llvmpipe: Remove unused variable.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - triangle edge in/out testing
35 * - scissor test
36 * - stipple (TBI)
37 * - early depth test
38 * - fragment shader
39 * - alpha test
40 * - depth/stencil test
41 * - blending
42 *
43 * This file has only the glue to assemble the fragment pipeline. The actual
44 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
45 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
46 * muster the LLVM JIT execution engine to create a function that follows an
47 * established binary interface and that can be called from C directly.
48 *
49 * A big source of complexity here is that we often want to run different
50 * stages with different precisions and data types and precisions. For example,
51 * the fragment shader needs typically to be done in floats, but the
52 * depth/stencil test and blending is better done in the type that most closely
53 * matches the depth/stencil and color buffer respectively.
54 *
55 * Since the width of a SIMD vector register stays the same regardless of the
56 * element type, different types imply different number of elements, so we must
57 * code generate more instances of the stages with larger types to be able to
58 * feed/consume the stages with smaller types.
59 *
60 * @author Jose Fonseca <jfonseca@vmware.com>
61 */
62
63 #include <limits.h>
64 #include "pipe/p_defines.h"
65 #include "util/u_inlines.h"
66 #include "util/u_memory.h"
67 #include "util/u_format.h"
68 #include "util/u_dump.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_intr.h"
79 #include "gallivm/lp_bld_logic.h"
80 #include "gallivm/lp_bld_tgsi.h"
81 #include "gallivm/lp_bld_swizzle.h"
82 #include "gallivm/lp_bld_flow.h"
83 #include "gallivm/lp_bld_debug.h"
84
85 #include "lp_bld_alpha.h"
86 #include "lp_bld_blend.h"
87 #include "lp_bld_depth.h"
88 #include "lp_bld_interp.h"
89 #include "lp_context.h"
90 #include "lp_debug.h"
91 #include "lp_perf.h"
92 #include "lp_screen.h"
93 #include "lp_setup.h"
94 #include "lp_state.h"
95 #include "lp_tex_sample.h"
96
97
98 #include <llvm-c/Analysis.h>
99
100
101 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
102 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
103
104
105 /*
106 * Derive from the quad's upper left scalar coordinates the coordinates for
107 * all other quad pixels
108 */
109 static void
110 generate_pos0(LLVMBuilderRef builder,
111 LLVMValueRef x,
112 LLVMValueRef y,
113 LLVMValueRef *x0,
114 LLVMValueRef *y0)
115 {
116 LLVMTypeRef int_elem_type = LLVMInt32Type();
117 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
118 LLVMTypeRef elem_type = LLVMFloatType();
119 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
120 LLVMValueRef x_offsets[QUAD_SIZE];
121 LLVMValueRef y_offsets[QUAD_SIZE];
122 unsigned i;
123
124 x = lp_build_broadcast(builder, int_vec_type, x);
125 y = lp_build_broadcast(builder, int_vec_type, y);
126
127 for(i = 0; i < QUAD_SIZE; ++i) {
128 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
129 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
130 }
131
132 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
133 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
134
135 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
136 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
137 }
138
139
140 /**
141 * Generate the depth /stencil test code.
142 */
143 static void
144 generate_depth_stencil(LLVMBuilderRef builder,
145 const struct lp_fragment_shader_variant_key *key,
146 struct lp_type src_type,
147 struct lp_build_mask_context *mask,
148 LLVMValueRef stencil_refs[2],
149 LLVMValueRef src,
150 LLVMValueRef dst_ptr,
151 LLVMValueRef facing)
152 {
153 const struct util_format_description *format_desc;
154 struct lp_type dst_type;
155
156 if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
157 return;
158
159 format_desc = util_format_description(key->zsbuf_format);
160 assert(format_desc);
161
162 /*
163 * Depths are expected to be between 0 and 1, even if they are stored in
164 * floats. Setting these bits here will ensure that the lp_build_conv() call
165 * below won't try to unnecessarily clamp the incoming values.
166 */
167 if(src_type.floating) {
168 src_type.sign = FALSE;
169 src_type.norm = TRUE;
170 }
171 else {
172 assert(!src_type.sign);
173 assert(src_type.norm);
174 }
175
176 /* Pick the depth type. */
177 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
178
179 /* FIXME: Cope with a depth test type with a different bit width. */
180 assert(dst_type.width == src_type.width);
181 assert(dst_type.length == src_type.length);
182
183 /* Convert fragment Z from float to integer */
184 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
185
186 dst_ptr = LLVMBuildBitCast(builder,
187 dst_ptr,
188 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
189 lp_build_depth_stencil_test(builder,
190 &key->depth,
191 key->stencil,
192 dst_type,
193 format_desc,
194 mask,
195 stencil_refs,
196 src,
197 dst_ptr,
198 facing);
199 }
200
201
202 /**
203 * Generate the code to do inside/outside triangle testing for the
204 * four pixels in a 2x2 quad. This will set the four elements of the
205 * quad mask vector to 0 or ~0.
