llvmpipe: generate two shader varients, one omits triangle in/out testing
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include <limits.h>
62 #include "pipe/p_defines.h"
63 #include "util/u_memory.h"
64 #include "util/u_format.h"
65 #include "util/u_debug_dump.h"
66 #include "pipe/internal/p_winsys_screen.h"
67 #include "pipe/p_shader_tokens.h"
68 #include "draw/draw_context.h"
69 #include "tgsi/tgsi_dump.h"
70 #include "tgsi/tgsi_scan.h"
71 #include "tgsi/tgsi_parse.h"
72 #include "lp_bld_type.h"
73 #include "lp_bld_const.h"
74 #include "lp_bld_conv.h"
75 #include "lp_bld_intr.h"
76 #include "lp_bld_logic.h"
77 #include "lp_bld_depth.h"
78 #include "lp_bld_interp.h"
79 #include "lp_bld_tgsi.h"
80 #include "lp_bld_alpha.h"
81 #include "lp_bld_blend.h"
82 #include "lp_bld_swizzle.h"
83 #include "lp_bld_flow.h"
84 #include "lp_bld_debug.h"
85 #include "lp_screen.h"
86 #include "lp_context.h"
87 #include "lp_buffer.h"
88 #include "lp_setup.h"
89 #include "lp_state.h"
90 #include "lp_tex_sample.h"
91 #include "lp_debug.h"
92
93
94 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
95 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
96
97
98 /*
99 * Derive from the quad's upper left scalar coordinates the coordinates for
100 * all other quad pixels
101 */
102 static void
103 generate_pos0(LLVMBuilderRef builder,
104 LLVMValueRef x,
105 LLVMValueRef y,
106 LLVMValueRef *x0,
107 LLVMValueRef *y0)
108 {
109 LLVMTypeRef int_elem_type = LLVMInt32Type();
110 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
111 LLVMTypeRef elem_type = LLVMFloatType();
112 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
113 LLVMValueRef x_offsets[QUAD_SIZE];
114 LLVMValueRef y_offsets[QUAD_SIZE];
115 unsigned i;
116
117 x = lp_build_broadcast(builder, int_vec_type, x);
118 y = lp_build_broadcast(builder, int_vec_type, y);
119
120 for(i = 0; i < QUAD_SIZE; ++i) {
121 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
122 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
123 }
124
125 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
126 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
127
128 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
129 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
130 }
131
132
133 /**
134 * Generate the depth test.
135 */
136 static void
137 generate_depth(LLVMBuilderRef builder,
138 const struct lp_fragment_shader_variant_key *key,
139 struct lp_type src_type,
140 struct lp_build_mask_context *mask,
141 LLVMValueRef src,
142 LLVMValueRef dst_ptr)
143 {
144 const struct util_format_description *format_desc;
145 struct lp_type dst_type;
146
147 if(!key->depth.enabled)
148 return;
149
150 format_desc = util_format_description(key->zsbuf_format);
151 assert(format_desc);
152
153 /*
154 * Depths are expected to be between 0 and 1, even if they are stored in
155 * floats. Setting these bits here will ensure that the lp_build_conv() call
156 * below won't try to unnecessarily clamp the incoming values.
157 */
158 if(src_type.floating) {
159 src_type.sign = FALSE;
160 src_type.norm = TRUE;
161 }
162 else {
163 assert(!src_type.sign);
164 assert(src_type.norm);
165 }
166
167 /* Pick the depth type. */
168 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
169
170 /* FIXME: Cope with a depth test type with a different bit width. */
171 assert(dst_type.width == src_type.width);
172 assert(dst_type.length == src_type.length);
173
174 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
175
176 dst_ptr = LLVMBuildBitCast(builder,
177 dst_ptr,
178 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
179
180 lp_build_depth_test(builder,
181 &key->depth,
182 dst_type,
183 format_desc,
184 mask,
185 src,
186 dst_ptr);
187 }
188
189
190 /**
191 * Generate the code to do inside/outside triangle testing for the
192 * four pixels in a 2x2 quad. This will set the four elements of the
193 * quad mask vector to 0 or ~0.
