llvmpipe: limit the number of fragment shader variants kept around
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - triangle edge in/out testing
35 * - scissor test
36 * - stipple (TBI)
37 * - early depth test
38 * - fragment shader
39 * - alpha test
40 * - depth/stencil test
41 * - blending
42 *
43 * This file has only the glue to assemble the fragment pipeline. The actual
44 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
45 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
46 * muster the LLVM JIT execution engine to create a function that follows an
47 * established binary interface and that can be called from C directly.
48 *
49 * A big source of complexity here is that we often want to run different
50 * stages with different precisions and data types and precisions. For example,
51 * the fragment shader needs typically to be done in floats, but the
52 * depth/stencil test and blending is better done in the type that most closely
53 * matches the depth/stencil and color buffer respectively.
54 *
55 * Since the width of a SIMD vector register stays the same regardless of the
56 * element type, different types imply different number of elements, so we must
57 * code generate more instances of the stages with larger types to be able to
58 * feed/consume the stages with smaller types.
59 *
60 * @author Jose Fonseca <jfonseca@vmware.com>
61 */
62
63 #include <limits.h>
64 #include "pipe/p_defines.h"
65 #include "util/u_inlines.h"
66 #include "util/u_memory.h"
67 #include "util/u_pointer.h"
68 #include "util/u_format.h"
69 #include "util/u_dump.h"
70 #include "util/u_string.h"
71 #include "util/u_simple_list.h"
72 #include "os/os_time.h"
73 #include "pipe/p_shader_tokens.h"
74 #include "draw/draw_context.h"
75 #include "tgsi/tgsi_dump.h"
76 #include "tgsi/tgsi_scan.h"
77 #include "tgsi/tgsi_parse.h"
78 #include "gallivm/lp_bld_type.h"
79 #include "gallivm/lp_bld_const.h"
80 #include "gallivm/lp_bld_conv.h"
81 #include "gallivm/lp_bld_intr.h"
82 #include "gallivm/lp_bld_logic.h"
83 #include "gallivm/lp_bld_tgsi.h"
84 #include "gallivm/lp_bld_swizzle.h"
85 #include "gallivm/lp_bld_flow.h"
86 #include "gallivm/lp_bld_debug.h"
87
88 #include "lp_bld_alpha.h"
89 #include "lp_bld_blend.h"
90 #include "lp_bld_depth.h"
91 #include "lp_bld_interp.h"
92 #include "lp_context.h"
93 #include "lp_debug.h"
94 #include "lp_perf.h"
95 #include "lp_screen.h"
96 #include "lp_setup.h"
97 #include "lp_state.h"
98 #include "lp_tex_sample.h"
99 #include "lp_flush.h"
100
101
102 #include <llvm-c/Analysis.h>
103
104
105 static unsigned fs_no = 0;
106
107
108 /**
109 * Generate the depth /stencil test code.
110 */
111 static void
112 generate_depth_stencil(LLVMBuilderRef builder,
113 const struct lp_fragment_shader_variant_key *key,
114 struct lp_type src_type,
115 struct lp_build_mask_context *mask,
116 LLVMValueRef stencil_refs[2],
117 LLVMValueRef src,
118 LLVMValueRef dst_ptr,
119 LLVMValueRef facing,
120 LLVMValueRef counter)
121 {
122 const struct util_format_description *format_desc;
123 struct lp_type dst_type;
124
125 if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
126 return;
127
128 format_desc = util_format_description(key->zsbuf_format);
129 assert(format_desc);
130
131 /*
132 * Depths are expected to be between 0 and 1, even if they are stored in
133 * floats. Setting these bits here will ensure that the lp_build_conv() call
134 * below won't try to unnecessarily clamp the incoming values.
135 */
136 if(src_type.floating) {
137 src_type.sign = FALSE;
138 src_type.norm = TRUE;
139 }
140 else {
141 assert(!src_type.sign);
142 assert(src_type.norm);
143 }
144
145 /* Pick the depth type. */
146 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
147
148 /* FIXME: Cope with a depth test type with a different bit width. */
149 assert(dst_type.width == src_type.width);
150 assert(dst_type.length == src_type.length);
151
152 /* Convert fragment Z from float to integer */
153 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
154
155 dst_ptr = LLVMBuildBitCast(builder,
156 dst_ptr,
157 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
158 lp_build_depth_stencil_test(builder,
159 &key->depth,
160 key->stencil,
161 dst_type,
162 format_desc,
163 mask,
164 stencil_refs,
165 src,
166 dst_ptr,
167 facing,
168 counter);
169 }
170
171
172 /**
173 * Generate the code to do inside/outside triangle testing for the
174 * four pixels in a 2x2 quad. This will set the four elements of the
175 * quad mask vector to 0 or ~0.
