llvmpipe: delete function bodies after generating machine code
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_intr.h"
79 #include "gallivm/lp_bld_logic.h"
80 #include "gallivm/lp_bld_tgsi.h"
81 #include "gallivm/lp_bld_swizzle.h"
82 #include "gallivm/lp_bld_flow.h"
83 #include "gallivm/lp_bld_debug.h"
84
85 #include "lp_bld_alpha.h"
86 #include "lp_bld_blend.h"
87 #include "lp_bld_depth.h"
88 #include "lp_bld_interp.h"
89 #include "lp_context.h"
90 #include "lp_debug.h"
91 #include "lp_perf.h"
92 #include "lp_screen.h"
93 #include "lp_setup.h"
94 #include "lp_state.h"
95 #include "lp_tex_sample.h"
96 #include "lp_flush.h"
97 #include "lp_state_fs.h"
98
99
100 #include <llvm-c/Analysis.h>
101
102
103 static unsigned fs_no = 0;
104
105
106 /**
107 * Generate the depth /stencil test code.
108 */
109 static void
110 generate_depth_stencil(LLVMBuilderRef builder,
111 const struct lp_fragment_shader_variant_key *key,
112 struct lp_type src_type,
113 struct lp_build_mask_context *mask,
114 LLVMValueRef stencil_refs[2],
115 LLVMValueRef src,
116 LLVMValueRef dst_ptr,
117 LLVMValueRef facing,
118 LLVMValueRef counter)
119 {
120 const struct util_format_description *format_desc;
121 struct lp_type dst_type;
122
123 if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
124 return;
125
126 format_desc = util_format_description(key->zsbuf_format);
127 assert(format_desc);
128
129 /*
130 * Depths are expected to be between 0 and 1, even if they are stored in
131 * floats. Setting these bits here will ensure that the lp_build_conv() call
132 * below won't try to unnecessarily clamp the incoming values.
133 */
134 if(src_type.floating) {
135 src_type.sign = FALSE;
136 src_type.norm = TRUE;
137 }
138 else {
139 assert(!src_type.sign);
140 assert(src_type.norm);
141 }
142
143 /* Pick the depth type. */
144 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
145
146 /* FIXME: Cope with a depth test type with a different bit width. */
147 assert(dst_type.width == src_type.width);
148 assert(dst_type.length == src_type.length);
149
150 /* Convert fragment Z from float to integer */
151 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
152
153 dst_ptr = LLVMBuildBitCast(builder,
154 dst_ptr,
155 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
156 lp_build_depth_stencil_test(builder,
157 &key->depth,
158 key->stencil,
159 dst_type,
160 format_desc,
161 mask,
162 stencil_refs,
163 src,
164 dst_ptr,
165 facing,
166 counter);
167 }
168
169
170 /**
171 * Expand the relevent bits of mask_input to a 4-dword mask for the
172 * four pixels in a 2x2 quad. This will set the four elements of the
173 * quad mask vector to 0 or ~0.
174 *
175 * \param quad which quad of the quad group to test, in [0,3]
176 * \param mask_input bitwise mask for the whole 4x4 stamp
177 */
178 static LLVMValueRef
179 generate_quad_mask(LLVMBuilderRef builder,
180 struct lp_type fs_type,
181 unsigned quad,
182 LLVMValueRef mask_input) /* int32 */
183 {
184 struct lp_type mask_type;
185 LLVMTypeRef i32t = LLVMInt32Type();
186 LLVMValueRef bits[4];
187 LLVMValueRef mask;
188
189 /*
190 * XXX: We'll need a different path for 16 x u8
191 */
192 assert(fs_type.width == 32);
193 assert(fs_type.length == 4);
194 mask_type = lp_int_type(fs_type);
195
196 /*
197 * mask_input >>= (quad * 4)
198 */
199
200 mask_input = LLVMBuildLShr(builder,
201 mask_input,
202 LLVMConstInt(i32t, quad * 4, 0),
203 "");
204
205 /*
206 * mask = { mask_input & (1 << i), for i in [0,3] }
207 */
208
209 mask = lp_build_broadcast(builder, lp_build_vec_type(mask_type), mask_input);
210
211 bits[0] = LLVMConstInt(i32t, 1 << 0, 0);
212 bits[1] = LLVMConstInt(i32t, 1 << 1, 0);
213 bits[2] = LLVMConstInt(i32t, 1 << 2, 0);
214 bits[3] = LLVMConstInt(i32t, 1 << 3, 0);
215
216 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, 4), "");
217
218 /*
219 * mask = mask != 0 ? ~0 : 0
220 */
221
222 mask = lp_build_compare(builder,
223 mask_type, PIPE_FUNC_NOTEQUAL,
224 mask,
225 lp_build_const_int_vec(mask_type, 0));
226
227 return mask;
228 }
229
230
231
232 /**
233 * Generate the fragment shader, depth/stencil test, and alpha tests.
