llvmpipe: silence unused var warnings
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include <limits.h>
62 #include "pipe/p_defines.h"
63 #include "util/u_memory.h"
64 #include "util/u_format.h"
65 #include "util/u_debug_dump.h"
66 #include "pipe/internal/p_winsys_screen.h"
67 #include "pipe/p_shader_tokens.h"
68 #include "draw/draw_context.h"
69 #include "tgsi/tgsi_dump.h"
70 #include "tgsi/tgsi_scan.h"
71 #include "tgsi/tgsi_parse.h"
72 #include "lp_bld_type.h"
73 #include "lp_bld_const.h"
74 #include "lp_bld_conv.h"
75 #include "lp_bld_intr.h"
76 #include "lp_bld_logic.h"
77 #include "lp_bld_depth.h"
78 #include "lp_bld_interp.h"
79 #include "lp_bld_tgsi.h"
80 #include "lp_bld_alpha.h"
81 #include "lp_bld_blend.h"
82 #include "lp_bld_swizzle.h"
83 #include "lp_bld_flow.h"
84 #include "lp_bld_debug.h"
85 #include "lp_screen.h"
86 #include "lp_context.h"
87 #include "lp_buffer.h"
88 #include "lp_setup.h"
89 #include "lp_state.h"
90 #include "lp_tex_sample.h"
91 #include "lp_debug.h"
92
93
94 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
95 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
96
97
98 /*
99 * Derive from the quad's upper left scalar coordinates the coordinates for
100 * all other quad pixels
101 */
102 static void
103 generate_pos0(LLVMBuilderRef builder,
104 LLVMValueRef x,
105 LLVMValueRef y,
106 LLVMValueRef *x0,
107 LLVMValueRef *y0)
108 {
109 LLVMTypeRef int_elem_type = LLVMInt32Type();
110 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
111 LLVMTypeRef elem_type = LLVMFloatType();
112 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
113 LLVMValueRef x_offsets[QUAD_SIZE];
114 LLVMValueRef y_offsets[QUAD_SIZE];
115 unsigned i;
116
117 x = lp_build_broadcast(builder, int_vec_type, x);
118 y = lp_build_broadcast(builder, int_vec_type, y);
119
120 for(i = 0; i < QUAD_SIZE; ++i) {
121 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
122 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
123 }
124
125 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
126 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
127
128 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
129 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
130 }
131
132
133 /**
134 * Generate the depth test.
135 */
136 static void
137 generate_depth(LLVMBuilderRef builder,
138 const struct lp_fragment_shader_variant_key *key,
139 struct lp_type src_type,
140 struct lp_build_mask_context *mask,
141 LLVMValueRef src,
142 LLVMValueRef dst_ptr)
143 {
144 const struct util_format_description *format_desc;
145 struct lp_type dst_type;
146
147 if(!key->depth.enabled)
148 return;
149
150 format_desc = util_format_description(key->zsbuf_format);
151 assert(format_desc);
152
153 /*
154 * Depths are expected to be between 0 and 1, even if they are stored in
155 * floats. Setting these bits here will ensure that the lp_build_conv() call
156 * below won't try to unnecessarily clamp the incoming values.
157 */
158 if(src_type.floating) {
159 src_type.sign = FALSE;
160 src_type.norm = TRUE;
161 }
162 else {
163 assert(!src_type.sign);
164 assert(src_type.norm);
165 }
166
167 /* Pick the depth type. */
168 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
169
170 /* FIXME: Cope with a depth test type with a different bit width. */
171 assert(dst_type.width == src_type.width);
172 assert(dst_type.length == src_type.length);
173
174 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
175
176 dst_ptr = LLVMBuildBitCast(builder,
177 dst_ptr,
178 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
179
180 lp_build_depth_test(builder,
181 &key->depth,
182 dst_type,
183 format_desc,
184 mask,
185 src,
186 dst_ptr);
187 }
188
189
190 /**
191 * Generate the code to do inside/outside triangle testing for the
192 * four pixels in a 2x2 quad. This will set the four elements of the
193 * quad mask vector to 0 or ~0.