206 * \param i which quad of the quad group to test, in [0,3]
207 */
208 static void
209 generate_tri_edge_mask(LLVMBuilderRef builder,
210 unsigned i,
211 LLVMValueRef *mask, /* ivec4, out */
212 LLVMValueRef c0, /* int32 */
213 LLVMValueRef c1, /* int32 */
214 LLVMValueRef c2, /* int32 */
215 LLVMValueRef step0_ptr, /* ivec4 */
216 LLVMValueRef step1_ptr, /* ivec4 */
217 LLVMValueRef step2_ptr) /* ivec4 */
218 {
219 #define OPTIMIZE_IN_OUT_TEST 0
220 #if OPTIMIZE_IN_OUT_TEST
221 struct lp_build_if_state ifctx;
222 LLVMValueRef not_draw_all;
223 #endif
224 struct lp_build_flow_context *flow;
225 struct lp_type i32_type;
226 LLVMTypeRef i32vec4_type;
227 LLVMValueRef c0_vec, c1_vec, c2_vec;
228 LLVMValueRef in_out_mask;
229
230 assert(i < 4);
231
232 /* int32 vector type */
233 memset(&i32_type, 0, sizeof i32_type);
234 i32_type.floating = FALSE; /* values are integers */
235 i32_type.sign = TRUE; /* values are signed */
236 i32_type.norm = FALSE; /* values are not normalized */
237 i32_type.width = 32; /* 32-bit int values */
238 i32_type.length = 4; /* 4 elements per vector */
239
240 i32vec4_type = lp_build_int32_vec4_type();
241
242 /*
243 * Use a conditional here to do detailed pixel in/out testing.
244 * We only have to do this if c0 != INT_MIN.
245 */
246 flow = lp_build_flow_create(builder);
247 lp_build_flow_scope_begin(flow);
248
249 {
250 #if OPTIMIZE_IN_OUT_TEST
251 /* not_draw_all = (c0 != INT_MIN) */
252 not_draw_all = LLVMBuildICmp(builder,
253 LLVMIntNE,
254 c0,
255 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
256 "");
257
258 in_out_mask = lp_build_const_int_vec(i32_type, ~0);
259
260
261 lp_build_flow_scope_declare(flow, &in_out_mask);
262
263 /* if (not_draw_all) {... */
264 lp_build_if(&ifctx, flow, builder, not_draw_all);
265 #endif
266 {
267 LLVMValueRef step0_vec, step1_vec, step2_vec;
268 LLVMValueRef m0_vec, m1_vec, m2_vec;
269 LLVMValueRef index, m;
270
271 /* c0_vec = {c0, c0, c0, c0}
272 * Note that we emit this code four times but LLVM optimizes away
273 * three instances of it.
274 */
275 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
276 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
277 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
278 lp_build_name(c0_vec, "edgeconst0vec");
279 lp_build_name(c1_vec, "edgeconst1vec");
280 lp_build_name(c2_vec, "edgeconst2vec");
281
282 /* load step0vec, step1, step2 vec from memory */
283 index = LLVMConstInt(LLVMInt32Type(), i, 0);
284 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
285 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
286 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
287 lp_build_name(step0_vec, "step0vec");
288 lp_build_name(step1_vec, "step1vec");
289 lp_build_name(step2_vec, "step2vec");
290
291 /* m0_vec = step0_ptr[i] > c0_vec */
292 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
293 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
294 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
295
296 /* in_out_mask = m0_vec & m1_vec & m2_vec */
297 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
298 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
299 lp_build_name(in_out_mask, "inoutmaskvec");
300 }
301 #if OPTIMIZE_IN_OUT_TEST
302 lp_build_endif(&ifctx);
303 #endif
304
305 }
306 lp_build_flow_scope_end(flow);
307 lp_build_flow_destroy(flow);
308
309 /* This is the initial alive/dead pixel mask for a quad of four pixels.
310 * It's an int[4] vector with each word set to 0 or ~0.
311 * Words will get cleared when pixels faile the Z test, etc.