234 * \param i which quad in the tile, in range [0,3]
235 * \param partial_mask if 1, do mask_input testing
236 */
237 static void
238 generate_fs(struct llvmpipe_context *lp,
239 struct lp_fragment_shader *shader,
240 const struct lp_fragment_shader_variant_key *key,
241 LLVMBuilderRef builder,
242 struct lp_type type,
243 LLVMValueRef context_ptr,
244 unsigned i,
245 const struct lp_build_interp_soa_context *interp,
246 struct lp_build_sampler_soa *sampler,
247 LLVMValueRef *pmask,
248 LLVMValueRef (*color)[4],
249 LLVMValueRef depth_ptr,
250 LLVMValueRef facing,
251 unsigned partial_mask,
252 LLVMValueRef mask_input,
253 LLVMValueRef counter)
254 {
255 const struct tgsi_token *tokens = shader->base.tokens;
256 LLVMTypeRef vec_type;
257 LLVMValueRef consts_ptr;
258 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
259 LLVMValueRef z = interp->pos[2];
260 LLVMValueRef stencil_refs[2];
261 struct lp_build_flow_context *flow;
262 struct lp_build_mask_context mask;
263 boolean early_depth_stencil_test;
264 unsigned attrib;
265 unsigned chan;
266 unsigned cbuf;
267
268 assert(i < 4);
269
270 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
271 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
272
273 vec_type = lp_build_vec_type(type);
274
275 consts_ptr = lp_jit_context_constants(builder, context_ptr);
276
277 flow = lp_build_flow_create(builder);
278
279 memset(outputs, 0, sizeof outputs);
280
281 lp_build_flow_scope_begin(flow);
282
283 /* Declare the color and z variables */
284 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
285 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
286 color[cbuf][chan] = LLVMGetUndef(vec_type);
287 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
288 }
289 }
290 lp_build_flow_scope_declare(flow, &z);
291
292 /* do triangle edge testing */
293 if (partial_mask) {
294 *pmask = generate_quad_mask(builder, type,
295 i, mask_input);
296 }
297 else {
298 *pmask = lp_build_const_int_vec(type, ~0);
299 }
300
301 /* 'mask' will control execution based on quad's pixel alive/killed state */
302 lp_build_mask_begin(&mask, flow, type, *pmask);
303
304 early_depth_stencil_test =
305 (key->depth.enabled || key->stencil[0].enabled) &&
306 !key->alpha.enabled &&
307 !shader->info.uses_kill &&
308 !shader->info.writes_z;
309
310 if (early_depth_stencil_test)
311 generate_depth_stencil(builder, key,
312 type, &mask,
313 stencil_refs, z, depth_ptr, facing, counter);
314
315 lp_build_tgsi_soa(builder, tokens, type, &mask,
316 consts_ptr, interp->pos, interp->inputs,
317 outputs, sampler, &shader->info);
318
319 /* loop over fragment shader outputs/results */
320 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
321 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
322 if(outputs[attrib][chan]) {
323 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
324 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
325
326 switch (shader->info.output_semantic_name[attrib]) {
327 case TGSI_SEMANTIC_COLOR:
328 {
329 unsigned cbuf = shader->info.output_semantic_index[attrib];
330
331 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
332
333 /* Alpha test */
334 /* XXX: should the alpha reference value be passed separately? */
335 /* XXX: should only test the final assignment to alpha */
336 if(cbuf == 0 && chan == 3) {
337 LLVMValueRef alpha = out;
338 LLVMValueRef alpha_ref_value;
339 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
340 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
341 lp_build_alpha_test(builder, &key->alpha, type,
342 &mask, alpha, alpha_ref_value);
343 }
344
345 color[cbuf][chan] = out;
346 break;
347 }
348
349 case TGSI_SEMANTIC_POSITION:
350 if(chan == 2)
351 z = out;
352 break;
353 }
354 }
355 }
356 }
357
358 if (!early_depth_stencil_test)
359 generate_depth_stencil(builder, key,
360 type, &mask,
361 stencil_refs, z, depth_ptr, facing, counter);
362
363 lp_build_mask_end(&mask);
364
365 lp_build_flow_scope_end(flow);
366
367 lp_build_flow_destroy(flow);
368
369 *pmask = mask.value;
370
371 }
372
373
374 /**
375 * Generate color blending and color output.