194 * \param i which quad of the quad group to test, in [0,3]
195 */
196 static void
197 generate_tri_edge_mask(LLVMBuilderRef builder,
198 unsigned i,
199 LLVMValueRef *mask, /* ivec4, out */
200 LLVMValueRef c0, /* int32 */
201 LLVMValueRef c1, /* int32 */
202 LLVMValueRef c2, /* int32 */
203 LLVMValueRef step0_ptr, /* ivec4 */
204 LLVMValueRef step1_ptr, /* ivec4 */
205 LLVMValueRef step2_ptr) /* ivec4 */
206 {
207 #define OPTIMIZE_IN_OUT_TEST 0
208 #if OPTIMIZE_IN_OUT_TEST
209 struct lp_build_if_state ifctx;
210 LLVMValueRef not_draw_all;
211 #endif
212 struct lp_build_flow_context *flow;
213 struct lp_type i32_type;
214 LLVMTypeRef i32vec4_type, mask_type;
215 LLVMValueRef c0_vec, c1_vec, c2_vec;
216 LLVMValueRef in_out_mask;
217
218 assert(i < 4);
219
220 /* int32 vector type */
221 memset(&i32_type, 0, sizeof i32_type);
222 i32_type.floating = FALSE; /* values are integers */
223 i32_type.sign = TRUE; /* values are signed */
224 i32_type.norm = FALSE; /* values are not normalized */
225 i32_type.width = 32; /* 32-bit int values */
226 i32_type.length = 4; /* 4 elements per vector */
227
228 i32vec4_type = lp_build_int32_vec4_type();
229
230 mask_type = LLVMIntType(32 * 4);
231
232 /*
233 * Use a conditional here to do detailed pixel in/out testing.
234 * We only have to do this if c0 != INT_MIN.
235 */
236 flow = lp_build_flow_create(builder);
237 lp_build_flow_scope_begin(flow);
238
239 {
240 #if OPTIMIZE_IN_OUT_TEST
241 /* not_draw_all = (c0 != INT_MIN) */
242 not_draw_all = LLVMBuildICmp(builder,
243 LLVMIntNE,
244 c0,
245 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
246 "");
247
248 in_out_mask = lp_build_int_const_scalar(i32_type, ~0);
249
250
251 lp_build_flow_scope_declare(flow, &in_out_mask);
252
253 /* if (not_draw_all) {... */
254 lp_build_if(&ifctx, flow, builder, not_draw_all);
255 #endif
256 {
257 LLVMValueRef step0_vec, step1_vec, step2_vec;
258 LLVMValueRef m0_vec, m1_vec, m2_vec;
259 LLVMValueRef index, m;
260
261 /* c0_vec = {c0, c0, c0, c0}
262 * Note that we emit this code four times but LLVM optimizes away
263 * three instances of it.
264 */
265 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
266 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
267 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
268 lp_build_name(c0_vec, "edgeconst0vec");
269 lp_build_name(c1_vec, "edgeconst1vec");
270 lp_build_name(c2_vec, "edgeconst2vec");
271
272 /* load step0vec, step1, step2 vec from memory */
273 index = LLVMConstInt(LLVMInt32Type(), i, 0);
274 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
275 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
276 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
277 lp_build_name(step0_vec, "step0vec");
278 lp_build_name(step1_vec, "step1vec");
279 lp_build_name(step2_vec, "step2vec");
280
281 /* m0_vec = step0_ptr[i] > c0_vec */
282 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
283 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
284 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
285
286 /* in_out_mask = m0_vec & m1_vec & m2_vec */
287 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
288 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
289 lp_build_name(in_out_mask, "inoutmaskvec");
290 }
291 #if OPTIMIZE_IN_OUT_TEST
292 lp_build_endif(&ifctx);
293 #endif
294
295 }
296 lp_build_flow_scope_end(flow);
297 lp_build_flow_destroy(flow);
298
299 /* This is the initial alive/dead pixel mask for a quad of four pixels.
300 * It's an int[4] vector with each word set to 0 or ~0.
301 * Words will get cleared when pixels faile the Z test, etc.
302 */
303 *mask = in_out_mask;
304 }
305
306
307 /**
308 * Generate the fragment shader, depth/stencil test, and alpha tests.
