llvmpipe: Remove unnecessary headers.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include "pipe/p_defines.h"
62 #include "util/u_memory.h"
63 #include "util/u_format.h"
64 #include "util/u_debug_dump.h"
65 #include "pipe/p_shader_tokens.h"
66 #include "draw/draw_context.h"
67 #include "tgsi/tgsi_dump.h"
68 #include "tgsi/tgsi_scan.h"
69 #include "tgsi/tgsi_parse.h"
70 #include "lp_bld_type.h"
71 #include "lp_bld_const.h"
72 #include "lp_bld_conv.h"
73 #include "lp_bld_intr.h"
74 #include "lp_bld_logic.h"
75 #include "lp_bld_depth.h"
76 #include "lp_bld_interp.h"
77 #include "lp_bld_tgsi.h"
78 #include "lp_bld_alpha.h"
79 #include "lp_bld_blend.h"
80 #include "lp_bld_swizzle.h"
81 #include "lp_bld_flow.h"
82 #include "lp_bld_debug.h"
83 #include "lp_screen.h"
84 #include "lp_context.h"
85 #include "lp_buffer.h"
86 #include "lp_state.h"
87 #include "lp_tex_sample.h"
88
89
90 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
91 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
92
93
94 /*
95 * Derive from the quad's upper left scalar coordinates the coordinates for
96 * all other quad pixels
97 */
98 static void
99 generate_pos0(LLVMBuilderRef builder,
100 LLVMValueRef x,
101 LLVMValueRef y,
102 LLVMValueRef *x0,
103 LLVMValueRef *y0)
104 {
105 LLVMTypeRef int_elem_type = LLVMInt32Type();
106 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
107 LLVMTypeRef elem_type = LLVMFloatType();
108 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
109 LLVMValueRef x_offsets[QUAD_SIZE];
110 LLVMValueRef y_offsets[QUAD_SIZE];
111 unsigned i;
112
113 x = lp_build_broadcast(builder, int_vec_type, x);
114 y = lp_build_broadcast(builder, int_vec_type, y);
115
116 for(i = 0; i < QUAD_SIZE; ++i) {
117 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
118 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
119 }
120
121 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
122 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
123
124 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
125 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
126 }
127
128
129 /**
130 * Generate the depth test.
131 */
132 static void
133 generate_depth(LLVMBuilderRef builder,
134 const struct lp_fragment_shader_variant_key *key,
135 struct lp_type src_type,
136 struct lp_build_mask_context *mask,
137 LLVMValueRef src,
138 LLVMValueRef dst_ptr)
139 {
140 const struct util_format_description *format_desc;
141 struct lp_type dst_type;
142
143 if(!key->depth.enabled)
144 return;
145
146 format_desc = util_format_description(key->zsbuf_format);
147 assert(format_desc);
148
149 /* Pick the depth type. */
150 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
151
152 /* FIXME: Cope with a depth test type with a different bit width. */
153 assert(dst_type.width == src_type.width);
154 assert(dst_type.length == src_type.length);
155
156 #if 1
157 src = lp_build_clamped_float_to_unsigned_norm(builder,
158 src_type,
159 dst_type.width,
160 src);
161 #else
162 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
163 #endif
164
165 lp_build_depth_test(builder,
166 &key->depth,
167 dst_type,
168 format_desc,
169 mask,
170 src,
171 dst_ptr);
172 }
173
174
175 /**
176 * Generate the fragment shader, depth/stencil test, and alpha tests.
