llvmpipe: Centralize all position interpolation in lp_bld_interp.c.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - triangle edge in/out testing
35 * - scissor test
36 * - stipple (TBI)
37 * - early depth test
38 * - fragment shader
39 * - alpha test
40 * - depth/stencil test
41 * - blending
42 *
43 * This file has only the glue to assemble the fragment pipeline. The actual
44 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
45 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
46 * muster the LLVM JIT execution engine to create a function that follows an
47 * established binary interface and that can be called from C directly.
48 *
49 * A big source of complexity here is that we often want to run different
50 * stages with different precisions and data types and precisions. For example,
51 * the fragment shader needs typically to be done in floats, but the
52 * depth/stencil test and blending is better done in the type that most closely
53 * matches the depth/stencil and color buffer respectively.
54 *
55 * Since the width of a SIMD vector register stays the same regardless of the
56 * element type, different types imply different number of elements, so we must
57 * code generate more instances of the stages with larger types to be able to
58 * feed/consume the stages with smaller types.
59 *
60 * @author Jose Fonseca <jfonseca@vmware.com>
61 */
62
63 #include <limits.h>
64 #include "pipe/p_defines.h"
65 #include "util/u_inlines.h"
66 #include "util/u_memory.h"
67 #include "util/u_pointer.h"
68 #include "util/u_format.h"
69 #include "util/u_dump.h"
70 #include "os/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_intr.h"
80 #include "gallivm/lp_bld_logic.h"
81 #include "gallivm/lp_bld_tgsi.h"
82 #include "gallivm/lp_bld_swizzle.h"
83 #include "gallivm/lp_bld_flow.h"
84 #include "gallivm/lp_bld_debug.h"
85
86 #include "lp_bld_alpha.h"
87 #include "lp_bld_blend.h"
88 #include "lp_bld_depth.h"
89 #include "lp_bld_interp.h"
90 #include "lp_context.h"
91 #include "lp_debug.h"
92 #include "lp_perf.h"
93 #include "lp_screen.h"
94 #include "lp_setup.h"
95 #include "lp_state.h"
96 #include "lp_tex_sample.h"
97
98
99 #include <llvm-c/Analysis.h>
100
101
102 /**
103 * Generate the depth /stencil test code.
104 */
105 static void
106 generate_depth_stencil(LLVMBuilderRef builder,
107 const struct lp_fragment_shader_variant_key *key,
108 struct lp_type src_type,
109 struct lp_build_mask_context *mask,
110 LLVMValueRef stencil_refs[2],
111 LLVMValueRef src,
112 LLVMValueRef dst_ptr,
113 LLVMValueRef facing,
114 LLVMValueRef counter)
115 {
116 const struct util_format_description *format_desc;
117 struct lp_type dst_type;
118
119 if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
120 return;
121
122 format_desc = util_format_description(key->zsbuf_format);
123 assert(format_desc);
124
125 /*
126 * Depths are expected to be between 0 and 1, even if they are stored in
127 * floats. Setting these bits here will ensure that the lp_build_conv() call
128 * below won't try to unnecessarily clamp the incoming values.
129 */
130 if(src_type.floating) {
131 src_type.sign = FALSE;
132 src_type.norm = TRUE;
133 }
134 else {
135 assert(!src_type.sign);
136 assert(src_type.norm);
137 }
138
139 /* Pick the depth type. */
140 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
141
142 /* FIXME: Cope with a depth test type with a different bit width. */
143 assert(dst_type.width == src_type.width);
144 assert(dst_type.length == src_type.length);
145
146 /* Convert fragment Z from float to integer */
147 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
148
149 dst_ptr = LLVMBuildBitCast(builder,
150 dst_ptr,
151 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
152 lp_build_depth_stencil_test(builder,
153 &key->depth,
154 key->stencil,
155 dst_type,
156 format_desc,
157 mask,
158 stencil_refs,
159 src,
160 dst_ptr,
161 facing,
162 counter);
163 }
164
165
166 /**
167 * Generate the code to do inside/outside triangle testing for the
168 * four pixels in a 2x2 quad. This will set the four elements of the
169 * quad mask vector to 0 or ~0.