194 * \param i which quad of the quad group to test, in [0,3]
195 */
196 static void
197 generate_tri_edge_mask(LLVMBuilderRef builder,
198 unsigned i,
199 LLVMValueRef *mask, /* ivec4, out */
200 LLVMValueRef c0, /* int32 */
201 LLVMValueRef c1, /* int32 */
202 LLVMValueRef c2, /* int32 */
203 LLVMValueRef step0_ptr, /* ivec4 */
204 LLVMValueRef step1_ptr, /* ivec4 */
205 LLVMValueRef step2_ptr) /* ivec4 */
206 {
207 #define OPTIMIZE_IN_OUT_TEST 0
208 #if OPTIMIZE_IN_OUT_TEST
209 struct lp_build_if_state ifctx;
210 LLVMValueRef not_draw_all;
211 #endif
212 struct lp_build_flow_context *flow;
213 struct lp_type i32_type;
214 LLVMTypeRef i32vec4_type, mask_type;
215 LLVMValueRef c0_vec, c1_vec, c2_vec;
216 LLVMValueRef in_out_mask;
217
218 assert(i < 4);
219
220 /* int32 vector type */
221 memset(&i32_type, 0, sizeof i32_type);
222 i32_type.floating = FALSE; /* values are integers */
223 i32_type.sign = TRUE; /* values are signed */
224 i32_type.norm = FALSE; /* values are not normalized */
225 i32_type.width = 32; /* 32-bit int values */
226 i32_type.length = 4; /* 4 elements per vector */
227
228 i32vec4_type = lp_build_int32_vec4_type();
229
230 mask_type = LLVMIntType(32 * 4);
231
232 /*
233 * Use a conditional here to do detailed pixel in/out testing.
234 * We only have to do this if c0 != INT_MIN.
235 */
236 flow = lp_build_flow_create(builder);
237 lp_build_flow_scope_begin(flow);
238
239 {
240 #if OPTIMIZE_IN_OUT_TEST
241 /* not_draw_all = (c0 != INT_MIN) */
242 not_draw_all = LLVMBuildICmp(builder,
243 LLVMIntNE,
244 c0,
245 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
246 "");
247
248 in_out_mask = lp_build_int_const_scalar(i32_type, ~0);
249
250
251 lp_build_flow_scope_declare(flow, &in_out_mask);
252
253 /* if (not_draw_all) {... */
254 lp_build_if(&ifctx, flow, builder, not_draw_all);
255 #endif
256 {
257 LLVMValueRef step0_vec, step1_vec, step2_vec;
258 LLVMValueRef m0_vec, m1_vec, m2_vec;
259 LLVMValueRef index, m;
260
261 /* c0_vec = {c0, c0, c0, c0}
262 * Note that we emit this code four times but LLVM optimizes away
263 * three instances of it.
264 */
265 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
266 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
267 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
268 lp_build_name(c0_vec, "edgeconst0vec");
269 lp_build_name(c1_vec, "edgeconst1vec");
270 lp_build_name(c2_vec, "edgeconst2vec");
271
272 /* load step0vec, step1, step2 vec from memory */
273 index = LLVMConstInt(LLVMInt32Type(), i, 0);
274 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
275 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
276 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
277 lp_build_name(step0_vec, "step0vec");
278 lp_build_name(step1_vec, "step1vec");
279 lp_build_name(step2_vec, "step2vec");
280
281 /* m0_vec = step0_ptr[i] > c0_vec */
282 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
283 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
284 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
285
286 /* in_out_mask = m0_vec & m1_vec & m2_vec */
287 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
288 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
289 lp_build_name(in_out_mask, "inoutmaskvec");
290 }
291 #if OPTIMIZE_IN_OUT_TEST
292 lp_build_endif(&ifctx);
293 #endif
294
295 }
296 lp_build_flow_scope_end(flow);
297 lp_build_flow_destroy(flow);
298
299 /* This is the initial alive/dead pixel mask for a quad of four pixels.
300 * It's an int[4] vector with each word set to 0 or ~0.
301 * Words will get cleared when pixels faile the Z test, etc.