376 * \param rt the render target index (to index blend, colormask state)
377 * \param type the pixel color type
378 * \param context_ptr pointer to the runtime JIT context
379 * \param mask execution mask (active fragment/pixel mask)
380 * \param src colors from the fragment shader
381 * \param dst_ptr the destination color buffer pointer
382 */
383 static void
384 generate_blend(const struct pipe_blend_state *blend,
385 unsigned rt,
386 LLVMBuilderRef builder,
387 struct lp_type type,
388 LLVMValueRef context_ptr,
389 LLVMValueRef mask,
390 LLVMValueRef *src,
391 LLVMValueRef dst_ptr)
392 {
393 struct lp_build_context bld;
394 struct lp_build_flow_context *flow;
395 struct lp_build_mask_context mask_ctx;
396 LLVMTypeRef vec_type;
397 LLVMValueRef const_ptr;
398 LLVMValueRef con[4];
399 LLVMValueRef dst[4];
400 LLVMValueRef res[4];
401 unsigned chan;
402
403 lp_build_context_init(&bld, builder, type);
404
405 flow = lp_build_flow_create(builder);
406
407 /* we'll use this mask context to skip blending if all pixels are dead */
408 lp_build_mask_begin(&mask_ctx, flow, type, mask);
409
410 vec_type = lp_build_vec_type(type);
411
412 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
413 const_ptr = LLVMBuildBitCast(builder, const_ptr,
414 LLVMPointerType(vec_type, 0), "");
415
416 /* load constant blend color and colors from the dest color buffer */
417 for(chan = 0; chan < 4; ++chan) {
418 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
419 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
420
421 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
422
423 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
424 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
425 }
426
427 /* do blend */
428 lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
429
430 /* store results to color buffer */
431 for(chan = 0; chan < 4; ++chan) {
432 if(blend->rt[rt].colormask & (1 << chan)) {
433 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
434 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
435 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
436 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
437 }
438 }
439
440 lp_build_mask_end(&mask_ctx);
441 lp_build_flow_destroy(flow);
442 }
443
444
445 /**
446 * Generate the runtime callable function for the whole fragment pipeline.
447 * Note that the function which we generate operates on a block of 16
448 * pixels at at time. The block contains 2x2 quads. Each quad contains
449 * 2x2 pixels.
450 */
451 static void
452 generate_fragment(struct llvmpipe_context *lp,
453 struct lp_fragment_shader *shader,
454 struct lp_fragment_shader_variant *variant,
455 unsigned partial_mask)
456 {
457 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
458 const struct lp_fragment_shader_variant_key *key = &variant->key;
459 char func_name[256];
460 struct lp_type fs_type;
461 struct lp_type blend_type;
462 LLVMTypeRef fs_elem_type;
463 LLVMTypeRef fs_int_vec_type;
464 LLVMTypeRef blend_vec_type;
465 LLVMTypeRef arg_types[11];
466 LLVMTypeRef func_type;
467 LLVMValueRef context_ptr;
468 LLVMValueRef x;
469 LLVMValueRef y;
470 LLVMValueRef a0_ptr;
471 LLVMValueRef dadx_ptr;
472 LLVMValueRef dady_ptr;
473 LLVMValueRef color_ptr_ptr;
474 LLVMValueRef depth_ptr;
475 LLVMValueRef mask_input;
476 LLVMValueRef counter = NULL;
477 LLVMBasicBlockRef block;
478 LLVMBuilderRef builder;
479 struct lp_build_sampler_soa *sampler;
480 struct lp_build_interp_soa_context interp;
481 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
482 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
483 LLVMValueRef blend_mask;
484 LLVMValueRef function;
485 LLVMValueRef facing;