176 * \param i which quad of the quad group to test, in [0,3]
177 */
178 static void
179 generate_tri_edge_mask(LLVMBuilderRef builder,
180 unsigned i,
181 LLVMValueRef *mask, /* ivec4, out */
182 LLVMValueRef c0, /* int32 */
183 LLVMValueRef c1, /* int32 */
184 LLVMValueRef c2, /* int32 */
185 LLVMValueRef step0_ptr, /* ivec4 */
186 LLVMValueRef step1_ptr, /* ivec4 */
187 LLVMValueRef step2_ptr) /* ivec4 */
188 {
189 #define OPTIMIZE_IN_OUT_TEST 0
190 #if OPTIMIZE_IN_OUT_TEST
191 struct lp_build_if_state ifctx;
192 LLVMValueRef not_draw_all;
193 #endif
194 struct lp_build_flow_context *flow;
195 struct lp_type i32_type;
196 LLVMTypeRef i32vec4_type;
197 LLVMValueRef c0_vec, c1_vec, c2_vec;
198 LLVMValueRef in_out_mask;
199
200 assert(i < 4);
201
202 /* int32 vector type */
203 memset(&i32_type, 0, sizeof i32_type);
204 i32_type.floating = FALSE; /* values are integers */
205 i32_type.sign = TRUE; /* values are signed */
206 i32_type.norm = FALSE; /* values are not normalized */
207 i32_type.width = 32; /* 32-bit int values */
208 i32_type.length = 4; /* 4 elements per vector */
209
210 i32vec4_type = lp_build_int32_vec4_type();
211
212 /*
213 * Use a conditional here to do detailed pixel in/out testing.
214 * We only have to do this if c0 != INT_MIN.
215 */
216 flow = lp_build_flow_create(builder);
217 lp_build_flow_scope_begin(flow);
218
219 {
220 #if OPTIMIZE_IN_OUT_TEST
221 /* not_draw_all = (c0 != INT_MIN) */
222 not_draw_all = LLVMBuildICmp(builder,
223 LLVMIntNE,
224 c0,
225 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
226 "");
227
228 in_out_mask = lp_build_const_int_vec(i32_type, ~0);
229
230
231 lp_build_flow_scope_declare(flow, &in_out_mask);
232
233 /* if (not_draw_all) {... */
234 lp_build_if(&ifctx, flow, builder, not_draw_all);
235 #endif
236 {
237 LLVMValueRef step0_vec, step1_vec, step2_vec;
238 LLVMValueRef m0_vec, m1_vec, m2_vec;
239 LLVMValueRef index, m;
240
241 /* c0_vec = {c0, c0, c0, c0}
242 * Note that we emit this code four times but LLVM optimizes away
243 * three instances of it.
244 */
245 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
246 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
247 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
248 lp_build_name(c0_vec, "edgeconst0vec");
249 lp_build_name(c1_vec, "edgeconst1vec");
250 lp_build_name(c2_vec, "edgeconst2vec");
251
252 /* load step0vec, step1, step2 vec from memory */
253 index = LLVMConstInt(LLVMInt32Type(), i, 0);
254 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
255 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
256 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
257 lp_build_name(step0_vec, "step0vec");
258 lp_build_name(step1_vec, "step1vec");
259 lp_build_name(step2_vec, "step2vec");
260
261 /* m0_vec = step0_ptr[i] > c0_vec */
262 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
263 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
264 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
265
266 /* in_out_mask = m0_vec & m1_vec & m2_vec */
267 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
268 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
269 lp_build_name(in_out_mask, "inoutmaskvec");
270 }
271 #if OPTIMIZE_IN_OUT_TEST
272 lp_build_endif(&ifctx);
273 #endif
274
275 }
276 lp_build_flow_scope_end(flow);
277 lp_build_flow_destroy(flow);
278
279 /* This is the initial alive/dead pixel mask for a quad of four pixels.
280 * It's an int[4] vector with each word set to 0 or ~0.
281 * Words will get cleared when pixels faile the Z test, etc.
282 */
283 *mask = in_out_mask;
284 }
285
286
287 static LLVMValueRef
288 generate_scissor_test(LLVMBuilderRef builder,
289 LLVMValueRef context_ptr,
290 const struct lp_build_interp_soa_context *interp,
291 struct lp_type type)
292 {
293 LLVMTypeRef vec_type = lp_build_vec_type(type);
294 LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1];
295 LLVMValueRef xmin, ymin, xmax, ymax;
296 LLVMValueRef m0, m1, m2, m3, m;
297
298 /* xpos, ypos contain the window coords for the four pixels in the quad */
299 assert(xpos);
300 assert(ypos);
301
302 /* get the current scissor bounds, convert to vectors */
303 xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr);
304 xmin = lp_build_broadcast(builder, vec_type, xmin);
305
306 ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr);
307 ymin = lp_build_broadcast(builder, vec_type, ymin);
308
309 xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr);
310 xmax = lp_build_broadcast(builder, vec_type, xmax);
311
312 ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr);
313 ymax = lp_build_broadcast(builder, vec_type, ymax);
314
315 /* compare the fragment's position coordinates against the scissor bounds */
316 m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin);
317 m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin);
318 m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax);
319 m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax);
320
321 /* AND all the masks together */
322 m = LLVMBuildAnd(builder, m0, m1, "");
323 m = LLVMBuildAnd(builder, m, m2, "");
324 m = LLVMBuildAnd(builder, m, m3, "");
325
326 lp_build_name(m, "scissormask");
327
328 return m;
329 }
330
331
332 static LLVMValueRef
333 build_int32_vec_const(int value)
334 {
335 struct lp_type i32_type;
336
337 memset(&i32_type, 0, sizeof i32_type);
338 i32_type.floating = FALSE; /* values are integers */
339 i32_type.sign = TRUE; /* values are signed */
340 i32_type.norm = FALSE; /* values are not normalized */
341 i32_type.width = 32; /* 32-bit int values */
342 i32_type.length = 4; /* 4 elements per vector */
343 return lp_build_const_int_vec(i32_type, value);
344 }
345
346
347
348 /**
349 * Generate the fragment shader, depth/stencil test, and alpha tests.