302 */
303 *mask = in_out_mask;
304 }
305
306
307 static LLVMValueRef
308 generate_scissor_test(LLVMBuilderRef builder,
309 LLVMValueRef context_ptr,
310 const struct lp_build_interp_soa_context *interp,
311 struct lp_type type)
312 {
313 LLVMTypeRef vec_type = lp_build_vec_type(type);
314 LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1];
315 LLVMValueRef xmin, ymin, xmax, ymax;
316 LLVMValueRef m0, m1, m2, m3, m;
317
318 /* xpos, ypos contain the window coords for the four pixels in the quad */
319 assert(xpos);
320 assert(ypos);
321
322 /* get the current scissor bounds, convert to vectors */
323 xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr);
324 xmin = lp_build_broadcast(builder, vec_type, xmin);
325
326 ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr);
327 ymin = lp_build_broadcast(builder, vec_type, ymin);
328
329 xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr);
330 xmax = lp_build_broadcast(builder, vec_type, xmax);
331
332 ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr);
333 ymax = lp_build_broadcast(builder, vec_type, ymax);
334
335 /* compare the fragment's position coordinates against the scissor bounds */
336 m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin);
337 m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin);
338 m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax);
339 m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax);
340
341 /* AND all the masks together */
342 m = LLVMBuildAnd(builder, m0, m1, "");
343 m = LLVMBuildAnd(builder, m, m2, "");
344 m = LLVMBuildAnd(builder, m, m3, "");
345
346 lp_build_name(m, "scissormask");
347
348 return m;
349 }
350
351
352 static LLVMValueRef
353 build_int32_vec_const(int value)
354 {
355 struct lp_type i32_type;
356
357 memset(&i32_type, 0, sizeof i32_type);
358 i32_type.floating = FALSE; /* values are integers */
359 i32_type.sign = TRUE; /* values are signed */
360 i32_type.norm = FALSE; /* values are not normalized */
361 i32_type.width = 32; /* 32-bit int values */
362 i32_type.length = 4; /* 4 elements per vector */
363 return lp_build_int_const_scalar(i32_type, value);
364 }
365
366
367
368 /**
369 * Generate the fragment shader, depth/stencil test, and alpha tests.
370 * \param i which quad in the tile, in range [0,3]
371 * \param do_tri_test if 1, do triangle edge in/out testing
372 */
373 static void
374 generate_fs(struct llvmpipe_context *lp,
375 struct lp_fragment_shader *shader,
376 const struct lp_fragment_shader_variant_key *key,
377 LLVMBuilderRef builder,
378 struct lp_type type,
379 LLVMValueRef context_ptr,
380 unsigned i,
381 const struct lp_build_interp_soa_context *interp,
382 struct lp_build_sampler_soa *sampler,
383 LLVMValueRef *pmask,
384 LLVMValueRef (*color)[4],
385 LLVMValueRef depth_ptr,
386 unsigned do_tri_test,
387 LLVMValueRef c0,
388 LLVMValueRef c1,
389 LLVMValueRef c2,
390 LLVMValueRef step0_ptr,
391 LLVMValueRef step1_ptr,
392 LLVMValueRef step2_ptr)
393 {
394 const struct tgsi_token *tokens = shader->base.tokens;
395 LLVMTypeRef elem_type;
396 LLVMTypeRef vec_type;
397 LLVMTypeRef int_vec_type;
398 LLVMValueRef consts_ptr;
399 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
400 LLVMValueRef z = interp->pos[2];
401 struct lp_build_flow_context *flow;
402 struct lp_build_mask_context mask;
403 boolean early_depth_test;
404 unsigned attrib;
405 unsigned chan;
406 unsigned cbuf;
407
408 assert(i < 4);
409
410 elem_type = lp_build_elem_type(type);
411 vec_type = lp_build_vec_type(type);
412 int_vec_type = lp_build_int_vec_type(type);
413
414 consts_ptr = lp_jit_context_constants(builder, context_ptr);
415
416 flow = lp_build_flow_create(builder);
417
418 memset(outputs, 0, sizeof outputs);
419
420 lp_build_flow_scope_begin(flow);
421
422 /* Declare the color and z variables */
423 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
424 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
425 color[cbuf][chan] = LLVMGetUndef(vec_type);
426 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
427 }
428 }
429 lp_build_flow_scope_declare(flow, &z);
430
431 /* do triangle edge testing */
432 if (do_tri_test) {
433 generate_tri_edge_mask(builder, i, pmask,
434 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
