef blend_vec_type;
2080 LLVMTypeRef arg_types[13];
2081 LLVMTypeRef func_type;
2082 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2083 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2084 LLVMValueRef context_ptr;
2085 LLVMValueRef x;
2086 LLVMValueRef y;
2087 LLVMValueRef a0_ptr;
2088 LLVMValueRef dadx_ptr;
2089 LLVMValueRef dady_ptr;
2090 LLVMValueRef color_ptr_ptr;
2091 LLVMValueRef stride_ptr;
2092 LLVMValueRef depth_ptr;
2093 LLVMValueRef depth_stride;
2094 LLVMValueRef mask_input;
2095 LLVMValueRef thread_data_ptr;
2096 LLVMBasicBlockRef block;
2097 LLVMBuilderRef builder;
2098 struct lp_build_sampler_soa *sampler;
2099 struct lp_build_interp_soa_context interp;
2100 LLVMValueRef fs_mask[16 / 4];
2101 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2102 LLVMValueRef function;
2103 LLVMValueRef facing;
2104 unsigned num_fs;
2105 unsigned i;
2106 unsigned chan;
2107 unsigned cbuf;
2108 boolean cbuf0_write_all;
2109 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2110 util_blend_state_is_dual(&key->blend, 0);
2111
2112 assert(lp_native_vector_width / 32 >= 4);
2113
2114 /* Adjust color input interpolation according to flatshade state:
2115 */
2116 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2117 for (i = 0; i < shader->info.base.num_inputs; i++) {
2118 if (inputs[i].interp == LP_INTERP_COLOR) {
2119 if (key->flatshade)
2120 inputs[i].interp = LP_INTERP_CONSTANT;
2121 else
2122 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2123 }
2124 }
2125
2126 /* check if writes to cbuf[0] are to be copied to all cbufs */
2127 cbuf0_write_all = FALSE;
2128 for (i = 0;i < shader->info.base.num_properties; i++) {
2129 if (shader->info.base.properties[i].name ==
2130 TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS) {
2131 cbuf0_write_all = TRUE;
2132 break;
2133 }
2134 }
2135
2136 /* TODO: actually pick these based on the fs and color buffer
2137 * characteristics. */
2138
2139 memset(&fs_type, 0, sizeof fs_type);
2140 fs_type.floating = TRUE; /* floating point values */
2141 fs_type.sign = TRUE; /* values are signed */
2142 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2143 fs_type.width = 32; /* 32-bit float */
2144 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2145
2146 memset(&blend_type, 0, sizeof blend_type);
2147 blend_type.floating = FALSE; /* values are integers */
2148 blend_type.sign = FALSE; /* values are unsigned */
2149 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2150 blend_type.width = 8; /* 8-bit ubyte values */
2151 blend_type.length = 16; /* 16 elements per vector */
2152
2153 /*
2154 * Generate the function prototype. Any change here must be reflected in
2155 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2156 */
2157
2158 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2159
2160 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2161
2162 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2163 shader->no, variant->no, partial_mask ? "partial" : "whole");
2164
2165 arg_types[0] = variant->jit_context_ptr_type; /* context */
2166 arg_types[1] = int32_type; /* x */
2167 arg_types[2] = int32_type; /* y */
2168 arg_types[3] = int32_type; /* facing */
2169 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2170 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2171 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2172 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2173 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2174 arg_types[9] = int32_type; /* mask_input */
2175 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2176 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2177 arg_types[12] = int32_type; /* depth_stride */
2178
2179 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2180 arg_types, Elements(arg_types), 0);
2181
2182 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2183 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2184
2185 variant->function[partial_mask] = function;
2186
2187 /* XXX: need to propagate noalias down into color param now we are
2188 * passing a pointer-to-pointer?