486 unsigned num_fs;
487 unsigned i;
488 unsigned chan;
489 unsigned cbuf;
490
491
492 /* TODO: actually pick these based on the fs and color buffer
493 * characteristics. */
494
495 memset(&fs_type, 0, sizeof fs_type);
496 fs_type.floating = TRUE; /* floating point values */
497 fs_type.sign = TRUE; /* values are signed */
498 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
499 fs_type.width = 32; /* 32-bit float */
500 fs_type.length = 4; /* 4 elements per vector */
501 num_fs = 4; /* number of quads per block */
502
503 memset(&blend_type, 0, sizeof blend_type);
504 blend_type.floating = FALSE; /* values are integers */
505 blend_type.sign = FALSE; /* values are unsigned */
506 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
507 blend_type.width = 8; /* 8-bit ubyte values */
508 blend_type.length = 16; /* 16 elements per vector */
509
510 /*
511 * Generate the function prototype. Any change here must be reflected in
512 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
513 */
514
515 fs_elem_type = lp_build_elem_type(fs_type);
516 fs_int_vec_type = lp_build_int_vec_type(fs_type);
517
518 blend_vec_type = lp_build_vec_type(blend_type);
519
520 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
521 shader->no, variant->no, partial_mask ? "partial" : "whole");
522
523 arg_types[0] = screen->context_ptr_type; /* context */
524 arg_types[1] = LLVMInt32Type(); /* x */
525 arg_types[2] = LLVMInt32Type(); /* y */
526 arg_types[3] = LLVMFloatType(); /* facing */
527 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
528 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
529 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
530 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
531 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
532 arg_types[9] = LLVMInt32Type(); /* mask_input */
533 arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
534
535 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
536
537 function = LLVMAddFunction(screen->module, func_name, func_type);
538 LLVMSetFunctionCallConv(function, LLVMCCallConv);
539
540 variant->function[partial_mask] = function;
541
542
543 /* XXX: need to propagate noalias down into color param now we are
544 * passing a pointer-to-pointer?
545 */
546 for(i = 0; i < Elements(arg_types); ++i)
547 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
548 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
549
550 context_ptr = LLVMGetParam(function, 0);
551 x = LLVMGetParam(function, 1);
552 y = LLVMGetParam(function, 2);
553 facing = LLVMGetParam(function, 3);
554 a0_ptr = LLVMGetParam(function, 4);
555 dadx_ptr = LLVMGetParam(function, 5);
556 dady_ptr = LLVMGetParam(function, 6);
557 color_ptr_ptr = LLVMGetParam(function, 7);
558 depth_ptr = LLVMGetParam(function, 8);
559 mask_input = LLVMGetParam(function, 9);
560
561 lp_build_name(context_ptr, "context");
562 lp_build_name(x, "x");
563 lp_build_name(y, "y");
564 lp_build_name(a0_ptr, "a0");
565 lp_build_name(dadx_ptr, "dadx");
566 lp_build_name(dady_ptr, "dady");
567 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
568 lp_build_name(depth_ptr, "depth");
569 lp_build_name(mask_input, "mask_input");
570
571 if (key->occlusion_count) {
572 counter = LLVMGetParam(function, 10);
573 lp_build_name(counter, "counter");
574 }
575
576 /*
577 * Function body
578 */
579
580 block = LLVMAppendBasicBlock(function, "entry");
581 builder = LLVMCreateBuilder();
582 LLVMPositionBuilderAtEnd(builder, block);
583
584 /*
585 * The shader input interpolation info is not explicitely baked in the
586 * shader key, but everything it derives from (TGSI, and flatshade) is
587 * already included in the shader key.