435 }
436 else {
437 *pmask = build_int32_vec_const(~0);
438 }
439
440 /* 'mask' will control execution based on quad's pixel alive/killed state */
441 lp_build_mask_begin(&mask, flow, type, *pmask);
442
443 if (key->scissor) {
444 LLVMValueRef smask =
445 generate_scissor_test(builder, context_ptr, interp, type);
446 lp_build_mask_update(&mask, smask);
447 }
448
449 early_depth_test =
450 key->depth.enabled &&
451 !key->alpha.enabled &&
452 !shader->info.uses_kill &&
453 !shader->info.writes_z;
454
455 if(early_depth_test)
456 generate_depth(builder, key,
457 type, &mask,
458 z, depth_ptr);
459
460 lp_build_tgsi_soa(builder, tokens, type, &mask,
461 consts_ptr, interp->pos, interp->inputs,
462 outputs, sampler);
463
464 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
465 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
466 if(outputs[attrib][chan]) {
467 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
468
469 switch (shader->info.output_semantic_name[attrib]) {
470 case TGSI_SEMANTIC_COLOR:
471 {
472 unsigned cbuf = shader->info.output_semantic_index[attrib];
473
474 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
475
476 /* Alpha test */
477 /* XXX: should the alpha reference value be passed separately? */
478 /* XXX: should only test the final assignment to alpha */
479 if(cbuf == 0 && chan == 3) {
480 LLVMValueRef alpha = outputs[attrib][chan];
481 LLVMValueRef alpha_ref_value;
482 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
483 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
484 lp_build_alpha_test(builder, &key->alpha, type,
485 &mask, alpha, alpha_ref_value);
486 }
487
488 color[cbuf][chan] = outputs[attrib][chan];
489 break;
490 }
491
492 case TGSI_SEMANTIC_POSITION:
493 if(chan == 2)
494 z = outputs[attrib][chan];
495 break;
496 }
497 }
498 }
499 }
500
501 if(!early_depth_test)
502 generate_depth(builder, key,
503 type, &mask,
504 z, depth_ptr);
505
506 lp_build_mask_end(&mask);
507
508 lp_build_flow_scope_end(flow);
509
510 lp_build_flow_destroy(flow);
511
512 *pmask = mask.value;
513
514 }
515
516
517 /**
518 * Generate color blending and color output.
519 */
520 static void
521 generate_blend(const struct pipe_blend_state *blend,
522 LLVMBuilderRef builder,
523 struct lp_type type,
524 LLVMValueRef context_ptr,
525 LLVMValueRef mask,
526 LLVMValueRef *src,
527 LLVMValueRef dst_ptr)
528 {
529 struct lp_build_context bld;
530 struct lp_build_flow_context *flow;
531 struct lp_build_mask_context mask_ctx;
532 LLVMTypeRef vec_type;
533 LLVMTypeRef int_vec_type;
534 LLVMValueRef const_ptr;
535 LLVMValueRef con[4];
536 LLVMValueRef dst[4];
537 LLVMValueRef res[4];
538 unsigned chan;
539
540 lp_build_context_init(&bld, builder, type);
541
542 flow = lp_build_flow_create(builder);
543
544 /* we'll use this mask context to skip blending if all pixels are dead */
545 lp_build_mask_begin(&mask_ctx, flow, type, mask);
546
547 vec_type = lp_build_vec_type(type);
548 int_vec_type = lp_build_int_vec_type(type);
549
550 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
551 const_ptr = LLVMBuildBitCast(builder, const_ptr,
552 LLVMPointerType(vec_type, 0), "");
553
554 for(chan = 0; chan < 4; ++chan) {
555 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
556 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
557
558 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
559
560 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
561 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
562 }
563
564 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
565
566 for(chan = 0; chan < 4; ++chan) {
567 if(blend->colormask & (1 << chan)) {
568 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
569 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
570 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
571 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
572 }
573 }
574
575 lp_build_mask_end(&mask_ctx);
576 lp_build_flow_destroy(flow);
577 }
578
579
580 /**
581 * Generate the runtime callable function for the whole fragment pipeline.
582 * Note that the function which we generate operates on a block of 16
583 * pixels at at time. The block contains 2x2 quads. Each quad contains
584 * 2x2 pixels.
