gallivm/llvmpipe: simplify front/back stencil ref value handling
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - triangle edge in/out testing
35 * - scissor test
36 * - stipple (TBI)
37 * - early depth test
38 * - fragment shader
39 * - alpha test
40 * - depth/stencil test (stencil TBI)
41 * - blending
42 *
43 * This file has only the glue to assemble the fragment pipeline. The actual
44 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
45 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
46 * muster the LLVM JIT execution engine to create a function that follows an
47 * established binary interface and that can be called from C directly.
48 *
49 * A big source of complexity here is that we often want to run different
50 * stages with different precisions and data types and precisions. For example,
51 * the fragment shader needs typically to be done in floats, but the
52 * depth/stencil test and blending is better done in the type that most closely
53 * matches the depth/stencil and color buffer respectively.
54 *
55 * Since the width of a SIMD vector register stays the same regardless of the
56 * element type, different types imply different number of elements, so we must
57 * code generate more instances of the stages with larger types to be able to
58 * feed/consume the stages with smaller types.
59 *
60 * @author Jose Fonseca <jfonseca@vmware.com>
61 */
62
63 #include <limits.h>
64 #include "pipe/p_defines.h"
65 #include "util/u_inlines.h"
66 #include "util/u_memory.h"
67 #include "util/u_format.h"
68 #include "util/u_dump.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_intr.h"
79 #include "gallivm/lp_bld_logic.h"
80 #include "gallivm/lp_bld_depth.h"
81 #include "gallivm/lp_bld_interp.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_alpha.h"
84 #include "gallivm/lp_bld_blend.h"
85 #include "gallivm/lp_bld_swizzle.h"
86 #include "gallivm/lp_bld_flow.h"
87 #include "gallivm/lp_bld_debug.h"
88 #include "lp_buffer.h"
89 #include "lp_context.h"
90 #include "lp_debug.h"
91 #include "lp_perf.h"
92 #include "lp_screen.h"
93 #include "lp_setup.h"
94 #include "lp_state.h"
95 #include "lp_tex_sample.h"
96
97
98 #include <llvm-c/Analysis.h>
99
100
101 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
102 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
103
104
105 /*
106 * Derive from the quad's upper left scalar coordinates the coordinates for
107 * all other quad pixels
108 */
109 static void
110 generate_pos0(LLVMBuilderRef builder,
111 LLVMValueRef x,
112 LLVMValueRef y,
113 LLVMValueRef *x0,
114 LLVMValueRef *y0)
115 {
116 LLVMTypeRef int_elem_type = LLVMInt32Type();
117 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
118 LLVMTypeRef elem_type = LLVMFloatType();
119 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
120 LLVMValueRef x_offsets[QUAD_SIZE];
121 LLVMValueRef y_offsets[QUAD_SIZE];
122 unsigned i;
123
124 x = lp_build_broadcast(builder, int_vec_type, x);
125 y = lp_build_broadcast(builder, int_vec_type, y);
126
127 for(i = 0; i < QUAD_SIZE; ++i) {
128 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
129 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
130 }
131
132 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
133 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
134
135 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
136 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
137 }
138
139
140 /**
141 * Generate the depth /stencil test code.
142 */
143 static void
144 generate_depth_stencil(LLVMBuilderRef builder,
145 const struct lp_fragment_shader_variant_key *key,
146 struct lp_type src_type,
147 struct lp_build_mask_context *mask,
148 LLVMValueRef stencil_refs[2],
149 LLVMValueRef src,
150 LLVMValueRef dst_ptr)
151 {
152 const struct util_format_description *format_desc;
153 struct lp_type dst_type;
154
155 if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
156 return;
157
158 format_desc = util_format_description(key->zsbuf_format);
159 assert(format_desc);
160
161 /*
162 * Depths are expected to be between 0 and 1, even if they are stored in
163 * floats. Setting these bits here will ensure that the lp_build_conv() call
164 * below won't try to unnecessarily clamp the incoming values.
165 */
166 if(src_type.floating) {
167 src_type.sign = FALSE;
168 src_type.norm = TRUE;
169 }
170 else {
171 assert(!src_type.sign);
172 assert(src_type.norm);
173 }
174
175 /* Pick the depth type. */
176 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
177
178 /* FIXME: Cope with a depth test type with a different bit width. */
179 assert(dst_type.width == src_type.width);
180 assert(dst_type.length == src_type.length);
181
182 /* Convert fragment Z from float to integer */
183 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
184
185 dst_ptr = LLVMBuildBitCast(builder,
186 dst_ptr,
187 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
188 lp_build_depth_stencil_test(builder,
189 &key->depth,
190 key->stencil,
191 dst_type,
192 format_desc,
193 mask,
194 stencil_refs,
195 src,
196 dst_ptr);
197 }
198
199
200 /**
201 * Generate the code to do inside/outside triangle testing for the
202 * four pixels in a 2x2 quad. This will set the four elements of the
203 * quad mask vector to 0 or ~0.