309 * \param i which quad in the tile, in range [0,3]
310 */
311 static void
312 generate_fs(struct llvmpipe_context *lp,
313 struct lp_fragment_shader *shader,
314 const struct lp_fragment_shader_variant_key *key,
315 LLVMBuilderRef builder,
316 struct lp_type type,
317 LLVMValueRef context_ptr,
318 unsigned i,
319 const struct lp_build_interp_soa_context *interp,
320 struct lp_build_sampler_soa *sampler,
321 LLVMValueRef *pmask,
322 LLVMValueRef (*color)[4],
323 LLVMValueRef depth_ptr,
324 LLVMValueRef c0,
325 LLVMValueRef c1,
326 LLVMValueRef c2,
327 LLVMValueRef step0_ptr,
328 LLVMValueRef step1_ptr,
329 LLVMValueRef step2_ptr)
330 {
331 const struct tgsi_token *tokens = shader->base.tokens;
332 LLVMTypeRef elem_type;
333 LLVMTypeRef vec_type;
334 LLVMTypeRef int_vec_type;
335 LLVMValueRef consts_ptr;
336 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
337 LLVMValueRef z = interp->pos[2];
338 struct lp_build_flow_context *flow;
339 struct lp_build_mask_context mask;
340 boolean early_depth_test;
341 unsigned attrib;
342 unsigned chan;
343 unsigned cbuf;
344
345 assert(i < 4);
346
347 elem_type = lp_build_elem_type(type);
348 vec_type = lp_build_vec_type(type);
349 int_vec_type = lp_build_int_vec_type(type);
350
351 consts_ptr = lp_jit_context_constants(builder, context_ptr);
352
353 flow = lp_build_flow_create(builder);
354
355 memset(outputs, 0, sizeof outputs);
356
357 lp_build_flow_scope_begin(flow);
358
359 /* Declare the color and z variables */
360 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
361 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
362 color[cbuf][chan] = LLVMGetUndef(vec_type);
363 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
364 }
365 }
366 lp_build_flow_scope_declare(flow, &z);
367
368 /* do triangle edge testing */
369 generate_tri_edge_mask(builder, i, pmask,
370 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
371
372 /* 'mask' will control execution based on quad's pixel alive/killed state */
373 lp_build_mask_begin(&mask, flow, type, *pmask);
374
375
376 early_depth_test =
377 key->depth.enabled &&
378 !key->alpha.enabled &&
379 !shader->info.uses_kill &&
380 !shader->info.writes_z;
381
382 if(early_depth_test)
383 generate_depth(builder, key,
384 type, &mask,
385 z, depth_ptr);
386
387 lp_build_tgsi_soa(builder, tokens, type, &mask,
388 consts_ptr, interp->pos, interp->inputs,
389 outputs, sampler);
390
391 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
392 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
393 if(outputs[attrib][chan]) {
394 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
395
396 switch (shader->info.output_semantic_name[attrib]) {
397 case TGSI_SEMANTIC_COLOR:
398 {
399 unsigned cbuf = shader->info.output_semantic_index[attrib];
400
401 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
402
403 /* Alpha test */
404 /* XXX: should the alpha reference value be passed separately? */
405 /* XXX: should only test the final assignment to alpha */
406 if(cbuf == 0 && chan == 3) {
407 LLVMValueRef alpha = outputs[attrib][chan];
408 LLVMValueRef alpha_ref_value;
409 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
410 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
411 lp_build_alpha_test(builder, &key->alpha, type,
412 &mask, alpha, alpha_ref_value);
413 }
414
415 color[cbuf][chan] = outputs[attrib][chan];
416 break;
417 }
418
419 case TGSI_SEMANTIC_POSITION:
420 if(chan == 2)
421 z = outputs[attrib][chan];
422 break;
423 }
424 }
425 }
426 }
427
428 if(!early_depth_test)
429 generate_depth(builder, key,
430 type, &mask,
431 z, depth_ptr);
432
433 lp_build_mask_end(&mask);
434
435 lp_build_flow_scope_end(flow);
436
437 lp_build_flow_destroy(flow);
438
439 *pmask = mask.value;
440
441 }
442
443
444 /**
445 * Generate color blending and color output.