2189 */
2190 for(i = 0; i < Elements(arg_types); ++i)
2191 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2192 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
2193
2194 context_ptr = LLVMGetParam(function, 0);
2195 x = LLVMGetParam(function, 1);
2196 y = LLVMGetParam(function, 2);
2197 facing = LLVMGetParam(function, 3);
2198 a0_ptr = LLVMGetParam(function, 4);
2199 dadx_ptr = LLVMGetParam(function, 5);
2200 dady_ptr = LLVMGetParam(function, 6);
2201 color_ptr_ptr = LLVMGetParam(function, 7);
2202 depth_ptr = LLVMGetParam(function, 8);
2203 mask_input = LLVMGetParam(function, 9);
2204 thread_data_ptr = LLVMGetParam(function, 10);
2205 stride_ptr = LLVMGetParam(function, 11);
2206 depth_stride = LLVMGetParam(function, 12);
2207
2208 lp_build_name(context_ptr, "context");
2209 lp_build_name(x, "x");
2210 lp_build_name(y, "y");
2211 lp_build_name(a0_ptr, "a0");
2212 lp_build_name(dadx_ptr, "dadx");
2213 lp_build_name(dady_ptr, "dady");
2214 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2215 lp_build_name(depth_ptr, "depth");
2216 lp_build_name(thread_data_ptr, "thread_data");
2217 lp_build_name(mask_input, "mask_input");
2218 lp_build_name(stride_ptr, "stride_ptr");
2219 lp_build_name(depth_stride, "depth_stride");
2220
2221 /*
2222 * Function body
2223 */
2224
2225 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2226 builder = gallivm->builder;
2227 assert(builder);
2228 LLVMPositionBuilderAtEnd(builder, block);
2229
2230 /* code generated texture sampling */
2231 sampler = lp_llvm_sampler_soa_create(key->state, context_ptr);
2232
2233 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2234 /* for 1d resources only run "upper half" of stamp */
2235 if (key->resource_1d)
2236 num_fs /= 2;
2237
2238 {
2239 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2240 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2241 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2242 num_loop, "mask_store");
2243 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2244
2245 /*
2246 * The shader input interpolation info is not explicitely baked in the
2247 * shader key, but everything it derives from (TGSI, and flatshade) is
2248 * already included in the shader key.
2249 */
2250 lp_build_interp_soa_init(&interp,
2251 gallivm,
2252 shader->info.base.num_inputs,
2253 inputs,
2254 shader->info.base.pixel_center_integer,
2255 builder, fs_type,
2256 a0_ptr, dadx_ptr, dady_ptr,
2257 x, y);
2258
2259 for (i = 0; i < num_fs; i++) {
2260 LLVMValueRef mask;
2261 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2262 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2263 &indexi, 1, "mask_ptr");
2264
2265 if (partial_mask) {
2266 mask = generate_quad_mask(gallivm, fs_type,
2267 i*fs_type.length/4, mask_input);
2268 }
2269 else {
2270 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2271 }
2272 LLVMBuildStore(builder, mask, mask_ptr);
2273 }
2274
2275 generate_fs_loop(gallivm,
2276 shader, key,
2277 builder,
2278 fs_type,
2279 context_ptr,
2280 num_loop,
2281 &interp,
2282 sampler,
2283 mask_store, /* output */
2284 color_store,
2285 depth_ptr,
2286 depth_stride,
2287 facing,
2288 thread_data_ptr);
2289
2290 for (i = 0; i < num_fs; i++) {
2291 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2292 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2293 &indexi, 1, "");
2294 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2295 /* This is fucked up need to reorganize things */
2296 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2297 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2298 ptr = LLVMBuildGEP(builder,
2299 color_store[cbuf * !cbuf0_write_all][chan],
2300 &indexi, 1, "");
2301 fs_out_color[cbuf][chan][i] = ptr;
2302 }
2303 }
2304 if (dual_source_blend) {
2305 /* only support one dual source blend target hence always use output 1 */
2306 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2307 ptr = LLVMBuildGEP(builder,
2308 color_store[1][chan],
2309 &indexi, 1, "");
2310 fs_out_color[1][chan][i] = ptr;
2311 }
2312 }
2313 }
2314 }
2315
2316 sampler->destroy(sampler);
2317
2318 /* Loop over color outputs / color buffers to do blending.
