gallivm,draw,llvmpipe: Support wider native registers.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_init.h"
79 #include "gallivm/lp_bld_intr.h"
80 #include "gallivm/lp_bld_logic.h"
81 #include "gallivm/lp_bld_tgsi.h"
82 #include "gallivm/lp_bld_swizzle.h"
83 #include "gallivm/lp_bld_flow.h"
84 #include "gallivm/lp_bld_debug.h"
85
86 #include "lp_bld_alpha.h"
87 #include "lp_bld_blend.h"
88 #include "lp_bld_depth.h"
89 #include "lp_bld_interp.h"
90 #include "lp_context.h"
91 #include "lp_debug.h"
92 #include "lp_perf.h"
93 #include "lp_setup.h"
94 #include "lp_state.h"
95 #include "lp_tex_sample.h"
96 #include "lp_flush.h"
97 #include "lp_state_fs.h"
98
99
100 /** Fragment shader number (for debugging) */
101 static unsigned fs_no = 0;
102
103
104 /**
105 * Expand the relevant bits of mask_input to a n*4-dword mask for the
106 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
107 * quad mask vector to 0 or ~0.
108 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
109 * quad arguments with fs length 8.
110 *
111 * \param first_quad which quad(s) of the quad group to test, in [0,3]
112 * \param mask_input bitwise mask for the whole 4x4 stamp
113 */
114 static LLVMValueRef
115 generate_quad_mask(struct gallivm_state *gallivm,
116 struct lp_type fs_type,
117 unsigned first_quad,
118 LLVMValueRef mask_input) /* int32 */
119 {
120 LLVMBuilderRef builder = gallivm->builder;
121 struct lp_type mask_type;
122 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
123 LLVMValueRef bits[16];
124 LLVMValueRef mask;
125 int shift, i;
126
127 /*
128 * XXX: We'll need a different path for 16 x u8
129 */
130 assert(fs_type.width == 32);
131 assert(fs_type.length <= Elements(bits));
132 mask_type = lp_int_type(fs_type);
133
134 /*
135 * mask_input >>= (quad * 4)
136 */
137 switch (first_quad) {
138 case 0:
139 shift = 0;
140 break;
141 case 1:
142 assert(fs_type.length == 4);
143 shift = 2;
144 break;
145 case 2:
146 shift = 8;
147 break;
148 case 3:
149 assert(fs_type.length == 4);
150 shift = 10;
151 break;
152 default:
153 assert(0);
154 shift = 0;
155 }
156
157 mask_input = LLVMBuildLShr(builder,
158 mask_input,
159 LLVMConstInt(i32t, shift, 0),
160 "");
161
162 /*
163 * mask = { mask_input & (1 << i), for i in [0,3] }
164 */
165 mask = lp_build_broadcast(gallivm,
166 lp_build_vec_type(gallivm, mask_type),
167 mask_input);
168
169 for (i = 0; i < fs_type.length / 4; i++) {
170 unsigned j = 2 * (i % 2) + (i / 2) * 8;
171 bits[4*i + 0] = LLVMConstInt(i32t, 1 << (j + 0), 0);
172 bits[4*i + 1] = LLVMConstInt(i32t, 1 << (j + 1), 0);
173 bits[4*i + 2] = LLVMConstInt(i32t, 1 << (j + 4), 0);
174 bits[4*i + 3] = LLVMConstInt(i32t, 1 << (j + 5), 0);
175 }
176 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, fs_type.length), "");
177
178 /*
179 * mask = mask != 0 ? ~0 : 0
180 */
181 mask = lp_build_compare(gallivm,
182 mask_type, PIPE_FUNC_NOTEQUAL,
183 mask,
184 lp_build_const_int_vec(gallivm, mask_type, 0));
185
186 return mask;
187 }
188
189
190 #define EARLY_DEPTH_TEST 0x1
191 #define LATE_DEPTH_TEST 0x2
192 #define EARLY_DEPTH_WRITE 0x4
193 #define LATE_DEPTH_WRITE 0x8
194
195 static int
196 find_output_by_semantic( const struct tgsi_shader_info *info,
197 unsigned semantic,
198 unsigned index )
199 {
200 int i;
201
202 for (i = 0; i < info->num_outputs; i++)
203 if (info->output_semantic_name[i] == semantic &&
204 info->output_semantic_index[i] == index)
205 return i;
206
207 return -1;
208 }
209
210
211 /**
212 * Generate the fragment shader, depth/stencil test, and alpha tests.