170 * \param i which quad of the quad group to test, in [0,3]
171 */
172 static void
173 generate_tri_edge_mask(LLVMBuilderRef builder,
174 unsigned i,
175 LLVMValueRef *mask, /* ivec4, out */
176 LLVMValueRef c0, /* int32 */
177 LLVMValueRef c1, /* int32 */
178 LLVMValueRef c2, /* int32 */
179 LLVMValueRef step0_ptr, /* ivec4 */
180 LLVMValueRef step1_ptr, /* ivec4 */
181 LLVMValueRef step2_ptr) /* ivec4 */
182 {
183 #define OPTIMIZE_IN_OUT_TEST 0
184 #if OPTIMIZE_IN_OUT_TEST
185 struct lp_build_if_state ifctx;
186 LLVMValueRef not_draw_all;
187 #endif
188 struct lp_build_flow_context *flow;
189 struct lp_type i32_type;
190 LLVMTypeRef i32vec4_type;
191 LLVMValueRef c0_vec, c1_vec, c2_vec;
192 LLVMValueRef in_out_mask;
193
194 assert(i < 4);
195
196 /* int32 vector type */
197 memset(&i32_type, 0, sizeof i32_type);
198 i32_type.floating = FALSE; /* values are integers */
199 i32_type.sign = TRUE; /* values are signed */
200 i32_type.norm = FALSE; /* values are not normalized */
201 i32_type.width = 32; /* 32-bit int values */
202 i32_type.length = 4; /* 4 elements per vector */
203
204 i32vec4_type = lp_build_int32_vec4_type();
205
206 /*
207 * Use a conditional here to do detailed pixel in/out testing.
208 * We only have to do this if c0 != INT_MIN.
209 */
210 flow = lp_build_flow_create(builder);
211 lp_build_flow_scope_begin(flow);
212
213 {
214 #if OPTIMIZE_IN_OUT_TEST
215 /* not_draw_all = (c0 != INT_MIN) */
216 not_draw_all = LLVMBuildICmp(builder,
217 LLVMIntNE,
218 c0,
219 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
220 "");
221
222 in_out_mask = lp_build_const_int_vec(i32_type, ~0);
223
224
225 lp_build_flow_scope_declare(flow, &in_out_mask);
226
227 /* if (not_draw_all) {... */
228 lp_build_if(&ifctx, flow, builder, not_draw_all);
229 #endif
230 {
231 LLVMValueRef step0_vec, step1_vec, step2_vec;
232 LLVMValueRef m0_vec, m1_vec, m2_vec;
233 LLVMValueRef index, m;
234
235 /* c0_vec = {c0, c0, c0, c0}
236 * Note that we emit this code four times but LLVM optimizes away
237 * three instances of it.
238 */
239 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
240 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
241 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
242 lp_build_name(c0_vec, "edgeconst0vec");
243 lp_build_name(c1_vec, "edgeconst1vec");
244 lp_build_name(c2_vec, "edgeconst2vec");
245
246 /* load step0vec, step1, step2 vec from memory */
247 index = LLVMConstInt(LLVMInt32Type(), i, 0);
248 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
249 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
250 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
251 lp_build_name(step0_vec, "step0vec");
252 lp_build_name(step1_vec, "step1vec");
253 lp_build_name(step2_vec, "step2vec");
254
255 /* m0_vec = step0_ptr[i] > c0_vec */
256 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
257 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
258 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
259
260 /* in_out_mask = m0_vec & m1_vec & m2_vec */
261 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
262 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
263 lp_build_name(in_out_mask, "inoutmaskvec");
264 }
265 #if OPTIMIZE_IN_OUT_TEST
266 lp_build_endif(&ifctx);
267 #endif
268
269 }
270 lp_build_flow_scope_end(flow);
271 lp_build_flow_destroy(flow);
272
273 /* This is the initial alive/dead pixel mask for a quad of four pixels.
274 * It's an int[4] vector with each word set to 0 or ~0.
275 * Words will get cleared when pixels faile the Z test, etc.
276 */
277 *mask = in_out_mask;
278 }
279
280
281 static LLVMValueRef
282 generate_scissor_test(LLVMBuilderRef builder,
283 LLVMValueRef context_ptr,
284 const struct lp_build_interp_soa_context *interp,
285 struct lp_type type)
286 {
287 LLVMTypeRef vec_type = lp_build_vec_type(type);
288 LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1];
289 LLVMValueRef xmin, ymin, xmax, ymax;
290 LLVMValueRef m0, m1, m2, m3, m;
291
292 /* xpos, ypos contain the window coords for the four pixels in the quad */
293 assert(xpos);
294 assert(ypos);
295
296 /* get the current scissor bounds, convert to vectors */
297 xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr);
298 xmin = lp_build_broadcast(builder, vec_type, xmin);
299
300 ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr);
301 ymin = lp_build_broadcast(builder, vec_type, ymin);
302
303 xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr);
304 xmax = lp_build_broadcast(builder, vec_type, xmax);
305
306 ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr);
307 ymax = lp_build_broadcast(builder, vec_type, ymax);
308
309 /* compare the fragment's position coordinates against the scissor bounds */
310 m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin);
311 m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin);
312 m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax);
313 m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax);
314
315 /* AND all the masks together */
316 m = LLVMBuildAnd(builder, m0, m1, "");
317 m = LLVMBuildAnd(builder, m, m2, "");
318 m = LLVMBuildAnd(builder, m, m3, "");
319
320 lp_build_name(m, "scissormask");
321
322 return m;
323 }
324
325
326 static LLVMValueRef
327 build_int32_vec_const(int value)
328 {
329 struct lp_type i32_type;
330
331 memset(&i32_type, 0, sizeof i32_type);
332 i32_type.floating = FALSE; /* values are integers */
333 i32_type.sign = TRUE; /* values are signed */
334 i32_type.norm = FALSE; /* values are not normalized */
335 i32_type.width = 32; /* 32-bit int values */
336 i32_type.length = 4; /* 4 elements per vector */
337 return lp_build_const_int_vec(i32_type, value);
338 }
339
340
341
342 /**
343 * Generate the fragment shader, depth/stencil test, and alpha tests.