204 * \param i which quad of the quad group to test, in [0,3]
205 */
206 static void
207 generate_tri_edge_mask(LLVMBuilderRef builder,
208 unsigned i,
209 LLVMValueRef *mask, /* ivec4, out */
210 LLVMValueRef c0, /* int32 */
211 LLVMValueRef c1, /* int32 */
212 LLVMValueRef c2, /* int32 */
213 LLVMValueRef step0_ptr, /* ivec4 */
214 LLVMValueRef step1_ptr, /* ivec4 */
215 LLVMValueRef step2_ptr) /* ivec4 */
216 {
217 #define OPTIMIZE_IN_OUT_TEST 0
218 #if OPTIMIZE_IN_OUT_TEST
219 struct lp_build_if_state ifctx;
220 LLVMValueRef not_draw_all;
221 #endif
222 struct lp_build_flow_context *flow;
223 struct lp_type i32_type;
224 LLVMTypeRef i32vec4_type, mask_type;
225 LLVMValueRef c0_vec, c1_vec, c2_vec;
226 LLVMValueRef in_out_mask;
227
228 assert(i < 4);
229
230 /* int32 vector type */
231 memset(&i32_type, 0, sizeof i32_type);
232 i32_type.floating = FALSE; /* values are integers */
233 i32_type.sign = TRUE; /* values are signed */
234 i32_type.norm = FALSE; /* values are not normalized */
235 i32_type.width = 32; /* 32-bit int values */
236 i32_type.length = 4; /* 4 elements per vector */
237
238 i32vec4_type = lp_build_int32_vec4_type();
239
240 mask_type = LLVMIntType(32 * 4);
241
242 /*
243 * Use a conditional here to do detailed pixel in/out testing.
244 * We only have to do this if c0 != INT_MIN.
245 */
246 flow = lp_build_flow_create(builder);
247 lp_build_flow_scope_begin(flow);
248
249 {
250 #if OPTIMIZE_IN_OUT_TEST
251 /* not_draw_all = (c0 != INT_MIN) */
252 not_draw_all = LLVMBuildICmp(builder,
253 LLVMIntNE,
254 c0,
255 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
256 "");
257
258 in_out_mask = lp_build_const_int_vec(i32_type, ~0);
259
260
261 lp_build_flow_scope_declare(flow, &in_out_mask);
262
263 /* if (not_draw_all) {... */
264 lp_build_if(&ifctx, flow, builder, not_draw_all);
265 #endif
266 {
267 LLVMValueRef step0_vec, step1_vec, step2_vec;
268 LLVMValueRef m0_vec, m1_vec, m2_vec;
269 LLVMValueRef index, m;
270
271 /* c0_vec = {c0, c0, c0, c0}
272 * Note that we emit this code four times but LLVM optimizes away
273 * three instances of it.
274 */
275 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
276 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
277 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
278 lp_build_name(c0_vec, "edgeconst0vec");
279 lp_build_name(c1_vec, "edgeconst1vec");
280 lp_build_name(c2_vec, "edgeconst2vec");
281
282 /* load step0vec, step1, step2 vec from memory */
283 index = LLVMConstInt(LLVMInt32Type(), i, 0);
284 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
285 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
286 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
287 lp_build_name(step0_vec, "step0vec");
288 lp_build_name(step1_vec, "step1vec");
289 lp_build_name(step2_vec, "step2vec");
290
291 /* m0_vec = step0_ptr[i] > c0_vec */
292 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
293 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
294 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
295
296 /* in_out_mask = m0_vec & m1_vec & m2_vec */
297 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
298 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
299 lp_build_name(in_out_mask, "inoutmaskvec");
300 }
301 #if OPTIMIZE_IN_OUT_TEST
302 lp_build_endif(&ifctx);
303 #endif
304
305 }
306 lp_build_flow_scope_end(flow);
307 lp_build_flow_destroy(flow);
308
309 /* This is the initial alive/dead pixel mask for a quad of four pixels.
310 * It's an int[4] vector with each word set to 0 or ~0.