312 */
313 *mask = in_out_mask;
314 }
315
316
317 static LLVMValueRef
318 generate_scissor_test(LLVMBuilderRef builder,
319 LLVMValueRef context_ptr,
320 const struct lp_build_interp_soa_context *interp,
321 struct lp_type type)
322 {
323 LLVMTypeRef vec_type = lp_build_vec_type(type);
324 LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1];
325 LLVMValueRef xmin, ymin, xmax, ymax;
326 LLVMValueRef m0, m1, m2, m3, m;
327
328 /* xpos, ypos contain the window coords for the four pixels in the quad */
329 assert(xpos);
330 assert(ypos);
331
332 /* get the current scissor bounds, convert to vectors */
333 xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr);
334 xmin = lp_build_broadcast(builder, vec_type, xmin);
335
336 ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr);
337 ymin = lp_build_broadcast(builder, vec_type, ymin);
338
339 xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr);
340 xmax = lp_build_broadcast(builder, vec_type, xmax);
341
342 ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr);
343 ymax = lp_build_broadcast(builder, vec_type, ymax);
344
345 /* compare the fragment's position coordinates against the scissor bounds */
346 m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin);
347 m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin);
348 m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax);
349 m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax);
350
351 /* AND all the masks together */
352 m = LLVMBuildAnd(builder, m0, m1, "");
353 m = LLVMBuildAnd(builder, m, m2, "");
354 m = LLVMBuildAnd(builder, m, m3, "");
355
356 lp_build_name(m, "scissormask");
357
358 return m;
359 }
360
361
362 static LLVMValueRef
363 build_int32_vec_const(int value)
364 {
365 struct lp_type i32_type;
366
367 memset(&i32_type, 0, sizeof i32_type);
368 i32_type.floating = FALSE; /* values are integers */
369 i32_type.sign = TRUE; /* values are signed */
370 i32_type.norm = FALSE; /* values are not normalized */
371 i32_type.width = 32; /* 32-bit int values */
372 i32_type.length = 4; /* 4 elements per vector */
373 return lp_build_const_int_vec(i32_type, value);
374 }
375
376
377
378 /**
379 * Generate the fragment shader, depth/stencil test, and alpha tests.
380 * \param i which quad in the tile, in range [0,3]
381 * \param do_tri_test if 1, do triangle edge in/out testing
382 */
383 static void
384 generate_fs(struct llvmpipe_context *lp,
385 struct lp_fragment_shader *shader,
386 const struct lp_fragment_shader_variant_key *key,
387 LLVMBuilderRef builder,
388 struct lp_type type,
389 LLVMValueRef context_ptr,
390 unsigned i,
391 const struct lp_build_interp_soa_context *interp,
392 struct lp_build_sampler_soa *sampler,
393 LLVMValueRef *pmask,
394 LLVMValueRef (*color)[4],
395 LLVMValueRef depth_ptr,
396 LLVMValueRef facing,
397 unsigned do_tri_test,
398 LLVMValueRef c0,
399 LLVMValueRef c1,
400 LLVMValueRef c2,
401 LLVMValueRef step0_ptr,
402 LLVMValueRef step1_ptr,
403 LLVMValueRef step2_ptr)
404 {
405 const struct tgsi_token *tokens = shader->base.tokens;
406 LLVMTypeRef elem_type;
407 LLVMTypeRef vec_type;
408 LLVMTypeRef int_vec_type;
409 LLVMValueRef consts_ptr;
410 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
411 LLVMValueRef z = interp->pos[2];
412 LLVMValueRef stencil_refs[2];
413 struct lp_build_flow_context *flow;
414 struct lp_build_mask_context mask;
415 boolean early_depth_stencil_test;
416 unsigned attrib;
417 unsigned chan;
418 unsigned cbuf;
419
420 assert(i < 4);
421
422 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
423 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
424
425 elem_type = lp_build_elem_type(type);
426 vec_type = lp_build_vec_type(type);
427 int_vec_type = lp_build_int_vec_type(type);
428
429 consts_ptr = lp_jit_context_constants(builder, context_ptr);
430
431 flow = lp_build_flow_create(builder);
432
433 memset(outputs, 0, sizeof outputs);
434
435 lp_build_flow_scope_begin(flow);
436
437 /* Declare the color and z variables */
438 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
439 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
440 color[cbuf][chan] = LLVMGetUndef(vec_type);
441 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
442 }
443 }
444 lp_build_flow_scope_declare(flow, &z);
445
446 /* do triangle edge testing */
447 if (do_tri_test) {
448 generate_tri_edge_mask(builder, i, pmask,
449 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