213 * \param i which quad in the tile, in range [0,3]
214 * \param partial_mask if 1, do mask_input testing
215 */
216 static void
217 generate_fs(struct gallivm_state *gallivm,
218 struct lp_fragment_shader *shader,
219 const struct lp_fragment_shader_variant_key *key,
220 LLVMBuilderRef builder,
221 struct lp_type type,
222 LLVMValueRef context_ptr,
223 unsigned i,
224 struct lp_build_interp_soa_context *interp,
225 struct lp_build_sampler_soa *sampler,
226 LLVMValueRef *pmask,
227 LLVMValueRef (*color)[4],
228 LLVMValueRef depth_ptr,
229 LLVMValueRef facing,
230 unsigned partial_mask,
231 LLVMValueRef mask_input,
232 LLVMValueRef counter)
233 {
234 const struct util_format_description *zs_format_desc = NULL;
235 const struct tgsi_token *tokens = shader->base.tokens;
236 LLVMTypeRef vec_type;
237 LLVMValueRef consts_ptr;
238 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
239 LLVMValueRef z;
240 LLVMValueRef zs_value = NULL;
241 LLVMValueRef stencil_refs[2];
242 struct lp_build_mask_context mask;
243 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
244 shader->info.base.num_inputs < 3 &&
245 shader->info.base.num_instructions < 8);
246 unsigned attrib;
247 unsigned chan;
248 unsigned cbuf;
249 unsigned depth_mode;
250 struct lp_bld_tgsi_system_values system_values;
251
252 memset(&system_values, 0, sizeof(system_values));
253
254 if (key->depth.enabled ||
255 key->stencil[0].enabled ||
256 key->stencil[1].enabled) {
257
258 zs_format_desc = util_format_description(key->zsbuf_format);
259 assert(zs_format_desc);
260
261 if (!shader->info.base.writes_z) {
262 if (key->alpha.enabled || shader->info.base.uses_kill)
263 /* With alpha test and kill, can do the depth test early
264 * and hopefully eliminate some quads. But need to do a
265 * special deferred depth write once the final mask value
266 * is known.
267 */
268 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
269 else
270 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
271 }
272 else {
273 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
274 }
275
276 if (!(key->depth.enabled && key->depth.writemask) &&
277 !(key->stencil[0].enabled && key->stencil[0].writemask))
278 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
279 }
280 else {
281 depth_mode = 0;
282 }
283
284 assert(i < 4);
285
286 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
287 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
288
289 vec_type = lp_build_vec_type(gallivm, type);
290
291 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
292
293 memset(outputs, 0, sizeof outputs);
294
295 /* Declare the color and z variables */
296 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
297 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
298 color[cbuf][chan] = lp_build_alloca(gallivm, vec_type, "color");
299 }
300 }
301
302 /* do triangle edge testing */
303 if (partial_mask) {
304 *pmask = generate_quad_mask(gallivm, type,
305 i*type.length/4, mask_input);
306 }
307 else {
308 *pmask = lp_build_const_int_vec(gallivm, type, ~0);
309 }
310
311 /* 'mask' will control execution based on quad's pixel alive/killed state */
312 lp_build_mask_begin(&mask, gallivm, type, *pmask);
313
314 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
315 lp_build_mask_check(&mask);
316
317 lp_build_interp_soa_update_pos(interp, gallivm, i*type.length/4);
318 z = interp->pos[2];
319
320 if (depth_mode & EARLY_DEPTH_TEST) {
321 lp_build_depth_stencil_test(gallivm,
322 &key->depth,
323 key->stencil,
324 type,
325 zs_format_desc,
326 &mask,
327 stencil_refs,
328 z,
329 depth_ptr, facing,
330 &zs_value,
331 !simple_shader);
332
333 if (depth_mode & EARLY_DEPTH_WRITE) {
334 lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value);
335 }
336 }
337
338 lp_build_interp_soa_update_inputs(interp, gallivm, i*type.length/4);
339
340 /* Build the actual shader */
341 lp_build_tgsi_soa(gallivm, tokens, type, &mask,
342 consts_ptr, &system_values,
343 interp->pos, interp->inputs,
344 outputs, sampler, &shader->info.base);
345
346 /* Alpha test */
347 if (key->alpha.enabled) {
348 int color0 = find_output_by_semantic(&shader->info.base,
349 TGSI_SEMANTIC_COLOR,
350 0);
351
352 if (color0 != -1 && outputs[color0][3]) {
353 const struct util_format_description *cbuf_format_desc;
354 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
355 LLVMValueRef alpha_ref_value;
356
357 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
358 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
359
360 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
361
362 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
363 &mask, alpha, alpha_ref_value,
364 (depth_mode & LATE_DEPTH_TEST) != 0);
365 }
366 }
367
368 /* Late Z test */
369 if (depth_mode & LATE_DEPTH_TEST) {
370 int pos0 = find_output_by_semantic(&shader->info.base,
371 TGSI_SEMANTIC_POSITION,
372 0);
373
374 if (pos0 != -1 && outputs[pos0][2]) {
375 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
376 }
377
378 lp_build_depth_stencil_test(gallivm,
379 &key->depth,
380 key->stencil,
381 type,
382 zs_format_desc,
383 &mask,
384 stencil_refs,
385 z,
386 depth_ptr, facing,
387 &zs_value,
388 !simple_shader);
389 /* Late Z write */
390 if (depth_mode & LATE_DEPTH_WRITE) {
391 lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value);
392 }
393 }
394 else if ((depth_mode & EARLY_DEPTH_TEST) &&
395 (depth_mode & LATE_DEPTH_WRITE))
396 {
397 /* Need to apply a reduced mask to the depth write. Reload the
398 * depth value, update from zs_value with the new mask value and
399 * write that out.