344 * \param i which quad in the tile, in range [0,3]
345 * \param do_tri_test if 1, do triangle edge in/out testing
346 */
347 static void
348 generate_fs(struct llvmpipe_context *lp,
349 struct lp_fragment_shader *shader,
350 const struct lp_fragment_shader_variant_key *key,
351 LLVMBuilderRef builder,
352 struct lp_type type,
353 LLVMValueRef context_ptr,
354 unsigned i,
355 const struct lp_build_interp_soa_context *interp,
356 struct lp_build_sampler_soa *sampler,
357 LLVMValueRef *pmask,
358 LLVMValueRef (*color)[4],
359 LLVMValueRef depth_ptr,
360 LLVMValueRef facing,
361 unsigned do_tri_test,
362 LLVMValueRef c0,
363 LLVMValueRef c1,
364 LLVMValueRef c2,
365 LLVMValueRef step0_ptr,
366 LLVMValueRef step1_ptr,
367 LLVMValueRef step2_ptr,
368 LLVMValueRef counter)
369 {
370 const struct tgsi_token *tokens = shader->base.tokens;
371 LLVMTypeRef vec_type;
372 LLVMValueRef consts_ptr;
373 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
374 LLVMValueRef z = interp->pos[2];
375 LLVMValueRef stencil_refs[2];
376 struct lp_build_flow_context *flow;
377 struct lp_build_mask_context mask;
378 boolean early_depth_stencil_test;
379 unsigned attrib;
380 unsigned chan;
381 unsigned cbuf;
382
383 assert(i < 4);
384
385 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
386 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
387
388 vec_type = lp_build_vec_type(type);
389
390 consts_ptr = lp_jit_context_constants(builder, context_ptr);
391
392 flow = lp_build_flow_create(builder);
393
394 memset(outputs, 0, sizeof outputs);
395
396 lp_build_flow_scope_begin(flow);
397
398 /* Declare the color and z variables */
399 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
400 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
401 color[cbuf][chan] = LLVMGetUndef(vec_type);
402 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
403 }
404 }
405 lp_build_flow_scope_declare(flow, &z);
406
407 /* do triangle edge testing */
408 if (do_tri_test) {
409 generate_tri_edge_mask(builder, i, pmask,
410 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
411 }
412 else {
413 *pmask = build_int32_vec_const(~0);
414 }
415
416 /* 'mask' will control execution based on quad's pixel alive/killed state */
417 lp_build_mask_begin(&mask, flow, type, *pmask);
418
419 if (key->scissor) {
420 LLVMValueRef smask =
421 generate_scissor_test(builder, context_ptr, interp, type);
422 lp_build_mask_update(&mask, smask);
423 }
424
425 early_depth_stencil_test =
426 (key->depth.enabled || key->stencil[0].enabled) &&
427 !key->alpha.enabled &&
428 !shader->info.uses_kill &&
429 !shader->info.writes_z;
430
431 if (early_depth_stencil_test)
432 generate_depth_stencil(builder, key,
433 type, &mask,
434 stencil_refs, z, depth_ptr, facing, counter);
435
436 lp_build_tgsi_soa(builder, tokens, type, &mask,
437 consts_ptr, interp->pos, interp->inputs,
438 outputs, sampler, &shader->info);
439
440 /* loop over fragment shader outputs/results */
441 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
442 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
443 if(outputs[attrib][chan]) {
444 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
445 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
446
447 switch (shader->info.output_semantic_name[attrib]) {
448 case TGSI_SEMANTIC_COLOR:
449 {
450 unsigned cbuf = shader->info.output_semantic_index[attrib];
451
452 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
453
454 /* Alpha test */
455 /* XXX: should the alpha reference value be passed separately? */
456 /* XXX: should only test the final assignment to alpha */
457 if(cbuf == 0 && chan == 3) {
458 LLVMValueRef alpha = out;
459 LLVMValueRef alpha_ref_value;
460 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
461 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
462 lp_build_alpha_test(builder, &key->alpha, type,
463 &mask, alpha, alpha_ref_value);
464 }
465
466 color[cbuf][chan] = out;
467 break;
468 }
469
470 case TGSI_SEMANTIC_POSITION:
471 if(chan == 2)
472 z = out;
473 break;
474 }
475 }
476 }
477 }
478
479 if (!early_depth_stencil_test)
480 generate_depth_stencil(builder, key,
481 type, &mask,
482 stencil_refs, z, depth_ptr, facing, counter);
483
484 lp_build_mask_end(&mask);
485
486 lp_build_flow_scope_end(flow);
487
488 lp_build_flow_destroy(flow);
489
490 *pmask = mask.value;
491
492 }
493
494
495 /**
496 * Generate color blending and color output.