446 */
447 static void
448 generate_blend(const struct pipe_blend_state *blend,
449 LLVMBuilderRef builder,
450 struct lp_type type,
451 LLVMValueRef context_ptr,
452 LLVMValueRef mask,
453 LLVMValueRef *src,
454 LLVMValueRef dst_ptr)
455 {
456 struct lp_build_context bld;
457 struct lp_build_flow_context *flow;
458 struct lp_build_mask_context mask_ctx;
459 LLVMTypeRef vec_type;
460 LLVMTypeRef int_vec_type;
461 LLVMValueRef const_ptr;
462 LLVMValueRef con[4];
463 LLVMValueRef dst[4];
464 LLVMValueRef res[4];
465 unsigned chan;
466
467 lp_build_context_init(&bld, builder, type);
468
469 flow = lp_build_flow_create(builder);
470
471 /* we'll use this mask context to skip blending if all pixels are dead */
472 lp_build_mask_begin(&mask_ctx, flow, type, mask);
473
474 vec_type = lp_build_vec_type(type);
475 int_vec_type = lp_build_int_vec_type(type);
476
477 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
478 const_ptr = LLVMBuildBitCast(builder, const_ptr,
479 LLVMPointerType(vec_type, 0), "");
480
481 for(chan = 0; chan < 4; ++chan) {
482 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
483 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
484
485 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
486
487 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
488 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
489 }
490
491 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
492
493 for(chan = 0; chan < 4; ++chan) {
494 if(blend->colormask & (1 << chan)) {
495 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
496 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
497 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
498 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
499 }
500 }
501
502 lp_build_mask_end(&mask_ctx);
503 lp_build_flow_destroy(flow);
504 }
505
506
507 /**
508 * Generate the runtime callable function for the whole fragment pipeline.
509 * Note that the function which we generate operates on a block of 16
510 * pixels at at time. The block contains 2x2 quads. Each quad contains
511 * 2x2 pixels.
512 */
513 static void
514 generate_fragment(struct llvmpipe_context *lp,
515 struct lp_fragment_shader *shader,
516 struct lp_fragment_shader_variant *variant)
517 {
518 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
519 const struct lp_fragment_shader_variant_key *key = &variant->key;
520 struct lp_type fs_type;
521 struct lp_type blend_type;
522 LLVMTypeRef fs_elem_type;
523 LLVMTypeRef fs_vec_type;
524 LLVMTypeRef fs_int_vec_type;
525 LLVMTypeRef blend_vec_type;
526 LLVMTypeRef blend_int_vec_type;
527 LLVMTypeRef arg_types[14];
528 LLVMTypeRef func_type;
529 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
530 LLVMValueRef context_ptr;
531 LLVMValueRef x;
532 LLVMValueRef y;
533 LLVMValueRef a0_ptr;
534 LLVMValueRef dadx_ptr;
535 LLVMValueRef dady_ptr;
536 LLVMValueRef color_ptr_ptr;
537 LLVMValueRef depth_ptr;
538 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
539 LLVMBasicBlockRef block;
540 LLVMBuilderRef builder;
541 LLVMValueRef x0;
542 LLVMValueRef y0;
543 struct lp_build_sampler_soa *sampler;
544 struct lp_build_interp_soa_context interp;
545 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
546 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
547 LLVMValueRef blend_mask;
548 LLVMValueRef blend_in_color[NUM_CHANNELS];
549 unsigned num_fs;
550 unsigned i;
551 unsigned chan;
552 unsigned cbuf;
553
554
555 /* TODO: actually pick these based on the fs and color buffer
556 * characteristics. */
557
558 memset(&fs_type, 0, sizeof fs_type);
559 fs_type.floating = TRUE; /* floating point values */
560 fs_type.sign = TRUE; /* values are signed */
561 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
562 fs_type.width = 32; /* 32-bit float */
563 fs_type.length = 4; /* 4 elements per vector */
564 num_fs = 4; /* number of quads per block */
565
566 memset(&blend_type, 0, sizeof blend_type);
567 blend_type.floating = FALSE; /* values are integers */
568 blend_type.sign = FALSE; /* values are unsigned */
569 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
570 blend_type.width = 8; /* 8-bit ubyte values */
571 blend_type.length = 16; /* 16 elements per vector */
572
573 /*
574 * Generate the function prototype. Any change here must be reflected in
575 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
576 */
577
578 fs_elem_type = lp_build_elem_type(fs_type);
579 fs_vec_type = lp_build_vec_type(fs_type);
580 fs_int_vec_type = lp_build_int_vec_type(fs_type);
581
582 blend_vec_type = lp_build_vec_type(blend_type);
583 blend_int_vec_type = lp_build_int_vec_type(blend_type);
584
585 arg_types[0] = screen->context_ptr_type; /* context */
586 arg_types[1] = LLVMInt32Type(); /* x */
587 arg_types[2] = LLVMInt32Type(); /* y */
588 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
589 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
590 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
591 arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
592 arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
593 arg_types[8] = LLVMInt32Type(); /* c0 */
594 arg_types[9] = LLVMInt32Type(); /* c1 */
595 arg_types[10] = LLVMInt32Type(); /* c2 */
596 /* Note: the step arrays are built as int32[16] but we interpret
597 * them here as int32_vec4[4].