400 */
401 lp_build_deferred_depth_write(gallivm,
402 type,
403 zs_format_desc,
404 &mask,
405 depth_ptr,
406 zs_value);
407 }
408
409
410 /* Color write */
411 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
412 {
413 if (shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR &&
414 shader->info.base.output_semantic_index[attrib] < key->nr_cbufs)
415 {
416 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
417 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
418 if(outputs[attrib][chan]) {
419 /* XXX: just initialize outputs to point at colors[] and
420 * skip this.
421 */
422 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
423 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
424 LLVMBuildStore(builder, out, color[cbuf][chan]);
425 }
426 }
427 }
428 }
429
430 if (counter)
431 lp_build_occlusion_count(gallivm, type,
432 lp_build_mask_value(&mask), counter);
433
434 *pmask = lp_build_mask_end(&mask);
435 }
436
437
438 /**
439 * Generate color blending and color output.
440 * \param rt the render target index (to index blend, colormask state)
441 * \param type the pixel color type
442 * \param context_ptr pointer to the runtime JIT context
443 * \param mask execution mask (active fragment/pixel mask)
444 * \param src colors from the fragment shader
445 * \param dst_ptr the destination color buffer pointer
446 */
447 static void
448 generate_blend(struct gallivm_state *gallivm,
449 const struct pipe_blend_state *blend,
450 unsigned rt,
451 LLVMBuilderRef builder,
452 struct lp_type type,
453 LLVMValueRef context_ptr,
454 LLVMValueRef mask,
455 LLVMValueRef *src,
456 LLVMValueRef dst_ptr,
457 boolean do_branch)
458 {
459 struct lp_build_context bld;
460 struct lp_build_mask_context mask_ctx;
461 LLVMTypeRef vec_type;
462 LLVMValueRef const_ptr;
463 LLVMValueRef con[4];
464 LLVMValueRef dst[4];
465 LLVMValueRef res[4];
466 unsigned chan;
467
468 lp_build_context_init(&bld, gallivm, type);
469
470 lp_build_mask_begin(&mask_ctx, gallivm, type, mask);
471 if (do_branch)
472 lp_build_mask_check(&mask_ctx);
473
474 vec_type = lp_build_vec_type(gallivm, type);
475
476 const_ptr = lp_jit_context_blend_color(gallivm, context_ptr);
477 const_ptr = LLVMBuildBitCast(builder, const_ptr,
478 LLVMPointerType(vec_type, 0), "");
479
480 /* load constant blend color and colors from the dest color buffer */
481 for(chan = 0; chan < 4; ++chan) {
482 LLVMValueRef index = lp_build_const_int32(gallivm, chan);
483 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
484
485 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
486
487 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
488 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
489 }
490
491 /* do blend */
492 lp_build_blend_soa(gallivm, blend, type, rt, src, dst, con, res);
493
494 /* store results to color buffer */
495 for(chan = 0; chan < 4; ++chan) {
496 if(blend->rt[rt].colormask & (1 << chan)) {
497 LLVMValueRef index = lp_build_const_int32(gallivm, chan);
498 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
499 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
500 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
501 }
502 }
503
504 lp_build_mask_end(&mask_ctx);
505 }
506
507
508 /**
509 * Generate the runtime callable function for the whole fragment pipeline.
510 * Note that the function which we generate operates on a block of 16
511 * pixels at at time. The block contains 2x2 quads. Each quad contains
512 * 2x2 pixels.
513 */
514 static void
515 generate_fragment(struct llvmpipe_context *lp,
516 struct lp_fragment_shader *shader,
517 struct lp_fragment_shader_variant *variant,
518 unsigned partial_mask)
519 {
520 struct gallivm_state *gallivm = variant->gallivm;
521 const struct lp_fragment_shader_variant_key *key = &variant->key;
522 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
523 char func_name[256];
524 struct lp_type fs_type;
525 struct lp_type blend_type;
526 LLVMTypeRef fs_elem_type;
527 LLVMTypeRef blend_vec_type;
528 LLVMTypeRef arg_types[11];
529 LLVMTypeRef func_type;
530 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
531 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
532 LLVMValueRef context_ptr;
533 LLVMValueRef x;
534 LLVMValueRef y;
535 LLVMValueRef a0_ptr;
536 LLVMValueRef dadx_ptr;
537 LLVMValueRef dady_ptr;
538 LLVMValueRef color_ptr_ptr;
539 LLVMValueRef depth_ptr;
540 LLVMValueRef mask_input;
541 LLVMValueRef counter = NULL;
542 LLVMBasicBlockRef block;
543 LLVMBuilderRef builder;
544 struct lp_build_sampler_soa *sampler;
545 struct lp_build_interp_soa_context interp;
546 LLVMValueRef fs_mask[16 / 4];
547 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
548 LLVMValueRef blend_mask;
549 LLVMValueRef function;
550 LLVMValueRef facing;
551 const struct util_format_description *zs_format_desc;
552 unsigned num_fs;
553 unsigned i;
554 unsigned chan;
555 unsigned cbuf;
556 boolean cbuf0_write_all;
557
558 assert(lp_native_vector_width / 32 >= 4);
559
560 /* Adjust color input interpolation according to flatshade state:
561 */
562 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
563 for (i = 0; i < shader->info.base.num_inputs; i++) {
564 if (inputs[i].interp == LP_INTERP_COLOR) {
565 if (key->flatshade)
566 inputs[i].interp = LP_INTERP_CONSTANT;
567 else
568 inputs[i].interp = LP_INTERP_PERSPECTIVE;
569 }
570 }
571
572 /* check if writes to cbuf[0] are to be copied to all cbufs */
573 cbuf0_write_all = FALSE;