497 * \param rt the render target index (to index blend, colormask state)
498 * \param type the pixel color type
499 * \param context_ptr pointer to the runtime JIT context
500 * \param mask execution mask (active fragment/pixel mask)
501 * \param src colors from the fragment shader
502 * \param dst_ptr the destination color buffer pointer
503 */
504 static void
505 generate_blend(const struct pipe_blend_state *blend,
506 unsigned rt,
507 LLVMBuilderRef builder,
508 struct lp_type type,
509 LLVMValueRef context_ptr,
510 LLVMValueRef mask,
511 LLVMValueRef *src,
512 LLVMValueRef dst_ptr)
513 {
514 struct lp_build_context bld;
515 struct lp_build_flow_context *flow;
516 struct lp_build_mask_context mask_ctx;
517 LLVMTypeRef vec_type;
518 LLVMValueRef const_ptr;
519 LLVMValueRef con[4];
520 LLVMValueRef dst[4];
521 LLVMValueRef res[4];
522 unsigned chan;
523
524 lp_build_context_init(&bld, builder, type);
525
526 flow = lp_build_flow_create(builder);
527
528 /* we'll use this mask context to skip blending if all pixels are dead */
529 lp_build_mask_begin(&mask_ctx, flow, type, mask);
530
531 vec_type = lp_build_vec_type(type);
532
533 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
534 const_ptr = LLVMBuildBitCast(builder, const_ptr,
535 LLVMPointerType(vec_type, 0), "");
536
537 /* load constant blend color and colors from the dest color buffer */
538 for(chan = 0; chan < 4; ++chan) {
539 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
540 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
541
542 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
543
544 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
545 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
546 }
547
548 /* do blend */
549 lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
550
551 /* store results to color buffer */
552 for(chan = 0; chan < 4; ++chan) {
553 if(blend->rt[rt].colormask & (1 << chan)) {
554 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
555 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
556 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
557 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
558 }
559 }
560
561 lp_build_mask_end(&mask_ctx);
562 lp_build_flow_destroy(flow);
563 }
564
565
566 /**
567 * Generate the runtime callable function for the whole fragment pipeline.
568 * Note that the function which we generate operates on a block of 16
569 * pixels at at time. The block contains 2x2 quads. Each quad contains
570 * 2x2 pixels.
571 */
572 static void
573 generate_fragment(struct llvmpipe_context *lp,
574 struct lp_fragment_shader *shader,
575 struct lp_fragment_shader_variant *variant,
576 unsigned do_tri_test)
577 {
578 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
579 const struct lp_fragment_shader_variant_key *key = &variant->key;
580 struct lp_type fs_type;
581 struct lp_type blend_type;
582 LLVMTypeRef fs_elem_type;
583 LLVMTypeRef fs_int_vec_type;
584 LLVMTypeRef blend_vec_type;
585 LLVMTypeRef arg_types[16];
586 LLVMTypeRef func_type;
587 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
588 LLVMValueRef context_ptr;
589 LLVMValueRef x;
590 LLVMValueRef y;
591 LLVMValueRef a0_ptr;
592 LLVMValueRef dadx_ptr;
593 LLVMValueRef dady_ptr;
594 LLVMValueRef color_ptr_ptr;
595 LLVMValueRef depth_ptr;
596 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr, counter = NULL;
597 LLVMBasicBlockRef block;
598 LLVMBuilderRef builder;
599 struct lp_build_sampler_soa *sampler;
600 struct lp_build_interp_soa_context interp;
601 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
602 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
603 LLVMValueRef blend_mask;
604 LLVMValueRef function;
605 LLVMValueRef facing;
606 unsigned num_fs;
607 unsigned i;
608 unsigned chan;
609 unsigned cbuf;
610
611
612 /* TODO: actually pick these based on the fs and color buffer
613 * characteristics. */
614
615 memset(&fs_type, 0, sizeof fs_type);
616 fs_type.floating = TRUE; /* floating point values */
617 fs_type.sign = TRUE; /* values are signed */
618 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
619 fs_type.width = 32; /* 32-bit float */
620 fs_type.length = 4; /* 4 elements per vector */
621 num_fs = 4; /* number of quads per block */
622
623 memset(&blend_type, 0, sizeof blend_type);
624 blend_type.floating = FALSE; /* values are integers */
625 blend_type.sign = FALSE; /* values are unsigned */
626 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
627 blend_type.width = 8; /* 8-bit ubyte values */
628 blend_type.length = 16; /* 16 elements per vector */
629