311 * Words will get cleared when pixels faile the Z test, etc.
312 */
313 *mask = in_out_mask;
314 }
315
316
317 static LLVMValueRef
318 generate_scissor_test(LLVMBuilderRef builder,
319 LLVMValueRef context_ptr,
320 const struct lp_build_interp_soa_context *interp,
321 struct lp_type type)
322 {
323 LLVMTypeRef vec_type = lp_build_vec_type(type);
324 LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1];
325 LLVMValueRef xmin, ymin, xmax, ymax;
326 LLVMValueRef m0, m1, m2, m3, m;
327
328 /* xpos, ypos contain the window coords for the four pixels in the quad */
329 assert(xpos);
330 assert(ypos);
331
332 /* get the current scissor bounds, convert to vectors */
333 xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr);
334 xmin = lp_build_broadcast(builder, vec_type, xmin);
335
336 ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr);
337 ymin = lp_build_broadcast(builder, vec_type, ymin);
338
339 xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr);
340 xmax = lp_build_broadcast(builder, vec_type, xmax);
341
342 ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr);
343 ymax = lp_build_broadcast(builder, vec_type, ymax);
344
345 /* compare the fragment's position coordinates against the scissor bounds */
346 m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin);
347 m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin);
348 m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax);
349 m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax);
350
351 /* AND all the masks together */
352 m = LLVMBuildAnd(builder, m0, m1, "");
353 m = LLVMBuildAnd(builder, m, m2, "");
354 m = LLVMBuildAnd(builder, m, m3, "");
355
356 lp_build_name(m, "scissormask");
357
358 return m;
359 }
360
361
362 static LLVMValueRef
363 build_int32_vec_const(int value)
364 {
365 struct lp_type i32_type;
366
367 memset(&i32_type, 0, sizeof i32_type);
368 i32_type.floating = FALSE; /* values are integers */
369 i32_type.sign = TRUE; /* values are signed */
370 i32_type.norm = FALSE; /* values are not normalized */
371 i32_type.width = 32; /* 32-bit int values */
372 i32_type.length = 4; /* 4 elements per vector */
373 return lp_build_const_int_vec(i32_type, value);
374 }
375
376
377
378 /**
379 * Generate the fragment shader, depth/stencil test, and alpha tests.
380 * \param i which quad in the tile, in range [0,3]
381 * \param do_tri_test if 1, do triangle edge in/out testing
382 */
383 static void
384 generate_fs(struct llvmpipe_context *lp,
385 struct lp_fragment_shader *shader,
386 const struct lp_fragment_shader_variant_key *key,
387 LLVMBuilderRef builder,
388 struct lp_type type,
389 LLVMValueRef context_ptr,
390 unsigned i,
391 const struct lp_build_interp_soa_context *interp,
392 struct lp_build_sampler_soa *sampler,
393 LLVMValueRef *pmask,
394 LLVMValueRef (*color)[4],
395 LLVMValueRef depth_ptr,
396 unsigned do_tri_test,
397 LLVMValueRef c0,
398 LLVMValueRef c1,
399 LLVMValueRef c2,
400 LLVMValueRef step0_ptr,
401 LLVMValueRef step1_ptr,
402 LLVMValueRef step2_ptr)
403 {
404 const struct tgsi_token *tokens = shader->base.tokens;
405 LLVMTypeRef elem_type;
406 LLVMTypeRef vec_type;
407 LLVMTypeRef int_vec_type;
408 LLVMValueRef consts_ptr;
409 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
410 LLVMValueRef z = interp->pos[2];
411 LLVMValueRef stencil_refs[2];
412 struct lp_build_flow_context *flow;
413 struct lp_build_mask_context mask;
414 boolean early_depth_stencil_test;
415 unsigned attrib;
416 unsigned chan;
417 unsigned cbuf;
418
419 assert(i < 4);
420
421 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
422 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
423
424 elem_type = lp_build_elem_type(type);
425 vec_type = lp_build_vec_type(type);
426 int_vec_type = lp_build_int_vec_type(type);
427
428 consts_ptr = lp_jit_context_constants(builder, context_ptr);
429
430 flow = lp_build_flow_create(builder);
431
432 memset(outputs, 0, sizeof outputs);
433
434 lp_build_flow_scope_begin(flow);
435
436 /* Declare the color and z variables */
437 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
438 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
439 color[cbuf][chan] = LLVMGetUndef(vec_type);
440 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
441 }
442 }
443 lp_build_flow_scope_declare(flow, &z);
444
445 /* do triangle edge testing */
446 if (do_tri_test) {
447 generate_tri_edge_mask(builder, i, pmask,
448 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