585 */
586 static void
587 generate_fragment(struct llvmpipe_context *lp,
588 struct lp_fragment_shader *shader,
589 struct lp_fragment_shader_variant *variant,
590 unsigned do_tri_test)
591 {
592 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
593 const struct lp_fragment_shader_variant_key *key = &variant->key;
594 struct lp_type fs_type;
595 struct lp_type blend_type;
596 LLVMTypeRef fs_elem_type;
597 LLVMTypeRef fs_vec_type;
598 LLVMTypeRef fs_int_vec_type;
599 LLVMTypeRef blend_vec_type;
600 LLVMTypeRef blend_int_vec_type;
601 LLVMTypeRef arg_types[14];
602 LLVMTypeRef func_type;
603 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
604 LLVMValueRef context_ptr;
605 LLVMValueRef x;
606 LLVMValueRef y;
607 LLVMValueRef a0_ptr;
608 LLVMValueRef dadx_ptr;
609 LLVMValueRef dady_ptr;
610 LLVMValueRef color_ptr_ptr;
611 LLVMValueRef depth_ptr;
612 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
613 LLVMBasicBlockRef block;
614 LLVMBuilderRef builder;
615 LLVMValueRef x0;
616 LLVMValueRef y0;
617 struct lp_build_sampler_soa *sampler;
618 struct lp_build_interp_soa_context interp;
619 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
620 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
621 LLVMValueRef blend_mask;
622 LLVMValueRef blend_in_color[NUM_CHANNELS];
623 LLVMValueRef function;
624 unsigned num_fs;
625 unsigned i;
626 unsigned chan;
627 unsigned cbuf;
628
629
630 /* TODO: actually pick these based on the fs and color buffer
631 * characteristics. */
632
633 memset(&fs_type, 0, sizeof fs_type);
634 fs_type.floating = TRUE; /* floating point values */
635 fs_type.sign = TRUE; /* values are signed */
636 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
637 fs_type.width = 32; /* 32-bit float */
638 fs_type.length = 4; /* 4 elements per vector */
639 num_fs = 4; /* number of quads per block */
640
641 memset(&blend_type, 0, sizeof blend_type);
642 blend_type.floating = FALSE; /* values are integers */
643 blend_type.sign = FALSE; /* values are unsigned */
644 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
645 blend_type.width = 8; /* 8-bit ubyte values */
646 blend_type.length = 16; /* 16 elements per vector */
647
648 /*
649 * Generate the function prototype. Any change here must be reflected in
650 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
651 */
652
653 fs_elem_type = lp_build_elem_type(fs_type);
654 fs_vec_type = lp_build_vec_type(fs_type);
655 fs_int_vec_type = lp_build_int_vec_type(fs_type);
656
657 blend_vec_type = lp_build_vec_type(blend_type);
658 blend_int_vec_type = lp_build_int_vec_type(blend_type);
659
660 arg_types[0] = screen->context_ptr_type; /* context */
661 arg_types[1] = LLVMInt32Type(); /* x */
662 arg_types[2] = LLVMInt32Type(); /* y */
663 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
664 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
665 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
666 arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
667 arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
668 arg_types[8] = LLVMInt32Type(); /* c0 */
669 arg_types[9] = LLVMInt32Type(); /* c1 */
670 arg_types[10] = LLVMInt32Type(); /* c2 */
671 /* Note: the step arrays are built as int32[16] but we interpret
672 * them here as int32_vec4[4].
673 */
674 arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
675 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
676 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
677
678 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
679
680 function = LLVMAddFunction(screen->module, "shader", func_type);
681 LLVMSetFunctionCallConv(function, LLVMCCallConv);
682
683 variant->function[do_tri_test] = function;
684
685
686 /* XXX: need to propagate noalias down into color param now we are
687 * passing a pointer-to-pointer?