630 /*
631 * Generate the function prototype. Any change here must be reflected in
632 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
633 */
634
635 fs_elem_type = lp_build_elem_type(fs_type);
636 fs_int_vec_type = lp_build_int_vec_type(fs_type);
637
638 blend_vec_type = lp_build_vec_type(blend_type);
639
640 arg_types[0] = screen->context_ptr_type; /* context */
641 arg_types[1] = LLVMInt32Type(); /* x */
642 arg_types[2] = LLVMInt32Type(); /* y */
643 arg_types[3] = LLVMFloatType(); /* facing */
644 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
645 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
646 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
647 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
648 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
649 arg_types[9] = LLVMInt32Type(); /* c0 */
650 arg_types[10] = LLVMInt32Type(); /* c1 */
651 arg_types[11] = LLVMInt32Type(); /* c2 */
652 /* Note: the step arrays are built as int32[16] but we interpret
653 * them here as int32_vec4[4].
654 */
655 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
656 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
657 arg_types[14] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
658 arg_types[15] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
659
660 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
661
662 function = LLVMAddFunction(screen->module, "shader", func_type);
663 LLVMSetFunctionCallConv(function, LLVMCCallConv);
664
665 variant->function[do_tri_test] = function;
666
667
668 /* XXX: need to propagate noalias down into color param now we are
669 * passing a pointer-to-pointer?
670 */
671 for(i = 0; i < Elements(arg_types); ++i)
672 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
673 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
674
675 context_ptr = LLVMGetParam(function, 0);
676 x = LLVMGetParam(function, 1);
677 y = LLVMGetParam(function, 2);
678 facing = LLVMGetParam(function, 3);
679 a0_ptr = LLVMGetParam(function, 4);
680 dadx_ptr = LLVMGetParam(function, 5);
681 dady_ptr = LLVMGetParam(function, 6);
682 color_ptr_ptr = LLVMGetParam(function, 7);
683 depth_ptr = LLVMGetParam(function, 8);
684 c0 = LLVMGetParam(function, 9);
685 c1 = LLVMGetParam(function, 10);
686 c2 = LLVMGetParam(function, 11);
687 step0_ptr = LLVMGetParam(function, 12);
688 step1_ptr = LLVMGetParam(function, 13);
689 step2_ptr = LLVMGetParam(function, 14);
690
691 lp_build_name(context_ptr, "context");
692 lp_build_name(x, "x");
693 lp_build_name(y, "y");
694 lp_build_name(a0_ptr, "a0");
695 lp_build_name(dadx_ptr, "dadx");
696 lp_build_name(dady_ptr, "dady");
697 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
698 lp_build_name(depth_ptr, "depth");
699 lp_build_name(c0, "c0");
700 lp_build_name(c1, "c1");
701 lp_build_name(c2, "c2");
702 lp_build_name(step0_ptr, "step0");
703 lp_build_name(step1_ptr, "step1");
704 lp_build_name(step2_ptr, "step2");
705
706 if (key->occlusion_count) {
707 counter = LLVMGetParam(function, 15);
708 lp_build_name(counter, "counter");
709 }
710
711 /*
712 * Function body
713 */
714
715 block = LLVMAppendBasicBlock(function, "entry");
716 builder = LLVMCreateBuilder();
717 LLVMPositionBuilderAtEnd(builder, block);
718
719 /*
720 * The shader input interpolation info is not explicitely baked in the
721 * shader key, but everything it derives from (TGSI, and flatshade) is
722 * already included in the shader key.
723 */
724 lp_build_interp_soa_init(&interp,
725 lp->num_inputs,
726 lp->inputs,
727 builder, fs_type,
728 a0_ptr, dadx_ptr, dady_ptr,
729 x, y);
730
731 /* code generated texture sampling */
732 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
733
734 /* loop over quads in the block */
735 for(i = 0; i < num_fs; ++i) {
736 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
737 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
738 LLVMValueRef depth_ptr_i;
739
740 if(i != 0)
741 lp_build_interp_soa_update(&interp, i);
742
743 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
744
745 generate_fs(lp, shader, key,
746 builder,
747 fs_type,
748 context_ptr,
749 i,
750 &interp,
751 sampler,
752 &fs_mask[i], /* output */
753 out_color,
754 depth_ptr_i,
755 facing,
756 do_tri_test,
757 c0, c1, c2,
758 step0_ptr, step1_ptr, step2_ptr, counter);
759
760 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
761 for(chan = 0; chan < NUM_CHANNELS; ++chan)
762 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
763 }
764
765 sampler->destroy(sampler);
766
767 /* Loop over color outputs / color buffers to do blending.