177 */
178 static void
179 generate_fs(struct llvmpipe_context *lp,
180 struct lp_fragment_shader *shader,
181 const struct lp_fragment_shader_variant_key *key,
182 LLVMBuilderRef builder,
183 struct lp_type type,
184 LLVMValueRef context_ptr,
185 unsigned i,
186 const struct lp_build_interp_soa_context *interp,
187 struct lp_build_sampler_soa *sampler,
188 LLVMValueRef *pmask,
189 LLVMValueRef *color,
190 LLVMValueRef depth_ptr)
191 {
192 const struct tgsi_token *tokens = shader->base.tokens;
193 LLVMTypeRef elem_type;
194 LLVMTypeRef vec_type;
195 LLVMTypeRef int_vec_type;
196 LLVMValueRef consts_ptr;
197 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
198 LLVMValueRef z = interp->pos[2];
199 struct lp_build_flow_context *flow;
200 struct lp_build_mask_context mask;
201 boolean early_depth_test;
202 unsigned attrib;
203 unsigned chan;
204
205 elem_type = lp_build_elem_type(type);
206 vec_type = lp_build_vec_type(type);
207 int_vec_type = lp_build_int_vec_type(type);
208
209 consts_ptr = lp_jit_context_constants(builder, context_ptr);
210
211 flow = lp_build_flow_create(builder);
212
213 memset(outputs, 0, sizeof outputs);
214
215 lp_build_flow_scope_begin(flow);
216
217 /* Declare the color and z variables */
218 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
219 color[chan] = LLVMGetUndef(vec_type);
220 lp_build_flow_scope_declare(flow, &color[chan]);
221 }
222 lp_build_flow_scope_declare(flow, &z);
223
224 lp_build_mask_begin(&mask, flow, type, *pmask);
225
226 early_depth_test =
227 key->depth.enabled &&
228 !key->alpha.enabled &&
229 !shader->info.uses_kill &&
230 !shader->info.writes_z;
231
232 if(early_depth_test)
233 generate_depth(builder, key,
234 type, &mask,
235 z, depth_ptr);
236
237 lp_build_tgsi_soa(builder, tokens, type, &mask,
238 consts_ptr, interp->pos, interp->inputs,
239 outputs, sampler);
240
241 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
242 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
243 if(outputs[attrib][chan]) {
244 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
245
246 switch (shader->info.output_semantic_name[attrib]) {
247 case TGSI_SEMANTIC_COLOR:
248 {
249 unsigned cbuf = shader->info.output_semantic_index[attrib];
250
251 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
252
253 /* Alpha test */
254 /* XXX: should the alpha reference value be passed separately? */
255 if(cbuf == 0 && chan == 3) {
256 LLVMValueRef alpha = outputs[attrib][chan];
257 LLVMValueRef alpha_ref_value;
258 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
259 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
260 lp_build_alpha_test(builder, &key->alpha, type,
261 &mask, alpha, alpha_ref_value);
262 }
263
264 if(cbuf == 0)
265 color[chan] = outputs[attrib][chan];
266
267 break;
268 }
269
270 case TGSI_SEMANTIC_POSITION:
271 if(chan == 2)
272 z = outputs[attrib][chan];
273 break;
274 }
275 }
276 }
277 }
278
279 if(!early_depth_test)
280 generate_depth(builder, key,
281 type, &mask,
282 z, depth_ptr);
283
284 lp_build_mask_end(&mask);
285
286 lp_build_flow_scope_end(flow);
287
288 lp_build_flow_destroy(flow);
289
290 *pmask = mask.value;
291
292 }
293
294
295 /**
296 * Generate color blending and color output.
297 */
298 static void
299 generate_blend(const struct pipe_blend_state *blend,
300 LLVMBuilderRef builder,
301 struct lp_type type,
302 LLVMValueRef context_ptr,
303 LLVMValueRef mask,
304 LLVMValueRef *src,
305 LLVMValueRef dst_ptr)
306 {
307 struct lp_build_context bld;
308 struct lp_build_flow_context *flow;
309 struct lp_build_mask_context mask_ctx;
310 LLVMTypeRef vec_type;
311 LLVMTypeRef int_vec_type;
312 LLVMValueRef const_ptr;
313 LLVMValueRef con[4];
314 LLVMValueRef dst[4];
315 LLVMValueRef res[4];
316 unsigned chan;
317
318 lp_build_context_init(&bld, builder, type);
319
320 flow = lp_build_flow_create(builder);
321 lp_build_mask_begin(&mask_ctx, flow, type, mask);
322
323 vec_type = lp_build_vec_type(type);
324 int_vec_type = lp_build_int_vec_type(type);
325
326 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
327 const_ptr = LLVMBuildBitCast(builder, const_ptr,
328 LLVMPointerType(vec_type, 0), "");
329
330 for(chan = 0; chan < 4; ++chan) {
331 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
332 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
333
334 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
335
336 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
337 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
338 }
339
340 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
341
342 for(chan = 0; chan < 4; ++chan) {
343 if(blend->colormask & (1 << chan)) {
344 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
345 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
346 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
347 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
348 }
349 }
350
351 lp_build_mask_end(&mask_ctx);
352 lp_build_flow_destroy(flow);
353 }
354
355
356 /**
357 * Generate the runtime callable function for the whole fragment pipeline.
