llvmpipe: do the all-in test on the scalar c0 instead of vector c0
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include <limits.h>
62 #include "pipe/p_defines.h"
63 #include "util/u_memory.h"
64 #include "util/u_format.h"
65 #include "util/u_debug_dump.h"
66 #include "pipe/internal/p_winsys_screen.h"
67 #include "pipe/p_shader_tokens.h"
68 #include "draw/draw_context.h"
69 #include "tgsi/tgsi_dump.h"
70 #include "tgsi/tgsi_scan.h"
71 #include "tgsi/tgsi_parse.h"
72 #include "lp_bld_type.h"
73 #include "lp_bld_const.h"
74 #include "lp_bld_conv.h"
75 #include "lp_bld_intr.h"
76 #include "lp_bld_logic.h"
77 #include "lp_bld_depth.h"
78 #include "lp_bld_interp.h"
79 #include "lp_bld_tgsi.h"
80 #include "lp_bld_alpha.h"
81 #include "lp_bld_blend.h"
82 #include "lp_bld_swizzle.h"
83 #include "lp_bld_flow.h"
84 #include "lp_bld_debug.h"
85 #include "lp_screen.h"
86 #include "lp_context.h"
87 #include "lp_buffer.h"
88 #include "lp_setup.h"
89 #include "lp_state.h"
90 #include "lp_tex_sample.h"
91 #include "lp_debug.h"
92
93
94 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
95 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
96
97
98 /*
99 * Derive from the quad's upper left scalar coordinates the coordinates for
100 * all other quad pixels
101 */
102 static void
103 generate_pos0(LLVMBuilderRef builder,
104 LLVMValueRef x,
105 LLVMValueRef y,
106 LLVMValueRef *x0,
107 LLVMValueRef *y0)
108 {
109 LLVMTypeRef int_elem_type = LLVMInt32Type();
110 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
111 LLVMTypeRef elem_type = LLVMFloatType();
112 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
113 LLVMValueRef x_offsets[QUAD_SIZE];
114 LLVMValueRef y_offsets[QUAD_SIZE];
115 unsigned i;
116
117 x = lp_build_broadcast(builder, int_vec_type, x);
118 y = lp_build_broadcast(builder, int_vec_type, y);
119
120 for(i = 0; i < QUAD_SIZE; ++i) {
121 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
122 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
123 }
124
125 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
126 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
127
128 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
129 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
130 }
131
132
133 /**
134 * Generate the depth test.
135 */
136 static void
137 generate_depth(LLVMBuilderRef builder,
138 const struct lp_fragment_shader_variant_key *key,
139 struct lp_type src_type,
140 struct lp_build_mask_context *mask,
141 LLVMValueRef src,
142 LLVMValueRef dst_ptr)
143 {
144 const struct util_format_description *format_desc;
145 struct lp_type dst_type;
146
147 if(!key->depth.enabled)
148 return;
149
150 format_desc = util_format_description(key->zsbuf_format);
151 assert(format_desc);
152
153 /*
154 * Depths are expected to be between 0 and 1, even if they are stored in
155 * floats. Setting these bits here will ensure that the lp_build_conv() call
156 * below won't try to unnecessarily clamp the incoming values.
157 */
158 if(src_type.floating) {
159 src_type.sign = FALSE;
160 src_type.norm = TRUE;
161 }
162 else {
163 assert(!src_type.sign);
164 assert(src_type.norm);
165 }
166
167 /* Pick the depth type. */
168 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
169
170 /* FIXME: Cope with a depth test type with a different bit width. */
171 assert(dst_type.width == src_type.width);
172 assert(dst_type.length == src_type.length);
173
174 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
175
176 dst_ptr = LLVMBuildBitCast(builder,
177 dst_ptr,
178 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
179
180 lp_build_depth_test(builder,
181 &key->depth,
182 dst_type,
183 format_desc,
184 mask,
185 src,
186 dst_ptr);
187 }
188
189
190 /**
191 * Generate the code to do inside/outside triangle testing for the
192 * four pixels in a 2x2 quad. This will set the four elements of the
193 * quad mask vector to 0 or ~0.