768 */
769 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
770 LLVMValueRef color_ptr;
771 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
772 LLVMValueRef blend_in_color[NUM_CHANNELS];
773 unsigned rt;
774
775 /*
776 * Convert the fs's output color and mask to fit to the blending type.
777 */
778 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
779 lp_build_conv(builder, fs_type, blend_type,
780 fs_out_color[cbuf][chan], num_fs,
781 &blend_in_color[chan], 1);
782 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
783 }
784
785 lp_build_conv_mask(builder, fs_type, blend_type,
786 fs_mask, num_fs,
787 &blend_mask, 1);
788
789 color_ptr = LLVMBuildLoad(builder,
790 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
791 "");
792 lp_build_name(color_ptr, "color_ptr%d", cbuf);
793
794 /* which blend/colormask state to use */
795 rt = key->blend.independent_blend_enable ? cbuf : 0;
796
797 /*
798 * Blending.
799 */
800 generate_blend(&key->blend,
801 rt,
802 builder,
803 blend_type,
804 context_ptr,
805 blend_mask,
806 blend_in_color,
807 color_ptr);
808 }
809
810 LLVMBuildRetVoid(builder);
811
812 LLVMDisposeBuilder(builder);
813
814
815 /* Verify the LLVM IR. If invalid, dump and abort */
816 #ifdef DEBUG
817 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
818 if (1)
819 lp_debug_dump_value(function);
820 abort();
821 }
822 #endif
823
824 /* Apply optimizations to LLVM IR */
825 if (1)
826 LLVMRunFunctionPassManager(screen->pass, function);
827
828 if (gallivm_debug & GALLIVM_DEBUG_IR) {
829 /* Print the LLVM IR to stderr */
830 lp_debug_dump_value(function);
831 debug_printf("\n");
832 }
833
834 /*
835 * Translate the LLVM IR into machine code.
836 */
837 {
838 void *f = LLVMGetPointerToGlobal(screen->engine, function);
839
840 variant->jit_function[do_tri_test] = (lp_jit_frag_func)pointer_to_func(f);
841
842 if (gallivm_debug & GALLIVM_DEBUG_ASM) {
843 lp_disassemble(f);
844 }
845 }
846 }
847
848
849 static void
850 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
851 {
852 unsigned i;
853
854 debug_printf("fs variant %p:\n", (void *) key);
855
856 if (key->depth.enabled) {
857 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
858 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
859 debug_printf("depth.writemask = %u\n", key->depth.writemask);
860 }
861
862 for (i = 0; i < 2; ++i) {
863 if (key->stencil[i].enabled) {
864 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
865 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
866 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
867 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
868 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
869 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
870 }
871 }
872
873 if (key->alpha.enabled) {
874 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
875 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
876 }
877
878 if (key->blend.logicop_enable) {
879 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
880 }
881 else if (key->blend.rt[0].blend_enable) {
882 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
883 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
884 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
885 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
886 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
887 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
888 }
889 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
890 for (i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
891 if (key->sampler[i].format) {
892 debug_printf("sampler[%u] = \n", i);
893 debug_printf(" .format = %s\n",
894 util_format_name(key->sampler[i].format));
895 debug_printf(" .target = %s\n",
896 util_dump_tex_target(key->sampler[i].target, TRUE));
897 debug_printf(" .pot = %u %u %u\n",
898 key->sampler[i].pot_width,
899 key->sampler[i].pot_height,
900 key->sampler[i].pot_depth);
901 debug_printf(" .wrap = %s %s %s\n",
902 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
903 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
904 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
905 debug_printf(" .min_img_filter = %s\n",
906 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
907 debug_printf(" .min_mip_filter = %s\n",
908 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
909 debug_printf(" .mag_img_filter = %s\n",
910 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
911 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
912 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
913 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
914 }
915 }
916 }
917
918
919