2319 */
2320 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2321 LLVMValueRef color_ptr;
2322 LLVMValueRef stride;
2323 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2324
2325 boolean do_branch = ((key->depth.enabled
2326 || key->stencil[0].enabled
2327 || key->alpha.enabled)
2328 && !shader->info.base.uses_kill);
2329
2330 color_ptr = LLVMBuildLoad(builder,
2331 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
2332 "");
2333
2334 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2335
2336 stride = LLVMBuildLoad(builder,
2337 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2338 "");
2339
2340 generate_unswizzled_blend(gallivm, cbuf, variant, key->cbuf_format[cbuf],
2341 num_fs, fs_type, fs_mask, fs_out_color,
2342 context_ptr, color_ptr, stride, partial_mask, do_branch);
2343 }
2344
2345 LLVMBuildRetVoid(builder);
2346
2347 gallivm_verify_function(gallivm, function);
2348
2349 variant->nr_instrs += lp_build_count_instructions(function);
2350 }
2351
2352
2353 static void
2354 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
2355 {
2356 unsigned i;
2357
2358 debug_printf("fs variant %p:\n", (void *) key);
2359
2360 if (key->flatshade) {
2361 debug_printf("flatshade = 1\n");
2362 }
2363 for (i = 0; i < key->nr_cbufs; ++i) {
2364 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2365 }
2366 if (key->depth.enabled) {
2367 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2368 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
2369 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2370 }
2371
2372 for (i = 0; i < 2; ++i) {
2373 if (key->stencil[i].enabled) {
2374 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
2375 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
2376 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
2377 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
2378 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2379 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2380 }
2381 }
2382
2383 if (key->alpha.enabled) {
2384 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
2385 }
2386
2387 if (key->occlusion_count) {
2388 debug_printf("occlusion_count = 1\n");
2389 }
2390
2391 if (key->blend.logicop_enable) {
2392 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
2393 }
2394 else if (key->blend.rt[0].blend_enable) {
2395 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
2396 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2397 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2398 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
2399 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2400 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2401 }
2402 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2403 for (i = 0; i < key->nr_samplers; ++i) {
2404 const struct lp_static_sampler_state *sampler = &key->state[i].sampler_state;
2405 debug_printf("sampler[%u] = \n", i);
2406 debug_printf(" .wrap = %s %s %s\n",
2407 util_dump_tex_wrap(sampler->wrap_s, TRUE),
2408 util_dump_tex_wrap(sampler->wrap_t, TRUE),
2409 util_dump_tex_wrap(sampler->wrap_r, TRUE));
2410 debug_printf(" .min_img_filter = %s\n",
2411 util_dump_tex_filter(sampler->min_img_filter, TRUE));
2412 debug_printf(" .min_mip_filter = %s\n",
2413 util_dump_tex_mipfilter(sampler->min_mip_filter, TRUE));
2414 debug_printf(" .mag_img_filter = %s\n",
2415 util_dump_tex_filter(sampler->mag_img_filter, TRUE));
2416 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2417 debug_printf(" .compare_func = %s\n", util_dump_func(sampler->compare_func, TRUE));
2418 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
2419 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2420 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2421 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
2422 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
2423 }
2424 for (i = 0; i < key->nr_sampler_views; ++i) {
2425 const struct lp_static_texture_state *texture = &key->state[i].texture_state;
2426 debug_printf("texture[%u] = \n", i);
2427 debug_printf(" .format = %s\n",
2428 util_format_name(texture->format));
2429 debug_printf(" .target = %s\n",
2430 util_dump_tex_target(texture->target, TRUE));
2431 debug_printf(" .level_zero_only = %u\n",
2432 texture->level_zero_only);
2433 debug_printf(" .pot = %u %u %u\n",
2434 texture->pot_width,
2435 texture->pot_height,
2436 texture->pot_depth);
2437 }
2438 }
2439
2440
2441 void
2442 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
2443 {
2444 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2445 variant->shader->no, variant->no);
2446 tgsi_dump(variant->shader->base.tokens, 0);
2447 dump_fs_variant_key(&variant->key);
2448 debug_printf("variant->opaque = %u\n", variant->opaque);
2449 debug_printf("\n");
2450 }
2451
2452
2453 /**
2454 * Generate a new fragment shader variant from the shader code and
2455 * other state indicated by the key.