588 */
589 lp_build_interp_soa_init(&interp,
590 lp->num_inputs,
591 lp->inputs,
592 builder, fs_type,
593 a0_ptr, dadx_ptr, dady_ptr,
594 x, y);
595
596 /* code generated texture sampling */
597 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
598
599 /* loop over quads in the block */
600 for(i = 0; i < num_fs; ++i) {
601 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
602 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
603 LLVMValueRef depth_ptr_i;
604
605 if(i != 0)
606 lp_build_interp_soa_update(&interp, i);
607
608 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
609
610 generate_fs(lp, shader, key,
611 builder,
612 fs_type,
613 context_ptr,
614 i,
615 &interp,
616 sampler,
617 &fs_mask[i], /* output */
618 out_color,
619 depth_ptr_i,
620 facing,
621 partial_mask,
622 mask_input,
623 counter);
624
625 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
626 for(chan = 0; chan < NUM_CHANNELS; ++chan)
627 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
628 }
629
630 sampler->destroy(sampler);
631
632 /* Loop over color outputs / color buffers to do blending.
633 */
634 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
635 LLVMValueRef color_ptr;
636 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
637 LLVMValueRef blend_in_color[NUM_CHANNELS];
638 unsigned rt;
639
640 /*
641 * Convert the fs's output color and mask to fit to the blending type.
642 */
643 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
644 lp_build_conv(builder, fs_type, blend_type,
645 fs_out_color[cbuf][chan], num_fs,
646 &blend_in_color[chan], 1);
647 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
648 }
649
650 if (partial_mask || !variant->opaque) {
651 lp_build_conv_mask(builder, fs_type, blend_type,
652 fs_mask, num_fs,
653 &blend_mask, 1);
654 } else {
655 blend_mask = lp_build_const_int_vec(blend_type, ~0);
656 }
657
658 color_ptr = LLVMBuildLoad(builder,
659 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
660 "");
661 lp_build_name(color_ptr, "color_ptr%d", cbuf);
662
663 /* which blend/colormask state to use */
664 rt = key->blend.independent_blend_enable ? cbuf : 0;
665
666 /*
667 * Blending.
668 */
669 generate_blend(&key->blend,
670 rt,
671 builder,
672 blend_type,
673 context_ptr,
674 blend_mask,
675 blend_in_color,
676 color_ptr);
677 }
678
679 #ifdef PIPE_ARCH_X86
680 /* Avoid corrupting the FPU stack on 32bit OSes. */
681 lp_build_intrinsic(builder, "llvm.x86.mmx.emms", LLVMVoidType(), NULL, 0);
682 #endif
683
684 LLVMBuildRetVoid(builder);
685
686 LLVMDisposeBuilder(builder);
687
688
689 /* Verify the LLVM IR. If invalid, dump and abort */
690 #ifdef DEBUG
691 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
692 if (1)
693 lp_debug_dump_value(function);
694 abort();
695 }
696 #endif
697
698 /* Apply optimizations to LLVM IR */
699 LLVMRunFunctionPassManager(screen->pass, function);
700
701 if (gallivm_debug & GALLIVM_DEBUG_IR) {
702 /* Print the LLVM IR to stderr */
703 lp_debug_dump_value(function);
704 debug_printf("\n");
705 }
706
707 /*
708 * Translate the LLVM IR into machine code.
709 */
710 {
711 void *f = LLVMGetPointerToGlobal(screen->engine, function);
712
713 variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);
714
715 if (gallivm_debug & GALLIVM_DEBUG_ASM) {
716 lp_disassemble(f);
717 }
718 lp_func_delete_body(function);
719 }
720 }
721
722
723 static void
724 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
725 {
726 unsigned i;
727
728 debug_printf("fs variant %p:\n", (void *) key);
729
730 if (key->depth.enabled) {
731 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
732 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
733 debug_printf("depth.writemask = %u\n", key->depth.writemask);
734 }
735
736 for (i = 0; i < 2; ++i) {
737 if (key->stencil[i].enabled) {
738 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
739 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
740 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
741 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
742 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
743 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
744 }
745 }
746
747 if (key->alpha.enabled) {
748 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
749 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
750 }
751
752 if (key->blend.logicop_enable) {
753 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
754 }
755 else if (key->blend.rt[0].blend_enable) {
756 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
757 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
758 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
759 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
760 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
761 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
762 }
763 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
764 for (i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
765 if (key->sampler[i].format) {
766 debug_printf("sampler[%u] = \n", i);
767 debug_printf(" .format = %s\n",
768 util_format_name(key->sampler[i].format));
769 debug_printf(" .target = %s\n",
770 util_dump_tex_target(key->sampler[i].target, TRUE));