920 static struct lp_fragment_shader_variant *
921 generate_variant(struct llvmpipe_context *lp,
922 struct lp_fragment_shader *shader,
923 const struct lp_fragment_shader_variant_key *key)
924 {
925 struct lp_fragment_shader_variant *variant;
926
927 if (gallivm_debug & GALLIVM_DEBUG_IR) {
928 tgsi_dump(shader->base.tokens, 0);
929 dump_fs_variant_key(key);
930 }
931
932 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
933 if(!variant)
934 return NULL;
935
936 memcpy(&variant->key, key, sizeof *key);
937
938 generate_fragment(lp, shader, variant, RAST_WHOLE);
939 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
940
941 /* TODO: most of these can be relaxed, in particular the colormask */
942 variant->opaque =
943 !key->blend.logicop_enable &&
944 !key->blend.rt[0].blend_enable &&
945 key->blend.rt[0].colormask == 0xf &&
946 !key->stencil[0].enabled &&
947 !key->alpha.enabled &&
948 !key->depth.enabled &&
949 !key->scissor &&
950 !shader->info.uses_kill
951 ? TRUE : FALSE;
952
953 /* insert new variant into linked list */
954 variant->next = shader->variants;
955 shader->variants = variant;
956
957 return variant;
958 }
959
960
961 static void *
962 llvmpipe_create_fs_state(struct pipe_context *pipe,
963 const struct pipe_shader_state *templ)
964 {
965 struct lp_fragment_shader *shader;
966
967 shader = CALLOC_STRUCT(lp_fragment_shader);
968 if (!shader)
969 return NULL;
970
971 /* get/save the summary info for this shader */
972 tgsi_scan_shader(templ->tokens, &shader->info);
973
974 /* we need to keep a local copy of the tokens */
975 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
976
977 if (LP_DEBUG & DEBUG_TGSI) {
978 unsigned attrib;
979 debug_printf("llvmpipe: Create fragment shader %p:\n", (void *) shader);
980 tgsi_dump(templ->tokens, 0);
981 debug_printf("usage masks:\n");
982 for (attrib = 0; attrib < shader->info.num_inputs; ++attrib) {
983 unsigned usage_mask = shader->info.input_usage_mask[attrib];
984 debug_printf(" IN[%u].%s%s%s%s\n",
985 attrib,
986 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
987 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
988 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
989 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
990 }
991 debug_printf("\n");
992 }
993
994 return shader;
995 }
996
997
998 static void
999 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
1000 {
1001 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1002
1003 if (llvmpipe->fs == fs)
1004 return;
1005
1006 draw_flush(llvmpipe->draw);
1007
1008 llvmpipe->fs = fs;
1009
1010 llvmpipe->dirty |= LP_NEW_FS;
1011 }
1012
1013
1014 static void
1015 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1016 {
1017 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1018 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
1019 struct lp_fragment_shader *shader = fs;
1020 struct lp_fragment_shader_variant *variant;
1021
1022 assert(fs != llvmpipe->fs);
1023 (void) llvmpipe;
1024
1025 /*
1026 * XXX: we need to flush the context until we have some sort of reference
1027 * counting in fragment shaders as they may still be binned
1028 */
1029 draw_flush(llvmpipe->draw);
1030 lp_setup_flush(llvmpipe->setup, 0);
1031
1032 variant = shader->variants;
1033 while(variant) {
1034 struct lp_fragment_shader_variant *next = variant->next;
1035 unsigned i;
1036
1037 for (i = 0; i < Elements(variant->function); i++) {
1038 if (variant->function[i]) {
1039 if (variant->jit_function[i])
1040 LLVMFreeMachineCodeForFunction(screen->engine,
1041 variant->function[i]);
1042 LLVMDeleteFunction(variant->function[i]);
1043 }
1044 }
1045
1046 FREE(variant);
1047
1048 variant = next;
1049 }
1050
1051 FREE((void *) shader->base.tokens);
1052 FREE(shader);
1053 }
1054
1055
1056
1057 static void
1058 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1059 uint shader, uint index,
1060 struct pipe_resource *constants)
1061 {
1062 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1063 unsigned size = constants ? constants->width0 : 0;
1064 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1065
1066 assert(shader < PIPE_SHADER_TYPES);
1067 assert(index == 0);
1068
1069 if(llvmpipe->constants[shader] == constants)
1070 return;
1071
1072 draw_flush(llvmpipe->draw);
1073
1074 /* note: reference counting */
1075 pipe_resource_reference(&llvmpipe->constants[shader], constants);
1076
1077 if(shader == PIPE_SHADER_VERTEX) {
1078 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX, 0,
1079 data, size);
1080 }
1081
1082 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1083 }
1084
1085
1086 /**
1087 * Return the blend factor equivalent to a destination alpha of one.