358 */
359 static struct lp_fragment_shader_variant *
360 generate_fragment(struct llvmpipe_context *lp,
361 struct lp_fragment_shader *shader,
362 const struct lp_fragment_shader_variant_key *key)
363 {
364 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
365 struct lp_fragment_shader_variant *variant;
366 struct lp_type fs_type;
367 struct lp_type blend_type;
368 LLVMTypeRef fs_elem_type;
369 LLVMTypeRef fs_vec_type;
370 LLVMTypeRef fs_int_vec_type;
371 LLVMTypeRef blend_vec_type;
372 LLVMTypeRef blend_int_vec_type;
373 LLVMTypeRef arg_types[9];
374 LLVMTypeRef func_type;
375 LLVMValueRef context_ptr;
376 LLVMValueRef x;
377 LLVMValueRef y;
378 LLVMValueRef a0_ptr;
379 LLVMValueRef dadx_ptr;
380 LLVMValueRef dady_ptr;
381 LLVMValueRef mask_ptr;
382 LLVMValueRef color_ptr;
383 LLVMValueRef depth_ptr;
384 LLVMBasicBlockRef block;
385 LLVMBuilderRef builder;
386 LLVMValueRef x0;
387 LLVMValueRef y0;
388 struct lp_build_sampler_soa *sampler;
389 struct lp_build_interp_soa_context interp;
390 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
391 LLVMValueRef fs_out_color[NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
392 LLVMValueRef blend_mask;
393 LLVMValueRef blend_in_color[NUM_CHANNELS];
394 unsigned num_fs;
395 unsigned i;
396 unsigned chan;
397
398 #ifdef DEBUG
399 tgsi_dump(shader->base.tokens, 0);
400 if(key->depth.enabled) {
401 debug_printf("depth.format = %s\n", pf_name(key->zsbuf_format));
402 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
403 debug_printf("depth.writemask = %u\n", key->depth.writemask);
404 }
405 if(key->alpha.enabled) {
406 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
407 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
408 }
409 if(key->blend.logicop_enable) {
410 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
411 }
412 else if(key->blend.blend_enable) {
413 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
414 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
415 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
416 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
417 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
418 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
419 }
420 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
421 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
422 if(key->sampler[i].format) {
423 debug_printf("sampler[%u] = \n", i);
424 debug_printf(" .format = %s\n",
425 pf_name(key->sampler[i].format));
426 debug_printf(" .target = %s\n",
427 debug_dump_tex_target(key->sampler[i].target, TRUE));
428 debug_printf(" .pot = %u %u %u\n",
429 key->sampler[i].pot_width,
430 key->sampler[i].pot_height,
431 key->sampler[i].pot_depth);
432 debug_printf(" .wrap = %s %s %s\n",
433 debug_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
434 debug_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
435 debug_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
436 debug_printf(" .min_img_filter = %s\n",
437 debug_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
438 debug_printf(" .min_mip_filter = %s\n",
439 debug_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
440 debug_printf(" .mag_img_filter = %s\n",
441 debug_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
442 if(key->sampler[i].compare_mode)
443 debug_printf(" .compare_mode = %s\n", debug_dump_func(key->sampler[i].compare_func, TRUE));
444 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
445 debug_printf(" .prefilter = %u\n", key->sampler[i].prefilter);
446 }
447 }
448
449 #endif
450
451 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
452 if(!variant)
453 return NULL;
454
455 variant->shader = shader;
456 memcpy(&variant->key, key, sizeof *key);
457
458 /* TODO: actually pick these based on the fs and color buffer
459 * characteristics. */
460
461 memset(&fs_type, 0, sizeof fs_type);
462 fs_type.floating = TRUE; /* floating point values */
463 fs_type.sign = TRUE; /* values are signed */
464 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
465 fs_type.width = 32; /* 32-bit float */
466 fs_type.length = 4; /* 4 element per vector */
467 num_fs = 4;
468
469 memset(&blend_type, 0, sizeof blend_type);
470 blend_type.floating = FALSE; /* values are integers */