194 * \param i which quad of the quad group to test, in [0,3]
195 */
196 static void
197 generate_tri_edge_mask(LLVMBuilderRef builder,
198 unsigned i,
199 LLVMValueRef *mask, /* ivec4, out */
200 LLVMValueRef c0, /* int32 */
201 LLVMValueRef c1, /* int32 */
202 LLVMValueRef c2, /* int32 */
203 LLVMValueRef step0_ptr, /* ivec4 */
204 LLVMValueRef step1_ptr, /* ivec4 */
205 LLVMValueRef step2_ptr) /* ivec4 */
206 {
207 /*
208 c0_vec = splat(c0)
209 c1_vec = splat(c1)
210 c2_vec = splat(c2)
211 m0_vec = step0_ptr[i] > c0_vec
212 m1_vec = step1_ptr[i] > c1_vec
213 m2_vec = step2_ptr[i] > c2_vec
214 mask = m0_vec & m1_vec & m2_vec
215 */
216 struct lp_build_flow_context *flow;
217 struct lp_build_if_state ifctx;
218 struct lp_type i32_type;
219 LLVMTypeRef i32vec4_type, mask_type;
220 LLVMValueRef c0_vec, c1_vec, c2_vec;
221 LLVMValueRef not_draw_all;
222 LLVMValueRef in_out_mask;
223
224 assert(i < 4);
225
226 /* int32 vector type */
227 memset(&i32_type, 0, sizeof i32_type);
228 i32_type.floating = FALSE; /* values are integers */
229 i32_type.sign = TRUE; /* values are signed */
230 i32_type.norm = FALSE; /* values are not normalized */
231 i32_type.width = 32; /* 32-bit int values */
232 i32_type.length = 4; /* 4 elements per vector */
233
234 i32vec4_type = lp_build_int32_vec4_type();
235
236 mask_type = LLVMIntType(32 * 4);
237
238 /*
239 * Use a conditional here to do detailed pixel in/out testing.
240 * We only have to do this if c0 != {INT_MIN, INT_MIN, INT_MIN, INT_MIN}
241 */
242 flow = lp_build_flow_create(builder);
243 lp_build_flow_scope_begin(flow);
244
245 {
246 #define OPTIMIZE_IN_OUT_TEST 1
247 #if OPTIMIZE_IN_OUT_TEST
248
249 not_draw_all = LLVMBuildICmp(builder,
250 LLVMIntNE,
251 c0,
252 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
253 "");
254
255 in_out_mask = lp_build_int_const_scalar(i32_type, ~0);
256
257
258 lp_build_flow_scope_declare(flow, &in_out_mask);
259
260 lp_build_if(&ifctx, flow, builder, not_draw_all);
261 #endif
262 {
263 LLVMValueRef step0_vec, step1_vec, step2_vec;
264 LLVMValueRef m0_vec, m1_vec, m2_vec;
265 LLVMValueRef index, m;
266
267 /* c0_vec = {c0, c0, c0, c0}
268 * Note that we emit this code four times but LLVM optimizes away
269 * three instances of it.
270 */
271 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
272 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
273 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
274 lp_build_name(c0_vec, "edgeconst0vec");
275 lp_build_name(c1_vec, "edgeconst1vec");
276 lp_build_name(c2_vec, "edgeconst2vec");
277
278
279 index = LLVMConstInt(LLVMInt32Type(), i, 0);
280 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
281 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
282 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
283
284 lp_build_name(step0_vec, "step0vec");
285 lp_build_name(step1_vec, "step1vec");
286 lp_build_name(step2_vec, "step2vec");
287
288 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
289 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
290 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
291
292 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
293 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
294 lp_build_name(in_out_mask, "inoutmaskvec");
295
296 /* This is the initial alive/dead pixel mask. Additional bits will get cleared
297 * when the Z test fails, etc.
298 */
299 }
300 #if OPTIMIZE_IN_OUT_TEST
301 lp_build_endif(&ifctx);
302 #endif
303
304 }
305 lp_build_flow_scope_end(flow);
306 lp_build_flow_destroy(flow);
307
308 *mask = in_out_mask;
309 }
310
311
312 /**
313 * Generate the fragment shader, depth/stencil test, and alpha tests.