688 */
689 for(i = 0; i < Elements(arg_types); ++i)
690 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
691 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
692
693 context_ptr = LLVMGetParam(function, 0);
694 x = LLVMGetParam(function, 1);
695 y = LLVMGetParam(function, 2);
696 a0_ptr = LLVMGetParam(function, 3);
697 dadx_ptr = LLVMGetParam(function, 4);
698 dady_ptr = LLVMGetParam(function, 5);
699 color_ptr_ptr = LLVMGetParam(function, 6);
700 depth_ptr = LLVMGetParam(function, 7);
701 c0 = LLVMGetParam(function, 8);
702 c1 = LLVMGetParam(function, 9);
703 c2 = LLVMGetParam(function, 10);
704 step0_ptr = LLVMGetParam(function, 11);
705 step1_ptr = LLVMGetParam(function, 12);
706 step2_ptr = LLVMGetParam(function, 13);
707
708 lp_build_name(context_ptr, "context");
709 lp_build_name(x, "x");
710 lp_build_name(y, "y");
711 lp_build_name(a0_ptr, "a0");
712 lp_build_name(dadx_ptr, "dadx");
713 lp_build_name(dady_ptr, "dady");
714 lp_build_name(color_ptr_ptr, "color_ptr");
715 lp_build_name(depth_ptr, "depth");
716 lp_build_name(c0, "c0");
717 lp_build_name(c1, "c1");
718 lp_build_name(c2, "c2");
719 lp_build_name(step0_ptr, "step0");
720 lp_build_name(step1_ptr, "step1");
721 lp_build_name(step2_ptr, "step2");
722
723 /*
724 * Function body
725 */
726
727 block = LLVMAppendBasicBlock(function, "entry");
728 builder = LLVMCreateBuilder();
729 LLVMPositionBuilderAtEnd(builder, block);
730
731 generate_pos0(builder, x, y, &x0, &y0);
732
733 lp_build_interp_soa_init(&interp,
734 shader->base.tokens,
735 key->flatshade,
736 builder, fs_type,
737 a0_ptr, dadx_ptr, dady_ptr,
738 x0, y0);
739
740 /* code generated texture sampling */
741 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
742
743 /* loop over quads in the block */
744 for(i = 0; i < num_fs; ++i) {
745 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
746 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
747 LLVMValueRef depth_ptr_i;
748 int cbuf;
749
750 if(i != 0)
751 lp_build_interp_soa_update(&interp, i);
752
753 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
754
755 generate_fs(lp, shader, key,
756 builder,
757 fs_type,
758 context_ptr,
759 i,
760 &interp,
761 sampler,
762 &fs_mask[i], /* output */
763 out_color,
764 depth_ptr_i,
765 do_tri_test,
766 c0, c1, c2,
767 step0_ptr, step1_ptr, step2_ptr);
768
769 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
770 for(chan = 0; chan < NUM_CHANNELS; ++chan)
771 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
772 }
773
774 sampler->destroy(sampler);
775
776 /* Loop over color outputs / color buffers to do blending.
777 */
778 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
779 LLVMValueRef color_ptr;
780 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
781
782 /*
783 * Convert the fs's output color and mask to fit to the blending type.
784 */
785 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
786 lp_build_conv(builder, fs_type, blend_type,
787 fs_out_color[cbuf][chan], num_fs,
788 &blend_in_color[chan], 1);
789 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
790 }
791
792 lp_build_conv_mask(builder, fs_type, blend_type,
793 fs_mask, num_fs,
794 &blend_mask, 1);
795
796 color_ptr = LLVMBuildLoad(builder,
797 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
798 "");
799 lp_build_name(color_ptr, "color_ptr%d", cbuf);
800
801 /*
802 * Blending.
803 */
804 generate_blend(&key->blend,
805 builder,
806 blend_type,
807 context_ptr,
808 blend_mask,
809 blend_in_color,
810 color_ptr);
811 }
812
813 LLVMBuildRetVoid(builder);
814
815 LLVMDisposeBuilder(builder);
816
817
818 /* Verify the LLVM IR. If invalid, dump and abort */
819 #ifdef DEBUG
820 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
821 if (1)
822 LLVMDumpValue(function);
823 abort();
824 }
825 #endif
826
827 /* Apply optimizations to LLVM IR */
828 if (1)
829 LLVMRunFunctionPassManager(screen->pass, function);
830
831 if (LP_DEBUG & DEBUG_JIT) {
832 /* Print the LLVM IR to stderr */
833 LLVMDumpValue(function);
834 debug_printf("\n");
835 }
836
837 /*
838 * Translate the LLVM IR into machine code.