449 }
450 else {
451 *pmask = build_int32_vec_const(~0);
452 }
453
454 /* 'mask' will control execution based on quad's pixel alive/killed state */
455 lp_build_mask_begin(&mask, flow, type, *pmask);
456
457 if (key->scissor) {
458 LLVMValueRef smask =
459 generate_scissor_test(builder, context_ptr, interp, type);
460 lp_build_mask_update(&mask, smask);
461 }
462
463 early_depth_stencil_test =
464 (key->depth.enabled || key->stencil[0].enabled) &&
465 !key->alpha.enabled &&
466 !shader->info.uses_kill &&
467 !shader->info.writes_z;
468
469 if (early_depth_stencil_test)
470 generate_depth_stencil(builder, key,
471 type, &mask,
472 stencil_refs, z, depth_ptr);
473
474 lp_build_tgsi_soa(builder, tokens, type, &mask,
475 consts_ptr, interp->pos, interp->inputs,
476 outputs, sampler);
477
478 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
479 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
480 if(outputs[attrib][chan]) {
481 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
482 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
483
484 switch (shader->info.output_semantic_name[attrib]) {
485 case TGSI_SEMANTIC_COLOR:
486 {
487 unsigned cbuf = shader->info.output_semantic_index[attrib];
488
489 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
490
491 /* Alpha test */
492 /* XXX: should the alpha reference value be passed separately? */
493 /* XXX: should only test the final assignment to alpha */
494 if(cbuf == 0 && chan == 3) {
495 LLVMValueRef alpha = out;
496 LLVMValueRef alpha_ref_value;
497 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
498 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
499 lp_build_alpha_test(builder, &key->alpha, type,
500 &mask, alpha, alpha_ref_value);
501 }
502
503 color[cbuf][chan] = out;
504 break;
505 }
506
507 case TGSI_SEMANTIC_POSITION:
508 if(chan == 2)
509 z = out;
510 break;
511 }
512 }
513 }
514 }
515
516 if (!early_depth_stencil_test)
517 generate_depth_stencil(builder, key,
518 type, &mask,
519 stencil_refs, z, depth_ptr);
520
521 lp_build_mask_end(&mask);
522
523 lp_build_flow_scope_end(flow);
524
525 lp_build_flow_destroy(flow);
526
527 *pmask = mask.value;
528
529 }
530
531
532 /**
533 * Generate color blending and color output.
534 */
535 static void
536 generate_blend(const struct pipe_blend_state *blend,
537 LLVMBuilderRef builder,
538 struct lp_type type,
539 LLVMValueRef context_ptr,
540 LLVMValueRef mask,
541 LLVMValueRef *src,
542 LLVMValueRef dst_ptr)
543 {
544 struct lp_build_context bld;
545 struct lp_build_flow_context *flow;
546 struct lp_build_mask_context mask_ctx;
547 LLVMTypeRef vec_type;
548 LLVMTypeRef int_vec_type;
549 LLVMValueRef const_ptr;
550 LLVMValueRef con[4];
551 LLVMValueRef dst[4];
552 LLVMValueRef res[4];
553 unsigned chan;
554
555 lp_build_context_init(&bld, builder, type);
556
557 flow = lp_build_flow_create(builder);
558
559 /* we'll use this mask context to skip blending if all pixels are dead */
560 lp_build_mask_begin(&mask_ctx, flow, type, mask);
561
562 vec_type = lp_build_vec_type(type);
563 int_vec_type = lp_build_int_vec_type(type);
564
565 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
566 const_ptr = LLVMBuildBitCast(builder, const_ptr,
567 LLVMPointerType(vec_type, 0), "");
568
569 for(chan = 0; chan < 4; ++chan) {
570 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
571 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
572
573 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
574
575 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
576 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
577 }
578
579 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
580
581 for(chan = 0; chan < 4; ++chan) {
582 if(blend->rt[0].colormask & (1 << chan)) {
583 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
584 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
585 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
586 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
587 }
588 }
589
590 lp_build_mask_end(&mask_ctx);
591 lp_build_flow_destroy(flow);
592 }
593
594
595 /** casting function to avoid compiler warnings */
596 static lp_jit_frag_func
597 cast_voidptr_to_lp_jit_frag_func(void *p)
598 {
599 union {
600 void *v;
601 lp_jit_frag_func f;
602 } tmp;
603 assert(sizeof(tmp.v) == sizeof(tmp.f));
604 tmp.v = p;
605 return tmp.f;
606 }
607
608
609 /**
610 * Generate the runtime callable function for the whole fragment pipeline.