574 for (i = 0;i < shader->info.base.num_properties; i++) {
575 if (shader->info.base.properties[i].name ==
576 TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS) {
577 cbuf0_write_all = TRUE;
578 break;
579 }
580 }
581
582 /* TODO: actually pick these based on the fs and color buffer
583 * characteristics. */
584
585 memset(&fs_type, 0, sizeof fs_type);
586 fs_type.floating = TRUE; /* floating point values */
587 fs_type.sign = TRUE; /* values are signed */
588 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
589 fs_type.width = 32; /* 32-bit float */
590 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
591 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
592
593 memset(&blend_type, 0, sizeof blend_type);
594 blend_type.floating = FALSE; /* values are integers */
595 blend_type.sign = FALSE; /* values are unsigned */
596 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
597 blend_type.width = 8; /* 8-bit ubyte values */
598 blend_type.length = 16; /* 16 elements per vector */
599
600 /*
601 * Generate the function prototype. Any change here must be reflected in
602 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
603 */
604
605 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
606
607 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
608
609 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
610 shader->no, variant->no, partial_mask ? "partial" : "whole");
611
612 arg_types[0] = variant->jit_context_ptr_type; /* context */
613 arg_types[1] = int32_type; /* x */
614 arg_types[2] = int32_type; /* y */
615 arg_types[3] = int32_type; /* facing */
616 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
617 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
618 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
619 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
620 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
621 arg_types[9] = int32_type; /* mask_input */
622 arg_types[10] = LLVMPointerType(int32_type, 0); /* counter */
623
624 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
625 arg_types, Elements(arg_types), 0);
626
627 function = LLVMAddFunction(gallivm->module, func_name, func_type);
628 LLVMSetFunctionCallConv(function, LLVMCCallConv);
629
630 variant->function[partial_mask] = function;
631
632 /* XXX: need to propagate noalias down into color param now we are
633 * passing a pointer-to-pointer?
634 */
635 for(i = 0; i < Elements(arg_types); ++i)
636 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
637 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
638
639 context_ptr = LLVMGetParam(function, 0);
640 x = LLVMGetParam(function, 1);
641 y = LLVMGetParam(function, 2);
642 facing = LLVMGetParam(function, 3);
643 a0_ptr = LLVMGetParam(function, 4);
644 dadx_ptr = LLVMGetParam(function, 5);
645 dady_ptr = LLVMGetParam(function, 6);
646 color_ptr_ptr = LLVMGetParam(function, 7);
647 depth_ptr = LLVMGetParam(function, 8);
648 mask_input = LLVMGetParam(function, 9);
649
650 lp_build_name(context_ptr, "context");
651 lp_build_name(x, "x");
652 lp_build_name(y, "y");
653 lp_build_name(a0_ptr, "a0");
654 lp_build_name(dadx_ptr, "dadx");
655 lp_build_name(dady_ptr, "dady");
656 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
657 lp_build_name(depth_ptr, "depth");
658 lp_build_name(mask_input, "mask_input");
659
660 if (key->occlusion_count) {
661 counter = LLVMGetParam(function, 10);
662 lp_build_name(counter, "counter");
663 }
664
665 /*
666 * Function body
667 */
668
669 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
670 builder = gallivm->builder;
671 assert(builder);
672 LLVMPositionBuilderAtEnd(builder, block);
673
674 /*
675 * The shader input interpolation info is not explicitely baked in the
676 * shader key, but everything it derives from (TGSI, and flatshade) is
677 * already included in the shader key.
678 */
679 lp_build_interp_soa_init(&interp,
680 gallivm,
681 shader->info.base.num_inputs,
682 inputs,
683 builder, fs_type,
684 a0_ptr, dadx_ptr, dady_ptr,
685 x, y);
686
687 /* code generated texture sampling */
688 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
689
690 /* loop over quads in the block */
691 zs_format_desc = util_format_description(key->zsbuf_format);
692
693 for(i = 0; i < num_fs; ++i) {
694 LLVMValueRef depth_offset = LLVMConstInt(int32_type,
695 i*fs_type.length*zs_format_desc->block.bits/8,
696 0);
697 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
698 LLVMValueRef depth_ptr_i;
699
700 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &depth_offset, 1, "");
701
702 generate_fs(gallivm,
703 shader, key,
704 builder,
705 fs_type,
706 context_ptr,
707 i,
708 &interp,
709 sampler,
710 &fs_mask[i], /* output */
711 out_color,
712 depth_ptr_i,
713 facing,
714 partial_mask,
715 mask_input,
716 counter);
717
718 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
719 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
720 fs_out_color[cbuf][chan][i] =
721 out_color[cbuf * !cbuf0_write_all][chan];
722 }
723
724 sampler->destroy(sampler);
725
726 /* Loop over color outputs / color buffers to do blending.
727 */
728 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
729 LLVMValueRef color_ptr;
730 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
731 LLVMValueRef blend_in_color[TGSI_NUM_CHANNELS];
732 unsigned rt;
733
734 /*
735 * Convert the fs's output color and mask to fit to the blending type.