350 * \param i which quad in the tile, in range [0,3]
351 * \param do_tri_test if 1, do triangle edge in/out testing
352 */
353 static void
354 generate_fs(struct llvmpipe_context *lp,
355 struct lp_fragment_shader *shader,
356 const struct lp_fragment_shader_variant_key *key,
357 LLVMBuilderRef builder,
358 struct lp_type type,
359 LLVMValueRef context_ptr,
360 unsigned i,
361 const struct lp_build_interp_soa_context *interp,
362 struct lp_build_sampler_soa *sampler,
363 LLVMValueRef *pmask,
364 LLVMValueRef (*color)[4],
365 LLVMValueRef depth_ptr,
366 LLVMValueRef facing,
367 unsigned do_tri_test,
368 LLVMValueRef c0,
369 LLVMValueRef c1,
370 LLVMValueRef c2,
371 LLVMValueRef step0_ptr,
372 LLVMValueRef step1_ptr,
373 LLVMValueRef step2_ptr,
374 LLVMValueRef counter)
375 {
376 const struct tgsi_token *tokens = shader->base.tokens;
377 LLVMTypeRef vec_type;
378 LLVMValueRef consts_ptr;
379 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
380 LLVMValueRef z = interp->pos[2];
381 LLVMValueRef stencil_refs[2];
382 struct lp_build_flow_context *flow;
383 struct lp_build_mask_context mask;
384 boolean early_depth_stencil_test;
385 unsigned attrib;
386 unsigned chan;
387 unsigned cbuf;
388
389 assert(i < 4);
390
391 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
392 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
393
394 vec_type = lp_build_vec_type(type);
395
396 consts_ptr = lp_jit_context_constants(builder, context_ptr);
397
398 flow = lp_build_flow_create(builder);
399
400 memset(outputs, 0, sizeof outputs);
401
402 lp_build_flow_scope_begin(flow);
403
404 /* Declare the color and z variables */
405 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
406 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
407 color[cbuf][chan] = LLVMGetUndef(vec_type);
408 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
409 }
410 }
411 lp_build_flow_scope_declare(flow, &z);
412
413 /* do triangle edge testing */
414 if (do_tri_test) {
415 generate_tri_edge_mask(builder, i, pmask,
416 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
417 }
418 else {
419 *pmask = build_int32_vec_const(~0);
420 }
421
422 /* 'mask' will control execution based on quad's pixel alive/killed state */
423 lp_build_mask_begin(&mask, flow, type, *pmask);
424
425 if (key->scissor) {
426 LLVMValueRef smask =
427 generate_scissor_test(builder, context_ptr, interp, type);
428 lp_build_mask_update(&mask, smask);
429 }
430
431 early_depth_stencil_test =
432 (key->depth.enabled || key->stencil[0].enabled) &&
433 !key->alpha.enabled &&
434 !shader->info.uses_kill &&
435 !shader->info.writes_z;
436
437 if (early_depth_stencil_test)
438 generate_depth_stencil(builder, key,
439 type, &mask,
440 stencil_refs, z, depth_ptr, facing, counter);
441
442 lp_build_tgsi_soa(builder, tokens, type, &mask,
443 consts_ptr, interp->pos, interp->inputs,
444 outputs, sampler, &shader->info);
445
446 /* loop over fragment shader outputs/results */
447 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
448 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
449 if(outputs[attrib][chan]) {
450 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
451 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
452
453 switch (shader->info.output_semantic_name[attrib]) {
454 case TGSI_SEMANTIC_COLOR:
455 {
456 unsigned cbuf = shader->info.output_semantic_index[attrib];
457
458 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
459
460 /* Alpha test */
461 /* XXX: should the alpha reference value be passed separately? */
462 /* XXX: should only test the final assignment to alpha */
463 if(cbuf == 0 && chan == 3) {
464 LLVMValueRef alpha = out;
465 LLVMValueRef alpha_ref_value;
466 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
467 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
468 lp_build_alpha_test(builder, &key->alpha, type,
469 &mask, alpha, alpha_ref_value);
470 }
471
472 color[cbuf][chan] = out;
473 break;
474 }
475
476 case TGSI_SEMANTIC_POSITION:
477 if(chan == 2)
478 z = out;
479 break;
480 }
481 }
482 }
483 }
484
485 if (!early_depth_stencil_test)
486 generate_depth_stencil(builder, key,
487 type, &mask,
488 stencil_refs, z, depth_ptr, facing, counter);
489
490 lp_build_mask_end(&mask);
491
492 lp_build_flow_scope_end(flow);
493
494 lp_build_flow_destroy(flow);
495
496 *pmask = mask.value;
497
498 }
499
500
501 /**
502 * Generate color blending and color output.