611 * Note that the function which we generate operates on a block of 16
612 * pixels at at time. The block contains 2x2 quads. Each quad contains
613 * 2x2 pixels.
614 */
615 static void
616 generate_fragment(struct llvmpipe_context *lp,
617 struct lp_fragment_shader *shader,
618 struct lp_fragment_shader_variant *variant,
619 unsigned do_tri_test)
620 {
621 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
622 const struct lp_fragment_shader_variant_key *key = &variant->key;
623 struct lp_type fs_type;
624 struct lp_type blend_type;
625 LLVMTypeRef fs_elem_type;
626 LLVMTypeRef fs_vec_type;
627 LLVMTypeRef fs_int_vec_type;
628 LLVMTypeRef blend_vec_type;
629 LLVMTypeRef blend_int_vec_type;
630 LLVMTypeRef arg_types[14];
631 LLVMTypeRef func_type;
632 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
633 LLVMValueRef context_ptr;
634 LLVMValueRef x;
635 LLVMValueRef y;
636 LLVMValueRef a0_ptr;
637 LLVMValueRef dadx_ptr;
638 LLVMValueRef dady_ptr;
639 LLVMValueRef color_ptr_ptr;
640 LLVMValueRef depth_ptr;
641 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
642 LLVMBasicBlockRef block;
643 LLVMBuilderRef builder;
644 LLVMValueRef x0;
645 LLVMValueRef y0;
646 struct lp_build_sampler_soa *sampler;
647 struct lp_build_interp_soa_context interp;
648 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
649 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
650 LLVMValueRef blend_mask;
651 LLVMValueRef blend_in_color[NUM_CHANNELS];
652 LLVMValueRef function;
653 unsigned num_fs;
654 unsigned i;
655 unsigned chan;
656 unsigned cbuf;
657
658
659 /* TODO: actually pick these based on the fs and color buffer
660 * characteristics. */
661
662 memset(&fs_type, 0, sizeof fs_type);
663 fs_type.floating = TRUE; /* floating point values */
664 fs_type.sign = TRUE; /* values are signed */
665 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
666 fs_type.width = 32; /* 32-bit float */
667 fs_type.length = 4; /* 4 elements per vector */
668 num_fs = 4; /* number of quads per block */
669
670 memset(&blend_type, 0, sizeof blend_type);
671 blend_type.floating = FALSE; /* values are integers */
672 blend_type.sign = FALSE; /* values are unsigned */
673 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
674 blend_type.width = 8; /* 8-bit ubyte values */
675 blend_type.length = 16; /* 16 elements per vector */
676
677 /*
678 * Generate the function prototype. Any change here must be reflected in
679 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
680 */
681
682 fs_elem_type = lp_build_elem_type(fs_type);
683 fs_vec_type = lp_build_vec_type(fs_type);
684 fs_int_vec_type = lp_build_int_vec_type(fs_type);
685
686 blend_vec_type = lp_build_vec_type(blend_type);
687 blend_int_vec_type = lp_build_int_vec_type(blend_type);
688
689 arg_types[0] = screen->context_ptr_type; /* context */
690 arg_types[1] = LLVMInt32Type(); /* x */
691 arg_types[2] = LLVMInt32Type(); /* y */
692 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
693 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
694 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
695 arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
696 arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
697 arg_types[8] = LLVMInt32Type(); /* c0 */
698 arg_types[9] = LLVMInt32Type(); /* c1 */
699 arg_types[10] = LLVMInt32Type(); /* c2 */
700 /* Note: the step arrays are built as int32[16] but we interpret
701 * them here as int32_vec4[4].
702 */
703 arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
704 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
705 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
706
707 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
708
709 function = LLVMAddFunction(screen->module, "shader", func_type);
710 LLVMSetFunctionCallConv(function, LLVMCCallConv);
711
712 variant->function[do_tri_test] = function;
713
714
715 /* XXX: need to propagate noalias down into color param now we are
716 * passing a pointer-to-pointer?