314 * \param i which quad in the tile, in range [0,3]
315 */
316 static void
317 generate_fs(struct llvmpipe_context *lp,
318 struct lp_fragment_shader *shader,
319 const struct lp_fragment_shader_variant_key *key,
320 LLVMBuilderRef builder,
321 struct lp_type type,
322 LLVMValueRef context_ptr,
323 unsigned i,
324 const struct lp_build_interp_soa_context *interp,
325 struct lp_build_sampler_soa *sampler,
326 LLVMValueRef *pmask,
327 LLVMValueRef (*color)[4],
328 LLVMValueRef depth_ptr,
329 LLVMValueRef c0,
330 LLVMValueRef c1,
331 LLVMValueRef c2,
332 LLVMValueRef step0_ptr,
333 LLVMValueRef step1_ptr,
334 LLVMValueRef step2_ptr)
335 {
336 const struct tgsi_token *tokens = shader->base.tokens;
337 LLVMTypeRef elem_type;
338 LLVMTypeRef vec_type;
339 LLVMTypeRef int_vec_type;
340 LLVMValueRef consts_ptr;
341 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
342 LLVMValueRef z = interp->pos[2];
343 struct lp_build_flow_context *flow;
344 struct lp_build_mask_context mask;
345 boolean early_depth_test;
346 unsigned attrib;
347 unsigned chan;
348 unsigned cbuf;
349
350 assert(i < 4);
351
352 elem_type = lp_build_elem_type(type);
353 vec_type = lp_build_vec_type(type);
354 int_vec_type = lp_build_int_vec_type(type);
355
356 consts_ptr = lp_jit_context_constants(builder, context_ptr);
357
358 flow = lp_build_flow_create(builder);
359
360 memset(outputs, 0, sizeof outputs);
361
362 lp_build_flow_scope_begin(flow);
363
364 /* Declare the color and z variables */
365 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
366 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
367 color[cbuf][chan] = LLVMGetUndef(vec_type);
368 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
369 }
370 }
371 lp_build_flow_scope_declare(flow, &z);
372
373 /* do triangle edge testing */
374 generate_tri_edge_mask(builder, i, pmask,
375 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
376
377 /* 'mask' will control execution based on quad's pixel alive/killed state */
378 lp_build_mask_begin(&mask, flow, type, *pmask);
379
380
381 early_depth_test =
382 key->depth.enabled &&
383 !key->alpha.enabled &&
384 !shader->info.uses_kill &&
385 !shader->info.writes_z;
386
387 if(early_depth_test)
388 generate_depth(builder, key,
389 type, &mask,
390 z, depth_ptr);
391
392 lp_build_tgsi_soa(builder, tokens, type, &mask,
393 consts_ptr, interp->pos, interp->inputs,
394 outputs, sampler);
395
396 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
397 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
398 if(outputs[attrib][chan]) {
399 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
400
401 switch (shader->info.output_semantic_name[attrib]) {
402 case TGSI_SEMANTIC_COLOR:
403 {
404 unsigned cbuf = shader->info.output_semantic_index[attrib];
405
406 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
407
408 /* Alpha test */
409 /* XXX: should the alpha reference value be passed separately? */
410 /* XXX: should only test the final assignment to alpha */
411 if(cbuf == 0 && chan == 3) {
412 LLVMValueRef alpha = outputs[attrib][chan];
413 LLVMValueRef alpha_ref_value;
414 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
415 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
416 lp_build_alpha_test(builder, &key->alpha, type,
417 &mask, alpha, alpha_ref_value);
418 }
419
420 color[cbuf][chan] = outputs[attrib][chan];
421 break;
422 }
423
424 case TGSI_SEMANTIC_POSITION:
425 if(chan == 2)
426 z = outputs[attrib][chan];
427 break;
428 }
429 }
430 }
431 }
432
433 if(!early_depth_test)
434 generate_depth(builder, key,
435 type, &mask,
436 z, depth_ptr);
437
438 lp_build_mask_end(&mask);
439
440 lp_build_flow_scope_end(flow);
441
442 lp_build_flow_destroy(flow);
443
444 *pmask = mask.value;
445
446 }
447
448
449 /**
450 * Generate color blending and color output.