450 }
451 else {
452 *pmask = build_int32_vec_const(~0);
453 }
454
455 /* 'mask' will control execution based on quad's pixel alive/killed state */
456 lp_build_mask_begin(&mask, flow, type, *pmask);
457
458 if (key->scissor) {
459 LLVMValueRef smask =
460 generate_scissor_test(builder, context_ptr, interp, type);
461 lp_build_mask_update(&mask, smask);
462 }
463
464 early_depth_stencil_test =
465 (key->depth.enabled || key->stencil[0].enabled) &&
466 !key->alpha.enabled &&
467 !shader->info.uses_kill &&
468 !shader->info.writes_z;
469
470 if (early_depth_stencil_test)
471 generate_depth_stencil(builder, key,
472 type, &mask,
473 stencil_refs, z, depth_ptr, facing);
474
475 lp_build_tgsi_soa(builder, tokens, type, &mask,
476 consts_ptr, interp->pos, interp->inputs,
477 outputs, sampler, &shader->info);
478
479 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
480 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
481 if(outputs[attrib][chan]) {
482 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
483 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
484
485 switch (shader->info.output_semantic_name[attrib]) {
486 case TGSI_SEMANTIC_COLOR:
487 {
488 unsigned cbuf = shader->info.output_semantic_index[attrib];
489
490 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
491
492 /* Alpha test */
493 /* XXX: should the alpha reference value be passed separately? */
494 /* XXX: should only test the final assignment to alpha */
495 if(cbuf == 0 && chan == 3) {
496 LLVMValueRef alpha = out;
497 LLVMValueRef alpha_ref_value;
498 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
499 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
500 lp_build_alpha_test(builder, &key->alpha, type,
501 &mask, alpha, alpha_ref_value);
502 }
503
504 color[cbuf][chan] = out;
505 break;
506 }
507
508 case TGSI_SEMANTIC_POSITION:
509 if(chan == 2)
510 z = out;
511 break;
512 }
513 }
514 }
515 }
516
517 if (!early_depth_stencil_test)
518 generate_depth_stencil(builder, key,
519 type, &mask,
520 stencil_refs, z, depth_ptr, facing);
521
522 lp_build_mask_end(&mask);
523
524 lp_build_flow_scope_end(flow);
525
526 lp_build_flow_destroy(flow);
527
528 *pmask = mask.value;
529
530 }
531
532
533 /**
534 * Generate color blending and color output.
535 */
536 static void
537 generate_blend(const struct pipe_blend_state *blend,
538 LLVMBuilderRef builder,
539 struct lp_type type,
540 LLVMValueRef context_ptr,
541 LLVMValueRef mask,
542 LLVMValueRef *src,
543 LLVMValueRef dst_ptr)
544 {
545 struct lp_build_context bld;
546 struct lp_build_flow_context *flow;
547 struct lp_build_mask_context mask_ctx;
548 LLVMTypeRef vec_type;
549 LLVMValueRef const_ptr;
550 LLVMValueRef con[4];
551 LLVMValueRef dst[4];
552 LLVMValueRef res[4];
553 unsigned chan;
554
555 lp_build_context_init(&bld, builder, type);
556
557 flow = lp_build_flow_create(builder);
558
559 /* we'll use this mask context to skip blending if all pixels are dead */
560 lp_build_mask_begin(&mask_ctx, flow, type, mask);
561
562 vec_type = lp_build_vec_type(type);
563
564 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
565 const_ptr = LLVMBuildBitCast(builder, const_ptr,
566 LLVMPointerType(vec_type, 0), "");
567
568 for(chan = 0; chan < 4; ++chan) {
569 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
570 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
571
572 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
573
574 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
575 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
576 }
577
578 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
579
580 for(chan = 0; chan < 4; ++chan) {
581 if(blend->rt[0].colormask & (1 << chan)) {
582 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
583 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
584 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
585 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
586 }
587 }
588
589 lp_build_mask_end(&mask_ctx);
590 lp_build_flow_destroy(flow);
591 }
592
593
594 /** casting function to avoid compiler warnings */
595 static lp_jit_frag_func
596 cast_voidptr_to_lp_jit_frag_func(void *p)
597 {
598 union {
599 void *v;
600 lp_jit_frag_func f;
601 } tmp;
602 assert(sizeof(tmp.v) == sizeof(tmp.f));
603 tmp.v = p;
604 return tmp.f;
605 }
606
607
608 /**
609 * Generate the runtime callable function for the whole fragment pipeline.