1088 */
1089 static INLINE unsigned
1090 force_dst_alpha_one(unsigned factor, boolean alpha)
1091 {
1092 switch(factor) {
1093 case PIPE_BLENDFACTOR_DST_ALPHA:
1094 return PIPE_BLENDFACTOR_ONE;
1095 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1096 return PIPE_BLENDFACTOR_ZERO;
1097 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1098 return PIPE_BLENDFACTOR_ZERO;
1099 }
1100
1101 if (alpha) {
1102 switch(factor) {
1103 case PIPE_BLENDFACTOR_DST_COLOR:
1104 return PIPE_BLENDFACTOR_ONE;
1105 case PIPE_BLENDFACTOR_INV_DST_COLOR:
1106 return PIPE_BLENDFACTOR_ZERO;
1107 }
1108 }
1109
1110 return factor;
1111 }
1112
1113
1114 /**
1115 * We need to generate several variants of the fragment pipeline to match
1116 * all the combinations of the contributing state atoms.
1117 *
1118 * TODO: there is actually no reason to tie this to context state -- the
1119 * generated code could be cached globally in the screen.
1120 */
1121 static void
1122 make_variant_key(struct llvmpipe_context *lp,
1123 struct lp_fragment_shader *shader,
1124 struct lp_fragment_shader_variant_key *key)
1125 {
1126 unsigned i;
1127
1128 memset(key, 0, sizeof *key);
1129
1130 if (lp->framebuffer.zsbuf) {
1131 if (lp->depth_stencil->depth.enabled) {
1132 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1133 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1134 }
1135 if (lp->depth_stencil->stencil[0].enabled) {
1136 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1137 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1138 }
1139 }
1140
1141 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1142 if(key->alpha.enabled)
1143 key->alpha.func = lp->depth_stencil->alpha.func;
1144 /* alpha.ref_value is passed in jit_context */
1145
1146 key->flatshade = lp->rasterizer->flatshade;
1147 key->scissor = lp->rasterizer->scissor;
1148 if (lp->active_query_count) {
1149 key->occlusion_count = TRUE;
1150 }
1151
1152 if (lp->framebuffer.nr_cbufs) {
1153 memcpy(&key->blend, lp->blend, sizeof key->blend);
1154 }
1155
1156 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1157 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1158 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1159 const struct util_format_description *format_desc;
1160 unsigned chan;
1161
1162 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1163 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1164 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1165
1166 blend_rt->colormask = lp->blend->rt[i].colormask;
1167
1168 /* mask out color channels not present in the color buffer.
1169 * Should be simple to incorporate per-cbuf writemasks:
1170 */
1171 for(chan = 0; chan < 4; ++chan) {
1172 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1173
1174 if(swizzle > UTIL_FORMAT_SWIZZLE_W)
1175 blend_rt->colormask &= ~(1 << chan);
1176 }
1177
1178 /*
1179 * Our swizzled render tiles always have an alpha channel, but the linear
1180 * render target format often does not, so force here the dst alpha to be
1181 * one.
1182 *
1183 * This is not a mere optimization. Wrong results will be produced if the
1184 * dst alpha is used, the dst format does not have alpha, and the previous
1185 * rendering was not flushed from the swizzled to linear buffer. For
1186 * example, NonPowTwo DCT.
1187 *
1188 * TODO: This should be generalized to all channels for better
1189 * performance, but only alpha causes correctness issues.
1190 */
1191 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1192 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor, FALSE);
1193 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor, FALSE);
1194 blend_rt->alpha_src_factor = force_dst_alpha_one(blend_rt->alpha_src_factor, TRUE);
1195 blend_rt->alpha_dst_factor = force_dst_alpha_one(blend_rt->alpha_dst_factor, TRUE);
1196 }
1197 }
1198
1199 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1200 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1201 lp_sampler_static_state(&key->sampler[i], lp->fragment_sampler_views[i], lp->sampler[i]);
1202 }
1203
1204
1205 /**
1206 * Update fragment state. This is called just prior to drawing
1207 * something when some fragment-related state has changed.
1208 */
1209 void
1210 llvmpipe_update_fs(struct llvmpipe_context *lp)
1211 {
1212 struct lp_fragment_shader *shader = lp->fs;
1213 struct lp_fragment_shader_variant_key key;
1214 struct lp_fragment_shader_variant *variant;
1215
1216 make_variant_key(lp, shader, &key);
1217
1218 variant = shader->variants;
1219 while(variant) {
1220 if(memcmp(&variant->key, &key, sizeof key) == 0)
1221 break;
1222
1223 variant = variant->next;
1224 }
1225
1226 if (!variant) {
1227 int64_t t0, t1;
1228 int64_t dt;
1229 t0 = os_time_get();
1230
1231 variant = generate_variant(lp, shader, &key);
1232
1233 t1 = os_time_get();
1234 dt = t1 - t0;
1235 LP_COUNT_ADD(llvm_compile_time, dt);
1236 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1237 }
1238
1239 lp_setup_set_fs_variant(lp->setup, variant);
1240 }
1241
1242
1243
1244 void
1245 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1246 {
1247 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1248 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1249 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1250
1251 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1252 }