2456 */
2457 static struct lp_fragment_shader_variant *
2458 generate_variant(struct llvmpipe_context *lp,
2459 struct lp_fragment_shader *shader,
2460 const struct lp_fragment_shader_variant_key *key)
2461 {
2462 struct lp_fragment_shader_variant *variant;
2463 const struct util_format_description *cbuf0_format_desc;
2464 boolean fullcolormask;
2465
2466 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
2467 if(!variant)
2468 return NULL;
2469
2470 variant->gallivm = gallivm_create();
2471 if (!variant->gallivm) {
2472 FREE(variant);
2473 return NULL;
2474 }
2475
2476 variant->shader = shader;
2477 variant->list_item_global.base = variant;
2478 variant->list_item_local.base = variant;
2479 variant->no = shader->variants_created++;
2480
2481 memcpy(&variant->key, key, shader->variant_key_size);
2482
2483 /*
2484 * Determine whether we are touching all channels in the color buffer.
2485 */
2486 fullcolormask = FALSE;
2487 if (key->nr_cbufs == 1) {
2488 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2489 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2490 }
2491
2492 variant->opaque =
2493 !key->blend.logicop_enable &&
2494 !key->blend.rt[0].blend_enable &&
2495 fullcolormask &&
2496 !key->stencil[0].enabled &&
2497 !key->alpha.enabled &&
2498 !key->depth.enabled &&
2499 !shader->info.base.uses_kill
2500 ? TRUE : FALSE;
2501
2502 if ((shader->info.base.num_tokens <= 1) &&
2503 !key->depth.enabled && !key->stencil[0].enabled) {
2504 variant->ps_inv_multiplier = 0;
2505 } else {
2506 variant->ps_inv_multiplier = 1;
2507 }
2508
2509 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2510 lp_debug_fs_variant(variant);
2511 }
2512
2513 lp_jit_init_types(variant);
2514
2515 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2516 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2517
2518 if (variant->jit_function[RAST_WHOLE] == NULL) {
2519 if (variant->opaque) {
2520 /* Specialized shader, which doesn't need to read the color buffer. */
2521 generate_fragment(lp, shader, variant, RAST_WHOLE);
2522 }
2523 }
2524
2525 /*
2526 * Compile everything
2527 */
2528
2529 gallivm_compile_module(variant->gallivm);
2530
2531 if (variant->function[RAST_EDGE_TEST]) {
2532 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2533 gallivm_jit_function(variant->gallivm,
2534 variant->function[RAST_EDGE_TEST]);
2535 }
2536
2537 if (variant->function[RAST_WHOLE]) {
2538 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2539 gallivm_jit_function(variant->gallivm,
2540 variant->function[RAST_WHOLE]);
2541 } else if (!variant->jit_function[RAST_WHOLE]) {
2542 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2543 }
2544
2545 return variant;
2546 }
2547
2548
2549 static void *
2550 llvmpipe_create_fs_state(struct pipe_context *pipe,
2551 const struct pipe_shader_state *templ)
2552 {
2553 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2554 struct lp_fragment_shader *shader;
2555 int nr_samplers;
2556 int nr_sampler_views;
2557 int i;
2558
2559 shader = CALLOC_STRUCT(lp_fragment_shader);
2560 if (!shader)
2561 return NULL;
2562
2563 shader->no = fs_no++;
2564 make_empty_list(&shader->variants);
2565
2566 /* get/save the summary info for this shader */
2567 lp_build_tgsi_info(templ->tokens, &shader->info);
2568
2569 /* we need to keep a local copy of the tokens */
2570 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
2571
2572 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
2573 if (shader->draw_data == NULL) {
2574 FREE((void *) shader->base.tokens);
2575 FREE(shader);
2576 return NULL;
2577 }
2578
2579 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2580 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2581
2582 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
2583 state[MAX2(nr_samplers, nr_sampler_views)]);
2584
2585 for (i = 0; i < shader->info.base.num_inputs; i++) {