610 * Note that the function which we generate operates on a block of 16
611 * pixels at at time. The block contains 2x2 quads. Each quad contains
612 * 2x2 pixels.
613 */
614 static void
615 generate_fragment(struct llvmpipe_context *lp,
616 struct lp_fragment_shader *shader,
617 struct lp_fragment_shader_variant *variant,
618 unsigned do_tri_test)
619 {
620 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
621 const struct lp_fragment_shader_variant_key *key = &variant->key;
622 struct lp_type fs_type;
623 struct lp_type blend_type;
624 LLVMTypeRef fs_elem_type;
625 LLVMTypeRef fs_vec_type;
626 LLVMTypeRef fs_int_vec_type;
627 LLVMTypeRef blend_vec_type;
628 LLVMTypeRef blend_int_vec_type;
629 LLVMTypeRef arg_types[15];
630 LLVMTypeRef func_type;
631 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
632 LLVMValueRef context_ptr;
633 LLVMValueRef x;
634 LLVMValueRef y;
635 LLVMValueRef a0_ptr;
636 LLVMValueRef dadx_ptr;
637 LLVMValueRef dady_ptr;
638 LLVMValueRef color_ptr_ptr;
639 LLVMValueRef depth_ptr;
640 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
641 LLVMBasicBlockRef block;
642 LLVMBuilderRef builder;
643 LLVMValueRef x0;
644 LLVMValueRef y0;
645 struct lp_build_sampler_soa *sampler;
646 struct lp_build_interp_soa_context interp;
647 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
648 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
649 LLVMValueRef blend_mask;
650 LLVMValueRef blend_in_color[NUM_CHANNELS];
651 LLVMValueRef function;
652 LLVMValueRef facing;
653 unsigned num_fs;
654 unsigned i;
655 unsigned chan;
656 unsigned cbuf;
657
658
659 /* TODO: actually pick these based on the fs and color buffer
660 * characteristics. */
661
662 memset(&fs_type, 0, sizeof fs_type);
663 fs_type.floating = TRUE; /* floating point values */
664 fs_type.sign = TRUE; /* values are signed */
665 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
666 fs_type.width = 32; /* 32-bit float */
667 fs_type.length = 4; /* 4 elements per vector */
668 num_fs = 4; /* number of quads per block */
669
670 memset(&blend_type, 0, sizeof blend_type);
671 blend_type.floating = FALSE; /* values are integers */
672 blend_type.sign = FALSE; /* values are unsigned */
673 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
674 blend_type.width = 8; /* 8-bit ubyte values */
675 blend_type.length = 16; /* 16 elements per vector */
676
677 /*
678 * Generate the function prototype. Any change here must be reflected in
679 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
680 */
681
682 fs_elem_type = lp_build_elem_type(fs_type);
683 fs_vec_type = lp_build_vec_type(fs_type);
684 fs_int_vec_type = lp_build_int_vec_type(fs_type);
685
686 blend_vec_type = lp_build_vec_type(blend_type);
687 blend_int_vec_type = lp_build_int_vec_type(blend_type);
688
689 arg_types[0] = screen->context_ptr_type; /* context */
690 arg_types[1] = LLVMInt32Type(); /* x */
691 arg_types[2] = LLVMInt32Type(); /* y */
692 arg_types[3] = LLVMFloatType(); /* facing */
693 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
694 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
695 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
696 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
697 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
698 arg_types[9] = LLVMInt32Type(); /* c0 */
699 arg_types[10] = LLVMInt32Type(); /* c1 */
700 arg_types[11] = LLVMInt32Type(); /* c2 */
701 /* Note: the step arrays are built as int32[16] but we interpret
702 * them here as int32_vec4[4].
703 */
704 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
705 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
706 arg_types[14] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
707
708 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
709
710 function = LLVMAddFunction(screen->module, "shader", func_type);
711 LLVMSetFunctionCallConv(function, LLVMCCallConv);
712
713 variant->function[do_tri_test] = function;
714
715
716 /* XXX: need to propagate noalias down into color param now we are
717 * passing a pointer-to-pointer?