598 */
599 arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
600 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
601 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
602
603 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
604
605 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
606 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
607
608 /* XXX: need to propagate noalias down into color param now we are
609 * passing a pointer-to-pointer?
610 */
611 for(i = 0; i < Elements(arg_types); ++i)
612 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
613 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
614
615 context_ptr = LLVMGetParam(variant->function, 0);
616 x = LLVMGetParam(variant->function, 1);
617 y = LLVMGetParam(variant->function, 2);
618 a0_ptr = LLVMGetParam(variant->function, 3);
619 dadx_ptr = LLVMGetParam(variant->function, 4);
620 dady_ptr = LLVMGetParam(variant->function, 5);
621 color_ptr_ptr = LLVMGetParam(variant->function, 6);
622 depth_ptr = LLVMGetParam(variant->function, 7);
623 c0 = LLVMGetParam(variant->function, 8);
624 c1 = LLVMGetParam(variant->function, 9);
625 c2 = LLVMGetParam(variant->function, 10);
626 step0_ptr = LLVMGetParam(variant->function, 11);
627 step1_ptr = LLVMGetParam(variant->function, 12);
628 step2_ptr = LLVMGetParam(variant->function, 13);
629
630 lp_build_name(context_ptr, "context");
631 lp_build_name(x, "x");
632 lp_build_name(y, "y");
633 lp_build_name(a0_ptr, "a0");
634 lp_build_name(dadx_ptr, "dadx");
635 lp_build_name(dady_ptr, "dady");
636 lp_build_name(color_ptr_ptr, "color_ptr");
637 lp_build_name(depth_ptr, "depth");
638 lp_build_name(c0, "c0");
639 lp_build_name(c1, "c1");
640 lp_build_name(c2, "c2");
641 lp_build_name(step0_ptr, "step0");
642 lp_build_name(step1_ptr, "step1");
643 lp_build_name(step2_ptr, "step2");
644
645 /*
646 * Function body
647 */
648
649 block = LLVMAppendBasicBlock(variant->function, "entry");
650 builder = LLVMCreateBuilder();
651 LLVMPositionBuilderAtEnd(builder, block);
652
653 generate_pos0(builder, x, y, &x0, &y0);
654
655 lp_build_interp_soa_init(&interp,
656 shader->base.tokens,
657 key->flatshade,
658 builder, fs_type,
659 a0_ptr, dadx_ptr, dady_ptr,
660 x0, y0);
661
662 /* code generated texture sampling */
663 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
664
665 /* loop over quads in the block */
666 for(i = 0; i < num_fs; ++i) {
667 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
668 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
669 LLVMValueRef depth_ptr_i;
670 int cbuf;
671
672 if(i != 0)
673 lp_build_interp_soa_update(&interp, i);
674
675 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
676
677 generate_fs(lp, shader, key,
678 builder,
679 fs_type,
680 context_ptr,
681 i,
682 &interp,
683 sampler,
684 &fs_mask[i], /* output */
685 out_color,
686 depth_ptr_i,
687 c0, c1, c2,
688 step0_ptr, step1_ptr, step2_ptr);
689
690 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
691 for(chan = 0; chan < NUM_CHANNELS; ++chan)
692 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
693 }
694
695 sampler->destroy(sampler);
696
697 /* Loop over color outputs / color buffers to do blending.
698 */
699 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
700 LLVMValueRef color_ptr;
701 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
702
703 /*
704 * Convert the fs's output color and mask to fit to the blending type.