736 */
737 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
738 LLVMValueRef fs_color_vals[LP_MAX_VECTOR_LENGTH];
739
740 for (i = 0; i < num_fs; i++) {
741 fs_color_vals[i] =
742 LLVMBuildLoad(builder, fs_out_color[cbuf][chan][i], "fs_color_vals");
743 }
744
745 lp_build_conv(gallivm, fs_type, blend_type,
746 fs_color_vals,
747 num_fs,
748 &blend_in_color[chan], 1);
749
750 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
751 }
752
753 if (partial_mask || !variant->opaque) {
754 lp_build_conv_mask(variant->gallivm, fs_type, blend_type,
755 fs_mask, num_fs,
756 &blend_mask, 1);
757 } else {
758 blend_mask = lp_build_const_int_vec(variant->gallivm, blend_type, ~0);
759 }
760
761 color_ptr = LLVMBuildLoad(builder,
762 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
763 "");
764 lp_build_name(color_ptr, "color_ptr%d", cbuf);
765
766 /* which blend/colormask state to use */
767 rt = key->blend.independent_blend_enable ? cbuf : 0;
768
769 /*
770 * Blending.
771 */
772 {
773 /* Could the 4x4 have been killed?
774 */
775 boolean do_branch = ((key->depth.enabled || key->stencil[0].enabled) &&
776 !key->alpha.enabled &&
777 !shader->info.base.uses_kill);
778
779 generate_blend(variant->gallivm,
780 &key->blend,
781 rt,
782 builder,
783 blend_type,
784 context_ptr,
785 blend_mask,
786 blend_in_color,
787 color_ptr,
788 do_branch);
789 }
790 }
791
792 LLVMBuildRetVoid(builder);
793
794 gallivm_verify_function(gallivm, function);
795
796 variant->nr_instrs += lp_build_count_instructions(function);
797 }
798
799
800 static void
801 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
802 {
803 unsigned i;
804
805 debug_printf("fs variant %p:\n", (void *) key);
806
807 if (key->flatshade) {
808 debug_printf("flatshade = 1\n");
809 }
810 for (i = 0; i < key->nr_cbufs; ++i) {
811 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
812 }
813 if (key->depth.enabled) {
814 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
815 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
816 debug_printf("depth.writemask = %u\n", key->depth.writemask);
817 }
818
819 for (i = 0; i < 2; ++i) {
820 if (key->stencil[i].enabled) {
821 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
822 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
823 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
824 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
825 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
826 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
827 }
828 }
829
830 if (key->alpha.enabled) {
831 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
832 }
833
834 if (key->occlusion_count) {
835 debug_printf("occlusion_count = 1\n");
836 }
837
838 if (key->blend.logicop_enable) {
839 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
840 }
841 else if (key->blend.rt[0].blend_enable) {
842 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
843 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
844 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
845 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
846 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
847 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
848 }
849 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
850 for (i = 0; i < key->nr_samplers; ++i) {
851 debug_printf("sampler[%u] = \n", i);
852 debug_printf(" .format = %s\n",
853 util_format_name(key->sampler[i].format));
854 debug_printf(" .target = %s\n",
855 util_dump_tex_target(key->sampler[i].target, TRUE));
856 debug_printf(" .pot = %u %u %u\n",
857 key->sampler[i].pot_width,
858 key->sampler[i].pot_height,
859 key->sampler[i].pot_depth);
860 debug_printf(" .wrap = %s %s %s\n",
861 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
862 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
863 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
864 debug_printf(" .min_img_filter = %s\n",
865 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
866 debug_printf(" .min_mip_filter = %s\n",
867 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
868 debug_printf(" .mag_img_filter = %s\n",
869 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
870 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
871 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
872 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
873 debug_printf(" .min_max_lod_equal = %u\n", key->sampler[i].min_max_lod_equal);
874 debug_printf(" .lod_bias_non_zero = %u\n", key->sampler[i].lod_bias_non_zero);
875 debug_printf(" .apply_min_lod = %u\n", key->sampler[i].apply_min_lod);
876 debug_printf(" .apply_max_lod = %u\n", key->sampler[i].apply_max_lod);
877 }
878 }
879
880
881 void
882 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
883 {
884 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
885 variant->shader->no, variant->no);
886 tgsi_dump(variant->shader->base.tokens, 0);
887 dump_fs_variant_key(&variant->key);
888 debug_printf("variant->opaque = %u\n", variant->opaque);
889 debug_printf("\n");
890 }
891
892
893 /**
894 * Generate a new fragment shader variant from the shader code and
895 * other state indicated by the key.
896 */
897 static struct lp_fragment_shader_variant *
898 generate_variant(struct llvmpipe_context *lp,
899 struct lp_fragment_shader *shader,
900 const struct lp_fragment_shader_variant_key *key)
901 {
902 struct lp_fragment_shader_variant *variant;
903 const struct util_format_description *cbuf0_format_desc;
904 boolean fullcolormask;
905
906 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
907 if(!variant)
908 return NULL;
909
910 variant->gallivm = gallivm_create();
911 if (!variant->gallivm) {
912 FREE(variant);
913 return NULL;
914 }
915
916 variant->shader = shader;
917 variant->list_item_global.base = variant;
918 variant->list_item_local.base = variant;
919 variant->no = shader->variants_created++;
920
921 memcpy(&variant->key, key, shader->variant_key_size);
922
923 /*
924 * Determine whether we are touching all channels in the color buffer.