771 debug_printf(" .pot = %u %u %u\n",
772 key->sampler[i].pot_width,
773 key->sampler[i].pot_height,
774 key->sampler[i].pot_depth);
775 debug_printf(" .wrap = %s %s %s\n",
776 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
777 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
778 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
779 debug_printf(" .min_img_filter = %s\n",
780 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
781 debug_printf(" .min_mip_filter = %s\n",
782 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
783 debug_printf(" .mag_img_filter = %s\n",
784 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
785 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
786 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
787 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
788 }
789 }
790 }
791
792
793
794 static struct lp_fragment_shader_variant *
795 generate_variant(struct llvmpipe_context *lp,
796 struct lp_fragment_shader *shader,
797 const struct lp_fragment_shader_variant_key *key)
798 {
799 struct lp_fragment_shader_variant *variant;
800
801 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
802 if(!variant)
803 return NULL;
804
805 variant->shader = shader;
806 variant->list_item_global.base = variant;
807 variant->list_item_local.base = variant;
808 variant->no = shader->variants_created++;
809
810 memcpy(&variant->key, key, sizeof *key);
811
812 if (gallivm_debug & GALLIVM_DEBUG_IR) {
813 debug_printf("llvmpipe: Creating fragment shader #%u variant #%u:\n",
814 shader->no, variant->no);
815 tgsi_dump(shader->base.tokens, 0);
816 dump_fs_variant_key(key);
817 }
818
819 generate_fragment(lp, shader, variant, RAST_WHOLE);
820 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
821
822 /* TODO: most of these can be relaxed, in particular the colormask */
823 variant->opaque =
824 !key->blend.logicop_enable &&
825 !key->blend.rt[0].blend_enable &&
826 key->blend.rt[0].colormask == 0xf &&
827 !key->stencil[0].enabled &&
828 !key->alpha.enabled &&
829 !key->depth.enabled &&
830 !shader->info.uses_kill
831 ? TRUE : FALSE;
832
833 return variant;
834 }
835
836
837 static void *
838 llvmpipe_create_fs_state(struct pipe_context *pipe,
839 const struct pipe_shader_state *templ)
840 {
841 struct lp_fragment_shader *shader;
842
843 shader = CALLOC_STRUCT(lp_fragment_shader);
844 if (!shader)
845 return NULL;
846
847 shader->no = fs_no++;
848 make_empty_list(&shader->variants);
849
850 /* get/save the summary info for this shader */
851 tgsi_scan_shader(templ->tokens, &shader->info);
852
853 /* we need to keep a local copy of the tokens */
854 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
855
856 if (LP_DEBUG & DEBUG_TGSI) {
857 unsigned attrib;
858 debug_printf("llvmpipe: Create fragment shader #%u %p:\n", shader->no, (void *) shader);
859 tgsi_dump(templ->tokens, 0);
860 debug_printf("usage masks:\n");
861 for (attrib = 0; attrib < shader->info.num_inputs; ++attrib) {
862 unsigned usage_mask = shader->info.input_usage_mask[attrib];
863 debug_printf(" IN[%u].%s%s%s%s\n",
864 attrib,
865 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
866 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
867 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
868 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
869 }
870 debug_printf("\n");
871 }
872
873 return shader;
874 }
875
876
877 static void
878 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
879 {
880 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
881
882 if (llvmpipe->fs == fs)
883 return;
884
885 draw_flush(llvmpipe->draw);
886
887 llvmpipe->fs = fs;
888
889 llvmpipe->dirty |= LP_NEW_FS;
890 }
891
892 static void
893 remove_shader_variant(struct llvmpipe_context *lp,
894 struct lp_fragment_shader_variant *variant)
895 {
896 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
897 unsigned i;
898
899 if (gallivm_debug & GALLIVM_DEBUG_IR) {
900 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached #%u v total cached #%u\n",
901 variant->shader->no, variant->no, variant->shader->variants_created,
902 variant->shader->variants_cached, lp->nr_fs_variants);
903 }
904 for (i = 0; i < Elements(variant->function); i++) {
905 if (variant->function[i]) {
906 if (variant->jit_function[i])
907 LLVMFreeMachineCodeForFunction(screen->engine,
908 variant->function[i]);
909 LLVMDeleteFunction(variant->function[i]);
910 }
911 }
912 remove_from_list(&variant->list_item_local);
913 variant->shader->variants_cached--;
914 remove_from_list(&variant->list_item_global);
915 lp->nr_fs_variants--;
916 FREE(variant);
917 }
918
919 static void
920 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
921 {
922 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
923 struct pipe_fence_handle *fence = NULL;
924 struct lp_fragment_shader *shader = fs;
925 struct lp_fs_variant_list_item *li;
926
927 assert(fs != llvmpipe->fs);
928 (void) llvmpipe;
929
930 /*
931 * XXX: we need to flush the context until we have some sort of reference
932 * counting in fragment shaders as they may still be binned
933 * Flushing alone might not sufficient we need to wait on it too.