839 */
840 variant->jit_function[do_tri_test] = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, function);
841
842 if (LP_DEBUG & DEBUG_ASM)
843 lp_disassemble(variant->jit_function[do_tri_test]);
844 }
845
846
847 static struct lp_fragment_shader_variant *
848 generate_variant(struct llvmpipe_context *lp,
849 struct lp_fragment_shader *shader,
850 const struct lp_fragment_shader_variant_key *key)
851 {
852 struct lp_fragment_shader_variant *variant;
853
854 if (LP_DEBUG & DEBUG_JIT) {
855 unsigned i;
856
857 tgsi_dump(shader->base.tokens, 0);
858 if(key->depth.enabled) {
859 debug_printf("depth.format = %s\n", pf_name(key->zsbuf_format));
860 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
861 debug_printf("depth.writemask = %u\n", key->depth.writemask);
862 }
863 if(key->alpha.enabled) {
864 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
865 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
866 }
867 if(key->blend.logicop_enable) {
868 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
869 }
870 else if(key->blend.blend_enable) {
871 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
872 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
873 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
874 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
875 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
876 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
877 }
878 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
879 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
880 if(key->sampler[i].format) {
881 debug_printf("sampler[%u] = \n", i);
882 debug_printf(" .format = %s\n",
883 pf_name(key->sampler[i].format));
884 debug_printf(" .target = %s\n",
885 debug_dump_tex_target(key->sampler[i].target, TRUE));
886 debug_printf(" .pot = %u %u %u\n",
887 key->sampler[i].pot_width,
888 key->sampler[i].pot_height,
889 key->sampler[i].pot_depth);
890 debug_printf(" .wrap = %s %s %s\n",
891 debug_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
892 debug_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
893 debug_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
894 debug_printf(" .min_img_filter = %s\n",
895 debug_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
896 debug_printf(" .min_mip_filter = %s\n",
897 debug_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
898 debug_printf(" .mag_img_filter = %s\n",
899 debug_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
900 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
901 debug_printf(" .compare_func = %s\n", debug_dump_func(key->sampler[i].compare_func, TRUE));
902 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
903 debug_printf(" .prefilter = %u\n", key->sampler[i].prefilter);
904 }
905 }
906 }
907
908 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
909 if(!variant)
910 return NULL;
911
912 variant->shader = shader;
913 memcpy(&variant->key, key, sizeof *key);
914
915 generate_fragment(lp, shader, variant, 0);
916 generate_fragment(lp, shader, variant, 1);
917
918 /* insert new variant into linked list */
919 variant->next = shader->variants;
920 shader->variants = variant;
921
922 return variant;
923 }
924
925
926 void *
927 llvmpipe_create_fs_state(struct pipe_context *pipe,
928 const struct pipe_shader_state *templ)
929 {
930 struct lp_fragment_shader *shader;
931
932 shader = CALLOC_STRUCT(lp_fragment_shader);
933 if (!shader)
934 return NULL;
935
936 /* get/save the summary info for this shader */
937 tgsi_scan_shader(templ->tokens, &shader->info);
938
939 /* we need to keep a local copy of the tokens */
940 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
941
942 return shader;
943 }
944
945
946 void
947 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
948 {
949 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
950
951 if (llvmpipe->fs == fs)
952 return;
953
954 draw_flush(llvmpipe->draw);
955
956 llvmpipe->fs = fs;
957
958 llvmpipe->dirty |= LP_NEW_FS;
959 }
960
961
962 void
963 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
964 {
965 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
966 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
967 struct lp_fragment_shader *shader = fs;
968 struct lp_fragment_shader_variant *variant;
969
970 assert(fs != llvmpipe->fs);
971 (void) llvmpipe;
972
973 variant = shader->variants;
974 while(variant) {
975 struct lp_fragment_shader_variant *next = variant->next;
976 unsigned i;
977
978 for (i = 0; i < Elements(variant->function); i++) {
979 if (variant->function[i]) {
980 if (variant->jit_function[i])
981 LLVMFreeMachineCodeForFunction(screen->engine,
982 variant->function[i]);
983 LLVMDeleteFunction(variant->function[i]);
984 }
985 }
986
987 FREE(variant);
988
989 variant = next;
990 }
991
992 FREE((void *) shader->base.tokens);
993 FREE(shader);
994 }
995
996
997
998 void
999 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1000 uint shader, uint index,
1001 const struct pipe_constant_buffer *constants)
1002 {
1003 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1004 struct pipe_buffer *buffer = constants ? constants->buffer : NULL;
1005 unsigned size = buffer ? buffer->size : 0;
1006 const void *data = buffer ? llvmpipe_buffer(buffer)->data : NULL;
1007
1008 assert(shader < PIPE_SHADER_TYPES);
1009 assert(index == 0);
1010
1011 if(llvmpipe->constants[shader].buffer == buffer)
1012 return;
1013
1014 draw_flush(llvmpipe->draw);
1015
1016 /* note: reference counting */
1017 pipe_buffer_reference(&llvmpipe->constants[shader].buffer, buffer);
1018
1019 if(shader == PIPE_SHADER_VERTEX) {
1020 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX,
1021 data, size);
1022 }
1023
1024 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1025 }
1026
1027
1028 /**
1029 * We need to generate several variants of the fragment pipeline to match
1030 * all the combinations of the contributing state atoms.