925 */
926 fullcolormask = FALSE;
927 if (key->nr_cbufs == 1) {
928 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
929 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
930 }
931
932 variant->opaque =
933 !key->blend.logicop_enable &&
934 !key->blend.rt[0].blend_enable &&
935 fullcolormask &&
936 !key->stencil[0].enabled &&
937 !key->alpha.enabled &&
938 !key->depth.enabled &&
939 !shader->info.base.uses_kill
940 ? TRUE : FALSE;
941
942
943 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
944 lp_debug_fs_variant(variant);
945 }
946
947 lp_jit_init_types(variant);
948
949 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
950 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
951
952 if (variant->jit_function[RAST_WHOLE] == NULL) {
953 if (variant->opaque) {
954 /* Specialized shader, which doesn't need to read the color buffer. */
955 generate_fragment(lp, shader, variant, RAST_WHOLE);
956 }
957 }
958
959 /*
960 * Compile everything
961 */
962
963 gallivm_compile_module(variant->gallivm);
964
965 if (variant->function[RAST_EDGE_TEST]) {
966 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
967 gallivm_jit_function(variant->gallivm,
968 variant->function[RAST_EDGE_TEST]);
969 }
970
971 if (variant->function[RAST_WHOLE]) {
972 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
973 gallivm_jit_function(variant->gallivm,
974 variant->function[RAST_WHOLE]);
975 } else if (!variant->jit_function[RAST_WHOLE]) {
976 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
977 }
978
979 return variant;
980 }
981
982
983 static void *
984 llvmpipe_create_fs_state(struct pipe_context *pipe,
985 const struct pipe_shader_state *templ)
986 {
987 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
988 struct lp_fragment_shader *shader;
989 int nr_samplers;
990 int i;
991
992 shader = CALLOC_STRUCT(lp_fragment_shader);
993 if (!shader)
994 return NULL;
995
996 shader->no = fs_no++;
997 make_empty_list(&shader->variants);
998
999 /* get/save the summary info for this shader */
1000 lp_build_tgsi_info(templ->tokens, &shader->info);
1001
1002 /* we need to keep a local copy of the tokens */
1003 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
1004
1005 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
1006 if (shader->draw_data == NULL) {
1007 FREE((void *) shader->base.tokens);
1008 FREE(shader);
1009 return NULL;
1010 }
1011
1012 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
1013
1014 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
1015 sampler[nr_samplers]);
1016
1017 for (i = 0; i < shader->info.base.num_inputs; i++) {
1018 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
1019 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
1020
1021 switch (shader->info.base.input_interpolate[i]) {
1022 case TGSI_INTERPOLATE_CONSTANT:
1023 shader->inputs[i].interp = LP_INTERP_CONSTANT;
1024 break;
1025 case TGSI_INTERPOLATE_LINEAR:
1026 shader->inputs[i].interp = LP_INTERP_LINEAR;
1027 break;
1028 case TGSI_INTERPOLATE_PERSPECTIVE:
1029 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
1030 break;
1031 case TGSI_INTERPOLATE_COLOR:
1032 shader->inputs[i].interp = LP_INTERP_COLOR;
1033 break;
1034 default:
1035 assert(0);
1036 break;
1037 }
1038
1039 switch (shader->info.base.input_semantic_name[i]) {
1040 case TGSI_SEMANTIC_FACE:
1041 shader->inputs[i].interp = LP_INTERP_FACING;
1042 break;
1043 case TGSI_SEMANTIC_POSITION:
1044 /* Position was already emitted above
1045 */
1046 shader->inputs[i].interp = LP_INTERP_POSITION;
1047 shader->inputs[i].src_index = 0;
1048 continue;
1049 }
1050
1051 shader->inputs[i].src_index = i+1;
1052 }
1053
1054 if (LP_DEBUG & DEBUG_TGSI) {
1055 unsigned attrib;
1056 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
1057 shader->no, (void *) shader);
1058 tgsi_dump(templ->tokens, 0);
1059 debug_printf("usage masks:\n");
1060 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
1061 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
1062 debug_printf(" IN[%u].%s%s%s%s\n",
1063 attrib,
1064 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
1065 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
1066 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
1067 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
1068 }
1069 debug_printf("\n");
1070 }
1071
1072 return shader;
1073 }
1074
1075
1076 static void
1077 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
1078 {
1079 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1080
1081 if (llvmpipe->fs == fs)
1082 return;
1083
1084 draw_flush(llvmpipe->draw);
1085
1086 llvmpipe->fs = (struct lp_fragment_shader *) fs;
1087
1088 draw_bind_fragment_shader(llvmpipe->draw,
1089 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
1090
1091 llvmpipe->dirty |= LP_NEW_FS;
1092 }
1093
1094
1095 /**
1096 * Remove shader variant from two lists: the shader's variant list
1097 * and the context's variant list.