2586 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
2587 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
2588
2589 switch (shader->info.base.input_interpolate[i]) {
2590 case TGSI_INTERPOLATE_CONSTANT:
2591 shader->inputs[i].interp = LP_INTERP_CONSTANT;
2592 break;
2593 case TGSI_INTERPOLATE_LINEAR:
2594 shader->inputs[i].interp = LP_INTERP_LINEAR;
2595 break;
2596 case TGSI_INTERPOLATE_PERSPECTIVE:
2597 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
2598 break;
2599 case TGSI_INTERPOLATE_COLOR:
2600 shader->inputs[i].interp = LP_INTERP_COLOR;
2601 break;
2602 default:
2603 assert(0);
2604 break;
2605 }
2606
2607 switch (shader->info.base.input_semantic_name[i]) {
2608 case TGSI_SEMANTIC_FACE:
2609 shader->inputs[i].interp = LP_INTERP_FACING;
2610 break;
2611 case TGSI_SEMANTIC_POSITION:
2612 /* Position was already emitted above
2613 */
2614 shader->inputs[i].interp = LP_INTERP_POSITION;
2615 shader->inputs[i].src_index = 0;
2616 continue;
2617 }
2618
2619 shader->inputs[i].src_index = i+1;
2620 }
2621
2622 if (LP_DEBUG & DEBUG_TGSI) {
2623 unsigned attrib;
2624 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
2625 shader->no, (void *) shader);
2626 tgsi_dump(templ->tokens, 0);
2627 debug_printf("usage masks:\n");
2628 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
2629 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
2630 debug_printf(" IN[%u].%s%s%s%s\n",
2631 attrib,
2632 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
2633 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
2634 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
2635 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
2636 }
2637 debug_printf("\n");
2638 }
2639
2640 return shader;
2641 }
2642
2643
2644 static void
2645 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
2646 {
2647 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2648
2649 if (llvmpipe->fs == fs)
2650 return;
2651
2652 llvmpipe->fs = (struct lp_fragment_shader *) fs;
2653
2654 draw_bind_fragment_shader(llvmpipe->draw,
2655 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
2656
2657 llvmpipe->dirty |= LP_NEW_FS;
2658 }
2659
2660
2661 /**
2662 * Remove shader variant from two lists: the shader's variant list
2663 * and the context's variant list.
2664 */
2665 void
2666 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
2667 struct lp_fragment_shader_variant *variant)
2668 {
2669 unsigned i;
2670
2671 if (gallivm_debug & GALLIVM_DEBUG_IR) {
2672 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached"
2673 " #%u v total cached #%u\n",
2674 variant->shader->no,
2675 variant->no,
2676 variant->shader->variants_created,
2677 variant->shader->variants_cached,
2678 lp->nr_fs_variants);
2679 }
2680
2681 /* free all the variant's JIT'd functions */
2682 for (i = 0; i < Elements(variant->function); i++) {
2683 if (variant->function[i]) {
2684 gallivm_free_function(variant->gallivm,
2685 variant->function[i],
2686 variant->jit_function[i]);
2687 }
2688 }
2689
2690 gallivm_destroy(variant->gallivm);
2691
2692 /* remove from shader's list */
2693 remove_from_list(&variant->list_item_local);
2694 variant->shader->variants_cached--;
2695
2696 /* remove from context's list */
2697 remove_from_list(&variant->list_item_global);
2698 lp->nr_fs_variants--;
2699 lp->nr_fs_instrs -= variant->nr_instrs;
2700
2701 FREE(variant);
2702 }
2703
2704
2705 static void
2706 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
2707 {
2708 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2709 struct lp_fragment_shader *shader = fs;
2710 struct lp_fs_variant_list_item *li;
2711
2712 assert(fs != llvmpipe->fs);
2713
2714 /*
2715 * XXX: we need to flush the context until we have some sort of reference
2716 * counting in fragment shaders as they may still be binned
2717 * Flushing alone might not sufficient we need to wait on it too.