718 */
719 for(i = 0; i < Elements(arg_types); ++i)
720 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
721 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
722
723 context_ptr = LLVMGetParam(function, 0);
724 x = LLVMGetParam(function, 1);
725 y = LLVMGetParam(function, 2);
726 facing = LLVMGetParam(function, 3);
727 a0_ptr = LLVMGetParam(function, 4);
728 dadx_ptr = LLVMGetParam(function, 5);
729 dady_ptr = LLVMGetParam(function, 6);
730 color_ptr_ptr = LLVMGetParam(function, 7);
731 depth_ptr = LLVMGetParam(function, 8);
732 c0 = LLVMGetParam(function, 9);
733 c1 = LLVMGetParam(function, 10);
734 c2 = LLVMGetParam(function, 11);
735 step0_ptr = LLVMGetParam(function, 12);
736 step1_ptr = LLVMGetParam(function, 13);
737 step2_ptr = LLVMGetParam(function, 14);
738
739 lp_build_name(context_ptr, "context");
740 lp_build_name(x, "x");
741 lp_build_name(y, "y");
742 lp_build_name(a0_ptr, "a0");
743 lp_build_name(dadx_ptr, "dadx");
744 lp_build_name(dady_ptr, "dady");
745 lp_build_name(color_ptr_ptr, "color_ptr");
746 lp_build_name(depth_ptr, "depth");
747 lp_build_name(c0, "c0");
748 lp_build_name(c1, "c1");
749 lp_build_name(c2, "c2");
750 lp_build_name(step0_ptr, "step0");
751 lp_build_name(step1_ptr, "step1");
752 lp_build_name(step2_ptr, "step2");
753
754 /*
755 * Function body
756 */
757
758 block = LLVMAppendBasicBlock(function, "entry");
759 builder = LLVMCreateBuilder();
760 LLVMPositionBuilderAtEnd(builder, block);
761
762 generate_pos0(builder, x, y, &x0, &y0);
763
764 lp_build_interp_soa_init(&interp,
765 shader->base.tokens,
766 key->flatshade,
767 builder, fs_type,
768 a0_ptr, dadx_ptr, dady_ptr,
769 x0, y0);
770
771 /* code generated texture sampling */
772 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
773
774 /* loop over quads in the block */
775 for(i = 0; i < num_fs; ++i) {
776 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
777 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
778 LLVMValueRef depth_ptr_i;
779
780 if(i != 0)
781 lp_build_interp_soa_update(&interp, i);
782
783 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
784
785 generate_fs(lp, shader, key,
786 builder,
787 fs_type,
788 context_ptr,
789 i,
790 &interp,
791 sampler,
792 &fs_mask[i], /* output */
793 out_color,
794 depth_ptr_i,
795 facing,
796 do_tri_test,
797 c0, c1, c2,
798 step0_ptr, step1_ptr, step2_ptr);
799
800 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
801 for(chan = 0; chan < NUM_CHANNELS; ++chan)
802 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
803 }
804
805 sampler->destroy(sampler);
806
807 /* Loop over color outputs / color buffers to do blending.
808 */
809 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
810 LLVMValueRef color_ptr;
811 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
812
813 /*
814 * Convert the fs's output color and mask to fit to the blending type.
815 */
816 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
817 lp_build_conv(builder, fs_type, blend_type,
818 fs_out_color[cbuf][chan], num_fs,
819 &blend_in_color[chan], 1);
820 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
821 }
822
823 lp_build_conv_mask(builder, fs_type, blend_type,
824 fs_mask, num_fs,
825 &blend_mask, 1);
826
827 color_ptr = LLVMBuildLoad(builder,
828 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
829 "");
830 lp_build_name(color_ptr, "color_ptr%d", cbuf);
831
832 /*
833 * Blending.
834 */
835 generate_blend(&key->blend,
836 builder,
837 blend_type,
838 context_ptr,
839 blend_mask,
840 blend_in_color,
841 color_ptr);
842 }
843
844 LLVMBuildRetVoid(builder);
845
846 LLVMDisposeBuilder(builder);
847
848
849 /* Verify the LLVM IR. If invalid, dump and abort */
850 #ifdef DEBUG
851 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
852 if (1)
853 LLVMDumpValue(function);
854 abort();
855 }
856 #endif
857
858 /* Apply optimizations to LLVM IR */
859 if (1)
860 LLVMRunFunctionPassManager(screen->pass, function);
861
862 if (LP_DEBUG & DEBUG_JIT) {
863 /* Print the LLVM IR to stderr */
864 LLVMDumpValue(function);
865 debug_printf("\n");
866 }
867
868 /*
869 * Translate the LLVM IR into machine code.