451 */
452 static void
453 generate_blend(const struct pipe_blend_state *blend,
454 LLVMBuilderRef builder,
455 struct lp_type type,
456 LLVMValueRef context_ptr,
457 LLVMValueRef mask,
458 LLVMValueRef *src,
459 LLVMValueRef dst_ptr)
460 {
461 struct lp_build_context bld;
462 struct lp_build_flow_context *flow;
463 struct lp_build_mask_context mask_ctx;
464 LLVMTypeRef vec_type;
465 LLVMTypeRef int_vec_type;
466 LLVMValueRef const_ptr;
467 LLVMValueRef con[4];
468 LLVMValueRef dst[4];
469 LLVMValueRef res[4];
470 unsigned chan;
471
472 lp_build_context_init(&bld, builder, type);
473
474 flow = lp_build_flow_create(builder);
475
476 /* we'll use this mask context to skip blending if all pixels are dead */
477 lp_build_mask_begin(&mask_ctx, flow, type, mask);
478
479 vec_type = lp_build_vec_type(type);
480 int_vec_type = lp_build_int_vec_type(type);
481
482 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
483 const_ptr = LLVMBuildBitCast(builder, const_ptr,
484 LLVMPointerType(vec_type, 0), "");
485
486 for(chan = 0; chan < 4; ++chan) {
487 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
488 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
489
490 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
491
492 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
493 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
494 }
495
496 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
497
498 for(chan = 0; chan < 4; ++chan) {
499 if(blend->colormask & (1 << chan)) {
500 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
501 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
502 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
503 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
504 }
505 }
506
507 lp_build_mask_end(&mask_ctx);
508 lp_build_flow_destroy(flow);
509 }
510
511
512 /**
513 * Generate the runtime callable function for the whole fragment pipeline.
514 * Note that the function which we generate operates on a block of 16
515 * pixels at at time. The block contains 2x2 quads. Each quad contains
516 * 2x2 pixels.
517 */
518 static struct lp_fragment_shader_variant *
519 generate_fragment(struct llvmpipe_context *lp,
520 struct lp_fragment_shader *shader,
521 const struct lp_fragment_shader_variant_key *key)
522 {
523 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
524 struct lp_fragment_shader_variant *variant;
525 struct lp_type fs_type;
526 struct lp_type blend_type;
527 LLVMTypeRef fs_elem_type;
528 LLVMTypeRef fs_vec_type;
529 LLVMTypeRef fs_int_vec_type;
530 LLVMTypeRef blend_vec_type;
531 LLVMTypeRef blend_int_vec_type;
532 LLVMTypeRef arg_types[14];
533 LLVMTypeRef func_type;
534 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
535 LLVMValueRef context_ptr;
536 LLVMValueRef x;
537 LLVMValueRef y;
538 LLVMValueRef a0_ptr;
539 LLVMValueRef dadx_ptr;
540 LLVMValueRef dady_ptr;
541 LLVMValueRef color_ptr_ptr;
542 LLVMValueRef depth_ptr;
543 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
544 LLVMBasicBlockRef block;
545 LLVMBuilderRef builder;
546 LLVMValueRef x0;
547 LLVMValueRef y0;
548 struct lp_build_sampler_soa *sampler;
549 struct lp_build_interp_soa_context interp;
550 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
551 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
552 LLVMValueRef blend_mask;
553 LLVMValueRef blend_in_color[NUM_CHANNELS];
554 unsigned num_fs;
555 unsigned i;
556 unsigned chan;
557 unsigned cbuf;
558
559 if (LP_DEBUG & DEBUG_JIT) {
560 tgsi_dump(shader->base.tokens, 0);
561 if(key->depth.enabled) {
562 debug_printf("depth.format = %s\n", pf_name(key->zsbuf_format));
563 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
564 debug_printf("depth.writemask = %u\n", key->depth.writemask);
565 }
566 if(key->alpha.enabled) {
567 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
568 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
569 }
570 if(key->blend.logicop_enable) {
571 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
572 }
573 else if(key->blend.blend_enable) {
574 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
575 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
