llvmpipe: fix blend debug strings
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include "pipe/p_defines.h"
62 #include "util/u_memory.h"
63 #include "util/u_format.h"
64 #include "util/u_debug_dump.h"
65 #include "pipe/internal/p_winsys_screen.h"
66 #include "pipe/p_shader_tokens.h"
67 #include "draw/draw_context.h"
68 #include "tgsi/tgsi_dump.h"
69 #include "tgsi/tgsi_scan.h"
70 #include "tgsi/tgsi_parse.h"
71 #include "lp_bld_type.h"
72 #include "lp_bld_const.h"
73 #include "lp_bld_conv.h"
74 #include "lp_bld_intr.h"
75 #include "lp_bld_logic.h"
76 #include "lp_bld_depth.h"
77 #include "lp_bld_interp.h"
78 #include "lp_bld_tgsi.h"
79 #include "lp_bld_alpha.h"
80 #include "lp_bld_blend.h"
81 #include "lp_bld_swizzle.h"
82 #include "lp_bld_flow.h"
83 #include "lp_bld_debug.h"
84 #include "lp_screen.h"
85 #include "lp_context.h"
86 #include "lp_buffer.h"
87 #include "lp_setup.h"
88 #include "lp_state.h"
89 #include "lp_tex_sample.h"
90 #include "lp_debug.h"
91
92
93 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
94 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
95
96
97 /*
98 * Derive from the quad's upper left scalar coordinates the coordinates for
99 * all other quad pixels
100 */
101 static void
102 generate_pos0(LLVMBuilderRef builder,
103 LLVMValueRef x,
104 LLVMValueRef y,
105 LLVMValueRef *x0,
106 LLVMValueRef *y0)
107 {
108 LLVMTypeRef int_elem_type = LLVMInt32Type();
109 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
110 LLVMTypeRef elem_type = LLVMFloatType();
111 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
112 LLVMValueRef x_offsets[QUAD_SIZE];
113 LLVMValueRef y_offsets[QUAD_SIZE];
114 unsigned i;
115
116 x = lp_build_broadcast(builder, int_vec_type, x);
117 y = lp_build_broadcast(builder, int_vec_type, y);
118
119 for(i = 0; i < QUAD_SIZE; ++i) {
120 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
121 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
122 }
123
124 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
125 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
126
127 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
128 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
129 }
130
131
132 /**
133 * Generate the depth test.
134 */
135 static void
136 generate_depth(LLVMBuilderRef builder,
137 const struct lp_fragment_shader_variant_key *key,
138 struct lp_type src_type,
139 struct lp_build_mask_context *mask,
140 LLVMValueRef src,
141 LLVMValueRef dst_ptr)
142 {
143 const struct util_format_description *format_desc;
144 struct lp_type dst_type;
145
146 if(!key->depth.enabled)
147 return;
148
149 format_desc = util_format_description(key->zsbuf_format);
150 assert(format_desc);
151
152 /* Pick the depth type. */
153 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
154
155 /* FIXME: Cope with a depth test type with a different bit width. */
156 assert(dst_type.width == src_type.width);
157 assert(dst_type.length == src_type.length);
158
159 #if 1
160 src = lp_build_clamped_float_to_unsigned_norm(builder,
161 src_type,
162 dst_type.width,
163 src);
164 #else
165 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
166 #endif
167
168 lp_build_depth_test(builder,
169 &key->depth,
170 dst_type,
171 format_desc,
172 mask,
173 src,
174 dst_ptr);
175 }
176
177
178 /**
179 * Generate the fragment shader, depth/stencil test, and alpha tests.