717 */
718 for(i = 0; i < Elements(arg_types); ++i)
719 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
720 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
721
722 context_ptr = LLVMGetParam(function, 0);
723 x = LLVMGetParam(function, 1);
724 y = LLVMGetParam(function, 2);
725 a0_ptr = LLVMGetParam(function, 3);
726 dadx_ptr = LLVMGetParam(function, 4);
727 dady_ptr = LLVMGetParam(function, 5);
728 color_ptr_ptr = LLVMGetParam(function, 6);
729 depth_ptr = LLVMGetParam(function, 7);
730 c0 = LLVMGetParam(function, 8);
731 c1 = LLVMGetParam(function, 9);
732 c2 = LLVMGetParam(function, 10);
733 step0_ptr = LLVMGetParam(function, 11);
734 step1_ptr = LLVMGetParam(function, 12);
735 step2_ptr = LLVMGetParam(function, 13);
736
737 lp_build_name(context_ptr, "context");
738 lp_build_name(x, "x");
739 lp_build_name(y, "y");
740 lp_build_name(a0_ptr, "a0");
741 lp_build_name(dadx_ptr, "dadx");
742 lp_build_name(dady_ptr, "dady");
743 lp_build_name(color_ptr_ptr, "color_ptr");
744 lp_build_name(depth_ptr, "depth");
745 lp_build_name(c0, "c0");
746 lp_build_name(c1, "c1");
747 lp_build_name(c2, "c2");
748 lp_build_name(step0_ptr, "step0");
749 lp_build_name(step1_ptr, "step1");
750 lp_build_name(step2_ptr, "step2");
751
752 /*
753 * Function body
754 */
755
756 block = LLVMAppendBasicBlock(function, "entry");
757 builder = LLVMCreateBuilder();
758 LLVMPositionBuilderAtEnd(builder, block);
759
760 generate_pos0(builder, x, y, &x0, &y0);
761
762 lp_build_interp_soa_init(&interp,
763 shader->base.tokens,
764 key->flatshade,
765 builder, fs_type,
766 a0_ptr, dadx_ptr, dady_ptr,
767 x0, y0);
768
769 /* code generated texture sampling */
770 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
771
772 /* loop over quads in the block */
773 for(i = 0; i < num_fs; ++i) {
774 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
775 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
776 LLVMValueRef depth_ptr_i;
777 int cbuf;
778
779 if(i != 0)
780 lp_build_interp_soa_update(&interp, i);
781
782 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
783
784 generate_fs(lp, shader, key,
785 builder,
786 fs_type,
787 context_ptr,
788 i,
789 &interp,
790 sampler,
791 &fs_mask[i], /* output */
792 out_color,
793 depth_ptr_i,
794 do_tri_test,
795 c0, c1, c2,
796 step0_ptr, step1_ptr, step2_ptr);
797
798 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
799 for(chan = 0; chan < NUM_CHANNELS; ++chan)
800 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
801 }
802
803 sampler->destroy(sampler);
804
805 /* Loop over color outputs / color buffers to do blending.
806 */
807 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
808 LLVMValueRef color_ptr;
809 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
810
811 /*
812 * Convert the fs's output color and mask to fit to the blending type.
813 */
814 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
815 lp_build_conv(builder, fs_type, blend_type,
816 fs_out_color[cbuf][chan], num_fs,
817 &blend_in_color[chan], 1);
818 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
819 }
820
821 lp_build_conv_mask(builder, fs_type, blend_type,
822 fs_mask, num_fs,
823 &blend_mask, 1);
824
825 color_ptr = LLVMBuildLoad(builder,
826 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
827 "");
828 lp_build_name(color_ptr, "color_ptr%d", cbuf);
829
830 /*
831 * Blending.
832 */
833 generate_blend(&key->blend,
834 builder,
835 blend_type,
836 context_ptr,
837 blend_mask,
838 blend_in_color,
839 color_ptr);
840 }
841
842 LLVMBuildRetVoid(builder);
843
844 LLVMDisposeBuilder(builder);
845
846
847 /* Verify the LLVM IR. If invalid, dump and abort */
848 #ifdef DEBUG
849 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
850 if (1)
851 LLVMDumpValue(function);
852 abort();
853 }
854 #endif
855
856 /* Apply optimizations to LLVM IR */
857 if (1)
858 LLVMRunFunctionPassManager(screen->pass, function);
859
860 if (LP_DEBUG & DEBUG_JIT) {
861 /* Print the LLVM IR to stderr */
862 LLVMDumpValue(function);
863 debug_printf("\n");
864 }
865
866 /*
867 * Translate the LLVM IR into machine code.