576 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
577 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
578 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
579 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
580 }
581 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
582 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
583 if(key->sampler[i].format) {
584 debug_printf("sampler[%u] = \n", i);
585 debug_printf(" .format = %s\n",
586 pf_name(key->sampler[i].format));
587 debug_printf(" .target = %s\n",
588 debug_dump_tex_target(key->sampler[i].target, TRUE));
589 debug_printf(" .pot = %u %u %u\n",
590 key->sampler[i].pot_width,
591 key->sampler[i].pot_height,
592 key->sampler[i].pot_depth);
593 debug_printf(" .wrap = %s %s %s\n",
594 debug_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
595 debug_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
596 debug_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
597 debug_printf(" .min_img_filter = %s\n",
598 debug_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
599 debug_printf(" .min_mip_filter = %s\n",
600 debug_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
601 debug_printf(" .mag_img_filter = %s\n",
602 debug_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
603 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
604 debug_printf(" .compare_func = %s\n", debug_dump_func(key->sampler[i].compare_func, TRUE));
605 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
606 debug_printf(" .prefilter = %u\n", key->sampler[i].prefilter);
607 }
608 }
609 }
610
611 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
612 if(!variant)
613 return NULL;
614
615 variant->shader = shader;
616 memcpy(&variant->key, key, sizeof *key);
617
618 /* TODO: actually pick these based on the fs and color buffer
619 * characteristics. */
620
621 memset(&fs_type, 0, sizeof fs_type);
622 fs_type.floating = TRUE; /* floating point values */
623 fs_type.sign = TRUE; /* values are signed */
624 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
625 fs_type.width = 32; /* 32-bit float */
626 fs_type.length = 4; /* 4 elements per vector */
627 num_fs = 4; /* number of quads per block */
628
629 memset(&blend_type, 0, sizeof blend_type);
630 blend_type.floating = FALSE; /* values are integers */
631 blend_type.sign = FALSE; /* values are unsigned */
632 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
633 blend_type.width = 8; /* 8-bit ubyte values */
634 blend_type.length = 16; /* 16 elements per vector */
635
636 /*
637 * Generate the function prototype. Any change here must be reflected in
638 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
639 */
640
641 fs_elem_type = lp_build_elem_type(fs_type);
642 fs_vec_type = lp_build_vec_type(fs_type);
643 fs_int_vec_type = lp_build_int_vec_type(fs_type);
644
645 blend_vec_type = lp_build_vec_type(blend_type);
646 blend_int_vec_type = lp_build_int_vec_type(blend_type);
647
648 arg_types[0] = screen->context_ptr_type; /* context */
649 arg_types[1] = LLVMInt32Type(); /* x */
650 arg_types[2] = LLVMInt32Type(); /* y */
651 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
652 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
653 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
654 arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
655 arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
656 arg_types[8] = LLVMInt32Type(); /* c0 */
657 arg_types[9] = LLVMInt32Type(); /* c1 */
658 arg_types[10] = LLVMInt32Type(); /* c2 */
659 /* Note: the step arrays are built as int32[16] but we interpret
660 * them here as int32_vec4[4].
661 */
662 arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
663 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
664 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
665
666 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
667
668 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
669 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
670
671 /* XXX: need to propagate noalias down into color param now we are
672 * passing a pointer-to-pointer?
673 */
674 for(i = 0; i < Elements(arg_types); ++i)