503 * \param rt the render target index (to index blend, colormask state)
504 * \param type the pixel color type
505 * \param context_ptr pointer to the runtime JIT context
506 * \param mask execution mask (active fragment/pixel mask)
507 * \param src colors from the fragment shader
508 * \param dst_ptr the destination color buffer pointer
509 */
510 static void
511 generate_blend(const struct pipe_blend_state *blend,
512 unsigned rt,
513 LLVMBuilderRef builder,
514 struct lp_type type,
515 LLVMValueRef context_ptr,
516 LLVMValueRef mask,
517 LLVMValueRef *src,
518 LLVMValueRef dst_ptr)
519 {
520 struct lp_build_context bld;
521 struct lp_build_flow_context *flow;
522 struct lp_build_mask_context mask_ctx;
523 LLVMTypeRef vec_type;
524 LLVMValueRef const_ptr;
525 LLVMValueRef con[4];
526 LLVMValueRef dst[4];
527 LLVMValueRef res[4];
528 unsigned chan;
529
530 lp_build_context_init(&bld, builder, type);
531
532 flow = lp_build_flow_create(builder);
533
534 /* we'll use this mask context to skip blending if all pixels are dead */
535 lp_build_mask_begin(&mask_ctx, flow, type, mask);
536
537 vec_type = lp_build_vec_type(type);
538
539 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
540 const_ptr = LLVMBuildBitCast(builder, const_ptr,
541 LLVMPointerType(vec_type, 0), "");
542
543 /* load constant blend color and colors from the dest color buffer */
544 for(chan = 0; chan < 4; ++chan) {
545 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
546 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
547
548 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
549
550 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
551 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
552 }
553
554 /* do blend */
555 lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
556
557 /* store results to color buffer */
558 for(chan = 0; chan < 4; ++chan) {
559 if(blend->rt[rt].colormask & (1 << chan)) {
560 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
561 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
562 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
563 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
564 }
565 }
566
567 lp_build_mask_end(&mask_ctx);
568 lp_build_flow_destroy(flow);
569 }
570
571
572 /**
573 * Generate the runtime callable function for the whole fragment pipeline.
574 * Note that the function which we generate operates on a block of 16
575 * pixels at at time. The block contains 2x2 quads. Each quad contains
576 * 2x2 pixels.
577 */
578 static void
579 generate_fragment(struct llvmpipe_context *lp,
580 struct lp_fragment_shader *shader,
581 struct lp_fragment_shader_variant *variant,
582 unsigned do_tri_test)
583 {
584 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
585 const struct lp_fragment_shader_variant_key *key = &variant->key;
586 char func_name[256];
587 struct lp_type fs_type;
588 struct lp_type blend_type;
589 LLVMTypeRef fs_elem_type;
590 LLVMTypeRef fs_int_vec_type;
591 LLVMTypeRef blend_vec_type;
592 LLVMTypeRef arg_types[16];
593 LLVMTypeRef func_type;
594 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
595 LLVMValueRef context_ptr;
596 LLVMValueRef x;
597 LLVMValueRef y;
598 LLVMValueRef a0_ptr;
599 LLVMValueRef dadx_ptr;
600 LLVMValueRef dady_ptr;
601 LLVMValueRef color_ptr_ptr;
602 LLVMValueRef depth_ptr;
603 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr, counter = NULL;
604 LLVMBasicBlockRef block;
605 LLVMBuilderRef builder;
606 struct lp_build_sampler_soa *sampler;
607 struct lp_build_interp_soa_context interp;
608 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
609 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
610 LLVMValueRef blend_mask;
611 LLVMValueRef function;
612 LLVMValueRef facing;
613 unsigned num_fs;
614 unsigned i;
615 unsigned chan;
616 unsigned cbuf;
617
618
619 /* TODO: actually pick these based on the fs and color buffer
620 * characteristics. */
621
622 memset(&fs_type, 0, sizeof fs_type);
623 fs_type.floating = TRUE; /* floating point values */
624 fs_type.sign = TRUE; /* values are signed */
625 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
626 fs_type.width = 32; /* 32-bit float */
627 fs_type.length = 4; /* 4 elements per vector */
628 num_fs = 4; /* number of quads per block */
629
630 memset(&blend_type, 0, sizeof blend_type);
631 blend_type.floating = FALSE; /* values are integers */
632 blend_type.sign = FALSE; /* values are unsigned */
633 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
634 blend_type.width = 8; /* 8-bit ubyte values */
635 blend_type.length = 16; /* 16 elements per vector */
636
637 /*
638 * Generate the function prototype. Any change here must be reflected in
639 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
640 */
641
642 fs_elem_type = lp_build_elem_type(fs_type);
643 fs_int_vec_type = lp_build_int_vec_type(fs_type);
644
645 blend_vec_type = lp_build_vec_type(blend_type);
646
647 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
648 shader->no, variant->no, do_tri_test ? "edge" : "whole");
649
650 arg_types[0] = screen->context_ptr_type; /* context */
651 arg_types[1] = LLVMInt32Type(); /* x */
652 arg_types[2] = LLVMInt32Type(); /* y */
653 arg_types[3] = LLVMFloatType(); /* facing */
654 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
655 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
656 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
657 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
658 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
659 arg_types[9] = LLVMInt32Type(); /* c0 */
660 arg_types[10] = LLVMInt32Type(); /* c1 */
661 arg_types[11] = LLVMInt32Type(); /* c2 */
662 /* Note: the step arrays are built as int32[16] but we interpret
663 * them here as int32_vec4[4].