180 */
181 static void
182 generate_fs(struct llvmpipe_context *lp,
183 struct lp_fragment_shader *shader,
184 const struct lp_fragment_shader_variant_key *key,
185 LLVMBuilderRef builder,
186 struct lp_type type,
187 LLVMValueRef context_ptr,
188 unsigned i,
189 const struct lp_build_interp_soa_context *interp,
190 struct lp_build_sampler_soa *sampler,
191 LLVMValueRef *pmask,
192 LLVMValueRef *color,
193 LLVMValueRef depth_ptr)
194 {
195 const struct tgsi_token *tokens = shader->base.tokens;
196 LLVMTypeRef elem_type;
197 LLVMTypeRef vec_type;
198 LLVMTypeRef int_vec_type;
199 LLVMValueRef consts_ptr;
200 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
201 LLVMValueRef z = interp->pos[2];
202 struct lp_build_flow_context *flow;
203 struct lp_build_mask_context mask;
204 boolean early_depth_test;
205 unsigned attrib;
206 unsigned chan;
207
208 elem_type = lp_build_elem_type(type);
209 vec_type = lp_build_vec_type(type);
210 int_vec_type = lp_build_int_vec_type(type);
211
212 consts_ptr = lp_jit_context_constants(builder, context_ptr);
213
214 flow = lp_build_flow_create(builder);
215
216 memset(outputs, 0, sizeof outputs);
217
218 lp_build_flow_scope_begin(flow);
219
220 /* Declare the color and z variables */
221 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
222 color[chan] = LLVMGetUndef(vec_type);
223 lp_build_flow_scope_declare(flow, &color[chan]);
224 }
225 lp_build_flow_scope_declare(flow, &z);
226
227 lp_build_mask_begin(&mask, flow, type, *pmask);
228
229 early_depth_test =
230 key->depth.enabled &&
231 !key->alpha.enabled &&
232 !shader->info.uses_kill &&
233 !shader->info.writes_z;
234
235 if(early_depth_test)
236 generate_depth(builder, key,
237 type, &mask,
238 z, depth_ptr);
239
240 lp_build_tgsi_soa(builder, tokens, type, &mask,
241 consts_ptr, interp->pos, interp->inputs,
242 outputs, sampler);
243
244 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
245 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
246 if(outputs[attrib][chan]) {
247 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
248
249 switch (shader->info.output_semantic_name[attrib]) {
250 case TGSI_SEMANTIC_COLOR:
251 {
252 unsigned cbuf = shader->info.output_semantic_index[attrib];
253
254 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
255
256 /* Alpha test */
257 /* XXX: should the alpha reference value be passed separately? */
258 if(cbuf == 0 && chan == 3) {
259 LLVMValueRef alpha = outputs[attrib][chan];
260 LLVMValueRef alpha_ref_value;
261 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
262 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
263 lp_build_alpha_test(builder, &key->alpha, type,
264 &mask, alpha, alpha_ref_value);
265 }
266
267 if(cbuf == 0)
268 color[chan] = outputs[attrib][chan];
269
270 break;
271 }
272
273 case TGSI_SEMANTIC_POSITION:
274 if(chan == 2)
275 z = outputs[attrib][chan];
276 break;
277 }
278 }
279 }
280 }
281
282 if(!early_depth_test)
283 generate_depth(builder, key,
284 type, &mask,
285 z, depth_ptr);
286
287 lp_build_mask_end(&mask);
288
289 lp_build_flow_scope_end(flow);
290
291 lp_build_flow_destroy(flow);
292
293 *pmask = mask.value;
294
295 }
296
297
298 /**
299 * Generate color blending and color output.
300 */
301 static void
302 generate_blend(const struct pipe_blend_state *blend,
303 LLVMBuilderRef builder,
304 struct lp_type type,
305 LLVMValueRef context_ptr,
306 LLVMValueRef mask,
307 LLVMValueRef *src,
308 LLVMValueRef dst_ptr)
309 {
310 struct lp_build_context bld;
311 struct lp_build_flow_context *flow;
312 struct lp_build_mask_context mask_ctx;
313 LLVMTypeRef vec_type;
314 LLVMTypeRef int_vec_type;
315 LLVMValueRef const_ptr;
316 LLVMValueRef con[4];
317 LLVMValueRef dst[4];
318 LLVMValueRef res[4];
319 unsigned chan;
320
321 lp_build_context_init(&bld, builder, type);
322
323 flow = lp_build_flow_create(builder);
324 lp_build_mask_begin(&mask_ctx, flow, type, mask);
325
326 vec_type = lp_build_vec_type(type);
327 int_vec_type = lp_build_int_vec_type(type);
328
329 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
330 const_ptr = LLVMBuildBitCast(builder, const_ptr,
331 LLVMPointerType(vec_type, 0), "");
332
333 for(chan = 0; chan < 4; ++chan) {
334 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
335 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
336
337 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
338
339 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
340 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
341 }
342
343 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
344
345 for(chan = 0; chan < 4; ++chan) {
346 if(blend->colormask & (1 << chan)) {
347 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
348 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
349 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
350 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
351 }
352 }
353
354 lp_build_mask_end(&mask_ctx);
355 lp_build_flow_destroy(flow);
356 }
357
358
359 /**
360 * Generate the runtime callable function for the whole fragment pipeline.