675 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
676 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
677
678 context_ptr = LLVMGetParam(variant->function, 0);
679 x = LLVMGetParam(variant->function, 1);
680 y = LLVMGetParam(variant->function, 2);
681 a0_ptr = LLVMGetParam(variant->function, 3);
682 dadx_ptr = LLVMGetParam(variant->function, 4);
683 dady_ptr = LLVMGetParam(variant->function, 5);
684 color_ptr_ptr = LLVMGetParam(variant->function, 6);
685 depth_ptr = LLVMGetParam(variant->function, 7);
686 c0 = LLVMGetParam(variant->function, 8);
687 c1 = LLVMGetParam(variant->function, 9);
688 c2 = LLVMGetParam(variant->function, 10);
689 step0_ptr = LLVMGetParam(variant->function, 11);
690 step1_ptr = LLVMGetParam(variant->function, 12);
691 step2_ptr = LLVMGetParam(variant->function, 13);
692
693 lp_build_name(context_ptr, "context");
694 lp_build_name(x, "x");
695 lp_build_name(y, "y");
696 lp_build_name(a0_ptr, "a0");
697 lp_build_name(dadx_ptr, "dadx");
698 lp_build_name(dady_ptr, "dady");
699 lp_build_name(color_ptr_ptr, "color_ptr");
700 lp_build_name(depth_ptr, "depth");
701 lp_build_name(c0, "c0");
702 lp_build_name(c1, "c1");
703 lp_build_name(c2, "c2");
704 lp_build_name(step0_ptr, "step0");
705 lp_build_name(step1_ptr, "step1");
706 lp_build_name(step2_ptr, "step2");
707
708 /*
709 * Function body
710 */
711
712 block = LLVMAppendBasicBlock(variant->function, "entry");
713 builder = LLVMCreateBuilder();
714 LLVMPositionBuilderAtEnd(builder, block);
715
716 generate_pos0(builder, x, y, &x0, &y0);
717
718 lp_build_interp_soa_init(&interp,
719 shader->base.tokens,
720 key->flatshade,
721 builder, fs_type,
722 a0_ptr, dadx_ptr, dady_ptr,
723 x0, y0);
724
725 /* code generated texture sampling */
726 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
727
728 /* loop over quads in the block */
729 for(i = 0; i < num_fs; ++i) {
730 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
731 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
732 LLVMValueRef depth_ptr_i;
733 int cbuf;
734
735 if(i != 0)
736 lp_build_interp_soa_update(&interp, i);
737
738 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
739
740 generate_fs(lp, shader, key,
741 builder,
742 fs_type,
743 context_ptr,
744 i,
745 &interp,
746 sampler,
747 &fs_mask[i], /* output */
748 out_color,
749 depth_ptr_i,
750 c0, c1, c2,
751 step0_ptr, step1_ptr, step2_ptr);
752
753 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
754 for(chan = 0; chan < NUM_CHANNELS; ++chan)
755 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
756 }
757
758 sampler->destroy(sampler);
759
760 /* Loop over color outputs / color buffers to do blending.
761 */
762 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
763 LLVMValueRef color_ptr;
764 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
765
766 /*
767 * Convert the fs's output color and mask to fit to the blending type.
768 */
769 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
770 lp_build_conv(builder, fs_type, blend_type,
771 fs_out_color[cbuf][chan], num_fs,
772 &blend_in_color[chan], 1);
773 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
774 }
775
776 lp_build_conv_mask(builder, fs_type, blend_type,
777 fs_mask, num_fs,
778 &blend_mask, 1);
779
780 color_ptr = LLVMBuildLoad(builder,
781 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
782 "");
783 lp_build_name(color_ptr, "color_ptr%d", cbuf);
784
785 /*
786 * Blending.
787 */
788 generate_blend(&key->blend,
789 builder,
790 blend_type,
791 context_ptr,
792 blend_mask,
793 blend_in_color,
794 color_ptr);
795 }
796
797 LLVMBuildRetVoid(builder);
798
799 LLVMDisposeBuilder(builder);
800
801
802 /* Verify the LLVM IR. If invalid, dump and abort */
803 #ifdef DEBUG
804 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
805 if (1)
806 LLVMDumpValue(variant->function);
807 abort();
808 }
809 #endif
810
811 /* Apply optimizations to LLVM IR */
812 if (1)
813 LLVMRunFunctionPassManager(screen->pass, variant->function);
814
815 if (LP_DEBUG & DEBUG_JIT) {
816 /* Print the LLVM IR to stderr */
817 LLVMDumpValue(variant->function);
818 debug_printf("\n");
819 }
820
821 /*
822 * Translate the LLVM IR into machine code.