664 */
665 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
666 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
667 arg_types[14] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
668 arg_types[15] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
669
670 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
671
672 function = LLVMAddFunction(screen->module, func_name, func_type);
673 LLVMSetFunctionCallConv(function, LLVMCCallConv);
674
675 variant->function[do_tri_test] = function;
676
677
678 /* XXX: need to propagate noalias down into color param now we are
679 * passing a pointer-to-pointer?
680 */
681 for(i = 0; i < Elements(arg_types); ++i)
682 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
683 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
684
685 context_ptr = LLVMGetParam(function, 0);
686 x = LLVMGetParam(function, 1);
687 y = LLVMGetParam(function, 2);
688 facing = LLVMGetParam(function, 3);
689 a0_ptr = LLVMGetParam(function, 4);
690 dadx_ptr = LLVMGetParam(function, 5);
691 dady_ptr = LLVMGetParam(function, 6);
692 color_ptr_ptr = LLVMGetParam(function, 7);
693 depth_ptr = LLVMGetParam(function, 8);
694 c0 = LLVMGetParam(function, 9);
695 c1 = LLVMGetParam(function, 10);
696 c2 = LLVMGetParam(function, 11);
697 step0_ptr = LLVMGetParam(function, 12);
698 step1_ptr = LLVMGetParam(function, 13);
699 step2_ptr = LLVMGetParam(function, 14);
700
701 lp_build_name(context_ptr, "context");
702 lp_build_name(x, "x");
703 lp_build_name(y, "y");
704 lp_build_name(a0_ptr, "a0");
705 lp_build_name(dadx_ptr, "dadx");
706 lp_build_name(dady_ptr, "dady");
707 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
708 lp_build_name(depth_ptr, "depth");
709 lp_build_name(c0, "c0");
710 lp_build_name(c1, "c1");
711 lp_build_name(c2, "c2");
712 lp_build_name(step0_ptr, "step0");
713 lp_build_name(step1_ptr, "step1");
714 lp_build_name(step2_ptr, "step2");
715
716 if (key->occlusion_count) {
717 counter = LLVMGetParam(function, 15);
718 lp_build_name(counter, "counter");
719 }
720
721 /*
722 * Function body
723 */
724
725 block = LLVMAppendBasicBlock(function, "entry");
726 builder = LLVMCreateBuilder();
727 LLVMPositionBuilderAtEnd(builder, block);
728
729 /*
730 * The shader input interpolation info is not explicitely baked in the
731 * shader key, but everything it derives from (TGSI, and flatshade) is
732 * already included in the shader key.
733 */
734 lp_build_interp_soa_init(&interp,
735 lp->num_inputs,
736 lp->inputs,
737 builder, fs_type,
738 a0_ptr, dadx_ptr, dady_ptr,
739 x, y);
740
741 /* code generated texture sampling */
742 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
743
744 /* loop over quads in the block */
745 for(i = 0; i < num_fs; ++i) {
746 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
747 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
748 LLVMValueRef depth_ptr_i;
749
750 if(i != 0)
751 lp_build_interp_soa_update(&interp, i);
752
753 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
754
755 generate_fs(lp, shader, key,
756 builder,
757 fs_type,
758 context_ptr,
759 i,
760 &interp,
761 sampler,
762 &fs_mask[i], /* output */
763 out_color,
764 depth_ptr_i,
765 facing,
766 do_tri_test,
767 c0, c1, c2,
768 step0_ptr, step1_ptr, step2_ptr, counter);
769
770 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
771 for(chan = 0; chan < NUM_CHANNELS; ++chan)
772 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
773 }
774
775 sampler->destroy(sampler);
776
777 /* Loop over color outputs / color buffers to do blending.
778 */
779 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
780 LLVMValueRef color_ptr;
781 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
782 LLVMValueRef blend_in_color[NUM_CHANNELS];
783 unsigned rt;
784
785 /*
786 * Convert the fs's output color and mask to fit to the blending type.
787 */
788 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
789 lp_build_conv(builder, fs_type, blend_type,
790 fs_out_color[cbuf][chan], num_fs,
791 &blend_in_color[chan], 1);
792 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
793 }
794
795 lp_build_conv_mask(builder, fs_type, blend_type,
796 fs_mask, num_fs,
797 &blend_mask, 1);
798
799 color_ptr = LLVMBuildLoad(builder,
800 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
801 "");
802 lp_build_name(color_ptr, "color_ptr%d", cbuf);
803
804 /* which blend/colormask state to use */
805 rt = key->blend.independent_blend_enable ? cbuf : 0;
806
807 /*
808 * Blending.