2718 */
2719 llvmpipe_finish(pipe, __FUNCTION__);
2720
2721 /* Delete all the variants */
2722 li = first_elem(&shader->variants);
2723 while(!at_end(&shader->variants, li)) {
2724 struct lp_fs_variant_list_item *next = next_elem(li);
2725 llvmpipe_remove_shader_variant(llvmpipe, li->base);
2726 li = next;
2727 }
2728
2729 /* Delete draw module's data */
2730 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
2731
2732 assert(shader->variants_cached == 0);
2733 FREE((void *) shader->base.tokens);
2734 FREE(shader);
2735 }
2736
2737
2738
2739 static void
2740 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
2741 uint shader, uint index,
2742 struct pipe_constant_buffer *cb)
2743 {
2744 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2745 struct pipe_resource *constants = cb ? cb->buffer : NULL;
2746
2747 assert(shader < PIPE_SHADER_TYPES);
2748 assert(index < Elements(llvmpipe->constants[shader]));
2749
2750 /* note: reference counting */
2751 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
2752
2753 if (shader == PIPE_SHADER_VERTEX ||
2754 shader == PIPE_SHADER_GEOMETRY) {
2755 /* Pass the constants to the 'draw' module */
2756 const unsigned size = cb ? cb->buffer_size : 0;
2757 const ubyte *data;
2758
2759 if (constants) {
2760 data = (ubyte *) llvmpipe_resource_data(constants);
2761 }
2762 else if (cb && cb->user_buffer) {
2763 data = (ubyte *) cb->user_buffer;
2764 }
2765 else {
2766 data = NULL;
2767 }
2768
2769 if (data)
2770 data += cb->buffer_offset;
2771
2772 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
2773 index, data, size);
2774 }
2775
2776 llvmpipe->dirty |= LP_NEW_CONSTANTS;
2777
2778 if (cb && cb->user_buffer) {
2779 pipe_resource_reference(&constants, NULL);
2780 }
2781 }
2782
2783
2784 /**
2785 * Return the blend factor equivalent to a destination alpha of one.
2786 */
2787 static INLINE unsigned
2788 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
2789 {
2790 switch(factor) {
2791 case PIPE_BLENDFACTOR_DST_ALPHA:
2792 return PIPE_BLENDFACTOR_ONE;
2793 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
2794 return PIPE_BLENDFACTOR_ZERO;
2795 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
2796 if (clamped_zero)
2797 return PIPE_BLENDFACTOR_ZERO;
2798 else
2799 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
2800 }
2801
2802 return factor;
2803 }
2804
2805
2806 /**
2807 * We need to generate several variants of the fragment pipeline to match
2808 * all the combinations of the contributing state atoms.
2809 *
2810 * TODO: there is actually no reason to tie this to context state -- the
2811 * generated code could be cached globally in the screen.