471 blend_type.sign = FALSE; /* values are unsigned */
472 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
473 blend_type.width = 8; /* 8-bit ubyte values */
474 blend_type.length = 16; /* 16 elements per vector */
475
476 /*
477 * Generate the function prototype. Any change here must be reflected in
478 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
479 */
480
481 fs_elem_type = lp_build_elem_type(fs_type);
482 fs_vec_type = lp_build_vec_type(fs_type);
483 fs_int_vec_type = lp_build_int_vec_type(fs_type);
484
485 blend_vec_type = lp_build_vec_type(blend_type);
486 blend_int_vec_type = lp_build_int_vec_type(blend_type);
487
488 arg_types[0] = screen->context_ptr_type; /* context */
489 arg_types[1] = LLVMInt32Type(); /* x */
490 arg_types[2] = LLVMInt32Type(); /* y */
491 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
492 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
493 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
494 arg_types[6] = LLVMPointerType(fs_int_vec_type, 0); /* mask */
495 arg_types[7] = LLVMPointerType(blend_vec_type, 0); /* color */
496 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
497
498 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
499
500 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
501 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
502 for(i = 0; i < Elements(arg_types); ++i)
503 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
504 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
505
506 context_ptr = LLVMGetParam(variant->function, 0);
507 x = LLVMGetParam(variant->function, 1);
508 y = LLVMGetParam(variant->function, 2);
509 a0_ptr = LLVMGetParam(variant->function, 3);
510 dadx_ptr = LLVMGetParam(variant->function, 4);
511 dady_ptr = LLVMGetParam(variant->function, 5);
512 mask_ptr = LLVMGetParam(variant->function, 6);
513 color_ptr = LLVMGetParam(variant->function, 7);
514 depth_ptr = LLVMGetParam(variant->function, 8);
515
516 lp_build_name(context_ptr, "context");
517 lp_build_name(x, "x");
518 lp_build_name(y, "y");
519 lp_build_name(a0_ptr, "a0");
520 lp_build_name(dadx_ptr, "dadx");
521 lp_build_name(dady_ptr, "dady");
522 lp_build_name(mask_ptr, "mask");
523 lp_build_name(color_ptr, "color");
524 lp_build_name(depth_ptr, "depth");
525
526 /*
527 * Function body
528 */
529
530 block = LLVMAppendBasicBlock(variant->function, "entry");
531 builder = LLVMCreateBuilder();
532 LLVMPositionBuilderAtEnd(builder, block);
533
534 generate_pos0(builder, x, y, &x0, &y0);
535
536 lp_build_interp_soa_init(&interp, shader->base.tokens, builder, fs_type,
537 a0_ptr, dadx_ptr, dady_ptr,
538 x0, y0, 2, 0);
539
540 #if 0
541 /* C texture sampling */
542 sampler = lp_c_sampler_soa_create(context_ptr);
543 #else
544 /* code generated texture sampling */
545 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
546 #endif
547
548 for(i = 0; i < num_fs; ++i) {
549 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
550 LLVMValueRef out_color[NUM_CHANNELS];
551 LLVMValueRef depth_ptr_i;
552
553 if(i != 0)
554 lp_build_interp_soa_update(&interp);
555
556 fs_mask[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, mask_ptr, &index, 1, ""), "");
557 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
558
559 generate_fs(lp, shader, key,
560 builder,
561 fs_type,
562 context_ptr,
563 i,
564 &interp,
565 sampler,
566 &fs_mask[i],
567 out_color,
568 depth_ptr_i);
569
570 for(chan = 0; chan < NUM_CHANNELS; ++chan)
571 fs_out_color[chan][i] = out_color[chan];
572 }
573
574 sampler->destroy(sampler);
575
576 /*
577 * Convert the fs's output color and mask to fit to the blending type.
578 */
579
580 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
581 lp_build_conv(builder, fs_type, blend_type,
582 fs_out_color[chan], num_fs,
583 &blend_in_color[chan], 1);
584 lp_build_name(blend_in_color[chan], "color.%c", "rgba"[chan]);
585
586 }
587
588 lp_build_conv_mask(builder, fs_type, blend_type,
589 fs_mask, num_fs,
590 &blend_mask, 1);
591
592 /*
593 * Blending.
594 */
595
596 generate_blend(&key->blend,
597 builder,
598 blend_type,
599 context_ptr,
600 blend_mask,
601 blend_in_color,
602 color_ptr);
603
604 LLVMBuildRetVoid(builder);
605
606 LLVMDisposeBuilder(builder);
607
608 /*
609 * Translate the LLVM IR into machine code.