809 */
810 generate_blend(&key->blend,
811 rt,
812 builder,
813 blend_type,
814 context_ptr,
815 blend_mask,
816 blend_in_color,
817 color_ptr);
818 }
819
820 LLVMBuildRetVoid(builder);
821
822 LLVMDisposeBuilder(builder);
823
824
825 /* Verify the LLVM IR. If invalid, dump and abort */
826 #ifdef DEBUG
827 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
828 if (1)
829 lp_debug_dump_value(function);
830 abort();
831 }
832 #endif
833
834 /* Apply optimizations to LLVM IR */
835 if (1)
836 LLVMRunFunctionPassManager(screen->pass, function);
837
838 if (gallivm_debug & GALLIVM_DEBUG_IR) {
839 /* Print the LLVM IR to stderr */
840 lp_debug_dump_value(function);
841 debug_printf("\n");
842 }
843
844 /*
845 * Translate the LLVM IR into machine code.
846 */
847 {
848 void *f = LLVMGetPointerToGlobal(screen->engine, function);
849
850 variant->jit_function[do_tri_test] = (lp_jit_frag_func)pointer_to_func(f);
851
852 if (gallivm_debug & GALLIVM_DEBUG_ASM) {
853 lp_disassemble(f);
854 }
855 }
856 }
857
858
859 static void
860 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
861 {
862 unsigned i;
863
864 debug_printf("fs variant %p:\n", (void *) key);
865
866 if (key->depth.enabled) {
867 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
868 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
869 debug_printf("depth.writemask = %u\n", key->depth.writemask);
870 }
871
872 for (i = 0; i < 2; ++i) {
873 if (key->stencil[i].enabled) {
874 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
875 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
876 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
877 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
878 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
879 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
880 }
881 }
882
883 if (key->alpha.enabled) {
884 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
885 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
886 }
887
888 if (key->blend.logicop_enable) {
889 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
890 }
891 else if (key->blend.rt[0].blend_enable) {
892 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
893 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
894 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
895 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
896 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
897 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
898 }
899 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
900 for (i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
901 if (key->sampler[i].format) {
902 debug_printf("sampler[%u] = \n", i);
903 debug_printf(" .format = %s\n",
904 util_format_name(key->sampler[i].format));
905 debug_printf(" .target = %s\n",
906 util_dump_tex_target(key->sampler[i].target, TRUE));
907 debug_printf(" .pot = %u %u %u\n",
908 key->sampler[i].pot_width,
909 key->sampler[i].pot_height,
910 key->sampler[i].pot_depth);
911 debug_printf(" .wrap = %s %s %s\n",
912 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
913 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
914 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
915 debug_printf(" .min_img_filter = %s\n",
916 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
917 debug_printf(" .min_mip_filter = %s\n",
918 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
919 debug_printf(" .mag_img_filter = %s\n",
920 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
921 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
922 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
923 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
924 }
925 }
926 }
927
928
929
930 static struct lp_fragment_shader_variant *
931 generate_variant(struct llvmpipe_context *lp,
932 struct lp_fragment_shader *shader,
933 const struct lp_fragment_shader_variant_key *key)
934 {
935 struct lp_fragment_shader_variant *variant;
936
937 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
938 if(!variant)
939 return NULL;
940
941 variant->lpfs = shader;
942 variant->list_item_global.base = variant;
943 variant->list_item_local.base = variant;
944 variant->no = shader->variants_created++;
945
946 memcpy(&variant->key, key, sizeof *key);
947
948 if (gallivm_debug & GALLIVM_DEBUG_IR) {
949 debug_printf("llvmpipe: Creating fragment shader #%u variant #%u:\n",
950 shader->no, variant->no);
951 tgsi_dump(shader->base.tokens, 0);
952 dump_fs_variant_key(key);
953 }
954
955 generate_fragment(lp, shader, variant, RAST_WHOLE);
956 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
957
958 /* TODO: most of these can be relaxed, in particular the colormask */
959 variant->opaque =
960 !key->blend.logicop_enable &&
961 !key->blend.rt[0].blend_enable &&
962 key->blend.rt[0].colormask == 0xf &&
963 !key->stencil[0].enabled &&
964 !key->alpha.enabled &&
965 !key->depth.enabled &&
966 !key->scissor &&
967 !shader->info.uses_kill
968 ? TRUE : FALSE;
969
970 return variant;
971 }
972
973
974 static void *
975 llvmpipe_create_fs_state(struct pipe_context *pipe,
976 const struct pipe_shader_state *templ)
977 {
978 struct lp_fragment_shader *shader;
979
980 shader = CALLOC_STRUCT(lp_fragment_shader);