870 */
871 {
872 void *f = LLVMGetPointerToGlobal(screen->engine, function);
873
874 variant->jit_function[do_tri_test] = cast_voidptr_to_lp_jit_frag_func(f);
875
876 if (LP_DEBUG & DEBUG_ASM)
877 lp_disassemble(f);
878 }
879 }
880
881
882 static struct lp_fragment_shader_variant *
883 generate_variant(struct llvmpipe_context *lp,
884 struct lp_fragment_shader *shader,
885 const struct lp_fragment_shader_variant_key *key)
886 {
887 struct lp_fragment_shader_variant *variant;
888
889 if (LP_DEBUG & DEBUG_JIT) {
890 unsigned i;
891
892 tgsi_dump(shader->base.tokens, 0);
893 if(key->depth.enabled) {
894 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
895 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
896 debug_printf("depth.writemask = %u\n", key->depth.writemask);
897 }
898 if(key->alpha.enabled) {
899 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
900 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
901 }
902 if(key->blend.logicop_enable) {
903 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
904 }
905 else if(key->blend.rt[0].blend_enable) {
906 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
907 debug_printf("rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
908 debug_printf("rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
909 debug_printf("alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
910 debug_printf("alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
911 debug_printf("alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
912 }
913 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
914 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
915 if(key->sampler[i].format) {
916 debug_printf("sampler[%u] = \n", i);
917 debug_printf(" .format = %s\n",
918 util_format_name(key->sampler[i].format));
919 debug_printf(" .target = %s\n",
920 util_dump_tex_target(key->sampler[i].target, TRUE));
921 debug_printf(" .pot = %u %u %u\n",
922 key->sampler[i].pot_width,
923 key->sampler[i].pot_height,
924 key->sampler[i].pot_depth);
925 debug_printf(" .wrap = %s %s %s\n",
926 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
927 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
928 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
929 debug_printf(" .min_img_filter = %s\n",
930 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
931 debug_printf(" .min_mip_filter = %s\n",
932 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
933 debug_printf(" .mag_img_filter = %s\n",
934 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
935 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
936 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
937 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
938 }
939 }
940 }
941
942 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
943 if(!variant)
944 return NULL;
945
946 variant->shader = shader;
947 memcpy(&variant->key, key, sizeof *key);
948
949 generate_fragment(lp, shader, variant, 0);
950 generate_fragment(lp, shader, variant, 1);
951
952 /* insert new variant into linked list */
953 variant->next = shader->variants;
954 shader->variants = variant;
955
956 return variant;
957 }
958
959
960 void *
961 llvmpipe_create_fs_state(struct pipe_context *pipe,
962 const struct pipe_shader_state *templ)
963 {
964 struct lp_fragment_shader *shader;
965
966 shader = CALLOC_STRUCT(lp_fragment_shader);
967 if (!shader)
968 return NULL;
969
970 /* get/save the summary info for this shader */
971 tgsi_scan_shader(templ->tokens, &shader->info);
972
973 /* we need to keep a local copy of the tokens */
974 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
975
976 return shader;
977 }
978
979
980 void
981 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
982 {
983 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
984
985 if (llvmpipe->fs == fs)
986 return;
987
988 draw_flush(llvmpipe->draw);
989
990 llvmpipe->fs = fs;
991
992 llvmpipe->dirty |= LP_NEW_FS;
993 }
994
995
996 void
997 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
998 {
999 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1000 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
1001 struct lp_fragment_shader *shader = fs;
1002 struct lp_fragment_shader_variant *variant;
1003
1004 assert(fs != llvmpipe->fs);
1005 (void) llvmpipe;
1006
1007 /*
1008 * XXX: we need to flush the context until we have some sort of reference
1009 * counting in fragment shaders as they may still be binned
1010 */
1011 draw_flush(llvmpipe->draw);
1012 lp_setup_flush(llvmpipe->setup, 0);
1013
1014 variant = shader->variants;
1015 while(variant) {
1016 struct lp_fragment_shader_variant *next = variant->next;
1017 unsigned i;
1018
1019 for (i = 0; i < Elements(variant->function); i++) {
1020 if (variant->function[i]) {
1021 if (variant->jit_function[i])
1022 LLVMFreeMachineCodeForFunction(screen->engine,
1023 variant->function[i]);
1024 LLVMDeleteFunction(variant->function[i]);
1025 }
1026 }
1027
1028 FREE(variant);
1029
1030 variant = next;
1031 }
1032
1033 FREE((void *) shader->base.tokens);
1034 FREE(shader);
1035 }
1036
1037
1038
1039 void
1040 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1041 uint shader, uint index,
1042 struct pipe_resource *constants)
1043 {
1044 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1045 unsigned size = constants ? constants->width0 : 0;
1046 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1047
1048 assert(shader < PIPE_SHADER_TYPES);
1049 assert(index == 0);
1050
1051 if(llvmpipe->constants[shader] == constants)
1052 return;
1053
1054 draw_flush(llvmpipe->draw);
1055
1056 /* note: reference counting */
1057 pipe_resource_reference(&llvmpipe->constants[shader], constants);
1058
1059 if(shader == PIPE_SHADER_VERTEX) {
1060 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX, 0,
1061 data, size);
1062 }
1063
1064 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1065 }
1066
1067
1068 /**
1069 * We need to generate several variants of the fragment pipeline to match
1070 * all the combinations of the contributing state atoms.