1098 */
1099 void
1100 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
1101 struct lp_fragment_shader_variant *variant)
1102 {
1103 unsigned i;
1104
1105 if (gallivm_debug & GALLIVM_DEBUG_IR) {
1106 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached"
1107 " #%u v total cached #%u\n",
1108 variant->shader->no,
1109 variant->no,
1110 variant->shader->variants_created,
1111 variant->shader->variants_cached,
1112 lp->nr_fs_variants);
1113 }
1114
1115 /* free all the variant's JIT'd functions */
1116 for (i = 0; i < Elements(variant->function); i++) {
1117 if (variant->function[i]) {
1118 gallivm_free_function(variant->gallivm,
1119 variant->function[i],
1120 variant->jit_function[i]);
1121 }
1122 }
1123
1124 gallivm_destroy(variant->gallivm);
1125
1126 /* remove from shader's list */
1127 remove_from_list(&variant->list_item_local);
1128 variant->shader->variants_cached--;
1129
1130 /* remove from context's list */
1131 remove_from_list(&variant->list_item_global);
1132 lp->nr_fs_variants--;
1133 lp->nr_fs_instrs -= variant->nr_instrs;
1134
1135 FREE(variant);
1136 }
1137
1138
1139 static void
1140 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1141 {
1142 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1143 struct lp_fragment_shader *shader = fs;
1144 struct lp_fs_variant_list_item *li;
1145
1146 assert(fs != llvmpipe->fs);
1147
1148 /*
1149 * XXX: we need to flush the context until we have some sort of reference
1150 * counting in fragment shaders as they may still be binned
1151 * Flushing alone might not sufficient we need to wait on it too.
1152 */
1153 llvmpipe_finish(pipe, __FUNCTION__);
1154
1155 /* Delete all the variants */
1156 li = first_elem(&shader->variants);
1157 while(!at_end(&shader->variants, li)) {
1158 struct lp_fs_variant_list_item *next = next_elem(li);
1159 llvmpipe_remove_shader_variant(llvmpipe, li->base);
1160 li = next;
1161 }
1162
1163 /* Delete draw module's data */
1164 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
1165
1166 assert(shader->variants_cached == 0);
1167 FREE((void *) shader->base.tokens);
1168 FREE(shader);
1169 }
1170
1171
1172
1173 static void
1174 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1175 uint shader, uint index,
1176 struct pipe_constant_buffer *cb)
1177 {
1178 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1179 struct pipe_resource *constants = cb ? cb->buffer : NULL;
1180 unsigned size;
1181 const void *data;
1182
1183 if (cb && cb->user_buffer) {
1184 constants = llvmpipe_user_buffer_create(pipe->screen,
1185 (void *) cb->user_buffer,
1186 cb->buffer_size,
1187 PIPE_BIND_CONSTANT_BUFFER);
1188 }
1189
1190 size = constants ? constants->width0 : 0;
1191 data = constants ? llvmpipe_resource_data(constants) : NULL;
1192
1193 assert(shader < PIPE_SHADER_TYPES);
1194 assert(index < PIPE_MAX_CONSTANT_BUFFERS);
1195
1196 if(llvmpipe->constants[shader][index] == constants)
1197 return;
1198
1199 draw_flush(llvmpipe->draw);
1200
1201 /* note: reference counting */
1202 pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
1203
1204 if(shader == PIPE_SHADER_VERTEX ||
1205 shader == PIPE_SHADER_GEOMETRY) {
1206 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
1207 index, data, size);
1208 }
1209
1210 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1211
1212 if (cb && cb->user_buffer) {
1213 pipe_resource_reference(&constants, NULL);
1214 }
1215 }
1216
1217
1218 /**
1219 * Return the blend factor equivalent to a destination alpha of one.
1220 */
1221 static INLINE unsigned
1222 force_dst_alpha_one(unsigned factor)
1223 {
1224 switch(factor) {
1225 case PIPE_BLENDFACTOR_DST_ALPHA:
1226 return PIPE_BLENDFACTOR_ONE;
1227 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1228 return PIPE_BLENDFACTOR_ZERO;
1229 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1230 return PIPE_BLENDFACTOR_ZERO;
1231 }
1232
1233 return factor;
1234 }
1235
1236
1237 /**
1238 * We need to generate several variants of the fragment pipeline to match
1239 * all the combinations of the contributing state atoms.
1240 *
1241 * TODO: there is actually no reason to tie this to context state -- the
1242 * generated code could be cached globally in the screen.
1243 */
1244 static void
1245 make_variant_key(struct llvmpipe_context *lp,
1246 struct lp_fragment_shader *shader,
1247 struct lp_fragment_shader_variant_key *key)
1248 {
1249 unsigned i;
1250
1251 memset(key, 0, shader->variant_key_size);
1252
1253 if (lp->framebuffer.zsbuf) {
1254 if (lp->depth_stencil->depth.enabled) {
1255 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1256 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1257 }
1258 if (lp->depth_stencil->stencil[0].enabled) {
1259 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1260 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1261 }
1262 }
1263
1264 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1265 if(key->alpha.enabled)
1266 key->alpha.func = lp->depth_stencil->alpha.func;
1267 /* alpha.ref_value is passed in jit_context */
1268
1269 key->flatshade = lp->rasterizer->flatshade;
1270 if (lp->active_query_count) {
1271 key->occlusion_count = TRUE;
1272 }
1273
1274 if (lp->framebuffer.nr_cbufs) {
1275 memcpy(&key->blend, lp->blend, sizeof key->blend);
1276 }
1277
1278 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1279 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1280 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
1281 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1282 const struct util_format_description *format_desc;
1283
1284 key->cbuf_format[i] = format;
1285
1286 format_desc = util_format_description(format);
1287 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1288 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1289
1290 blend_rt->colormask = lp->blend->rt[i].colormask;
1291
1292 /*
1293 * Mask out color channels not present in the color buffer.