361 * Note that the function which we generate operates on a block of 16
362 * pixels at at time. The block contains 2x2 quads. Each quad contains
363 * 2x2 pixels.
364 */
365 static struct lp_fragment_shader_variant *
366 generate_fragment(struct llvmpipe_context *lp,
367 struct lp_fragment_shader *shader,
368 const struct lp_fragment_shader_variant_key *key)
369 {
370 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
371 struct lp_fragment_shader_variant *variant;
372 struct lp_type fs_type;
373 struct lp_type blend_type;
374 LLVMTypeRef fs_elem_type;
375 LLVMTypeRef fs_vec_type;
376 LLVMTypeRef fs_int_vec_type;
377 LLVMTypeRef blend_vec_type;
378 LLVMTypeRef blend_int_vec_type;
379 LLVMTypeRef arg_types[9];
380 LLVMTypeRef func_type;
381 LLVMValueRef context_ptr;
382 LLVMValueRef x;
383 LLVMValueRef y;
384 LLVMValueRef a0_ptr;
385 LLVMValueRef dadx_ptr;
386 LLVMValueRef dady_ptr;
387 LLVMValueRef mask_ptr;
388 LLVMValueRef color_ptr;
389 LLVMValueRef depth_ptr;
390 LLVMBasicBlockRef block;
391 LLVMBuilderRef builder;
392 LLVMValueRef x0;
393 LLVMValueRef y0;
394 struct lp_build_sampler_soa *sampler;
395 struct lp_build_interp_soa_context interp;
396 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
397 LLVMValueRef fs_out_color[NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
398 LLVMValueRef blend_mask;
399 LLVMValueRef blend_in_color[NUM_CHANNELS];
400 unsigned num_fs;
401 unsigned i;
402 unsigned chan;
403
404 if (LP_DEBUG & DEBUG_JIT) {
405 tgsi_dump(shader->base.tokens, 0);
406 if(key->depth.enabled) {
407 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
408 debug_printf("depth.writemask = %u\n", key->depth.writemask);
409 }
410 if(key->alpha.enabled) {
411 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
412 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
413 }
414 if(key->blend.logicop_enable) {
415 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
416 }
417 else if(key->blend.blend_enable) {
418 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
419 debug_printf("blend.rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
420 debug_printf("blend.rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
421 debug_printf("blend.alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
422 debug_printf("blend.alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
423 debug_printf("blend.alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
424 }
425 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
426 }
427
428 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
429 if(!variant)
430 return NULL;
431
432 variant->shader = shader;
433 memcpy(&variant->key, key, sizeof *key);
434
435 /* TODO: actually pick these based on the fs and color buffer
436 * characteristics. */
437
438 memset(&fs_type, 0, sizeof fs_type);
439 fs_type.floating = TRUE; /* floating point values */
440 fs_type.sign = TRUE; /* values are signed */
441 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
442 fs_type.width = 32; /* 32-bit float */
443 fs_type.length = 4; /* 4 elements per vector */
444 num_fs = 4; /* number of quads per block */
445
446 memset(&blend_type, 0, sizeof blend_type);
447 blend_type.floating = FALSE; /* values are integers */
448 blend_type.sign = FALSE; /* values are unsigned */
449 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
450 blend_type.width = 8; /* 8-bit ubyte values */
451 blend_type.length = 16; /* 16 elements per vector */
452
453 /*
454 * Generate the function prototype. Any change here must be reflected in
455 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
456 */
457
458 fs_elem_type = lp_build_elem_type(fs_type);
459 fs_vec_type = lp_build_vec_type(fs_type);