868 */
869 {
870 void *f = LLVMGetPointerToGlobal(screen->engine, function);
871
872 variant->jit_function[do_tri_test] = cast_voidptr_to_lp_jit_frag_func(f);
873
874 if (LP_DEBUG & DEBUG_ASM)
875 lp_disassemble(f);
876 }
877 }
878
879
880 static struct lp_fragment_shader_variant *
881 generate_variant(struct llvmpipe_context *lp,
882 struct lp_fragment_shader *shader,
883 const struct lp_fragment_shader_variant_key *key)
884 {
885 struct lp_fragment_shader_variant *variant;
886
887 if (LP_DEBUG & DEBUG_JIT) {
888 unsigned i;
889
890 tgsi_dump(shader->base.tokens, 0);
891 if(key->depth.enabled) {
892 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
893 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
894 debug_printf("depth.writemask = %u\n", key->depth.writemask);
895 }
896 if(key->alpha.enabled) {
897 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
898 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
899 }
900 if(key->blend.logicop_enable) {
901 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
902 }
903 else if(key->blend.rt[0].blend_enable) {
904 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
905 debug_printf("rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
906 debug_printf("rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
907 debug_printf("alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
908 debug_printf("alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
909 debug_printf("alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
910 }
911 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
912 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
913 if(key->sampler[i].format) {
914 debug_printf("sampler[%u] = \n", i);
915 debug_printf(" .format = %s\n",
916 util_format_name(key->sampler[i].format));
917 debug_printf(" .target = %s\n",
918 util_dump_tex_target(key->sampler[i].target, TRUE));
919 debug_printf(" .pot = %u %u %u\n",
920 key->sampler[i].pot_width,
921 key->sampler[i].pot_height,
922 key->sampler[i].pot_depth);
923 debug_printf(" .wrap = %s %s %s\n",
924 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
925 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
926 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
927 debug_printf(" .min_img_filter = %s\n",
928 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
929 debug_printf(" .min_mip_filter = %s\n",
930 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
931 debug_printf(" .mag_img_filter = %s\n",
932 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
933 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
934 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
935 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
936 }
937 }
938 }
939
940 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
941 if(!variant)
942 return NULL;
943
944 variant->shader = shader;
945 memcpy(&variant->key, key, sizeof *key);
946
947 generate_fragment(lp, shader, variant, 0);
948 generate_fragment(lp, shader, variant, 1);
949
950 /* insert new variant into linked list */
951 variant->next = shader->variants;
952 shader->variants = variant;
953
954 return variant;
955 }
956
957
958 void *
959 llvmpipe_create_fs_state(struct pipe_context *pipe,
960 const struct pipe_shader_state *templ)
961 {
962 struct lp_fragment_shader *shader;
963
964 shader = CALLOC_STRUCT(lp_fragment_shader);
965 if (!shader)
966 return NULL;
967
968 /* get/save the summary info for this shader */
969 tgsi_scan_shader(templ->tokens, &shader->info);
970
971 /* we need to keep a local copy of the tokens */
972 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
973
974 return shader;
975 }
976
977
978 void
979 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
980 {
981 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
982
983 if (llvmpipe->fs == fs)
984 return;
985
986 draw_flush(llvmpipe->draw);
987
988 llvmpipe->fs = fs;
989
990 llvmpipe->dirty |= LP_NEW_FS;
991 }
992
993
994 void
995 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
996 {
997 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
998 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
999 struct lp_fragment_shader *shader = fs;
1000 struct lp_fragment_shader_variant *variant;
1001
1002 assert(fs != llvmpipe->fs);
1003 (void) llvmpipe;
1004
1005 /*
1006 * XXX: we need to flush the context until we have some sort of reference
1007 * counting in fragment shaders as they may still be binned
1008 */
1009 draw_flush(llvmpipe->draw);
1010 lp_setup_flush(llvmpipe->setup, 0);
1011
1012 variant = shader->variants;
1013 while(variant) {
1014 struct lp_fragment_shader_variant *next = variant->next;
1015 unsigned i;
1016
1017 for (i = 0; i < Elements(variant->function); i++) {
1018 if (variant->function[i]) {
1019 if (variant->jit_function[i])
1020 LLVMFreeMachineCodeForFunction(screen->engine,
1021 variant->function[i]);
1022 LLVMDeleteFunction(variant->function[i]);
1023 }
1024 }
1025
1026 FREE(variant);
1027
1028 variant = next;
1029 }
1030
1031 FREE((void *) shader->base.tokens);
1032 FREE(shader);
1033 }
1034
1035
1036
1037 void
1038 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1039 uint shader, uint index,
1040 struct pipe_buffer *constants)
1041 {
1042 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1043 unsigned size = constants ? constants->size : 0;
1044 const void *data = constants ? llvmpipe_buffer(constants)->data : NULL;
1045
1046 assert(shader < PIPE_SHADER_TYPES);
1047 assert(index == 0);
1048
1049 if(llvmpipe->constants[shader] == constants)
1050 return;
1051
1052 draw_flush(llvmpipe->draw);
1053
1054 /* note: reference counting */
1055 pipe_buffer_reference(&llvmpipe->constants[shader], constants);
1056
1057 if(shader == PIPE_SHADER_VERTEX) {
1058 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX, 0,
1059 data, size);
1060 }
1061
1062 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1063 }
1064
1065
1066 /**
1067 * We need to generate several variants of the fragment pipeline to match
1068 * all the combinations of the contributing state atoms.