2812 */
2813 static void
2814 make_variant_key(struct llvmpipe_context *lp,
2815 struct lp_fragment_shader *shader,
2816 struct lp_fragment_shader_variant_key *key)
2817 {
2818 unsigned i;
2819
2820 memset(key, 0, shader->variant_key_size);
2821
2822 if (lp->framebuffer.zsbuf) {
2823 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
2824 const struct util_format_description *zsbuf_desc =
2825 util_format_description(zsbuf_format);
2826
2827 if (lp->depth_stencil->depth.enabled &&
2828 util_format_has_depth(zsbuf_desc)) {
2829 key->zsbuf_format = zsbuf_format;
2830 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
2831 }
2832 if (lp->depth_stencil->stencil[0].enabled &&
2833 util_format_has_stencil(zsbuf_desc)) {
2834 key->zsbuf_format = zsbuf_format;
2835 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
2836 }
2837 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
2838 key->resource_1d = TRUE;
2839 }
2840 }
2841
2842 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
2843 if (!lp->framebuffer.nr_cbufs ||
2844 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
2845 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
2846 }
2847 if(key->alpha.enabled)
2848 key->alpha.func = lp->depth_stencil->alpha.func;
2849 /* alpha.ref_value is passed in jit_context */
2850
2851 key->flatshade = lp->rasterizer->flatshade;
2852 if (lp->active_occlusion_queries) {
2853 key->occlusion_count = TRUE;
2854 }
2855
2856 if (lp->framebuffer.nr_cbufs) {
2857 memcpy(&key->blend, lp->blend, sizeof key->blend);
2858 }
2859
2860 key->nr_cbufs = lp->framebuffer.nr_cbufs;
2861
2862 if (!key->blend.independent_blend_enable) {
2863 /* we always need independent blend otherwise the fixups below won't work */
2864 for (i = 1; i < key->nr_cbufs; i++) {
2865 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
2866 }
2867 key->blend.independent_blend_enable = 1;
2868 }
2869
2870 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
2871 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
2872 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
2873 const struct util_format_description *format_desc;
2874
2875 key->cbuf_format[i] = format;
2876
2877 /*
2878 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
2879 * mixing of 2d textures with height 1 and 1d textures, so make sure
2880 * we pick 1d if any cbuf or zsbuf is 1d.
2881 */
2882 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[0]->texture)) {
2883 key->resource_1d = TRUE;
2884 }
2885
2886 format_desc = util_format_description(format);
2887 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
2888 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
2889
2890 /*
2891 * Mask out color channels not present in the color buffer.
2892 */
2893 blend_rt->colormask &= util_format_colormask(format_desc);
2894
2895 /*
2896 * Disable blend for integer formats.
2897 */
2898 if (util_format_is_pure_integer(format)) {
2899 blend_rt->blend_enable = 0;
2900 }
2901
2902 /*
2903 * Our swizzled render tiles always have an alpha channel, but the linear
2904 * render target format often does not, so force here the dst alpha to be
2905 * one.
2906 *
2907 * This is not a mere optimization. Wrong results will be produced if the
2908 * dst alpha is used, the dst format does not have alpha, and the previous
2909 * rendering was not flushed from the swizzled to linear buffer. For
2910 * example, NonPowTwo DCT.
2911 *
2912 * TODO: This should be generalized to all channels for better
2913 * performance, but only alpha causes correctness issues.
2914 *
2915 * Also, force rgb/alpha func/factors match, to make AoS blending easier.
2916 */
2917 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W ||
2918 format_desc->swizzle[3] == format_desc->swizzle[0]) {
2919 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
2920 boolean clamped_zero = !util_format_is_float(format) &&
2921 !util_format_is_snorm(format);
2922 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor,
2923 clamped_zero);
2924 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor,
2925 clamped_zero);
2926 blend_rt->alpha_func = blend_rt->rgb_func;
2927 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
2928 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
2929 }
2930 }
2931
2932 /* This value will be the same for all the variants of a given shader:
2933 */
2934 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2935
2936 for(i = 0; i < key->nr_samplers; ++i) {
2937 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
2938 lp_sampler_static_sampler_state(&key->state[i].sampler_state,
2939 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
2940 }
2941 }
2942
2943 /*
2944 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
2945 * are dx10-style? Can't really have mixed opcodes, at least not
2946 * if we want to skip the holes here (without rescanning tgsi).
2947 */
2948 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
2949 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2950 for(i = 0; i < key->nr_sampler_views; ++i) {
2951 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1 << i)) {
2952 lp_sampler_static_texture_state(&key->state[i].texture_state,
2953 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
2954 }
2955 }
2956 }
2957 else {
2958 key->nr_sampler_views = key->nr_samplers;
2959 for(i = 0; i < key->nr_sampler_views; ++i) {
2960 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
2961 lp_sampler_static_texture_state(&key->state[i].texture_state,
2962 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
2963 }
2964 }
2965 }
2966 }
2967
2968
2969
2970 /**
2971 * Update fragment shader state. This is called just prior to drawing
2972 * something when some fragment-related state has changed.