610 */
611
612 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
613 LLVMDumpValue(variant->function);
614 abort();
615 }
616
617 LLVMRunFunctionPassManager(screen->pass, variant->function);
618
619 #ifdef DEBUG
620 LLVMDumpValue(variant->function);
621 debug_printf("\n");
622 #endif
623
624 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
625
626 #ifdef DEBUG
627 lp_disassemble(variant->jit_function);
628 #endif
629
630 variant->next = shader->variants;
631 shader->variants = variant;
632
633 return variant;
634 }
635
636
637 void *
638 llvmpipe_create_fs_state(struct pipe_context *pipe,
639 const struct pipe_shader_state *templ)
640 {
641 struct lp_fragment_shader *shader;
642
643 shader = CALLOC_STRUCT(lp_fragment_shader);
644 if (!shader)
645 return NULL;
646
647 /* get/save the summary info for this shader */
648 tgsi_scan_shader(templ->tokens, &shader->info);
649
650 /* we need to keep a local copy of the tokens */
651 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
652
653 return shader;
654 }
655
656
657 void
658 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
659 {
660 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
661
662 llvmpipe->fs = (struct lp_fragment_shader *) fs;
663
664 llvmpipe->dirty |= LP_NEW_FS;
665 }
666
667
668 void
669 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
670 {
671 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
672 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
673 struct lp_fragment_shader *shader = fs;
674 struct lp_fragment_shader_variant *variant;
675
676 assert(fs != llvmpipe->fs);
677 (void) llvmpipe;
678
679 variant = shader->variants;
680 while(variant) {
681 struct lp_fragment_shader_variant *next = variant->next;
682
683 if(variant->function) {
684 if(variant->jit_function)
685 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
686 LLVMDeleteFunction(variant->function);
687 }
688
689 FREE(variant);
690
691 variant = next;
692 }
693
694 FREE((void *) shader->base.tokens);
695 FREE(shader);
696 }
697
698
699
700 void
701 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
702 uint shader, uint index,
703 const struct pipe_constant_buffer *constants)
704 {
705 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
706 struct pipe_buffer *buffer = constants ? constants->buffer : NULL;
707 unsigned size = buffer ? buffer->size : 0;
708 const void *data = buffer ? llvmpipe_buffer(buffer)->data : NULL;
709
710 assert(shader < PIPE_SHADER_TYPES);
711 assert(index == 0);
712
713 if(shader == PIPE_SHADER_VERTEX)
714 draw_flush(llvmpipe->draw);
715
716 /* note: reference counting */
717 pipe_buffer_reference(&llvmpipe->constants[shader].buffer, buffer);
718
719 if(shader == PIPE_SHADER_FRAGMENT) {
720 llvmpipe->jit_context.constants = data;
721 }
722
723 if(shader == PIPE_SHADER_VERTEX) {
724 draw_set_mapped_constant_buffer(llvmpipe->draw, data, size);
725 }
726
727 llvmpipe->dirty |= LP_NEW_CONSTANTS;
728 }
729
730
731 /**
732 * We need to generate several variants of the fragment pipeline to match
733 * all the combinations of the contributing state atoms.
734 *
735 * TODO: there is actually no reason to tie this to context state -- the
736 * generated code could be cached globally in the screen.
737 */
738 static void
739 make_variant_key(struct llvmpipe_context *lp,
740 struct lp_fragment_shader *shader,
741 struct lp_fragment_shader_variant_key *key)
742 {
743 unsigned i;
744
745 memset(key, 0, sizeof *key);
746
747 if(lp->framebuffer.zsbuf &&
748 lp->depth_stencil->depth.enabled) {
749 key->zsbuf_format = lp->framebuffer.zsbuf->format;
750 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
751 }
752
753 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
754 if(key->alpha.enabled)
755 key->alpha.func = lp->depth_stencil->alpha.func;
756 /* alpha.ref_value is passed in jit_context */
757
758 if(lp->framebuffer.cbufs[0]) {
759 const struct util_format_description *format_desc;
760 unsigned chan;
761
762 memcpy(&key->blend, lp->blend, sizeof key->blend);
763
764 format_desc = util_format_description(lp->framebuffer.cbufs[0]->format);
765 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
766 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
767
768 /* mask out color channels not present in the color buffer */
769 for(chan = 0; chan < 4; ++chan) {
770 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
771 if(swizzle > 4)
772 key->blend.colormask &= ~(1 << chan);
773 }
774 }
775
776 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
777 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
778 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
779 }
780
781
782 void
783 llvmpipe_update_fs(struct llvmpipe_context *lp)
784 {
785 struct lp_fragment_shader *shader = lp->fs;
786 struct lp_fragment_shader_variant_key key;
787 struct lp_fragment_shader_variant *variant;
788
789 make_variant_key(lp, shader, &key);
790
791 variant = shader->variants;
792 while(variant) {
793 if(memcmp(&variant->key, &key, sizeof key) == 0)
794 break;
795
796 variant = variant->next;
797 }
798
799 if(!variant)
800 variant = generate_fragment(lp, shader, &key);
801
802 shader->current = variant;
803 }