1031 *
1032 * TODO: there is actually no reason to tie this to context state -- the
1033 * generated code could be cached globally in the screen.
1034 */
1035 static void
1036 make_variant_key(struct llvmpipe_context *lp,
1037 struct lp_fragment_shader *shader,
1038 struct lp_fragment_shader_variant_key *key)
1039 {
1040 unsigned i;
1041
1042 memset(key, 0, sizeof *key);
1043
1044 if(lp->framebuffer.zsbuf &&
1045 lp->depth_stencil->depth.enabled) {
1046 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1047 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1048 }
1049
1050 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1051 if(key->alpha.enabled)
1052 key->alpha.func = lp->depth_stencil->alpha.func;
1053 /* alpha.ref_value is passed in jit_context */
1054
1055 key->flatshade = lp->rasterizer->flatshade;
1056 key->scissor = lp->rasterizer->scissor;
1057
1058 if (lp->framebuffer.nr_cbufs) {
1059 memcpy(&key->blend, lp->blend, sizeof key->blend);
1060 }
1061
1062 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1063 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1064 const struct util_format_description *format_desc;
1065 unsigned chan;
1066
1067 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1068 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
1069 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
1070
1071 /* mask out color channels not present in the color buffer.
1072 * Should be simple to incorporate per-cbuf writemasks:
1073 */
1074 for(chan = 0; chan < 4; ++chan) {
1075 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1076
1077 if(swizzle <= UTIL_FORMAT_SWIZZLE_W)
1078 key->cbuf_blend[i].colormask |= (1 << chan);
1079 }
1080 }
1081
1082 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1083 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1084 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
1085 }
1086
1087
1088 /**
1089 * Update fragment state. This is called just prior to drawing
1090 * something when some fragment-related state has changed.
1091 */
1092 void
1093 llvmpipe_update_fs(struct llvmpipe_context *lp)
1094 {
1095 struct lp_fragment_shader *shader = lp->fs;
1096 struct lp_fragment_shader_variant_key key;
1097 struct lp_fragment_shader_variant *variant;
1098 boolean opaque;
1099
1100 make_variant_key(lp, shader, &key);
1101
1102 variant = shader->variants;
1103 while(variant) {
1104 if(memcmp(&variant->key, &key, sizeof key) == 0)
1105 break;
1106
1107 variant = variant->next;
1108 }
1109
1110 if(!variant)
1111 variant = generate_variant(lp, shader, &key);
1112
1113 shader->current = variant;
1114
1115 /* TODO: put this in the variant */
1116 /* TODO: most of these can be relaxed, in particular the colormask */
1117 opaque = !key.blend.logicop_enable &&
1118 !key.blend.blend_enable &&
1119 key.blend.colormask == 0xf &&
1120 !key.alpha.enabled &&
1121 !key.depth.enabled &&
1122 !key.scissor &&
1123 !shader->info.uses_kill
1124 ? TRUE : FALSE;
1125
1126 lp_setup_set_fs_functions(lp->setup,
1127 shader->current->jit_function[0],
1128 shader->current->jit_function[1],
1129 opaque);
1130 }