1294 */
1295 blend_rt->colormask &= util_format_colormask(format_desc);
1296
1297 /*
1298 * Our swizzled render tiles always have an alpha channel, but the linear
1299 * render target format often does not, so force here the dst alpha to be
1300 * one.
1301 *
1302 * This is not a mere optimization. Wrong results will be produced if the
1303 * dst alpha is used, the dst format does not have alpha, and the previous
1304 * rendering was not flushed from the swizzled to linear buffer. For
1305 * example, NonPowTwo DCT.
1306 *
1307 * TODO: This should be generalized to all channels for better
1308 * performance, but only alpha causes correctness issues.
1309 *
1310 * Also, force rgb/alpha func/factors match, to make AoS blending easier.
1311 */
1312 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W ||
1313 format_desc->swizzle[3] == format_desc->swizzle[0]) {
1314 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor);
1315 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor);
1316 blend_rt->alpha_func = blend_rt->rgb_func;
1317 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
1318 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
1319 }
1320 }
1321
1322 /* This value will be the same for all the variants of a given shader:
1323 */
1324 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
1325
1326 for(i = 0; i < key->nr_samplers; ++i) {
1327 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
1328 lp_sampler_static_state(&key->sampler[i],
1329 lp->fragment_sampler_views[i],
1330 lp->sampler[i]);
1331 }
1332 }
1333 }
1334
1335
1336
1337 /**
1338 * Update fragment shader state. This is called just prior to drawing
1339 * something when some fragment-related state has changed.
1340 */
1341 void
1342 llvmpipe_update_fs(struct llvmpipe_context *lp)
1343 {
1344 struct lp_fragment_shader *shader = lp->fs;
1345 struct lp_fragment_shader_variant_key key;
1346 struct lp_fragment_shader_variant *variant = NULL;
1347 struct lp_fs_variant_list_item *li;
1348
1349 make_variant_key(lp, shader, &key);
1350
1351 /* Search the variants for one which matches the key */
1352 li = first_elem(&shader->variants);
1353 while(!at_end(&shader->variants, li)) {
1354 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
1355 variant = li->base;
1356 break;
1357 }
1358 li = next_elem(li);
1359 }
1360
1361 if (variant) {
1362 /* Move this variant to the head of the list to implement LRU
1363 * deletion of shader's when we have too many.
1364 */
1365 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1366 }
1367 else {
1368 /* variant not found, create it now */
1369 int64_t t0, t1, dt;
1370 unsigned i;
1371 unsigned variants_to_cull;
1372
1373 if (0) {
1374 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
1375 lp->nr_fs_variants,
1376 lp->nr_fs_instrs,
1377 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
1378 }
1379
1380 /* First, check if we've exceeded the max number of shader variants.
1381 * If so, free 25% of them (the least recently used ones).
1382 */
1383 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 4 : 0;
1384
1385 if (variants_to_cull ||
1386 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
1387 struct pipe_context *pipe = &lp->pipe;
1388
1389 /*
1390 * XXX: we need to flush the context until we have some sort of
1391 * reference counting in fragment shaders as they may still be binned
1392 * Flushing alone might not be sufficient we need to wait on it too.
1393 */
1394 llvmpipe_finish(pipe, __FUNCTION__);
1395
1396 /*
1397 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
1398 * number of shader variants (potentially all of them) could be
1399 * pending for destruction on flush.
1400 */
1401
1402 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
1403 struct lp_fs_variant_list_item *item;
1404 if (is_empty_list(&lp->fs_variants_list)) {
1405 break;
1406 }
1407 item = last_elem(&lp->fs_variants_list);
1408 assert(item);
1409 assert(item->base);
1410 llvmpipe_remove_shader_variant(lp, item->base);
1411 }
1412 }
1413
1414 /*
1415 * Generate the new variant.
1416 */
1417 t0 = os_time_get();
1418 variant = generate_variant(lp, shader, &key);
1419 t1 = os_time_get();
1420 dt = t1 - t0;
1421 LP_COUNT_ADD(llvm_compile_time, dt);
1422 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1423
1424 llvmpipe_variant_count++;
1425
1426 /* Put the new variant into the list */
1427 if (variant) {
1428 insert_at_head(&shader->variants, &variant->list_item_local);
1429 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1430 lp->nr_fs_variants++;
1431 lp->nr_fs_instrs += variant->nr_instrs;
1432 shader->variants_cached++;
1433 }
1434 }
1435
1436 /* Bind this variant */
1437 lp_setup_set_fs_variant(lp->setup, variant);
1438 }
1439
1440
1441
1442
1443
1444
1445
1446 void
1447 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1448 {
1449 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1450 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1451 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1452
1453 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1454 }