934 */
935
936 llvmpipe_flush(pipe, 0, &fence);
937
938 if (fence) {
939 pipe->screen->fence_finish(pipe->screen, fence, 0);
940 pipe->screen->fence_reference(pipe->screen, &fence, NULL);
941 }
942
943 li = first_elem(&shader->variants);
944 while(!at_end(&shader->variants, li)) {
945 struct lp_fs_variant_list_item *next = next_elem(li);
946 remove_shader_variant(llvmpipe, li->base);
947 li = next;
948 }
949
950 assert(shader->variants_cached == 0);
951 FREE((void *) shader->base.tokens);
952 FREE(shader);
953 }
954
955
956
957 static void
958 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
959 uint shader, uint index,
960 struct pipe_resource *constants)
961 {
962 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
963 unsigned size = constants ? constants->width0 : 0;
964 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
965
966 assert(shader < PIPE_SHADER_TYPES);
967 assert(index < PIPE_MAX_CONSTANT_BUFFERS);
968
969 if(llvmpipe->constants[shader][index] == constants)
970 return;
971
972 draw_flush(llvmpipe->draw);
973
974 /* note: reference counting */
975 pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
976
977 if(shader == PIPE_SHADER_VERTEX ||
978 shader == PIPE_SHADER_GEOMETRY) {
979 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
980 index, data, size);
981 }
982
983 llvmpipe->dirty |= LP_NEW_CONSTANTS;
984 }
985
986
987 /**
988 * Return the blend factor equivalent to a destination alpha of one.
989 */
990 static INLINE unsigned
991 force_dst_alpha_one(unsigned factor, boolean alpha)
992 {
993 switch(factor) {
994 case PIPE_BLENDFACTOR_DST_ALPHA:
995 return PIPE_BLENDFACTOR_ONE;
996 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
997 return PIPE_BLENDFACTOR_ZERO;
998 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
999 return PIPE_BLENDFACTOR_ZERO;
1000 }
1001
1002 if (alpha) {
1003 switch(factor) {
1004 case PIPE_BLENDFACTOR_DST_COLOR:
1005 return PIPE_BLENDFACTOR_ONE;
1006 case PIPE_BLENDFACTOR_INV_DST_COLOR:
1007 return PIPE_BLENDFACTOR_ZERO;
1008 }
1009 }
1010
1011 return factor;
1012 }
1013
1014
1015 /**
1016 * We need to generate several variants of the fragment pipeline to match
1017 * all the combinations of the contributing state atoms.
1018 *
1019 * TODO: there is actually no reason to tie this to context state -- the
1020 * generated code could be cached globally in the screen.
1021 */
1022 static void
1023 make_variant_key(struct llvmpipe_context *lp,
1024 struct lp_fragment_shader *shader,
1025 struct lp_fragment_shader_variant_key *key)
1026 {
1027 unsigned i;
1028
1029 memset(key, 0, sizeof *key);
1030
1031 if (lp->framebuffer.zsbuf) {
1032 if (lp->depth_stencil->depth.enabled) {
1033 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1034 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1035 }
1036 if (lp->depth_stencil->stencil[0].enabled) {
1037 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1038 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1039 }
1040 }
1041
1042 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1043 if(key->alpha.enabled)
1044 key->alpha.func = lp->depth_stencil->alpha.func;
1045 /* alpha.ref_value is passed in jit_context */
1046
1047 key->flatshade = lp->rasterizer->flatshade;
1048 if (lp->active_query_count) {
1049 key->occlusion_count = TRUE;
1050 }
1051
1052 if (lp->framebuffer.nr_cbufs) {
1053 memcpy(&key->blend, lp->blend, sizeof key->blend);
1054 }
1055
1056 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1057 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1058 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1059 const struct util_format_description *format_desc;
1060 unsigned chan;
1061
1062 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1063 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1064 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1065
1066 blend_rt->colormask = lp->blend->rt[i].colormask;
1067
1068 /* mask out color channels not present in the color buffer.