981 if (!shader)
982 return NULL;
983
984 shader->no = fs_no++;
985 make_empty_list(&shader->variants);
986
987 /* get/save the summary info for this shader */
988 tgsi_scan_shader(templ->tokens, &shader->info);
989
990 /* we need to keep a local copy of the tokens */
991 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
992
993 if (LP_DEBUG & DEBUG_TGSI) {
994 unsigned attrib;
995 debug_printf("llvmpipe: Create fragment shader #%u %p:\n", shader->no, (void *) shader);
996 tgsi_dump(templ->tokens, 0);
997 debug_printf("usage masks:\n");
998 for (attrib = 0; attrib < shader->info.num_inputs; ++attrib) {
999 unsigned usage_mask = shader->info.input_usage_mask[attrib];
1000 debug_printf(" IN[%u].%s%s%s%s\n",
1001 attrib,
1002 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
1003 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
1004 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
1005 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
1006 }
1007 debug_printf("\n");
1008 }
1009
1010 return shader;
1011 }
1012
1013
1014 static void
1015 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
1016 {
1017 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1018
1019 if (llvmpipe->fs == fs)
1020 return;
1021
1022 draw_flush(llvmpipe->draw);
1023
1024 llvmpipe->fs = fs;
1025
1026 llvmpipe->dirty |= LP_NEW_FS;
1027 }
1028
1029 static void
1030 remove_shader_variant(struct llvmpipe_context *lp,
1031 struct lp_fragment_shader_variant *variant)
1032 {
1033 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
1034 unsigned i;
1035
1036 if (gallivm_debug & GALLIVM_DEBUG_IR) {
1037 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached #%u v total cached #%u\n",
1038 variant->lpfs->no, variant->no, variant->lpfs->variants_created,
1039 variant->lpfs->variants_cached, lp->nr_fs_variants);
1040 }
1041 for (i = 0; i < Elements(variant->function); i++) {
1042 if (variant->function[i]) {
1043 if (variant->jit_function[i])
1044 LLVMFreeMachineCodeForFunction(screen->engine,
1045 variant->function[i]);
1046 LLVMDeleteFunction(variant->function[i]);
1047 }
1048 }
1049 remove_from_list(&variant->list_item_local);
1050 variant->lpfs->variants_cached--;
1051 remove_from_list(&variant->list_item_global);
1052 lp->nr_fs_variants--;
1053 FREE(variant);
1054 }
1055
1056 static void
1057 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1058 {
1059 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1060 struct pipe_fence_handle *fence = NULL;
1061 struct lp_fragment_shader *shader = fs;
1062 struct lp_fs_variant_list_item *li;
1063
1064 assert(fs != llvmpipe->fs);
1065 (void) llvmpipe;
1066
1067 /*
1068 * XXX: we need to flush the context until we have some sort of reference
1069 * counting in fragment shaders as they may still be binned
1070 * Flushing alone might not sufficient we need to wait on it too.
1071 */
1072
1073 llvmpipe_flush(pipe, 0, &fence);
1074
1075 if (fence) {
1076 pipe->screen->fence_finish(pipe->screen, fence, 0);
1077 pipe->screen->fence_reference(pipe->screen, &fence, NULL);
1078 }
1079
1080 li = first_elem(&shader->variants);
1081 while(!at_end(&shader->variants, li)) {
1082 remove_shader_variant(llvmpipe, li->base);
1083 li = next_elem(li);
1084 }
1085
1086 assert(shader->variants_cached == 0);
1087 FREE((void *) shader->base.tokens);
1088 FREE(shader);
1089 }
1090
1091
1092
1093 static void
1094 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1095 uint shader, uint index,
1096 struct pipe_resource *constants)
1097 {
1098 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1099 unsigned size = constants ? constants->width0 : 0;
1100 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1101
1102 assert(shader < PIPE_SHADER_TYPES);
1103 assert(index < PIPE_MAX_CONSTANT_BUFFERS);
1104
1105 if(llvmpipe->constants[shader][index] == constants)
1106 return;
1107
1108 draw_flush(llvmpipe->draw);
1109
1110 /* note: reference counting */
1111 pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
1112
1113 if(shader == PIPE_SHADER_VERTEX) {
1114 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX, index,
1115 data, size);
1116 }
1117
1118 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1119 }
1120
1121
1122 /**
1123 * Return the blend factor equivalent to a destination alpha of one.
1124 */
1125 static INLINE unsigned
1126 force_dst_alpha_one(unsigned factor, boolean alpha)
1127 {
1128 switch(factor) {
1129 case PIPE_BLENDFACTOR_DST_ALPHA:
1130 return PIPE_BLENDFACTOR_ONE;
1131 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1132 return PIPE_BLENDFACTOR_ZERO;
1133 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1134 return PIPE_BLENDFACTOR_ZERO;
1135 }
1136
1137 if (alpha) {
1138 switch(factor) {
1139 case PIPE_BLENDFACTOR_DST_COLOR:
1140 return PIPE_BLENDFACTOR_ONE;
1141 case PIPE_BLENDFACTOR_INV_DST_COLOR:
1142 return PIPE_BLENDFACTOR_ZERO;
1143 }
1144 }
1145
1146 return factor;
1147 }
1148
1149
1150 /**
1151 * We need to generate several variants of the fragment pipeline to match
1152 * all the combinations of the contributing state atoms.
1153 *
1154 * TODO: there is actually no reason to tie this to context state -- the
1155 * generated code could be cached globally in the screen.