1071 *
1072 * TODO: there is actually no reason to tie this to context state -- the
1073 * generated code could be cached globally in the screen.
1074 */
1075 static void
1076 make_variant_key(struct llvmpipe_context *lp,
1077 struct lp_fragment_shader *shader,
1078 struct lp_fragment_shader_variant_key *key)
1079 {
1080 unsigned i;
1081
1082 memset(key, 0, sizeof *key);
1083
1084 if (lp->framebuffer.zsbuf) {
1085 if (lp->depth_stencil->depth.enabled) {
1086 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1087 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1088 }
1089 if (lp->depth_stencil->stencil[0].enabled) {
1090 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1091 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1092 }
1093 }
1094
1095 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1096 if(key->alpha.enabled)
1097 key->alpha.func = lp->depth_stencil->alpha.func;
1098 /* alpha.ref_value is passed in jit_context */
1099
1100 key->flatshade = lp->rasterizer->flatshade;
1101 key->scissor = lp->rasterizer->scissor;
1102
1103 if (lp->framebuffer.nr_cbufs) {
1104 memcpy(&key->blend, lp->blend, sizeof key->blend);
1105 }
1106
1107 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1108 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1109 const struct util_format_description *format_desc;
1110 unsigned chan;
1111
1112 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1113 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1114 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1115
1116 key->blend.rt[i].colormask = lp->blend->rt[i].colormask;
1117
1118 /* mask out color channels not present in the color buffer.
1119 * Should be simple to incorporate per-cbuf writemasks:
1120 */
1121 for(chan = 0; chan < 4; ++chan) {
1122 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1123
1124 if(swizzle > UTIL_FORMAT_SWIZZLE_W)
1125 key->blend.rt[i].colormask &= ~(1 << chan);
1126 }
1127 }
1128
1129 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1130 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1131 lp_sampler_static_state(&key->sampler[i], lp->fragment_sampler_views[i], lp->sampler[i]);
1132 }
1133
1134
1135 /**
1136 * Update fragment state. This is called just prior to drawing
1137 * something when some fragment-related state has changed.
1138 */
1139 void
1140 llvmpipe_update_fs(struct llvmpipe_context *lp)
1141 {
1142 struct lp_fragment_shader *shader = lp->fs;
1143 struct lp_fragment_shader_variant_key key;
1144 struct lp_fragment_shader_variant *variant;
1145 boolean opaque;
1146
1147 make_variant_key(lp, shader, &key);
1148
1149 variant = shader->variants;
1150 while(variant) {
1151 if(memcmp(&variant->key, &key, sizeof key) == 0)
1152 break;
1153
1154 variant = variant->next;
1155 }
1156
1157 if (!variant) {
1158 int64_t t0, t1;
1159 int64_t dt;
1160 t0 = os_time_get();
1161
1162 variant = generate_variant(lp, shader, &key);
1163
1164 t1 = os_time_get();
1165 dt = t1 - t0;
1166 LP_COUNT_ADD(llvm_compile_time, dt);
1167 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1168 }
1169
1170 shader->current = variant;
1171
1172 /* TODO: put this in the variant */
1173 /* TODO: most of these can be relaxed, in particular the colormask */
1174 opaque = !key.blend.logicop_enable &&
1175 !key.blend.rt[0].blend_enable &&
1176 key.blend.rt[0].colormask == 0xf &&
1177 !key.stencil[0].enabled &&
1178 !key.alpha.enabled &&
1179 !key.depth.enabled &&
1180 !key.scissor &&
1181 !shader->info.uses_kill
1182 ? TRUE : FALSE;
1183
1184 lp_setup_set_fs_functions(lp->setup,
1185 shader->current->jit_function[RAST_WHOLE],
1186 shader->current->jit_function[RAST_EDGE_TEST],
1187 opaque);
1188 }