460 fs_int_vec_type = lp_build_int_vec_type(fs_type);
461
462 blend_vec_type = lp_build_vec_type(blend_type);
463 blend_int_vec_type = lp_build_int_vec_type(blend_type);
464
465 arg_types[0] = screen->context_ptr_type; /* context */
466 arg_types[1] = LLVMInt32Type(); /* x */
467 arg_types[2] = LLVMInt32Type(); /* y */
468 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
469 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
470 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
471 arg_types[6] = LLVMPointerType(fs_int_vec_type, 0); /* mask */
472 arg_types[7] = LLVMPointerType(blend_vec_type, 0); /* color */
473 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
474
475 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
476
477 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
478 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
479 for(i = 0; i < Elements(arg_types); ++i)
480 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
481 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
482
483 context_ptr = LLVMGetParam(variant->function, 0);
484 x = LLVMGetParam(variant->function, 1);
485 y = LLVMGetParam(variant->function, 2);
486 a0_ptr = LLVMGetParam(variant->function, 3);
487 dadx_ptr = LLVMGetParam(variant->function, 4);
488 dady_ptr = LLVMGetParam(variant->function, 5);
489 mask_ptr = LLVMGetParam(variant->function, 6);
490 color_ptr = LLVMGetParam(variant->function, 7);
491 depth_ptr = LLVMGetParam(variant->function, 8);
492
493 lp_build_name(context_ptr, "context");
494 lp_build_name(x, "x");
495 lp_build_name(y, "y");
496 lp_build_name(a0_ptr, "a0");
497 lp_build_name(dadx_ptr, "dadx");
498 lp_build_name(dady_ptr, "dady");
499 lp_build_name(mask_ptr, "mask");
500 lp_build_name(color_ptr, "color");
501 lp_build_name(depth_ptr, "depth");
502
503 /*
504 * Function body
505 */
506
507 block = LLVMAppendBasicBlock(variant->function, "entry");
508 builder = LLVMCreateBuilder();
509 LLVMPositionBuilderAtEnd(builder, block);
510
511 generate_pos0(builder, x, y, &x0, &y0);
512
513 lp_build_interp_soa_init(&interp, shader->base.tokens, builder, fs_type,
514 a0_ptr, dadx_ptr, dady_ptr,
515 x0, y0);
516
517 /* code generated texture sampling */
518 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
519
520 /* loop over quads in the block */
521 for(i = 0; i < num_fs; ++i) {
522 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
523 LLVMValueRef out_color[NUM_CHANNELS];
524 LLVMValueRef depth_ptr_i;
525
526 if(i != 0)
527 lp_build_interp_soa_update(&interp, i);
528
529 fs_mask[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, mask_ptr, &index, 1, ""), "");
530 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
531
532 generate_fs(lp, shader, key,
533 builder,
534 fs_type,
535 context_ptr,
536 i,
537 &interp,
538 sampler,
539 &fs_mask[i],
540 out_color,
541 depth_ptr_i);
542
543 for(chan = 0; chan < NUM_CHANNELS; ++chan)
544 fs_out_color[chan][i] = out_color[chan];
545 }
546
547 sampler->destroy(sampler);
548
549 /*
550 * Convert the fs's output color and mask to fit to the blending type.
551 */
552
553 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
554 lp_build_conv(builder, fs_type, blend_type,
555 fs_out_color[chan], num_fs,
556 &blend_in_color[chan], 1);
557 lp_build_name(blend_in_color[chan], "color.%c", "rgba"[chan]);
558
559 }
560
561 lp_build_conv_mask(builder, fs_type, blend_type,
562 fs_mask, num_fs,
563 &blend_mask, 1);
564
565 /*
566 * Blending.
567 */
568
569 generate_blend(&key->blend,
570 builder,
571 blend_type,
572 context_ptr,
573 blend_mask,
574 blend_in_color,
575 color_ptr);
576
577 LLVMBuildRetVoid(builder);
578
579 LLVMDisposeBuilder(builder);
580
581 /*
582 * Translate the LLVM IR into machine code.