1069 *
1070 * TODO: there is actually no reason to tie this to context state -- the
1071 * generated code could be cached globally in the screen.
1072 */
1073 static void
1074 make_variant_key(struct llvmpipe_context *lp,
1075 struct lp_fragment_shader *shader,
1076 struct lp_fragment_shader_variant_key *key)
1077 {
1078 unsigned i;
1079
1080 memset(key, 0, sizeof *key);
1081
1082 if (lp->framebuffer.zsbuf) {
1083 if (lp->depth_stencil->depth.enabled) {
1084 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1085 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1086 }
1087 if (lp->depth_stencil->stencil[0].enabled) {
1088 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1089 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1090 }
1091 }
1092
1093 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1094 if(key->alpha.enabled)
1095 key->alpha.func = lp->depth_stencil->alpha.func;
1096 /* alpha.ref_value is passed in jit_context */
1097
1098 key->flatshade = lp->rasterizer->flatshade;
1099 key->scissor = lp->rasterizer->scissor;
1100
1101 if (lp->framebuffer.nr_cbufs) {
1102 memcpy(&key->blend, lp->blend, sizeof key->blend);
1103 }
1104
1105 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1106 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1107 const struct util_format_description *format_desc;
1108 unsigned chan;
1109
1110 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1111 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
1112 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
1113
1114 /* mask out color channels not present in the color buffer.
1115 * Should be simple to incorporate per-cbuf writemasks:
1116 */
1117 for(chan = 0; chan < 4; ++chan) {
1118 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1119
1120 if(swizzle <= UTIL_FORMAT_SWIZZLE_W)
1121 key->blend.rt[0].colormask |= (1 << chan);
1122 }
1123 }
1124
1125 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1126 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1127 lp_sampler_static_state(&key->sampler[i], lp->fragment_sampler_views[i]->texture, lp->sampler[i]);
1128 }
1129
1130
1131 /**
1132 * Update fragment state. This is called just prior to drawing
1133 * something when some fragment-related state has changed.
1134 */
1135 void
1136 llvmpipe_update_fs(struct llvmpipe_context *lp)
1137 {
1138 struct lp_fragment_shader *shader = lp->fs;
1139 struct lp_fragment_shader_variant_key key;
1140 struct lp_fragment_shader_variant *variant;
1141 boolean opaque;
1142
1143 make_variant_key(lp, shader, &key);
1144
1145 variant = shader->variants;
1146 while(variant) {
1147 if(memcmp(&variant->key, &key, sizeof key) == 0)
1148 break;
1149
1150 variant = variant->next;
1151 }
1152
1153 if (!variant) {
1154 int64_t t0, t1;
1155 int64_t dt;
1156 t0 = os_time_get();
1157
1158 variant = generate_variant(lp, shader, &key);
1159
1160 t1 = os_time_get();
1161 dt = t1 - t0;
1162 LP_COUNT_ADD(llvm_compile_time, dt);
1163 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1164 }
1165
1166 shader->current = variant;
1167
1168 /* TODO: put this in the variant */
1169 /* TODO: most of these can be relaxed, in particular the colormask */
1170 opaque = !key.blend.logicop_enable &&
1171 !key.blend.rt[0].blend_enable &&
1172 key.blend.rt[0].colormask == 0xf &&
1173 !key.stencil[0].enabled &&
1174 !key.alpha.enabled &&
1175 !key.depth.enabled &&
1176 !key.scissor &&
1177 !shader->info.uses_kill
1178 ? TRUE : FALSE;
1179
1180 lp_setup_set_fs_functions(lp->setup,
1181 shader->current->jit_function[0],
1182 shader->current->jit_function[1],
1183 opaque);
1184 }