705 */
706 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
707 lp_build_conv(builder, fs_type, blend_type,
708 fs_out_color[cbuf][chan], num_fs,
709 &blend_in_color[chan], 1);
710 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
711 }
712
713 lp_build_conv_mask(builder, fs_type, blend_type,
714 fs_mask, num_fs,
715 &blend_mask, 1);
716
717 color_ptr = LLVMBuildLoad(builder,
718 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
719 "");
720 lp_build_name(color_ptr, "color_ptr%d", cbuf);
721
722 /*
723 * Blending.
724 */
725 generate_blend(&key->blend,
726 builder,
727 blend_type,
728 context_ptr,
729 blend_mask,
730 blend_in_color,
731 color_ptr);
732 }
733
734 LLVMBuildRetVoid(builder);
735
736 LLVMDisposeBuilder(builder);
737
738
739 /* Verify the LLVM IR. If invalid, dump and abort */
740 #ifdef DEBUG
741 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
742 if (1)
743 LLVMDumpValue(variant->function);
744 abort();
745 }
746 #endif
747
748 /* Apply optimizations to LLVM IR */
749 if (1)
750 LLVMRunFunctionPassManager(screen->pass, variant->function);
751
752 if (LP_DEBUG & DEBUG_JIT) {
753 /* Print the LLVM IR to stderr */
754 LLVMDumpValue(variant->function);
755 debug_printf("\n");
756 }
757
758 /*
759 * Translate the LLVM IR into machine code.
760 */
761 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
762
763 if (LP_DEBUG & DEBUG_ASM)
764 lp_disassemble(variant->jit_function);
765
766 variant->next = shader->variants;
767 shader->variants = variant;
768 }
769
770
771 static struct lp_fragment_shader_variant *
772 generate_variant(struct llvmpipe_context *lp,
773 struct lp_fragment_shader *shader,
774 const struct lp_fragment_shader_variant_key *key)
775 {
776 struct lp_fragment_shader_variant *variant;
777
778 if (LP_DEBUG & DEBUG_JIT) {
779 unsigned i;
780
781 tgsi_dump(shader->base.tokens, 0);
782 if(key->depth.enabled) {
783 debug_printf("depth.format = %s\n", pf_name(key->zsbuf_format));
784 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
785 debug_printf("depth.writemask = %u\n", key->depth.writemask);
786 }
787 if(key->alpha.enabled) {
788 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
789 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
790 }
791 if(key->blend.logicop_enable) {
792 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
793 }
794 else if(key->blend.blend_enable) {
795 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
796 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
797 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
798 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
799 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
800 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
801 }
802 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
803 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
804 if(key->sampler[i].format) {
805 debug_printf("sampler[%u] = \n", i);
806 debug_printf(" .format = %s\n",
807 pf_name(key->sampler[i].format));
808 debug_printf(" .target = %s\n",
809 debug_dump_tex_target(key->sampler[i].target, TRUE));
810 debug_printf(" .pot = %u %u %u\n",
811 key->sampler[i].pot_width,
812 key->sampler[i].pot_height,
813 key->sampler[i].pot_depth);
814 debug_printf(" .wrap = %s %s %s\n",
815 debug_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
816 debug_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
817 debug_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
818 debug_printf(" .min_img_filter = %s\n",
819 debug_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
820 debug_printf(" .min_mip_filter = %s\n",
821 debug_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
822 debug_printf(" .mag_img_filter = %s\n",
823 debug_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
824 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
825 debug_printf(" .compare_func = %s\n", debug_dump_func(key->sampler[i].compare_func, TRUE));
826 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
827 debug_printf(" .prefilter = %u\n", key->sampler[i].prefilter);
828 }
829 }
830 }
831
832 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
833 if(!variant)
834 return NULL;
835
836 variant->shader = shader;
837 memcpy(&variant->key, key, sizeof *key);
838
839 generate_fragment(lp, shader, variant);
840
841 return variant;
842 }
843
844
845 void *
846 llvmpipe_create_fs_state(struct pipe_context *pipe,
847 const struct pipe_shader_state *templ)
848 {
849 struct lp_fragment_shader *shader;
850
851 shader = CALLOC_STRUCT(lp_fragment_shader);
852 if (!shader)
853 return NULL;
854
855 /* get/save the summary info for this shader */
856 tgsi_scan_shader(templ->tokens, &shader->info);