1069 * Should be simple to incorporate per-cbuf writemasks:
1070 */
1071 for(chan = 0; chan < 4; ++chan) {
1072 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1073
1074 if(swizzle > UTIL_FORMAT_SWIZZLE_W)
1075 blend_rt->colormask &= ~(1 << chan);
1076 }
1077
1078 /*
1079 * Our swizzled render tiles always have an alpha channel, but the linear
1080 * render target format often does not, so force here the dst alpha to be
1081 * one.
1082 *
1083 * This is not a mere optimization. Wrong results will be produced if the
1084 * dst alpha is used, the dst format does not have alpha, and the previous
1085 * rendering was not flushed from the swizzled to linear buffer. For
1086 * example, NonPowTwo DCT.
1087 *
1088 * TODO: This should be generalized to all channels for better
1089 * performance, but only alpha causes correctness issues.
1090 */
1091 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1092 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor, FALSE);
1093 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor, FALSE);
1094 blend_rt->alpha_src_factor = force_dst_alpha_one(blend_rt->alpha_src_factor, TRUE);
1095 blend_rt->alpha_dst_factor = force_dst_alpha_one(blend_rt->alpha_dst_factor, TRUE);
1096 }
1097 }
1098
1099 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1100 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1101 lp_sampler_static_state(&key->sampler[i], lp->fragment_sampler_views[i], lp->sampler[i]);
1102 }
1103
1104 /**
1105 * Update fragment state. This is called just prior to drawing
1106 * something when some fragment-related state has changed.
1107 */
1108 void
1109 llvmpipe_update_fs(struct llvmpipe_context *lp)
1110 {
1111 struct lp_fragment_shader *shader = lp->fs;
1112 struct lp_fragment_shader_variant_key key;
1113 struct lp_fragment_shader_variant *variant = NULL;
1114 struct lp_fs_variant_list_item *li;
1115
1116 make_variant_key(lp, shader, &key);
1117
1118 li = first_elem(&shader->variants);
1119 while(!at_end(&shader->variants, li)) {
1120 if(memcmp(&li->base->key, &key, sizeof key) == 0) {
1121 variant = li->base;
1122 break;
1123 }
1124 li = next_elem(li);
1125 }
1126
1127 if (variant) {
1128 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1129 }
1130 else {
1131 int64_t t0, t1;
1132 int64_t dt;
1133 unsigned i;
1134 if (lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS) {
1135 struct pipe_context *pipe = &lp->pipe;
1136 struct pipe_fence_handle *fence = NULL;
1137
1138 /*
1139 * XXX: we need to flush the context until we have some sort of reference
1140 * counting in fragment shaders as they may still be binned
1141 * Flushing alone might not be sufficient we need to wait on it too.
1142 */
1143 llvmpipe_flush(pipe, 0, &fence);
1144
1145 if (fence) {
1146 pipe->screen->fence_finish(pipe->screen, fence, 0);
1147 pipe->screen->fence_reference(pipe->screen, &fence, NULL);
1148 }
1149 for (i = 0; i < LP_MAX_SHADER_VARIANTS / 4; i++) {
1150 struct lp_fs_variant_list_item *item = last_elem(&lp->fs_variants_list);
1151 remove_shader_variant(lp, item->base);
1152 }
1153 }
1154 t0 = os_time_get();
1155
1156 variant = generate_variant(lp, shader, &key);
1157
1158 t1 = os_time_get();
1159 dt = t1 - t0;
1160 LP_COUNT_ADD(llvm_compile_time, dt);
1161 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1162
1163 if (variant) {
1164 insert_at_head(&shader->variants, &variant->list_item_local);
1165 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1166 lp->nr_fs_variants++;
1167 shader->variants_cached++;
1168 }
1169 }
1170
1171 lp_setup_set_fs_variant(lp->setup, variant);
1172 }
1173
1174
1175
1176 void
1177 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1178 {
1179 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1180 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1181 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1182
1183 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1184 }