2973 */
2974 void
2975 llvmpipe_update_fs(struct llvmpipe_context *lp)
2976 {
2977 struct lp_fragment_shader *shader = lp->fs;
2978 struct lp_fragment_shader_variant_key key;
2979 struct lp_fragment_shader_variant *variant = NULL;
2980 struct lp_fs_variant_list_item *li;
2981
2982 make_variant_key(lp, shader, &key);
2983
2984 /* Search the variants for one which matches the key */
2985 li = first_elem(&shader->variants);
2986 while(!at_end(&shader->variants, li)) {
2987 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
2988 variant = li->base;
2989 break;
2990 }
2991 li = next_elem(li);
2992 }
2993
2994 if (variant) {
2995 /* Move this variant to the head of the list to implement LRU
2996 * deletion of shader's when we have too many.
2997 */
2998 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
2999 }
3000 else {
3001 /* variant not found, create it now */
3002 int64_t t0, t1, dt;
3003 unsigned i;
3004 unsigned variants_to_cull;
3005
3006 if (0) {
3007 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3008 lp->nr_fs_variants,
3009 lp->nr_fs_instrs,
3010 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3011 }
3012
3013 /* First, check if we've exceeded the max number of shader variants.
3014 * If so, free 25% of them (the least recently used ones).
3015 */
3016 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 4 : 0;
3017
3018 if (variants_to_cull ||
3019 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3020 struct pipe_context *pipe = &lp->pipe;
3021
3022 /*
3023 * XXX: we need to flush the context until we have some sort of
3024 * reference counting in fragment shaders as they may still be binned
3025 * Flushing alone might not be sufficient we need to wait on it too.
3026 */
3027 llvmpipe_finish(pipe, __FUNCTION__);
3028
3029 /*
3030 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3031 * number of shader variants (potentially all of them) could be
3032 * pending for destruction on flush.
3033 */
3034
3035 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3036 struct lp_fs_variant_list_item *item;
3037 if (is_empty_list(&lp->fs_variants_list)) {
3038 break;
3039 }
3040 item = last_elem(&lp->fs_variants_list);
3041 assert(item);
3042 assert(item->base);
3043 llvmpipe_remove_shader_variant(lp, item->base);
3044 }
3045 }
3046
3047 /*
3048 * Generate the new variant.
3049 */
3050 t0 = os_time_get();
3051 variant = generate_variant(lp, shader, &key);
3052 t1 = os_time_get();
3053 dt = t1 - t0;
3054 LP_COUNT_ADD(llvm_compile_time, dt);
3055 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3056
3057 llvmpipe_variant_count++;
3058
3059 /* Put the new variant into the list */
3060 if (variant) {
3061 insert_at_head(&shader->variants, &variant->list_item_local);
3062 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3063 lp->nr_fs_variants++;
3064 lp->nr_fs_instrs += variant->nr_instrs;
3065 shader->variants_cached++;
3066 }
3067 }
3068
3069 /* Bind this variant */
3070 lp_setup_set_fs_variant(lp->setup, variant);
3071 }
3072
3073
3074
3075
3076
3077 void
3078 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3079 {
3080 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3081 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3082 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3083
3084 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3085 }
3086
3087 /*
3088 * Rasterization is disabled if there is no pixel shader and
3089 * both depth and stencil testing are disabled:
3090 * http://msdn.microsoft.com/en-us/library/windows/desktop/bb205125
3091 */
3092 boolean
3093 llvmpipe_rasterization_disabled(struct llvmpipe_context *lp)
3094 {
3095 boolean null_fs = !lp->fs || lp->fs->info.base.num_tokens <= 1;
3096
3097 return (null_fs &&
3098 !lp->depth_stencil->depth.enabled &&
3099 !lp->depth_stencil->stencil[0].enabled);
3100 }