857
858 /* we need to keep a local copy of the tokens */
859 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
860
861 return shader;
862 }
863
864
865 void
866 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
867 {
868 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
869
870 if (llvmpipe->fs == fs)
871 return;
872
873 draw_flush(llvmpipe->draw);
874
875 llvmpipe->fs = fs;
876
877 llvmpipe->dirty |= LP_NEW_FS;
878 }
879
880
881 void
882 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
883 {
884 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
885 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
886 struct lp_fragment_shader *shader = fs;
887 struct lp_fragment_shader_variant *variant;
888
889 assert(fs != llvmpipe->fs);
890 (void) llvmpipe;
891
892 variant = shader->variants;
893 while(variant) {
894 struct lp_fragment_shader_variant *next = variant->next;
895
896 if(variant->function) {
897 if(variant->jit_function)
898 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
899 LLVMDeleteFunction(variant->function);
900 }
901
902 FREE(variant);
903
904 variant = next;
905 }
906
907 FREE((void *) shader->base.tokens);
908 FREE(shader);
909 }
910
911
912
913 void
914 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
915 uint shader, uint index,
916 const struct pipe_constant_buffer *constants)
917 {
918 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
919 struct pipe_buffer *buffer = constants ? constants->buffer : NULL;
920 unsigned size = buffer ? buffer->size : 0;
921 const void *data = buffer ? llvmpipe_buffer(buffer)->data : NULL;
922
923 assert(shader < PIPE_SHADER_TYPES);
924 assert(index == 0);
925
926 if(llvmpipe->constants[shader].buffer == buffer)
927 return;
928
929 draw_flush(llvmpipe->draw);
930
931 /* note: reference counting */
932 pipe_buffer_reference(&llvmpipe->constants[shader].buffer, buffer);
933
934 if(shader == PIPE_SHADER_VERTEX) {
935 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX,
936 data, size);
937 }
938
939 llvmpipe->dirty |= LP_NEW_CONSTANTS;
940 }
941
942
943 /**
944 * We need to generate several variants of the fragment pipeline to match
945 * all the combinations of the contributing state atoms.
946 *
947 * TODO: there is actually no reason to tie this to context state -- the
948 * generated code could be cached globally in the screen.
949 */
950 static void
951 make_variant_key(struct llvmpipe_context *lp,
952 struct lp_fragment_shader *shader,
953 struct lp_fragment_shader_variant_key *key)
954 {
955 unsigned i;
956
957 memset(key, 0, sizeof *key);
958
959 if(lp->framebuffer.zsbuf &&
960 lp->depth_stencil->depth.enabled) {
961 key->zsbuf_format = lp->framebuffer.zsbuf->format;
962 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
963 }
964
965 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
966 if(key->alpha.enabled)
967 key->alpha.func = lp->depth_stencil->alpha.func;
968 /* alpha.ref_value is passed in jit_context */
969
970 key->flatshade = lp->rasterizer->flatshade;
971
972 if (lp->framebuffer.nr_cbufs) {
973 memcpy(&key->blend, lp->blend, sizeof key->blend);
974 }
975
976 key->nr_cbufs = lp->framebuffer.nr_cbufs;
977 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
978 const struct util_format_description *format_desc;
979 unsigned chan;
980
981 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
982 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
983 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
984
985 /* mask out color channels not present in the color buffer.
986 * Should be simple to incorporate per-cbuf writemasks:
987 */
988 for(chan = 0; chan < 4; ++chan) {
989 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
990
991 if(swizzle <= UTIL_FORMAT_SWIZZLE_W)
992 key->cbuf_blend[i].colormask |= (1 << chan);
993 }
994 }
995
996 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
997 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
998 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
999 }
1000
1001
1002 void
1003 llvmpipe_update_fs(struct llvmpipe_context *lp)
1004 {
1005 struct lp_fragment_shader *shader = lp->fs;
1006 struct lp_fragment_shader_variant_key key;
1007 struct lp_fragment_shader_variant *variant;
1008
1009 make_variant_key(lp, shader, &key);
1010
1011 variant = shader->variants;
1012 while(variant) {
1013 if(memcmp(&variant->key, &key, sizeof key) == 0)
1014 break;
1015
1016 variant = variant->next;
1017 }
1018
1019 if(!variant)
1020 variant = generate_variant(lp, shader, &key);
1021
1022 shader->current = variant;
1023
1024 lp_setup_set_fs_function(lp->setup,
1025 shader->current->jit_function);
1026 }