1156 */
1157 static void
1158 make_variant_key(struct llvmpipe_context *lp,
1159 struct lp_fragment_shader *shader,
1160 struct lp_fragment_shader_variant_key *key)
1161 {
1162 unsigned i;
1163
1164 memset(key, 0, sizeof *key);
1165
1166 if (lp->framebuffer.zsbuf) {
1167 if (lp->depth_stencil->depth.enabled) {
1168 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1169 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1170 }
1171 if (lp->depth_stencil->stencil[0].enabled) {
1172 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1173 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1174 }
1175 }
1176
1177 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1178 if(key->alpha.enabled)
1179 key->alpha.func = lp->depth_stencil->alpha.func;
1180 /* alpha.ref_value is passed in jit_context */
1181
1182 key->flatshade = lp->rasterizer->flatshade;
1183 key->scissor = lp->rasterizer->scissor;
1184 if (lp->active_query_count) {
1185 key->occlusion_count = TRUE;
1186 }
1187
1188 if (lp->framebuffer.nr_cbufs) {
1189 memcpy(&key->blend, lp->blend, sizeof key->blend);
1190 }
1191
1192 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1193 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1194 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1195 const struct util_format_description *format_desc;
1196 unsigned chan;
1197
1198 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1199 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1200 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1201
1202 blend_rt->colormask = lp->blend->rt[i].colormask;
1203
1204 /* mask out color channels not present in the color buffer.
1205 * Should be simple to incorporate per-cbuf writemasks:
1206 */
1207 for(chan = 0; chan < 4; ++chan) {
1208 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1209
1210 if(swizzle > UTIL_FORMAT_SWIZZLE_W)
1211 blend_rt->colormask &= ~(1 << chan);
1212 }
1213
1214 /*
1215 * Our swizzled render tiles always have an alpha channel, but the linear
1216 * render target format often does not, so force here the dst alpha to be
1217 * one.
1218 *
1219 * This is not a mere optimization. Wrong results will be produced if the
1220 * dst alpha is used, the dst format does not have alpha, and the previous
1221 * rendering was not flushed from the swizzled to linear buffer. For
1222 * example, NonPowTwo DCT.
1223 *
1224 * TODO: This should be generalized to all channels for better
1225 * performance, but only alpha causes correctness issues.
1226 */
1227 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1228 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor, FALSE);
1229 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor, FALSE);
1230 blend_rt->alpha_src_factor = force_dst_alpha_one(blend_rt->alpha_src_factor, TRUE);
1231 blend_rt->alpha_dst_factor = force_dst_alpha_one(blend_rt->alpha_dst_factor, TRUE);
1232 }
1233 }
1234
1235 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1236 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1237 lp_sampler_static_state(&key->sampler[i], lp->fragment_sampler_views[i], lp->sampler[i]);
1238 }
1239
1240 /**
1241 * Update fragment state. This is called just prior to drawing
1242 * something when some fragment-related state has changed.
1243 */
1244 void
1245 llvmpipe_update_fs(struct llvmpipe_context *lp)
1246 {
1247 struct lp_fragment_shader *shader = lp->fs;
1248 struct lp_fragment_shader_variant_key key;
1249 struct lp_fragment_shader_variant *variant = NULL;
1250 struct lp_fs_variant_list_item *li;
1251
1252 make_variant_key(lp, shader, &key);
1253
1254 li = first_elem(&shader->variants);
1255 while(!at_end(&shader->variants, li)) {
1256 if(memcmp(&li->base->key, &key, sizeof key) == 0) {
1257 variant = li->base;
1258 break;
1259 }
1260 li = next_elem(li);
1261 }
1262
1263 if (variant) {
1264 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1265 }
1266 else {
1267 int64_t t0, t1;
1268 int64_t dt;
1269 unsigned i;
1270 if (lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS) {
1271 struct pipe_context *pipe = &lp->pipe;
1272 struct pipe_fence_handle *fence = NULL;
1273
1274 /*
1275 * XXX: we need to flush the context until we have some sort of reference
1276 * counting in fragment shaders as they may still be binned
1277 * Flushing alone might not be sufficient we need to wait on it too.
1278 */
1279 llvmpipe_flush(pipe, 0, &fence);
1280
1281 if (fence) {
1282 pipe->screen->fence_finish(pipe->screen, fence, 0);
1283 pipe->screen->fence_reference(pipe->screen, &fence, NULL);
1284 }
1285 for (i = 0; i < LP_MAX_SHADER_VARIANTS / 4; i++) {
1286 struct lp_fs_variant_list_item *item = last_elem(&lp->fs_variants_list);
1287 remove_shader_variant(lp, item->base);
1288 }
1289 }
1290 t0 = os_time_get();
1291
1292 variant = generate_variant(lp, shader, &key);
1293
1294 t1 = os_time_get();
1295 dt = t1 - t0;
1296 LP_COUNT_ADD(llvm_compile_time, dt);
1297 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1298
1299 if (variant) {
1300 insert_at_head(&shader->variants, &variant->list_item_local);
1301 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1302 lp->nr_fs_variants++;
1303 shader->variants_cached++;
1304 }
1305 }
1306
1307 lp_setup_set_fs_variant(lp->setup, variant);
1308 }
1309
1310
1311
1312 void
1313 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1314 {
1315 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1316 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1317 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1318
1319 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1320 }