583 */
584
585 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
586 LLVMDumpValue(variant->function);
587 abort();
588 }
589
590 LLVMRunFunctionPassManager(screen->pass, variant->function);
591
592 if (LP_DEBUG & DEBUG_JIT) {
593 LLVMDumpValue(variant->function);
594 debug_printf("\n");
595 }
596
597 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
598
599 if (LP_DEBUG & DEBUG_ASM)
600 lp_disassemble(variant->jit_function);
601
602 variant->next = shader->variants;
603 shader->variants = variant;
604
605 return variant;
606 }
607
608
609 void *
610 llvmpipe_create_fs_state(struct pipe_context *pipe,
611 const struct pipe_shader_state *templ)
612 {
613 struct lp_fragment_shader *shader;
614
615 shader = CALLOC_STRUCT(lp_fragment_shader);
616 if (!shader)
617 return NULL;
618
619 /* get/save the summary info for this shader */
620 tgsi_scan_shader(templ->tokens, &shader->info);
621
622 /* we need to keep a local copy of the tokens */
623 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
624
625 return shader;
626 }
627
628
629 void
630 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
631 {
632 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
633
634 llvmpipe->fs = (struct lp_fragment_shader *) fs;
635
636 llvmpipe->dirty |= LP_NEW_FS;
637 }
638
639
640 void
641 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
642 {
643 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
644 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
645 struct lp_fragment_shader *shader = fs;
646 struct lp_fragment_shader_variant *variant;
647
648 assert(fs != llvmpipe->fs);
649
650 variant = shader->variants;
651 while(variant) {
652 struct lp_fragment_shader_variant *next = variant->next;
653
654 if(variant->function) {
655 if(variant->jit_function)
656 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
657 LLVMDeleteFunction(variant->function);
658 }
659
660 FREE(variant);
661
662 variant = next;
663 }
664
665 FREE((void *) shader->base.tokens);
666 FREE(shader);
667 }
668
669
670
671 void
672 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
673 uint shader, uint index,
674 const struct pipe_constant_buffer *constants)
675 {
676 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
677 struct pipe_buffer *buffer = constants ? constants->buffer : NULL;
678 unsigned size = buffer ? buffer->size : 0;
679 const void *data = buffer ? llvmpipe_buffer(buffer)->data : NULL;
680
681 assert(shader < PIPE_SHADER_TYPES);
682 assert(index == 0);
683
684 if(llvmpipe->constants[shader].buffer == buffer)
685 return;
686
687 if(shader == PIPE_SHADER_VERTEX)
688 draw_flush(llvmpipe->draw);
689
690 /* note: reference counting */
691 pipe_buffer_reference(&llvmpipe->constants[shader].buffer, buffer);
692
693 if(shader == PIPE_SHADER_VERTEX) {
694 draw_set_mapped_constant_buffer(llvmpipe->draw, data, size);
695 }
696
697 llvmpipe->dirty |= LP_NEW_CONSTANTS;
698 }
699
700
701 /**
702 * We need to generate several variants of the fragment pipeline to match
703 * all the combinations of the contributing state atoms.
704 *
705 * TODO: there is actually no reason to tie this to context state -- the
706 * generated code could be cached globally in the screen.
707 */
708 static void
709 make_variant_key(struct llvmpipe_context *lp,
710 struct lp_fragment_shader *shader,
711 struct lp_fragment_shader_variant_key *key)
712 {
713 unsigned i;
714
715 memset(key, 0, sizeof *key);
716
717 if(lp->framebuffer.zsbuf &&
718 lp->depth_stencil->depth.enabled) {
719 key->zsbuf_format = lp->framebuffer.zsbuf->format;
720 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
721 }
722
723 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
724 if(key->alpha.enabled)
725 key->alpha.func = lp->depth_stencil->alpha.func;
726 /* alpha.ref_value is passed in jit_context */
727
728 if(lp->framebuffer.cbufs[0]) {
729 const struct util_format_description *format_desc;
730 unsigned chan;
731
732 memcpy(&key->blend, lp->blend, sizeof key->blend);
733
734 format_desc = util_format_description(lp->framebuffer.cbufs[0]->format);
735 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
736 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
737
738 /* mask out color channels not present in the color buffer */
739 for(chan = 0; chan < 4; ++chan) {
740 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
741 if(swizzle > 4)
742 key->blend.colormask &= ~(1 << chan);
743 }
744 }
745
746 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
747 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
748 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
749 }
750
751
752 void
753 llvmpipe_update_fs(struct llvmpipe_context *lp)
754 {
755 struct lp_fragment_shader *shader = lp->fs;
756 struct lp_fragment_shader_variant_key key;
757 struct lp_fragment_shader_variant *variant;
758
759 make_variant_key(lp, shader, &key);
760
761 variant = shader->variants;
762 while(variant) {
763 if(memcmp(&variant->key, &key, sizeof key) == 0)
764 break;
765
766 variant = variant->next;
767 }
768
769 if(!variant)
770 variant = generate_fragment(lp, shader, &key);
771
772 shader->current = variant;
773
774 lp_setup_set_fs(lp->setup, shader);
775 }