823 */
824 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
825
826 if (LP_DEBUG & DEBUG_ASM)
827 lp_disassemble(variant->jit_function);
828
829 variant->next = shader->variants;
830 shader->variants = variant;
831
832 return variant;
833 }
834
835
836 void *
837 llvmpipe_create_fs_state(struct pipe_context *pipe,
838 const struct pipe_shader_state *templ)
839 {
840 struct lp_fragment_shader *shader;
841
842 shader = CALLOC_STRUCT(lp_fragment_shader);
843 if (!shader)
844 return NULL;
845
846 /* get/save the summary info for this shader */
847 tgsi_scan_shader(templ->tokens, &shader->info);
848
849 /* we need to keep a local copy of the tokens */
850 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
851
852 return shader;
853 }
854
855
856 void
857 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
858 {
859 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
860
861 if (llvmpipe->fs == fs)
862 return;
863
864 draw_flush(llvmpipe->draw);
865
866 llvmpipe->fs = fs;
867
868 llvmpipe->dirty |= LP_NEW_FS;
869 }
870
871
872 void
873 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
874 {
875 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
876 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
877 struct lp_fragment_shader *shader = fs;
878 struct lp_fragment_shader_variant *variant;
879
880 assert(fs != llvmpipe->fs);
881 (void) llvmpipe;
882
883 variant = shader->variants;
884 while(variant) {
885 struct lp_fragment_shader_variant *next = variant->next;
886
887 if(variant->function) {
888 if(variant->jit_function)
889 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
890 LLVMDeleteFunction(variant->function);
891 }
892
893 FREE(variant);
894
895 variant = next;
896 }
897
898 FREE((void *) shader->base.tokens);
899 FREE(shader);
900 }
901
902
903
904 void
905 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
906 uint shader, uint index,
907 const struct pipe_constant_buffer *constants)
908 {
909 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
910 struct pipe_buffer *buffer = constants ? constants->buffer : NULL;
911 unsigned size = buffer ? buffer->size : 0;
912 const void *data = buffer ? llvmpipe_buffer(buffer)->data : NULL;
913
914 assert(shader < PIPE_SHADER_TYPES);
915 assert(index == 0);
916
917 if(llvmpipe->constants[shader].buffer == buffer)
918 return;
919
920 draw_flush(llvmpipe->draw);
921
922 /* note: reference counting */
923 pipe_buffer_reference(&llvmpipe->constants[shader].buffer, buffer);
924
925 if(shader == PIPE_SHADER_VERTEX) {
926 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX,
927 data, size);
928 }
929
930 llvmpipe->dirty |= LP_NEW_CONSTANTS;
931 }
932
933
934 /**
935 * We need to generate several variants of the fragment pipeline to match
936 * all the combinations of the contributing state atoms.
937 *
938 * TODO: there is actually no reason to tie this to context state -- the
939 * generated code could be cached globally in the screen.
940 */
941 static void
942 make_variant_key(struct llvmpipe_context *lp,
943 struct lp_fragment_shader *shader,
944 struct lp_fragment_shader_variant_key *key)
945 {
946 unsigned i;
947
948 memset(key, 0, sizeof *key);
949
950 if(lp->framebuffer.zsbuf &&
951 lp->depth_stencil->depth.enabled) {
952 key->zsbuf_format = lp->framebuffer.zsbuf->format;
953 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
954 }
955
956 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
957 if(key->alpha.enabled)
958 key->alpha.func = lp->depth_stencil->alpha.func;
959 /* alpha.ref_value is passed in jit_context */
960
961 key->flatshade = lp->rasterizer->flatshade;
962
963 if (lp->framebuffer.nr_cbufs) {
964 memcpy(&key->blend, lp->blend, sizeof key->blend);
965 }
966
967 key->nr_cbufs = lp->framebuffer.nr_cbufs;
968 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
969 const struct util_format_description *format_desc;
970 unsigned chan;
971
972 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
973 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
974 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
975
976 /* mask out color channels not present in the color buffer.
977 * Should be simple to incorporate per-cbuf writemasks:
978 */
979 for(chan = 0; chan < 4; ++chan) {
980 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
981
982 if(swizzle <= UTIL_FORMAT_SWIZZLE_W)
983 key->cbuf_blend[i].colormask |= (1 << chan);
984 }
985 }
986
987 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
988 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
989 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
990 }
991
992
993 void
994 llvmpipe_update_fs(struct llvmpipe_context *lp)
995 {
996 struct lp_fragment_shader *shader = lp->fs;
997 struct lp_fragment_shader_variant_key key;
998 struct lp_fragment_shader_variant *variant;
999
1000 make_variant_key(lp, shader, &key);
1001
1002 variant = shader->variants;
1003 while(variant) {
1004 if(memcmp(&variant->key, &key, sizeof key) == 0)
1005 break;
1006
1007 variant = variant->next;
1008 }
1009
1010 if(!variant)
1011 variant = generate_fragment(lp, shader, &key);
1012
1013 shader->current = variant;
1014
1015 lp_setup_set_fs_function(lp->setup,
1016 shader->current->jit_function);
1017 }