llvmpipe: Remove unnecessary headers.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - triangle edge in/out testing
35 * - scissor test
36 * - stipple (TBI)
37 * - early depth test
38 * - fragment shader
39 * - alpha test
40 * - depth/stencil test
41 * - blending
42 *
43 * This file has only the glue to assemble the fragment pipeline. The actual
44 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
45 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
46 * muster the LLVM JIT execution engine to create a function that follows an
47 * established binary interface and that can be called from C directly.
48 *
49 * A big source of complexity here is that we often want to run different
50 * stages with different precisions and data types and precisions. For example,
51 * the fragment shader needs typically to be done in floats, but the
52 * depth/stencil test and blending is better done in the type that most closely
53 * matches the depth/stencil and color buffer respectively.
54 *
55 * Since the width of a SIMD vector register stays the same regardless of the
56 * element type, different types imply different number of elements, so we must
57 * code generate more instances of the stages with larger types to be able to
58 * feed/consume the stages with smaller types.
59 *
60 * @author Jose Fonseca <jfonseca@vmware.com>
61 */
62
63 #include <limits.h>
64 #include "pipe/p_defines.h"
65 #include "util/u_inlines.h"
66 #include "util/u_memory.h"
67 #include "util/u_format.h"
68 #include "util/u_dump.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_intr.h"
79 #include "gallivm/lp_bld_logic.h"
80 #include "gallivm/lp_bld_tgsi.h"
81 #include "gallivm/lp_bld_swizzle.h"
82 #include "gallivm/lp_bld_flow.h"
83 #include "gallivm/lp_bld_debug.h"
84
85 #include "lp_bld_alpha.h"
86 #include "lp_bld_blend.h"
87 #include "lp_bld_depth.h"
88 #include "lp_bld_interp.h"
89 #include "lp_context.h"
90 #include "lp_perf.h"
91 #include "lp_screen.h"
92 #include "lp_setup.h"
93 #include "lp_state.h"
94 #include "lp_tex_sample.h"
95
96
97 #include <llvm-c/Analysis.h>
98
99
100 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
101 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
102
103
104 /*
105 * Derive from the quad's upper left scalar coordinates the coordinates for
106 * all other quad pixels
107 */
108 static void
109 generate_pos0(LLVMBuilderRef builder,
110 LLVMValueRef x,
111 LLVMValueRef y,
112 LLVMValueRef *x0,
113 LLVMValueRef *y0)
114 {
115 LLVMTypeRef int_elem_type = LLVMInt32Type();
116 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
117 LLVMTypeRef elem_type = LLVMFloatType();
118 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
119 LLVMValueRef x_offsets[QUAD_SIZE];
120 LLVMValueRef y_offsets[QUAD_SIZE];
121 unsigned i;
122
123 x = lp_build_broadcast(builder, int_vec_type, x);
124 y = lp_build_broadcast(builder, int_vec_type, y);
125
126 for(i = 0; i < QUAD_SIZE; ++i) {
127 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
128 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
129 }
130
131 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
132 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
133
134 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
135 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
136 }
137
138
139 /**
140 * Generate the depth /stencil test code.
141 */
142 static void
143 generate_depth_stencil(LLVMBuilderRef builder,
144 const struct lp_fragment_shader_variant_key *key,
145 struct lp_type src_type,
146 struct lp_build_mask_context *mask,
147 LLVMValueRef stencil_refs[2],
148 LLVMValueRef src,
149 LLVMValueRef dst_ptr,
150 LLVMValueRef facing,
151 LLVMValueRef counter)
152 {
153 const struct util_format_description *format_desc;
154 struct lp_type dst_type;
155
156 if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
157 return;
158
159 format_desc = util_format_description(key->zsbuf_format);
160 assert(format_desc);
161
162 /*
163 * Depths are expected to be between 0 and 1, even if they are stored in
164 * floats. Setting these bits here will ensure that the lp_build_conv() call
165 * below won't try to unnecessarily clamp the incoming values.
166 */
167 if(src_type.floating) {
168 src_type.sign = FALSE;
169 src_type.norm = TRUE;
170 }
171 else {
172 assert(!src_type.sign);
173 assert(src_type.norm);
174 }
175
176 /* Pick the depth type. */
177 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
178
179 /* FIXME: Cope with a depth test type with a different bit width. */
180 assert(dst_type.width == src_type.width);
181 assert(dst_type.length == src_type.length);
182
183 /* Convert fragment Z from float to integer */
184 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
185
186 dst_ptr = LLVMBuildBitCast(builder,
187 dst_ptr,
188 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
189 lp_build_depth_stencil_test(builder,
190 &key->depth,
191 key->stencil,
192 dst_type,
193 format_desc,
194 mask,
195 stencil_refs,
196 src,
197 dst_ptr,
198 facing,
199 counter);
200 }
201
202
203 /**
204 * Generate the code to do inside/outside triangle testing for the
205 * four pixels in a 2x2 quad. This will set the four elements of the
206 * quad mask vector to 0 or ~0.
207 * \param i which quad of the quad group to test, in [0,3]
208 */
209 static void
210 generate_tri_edge_mask(LLVMBuilderRef builder,
211 unsigned i,
212 LLVMValueRef *mask, /* ivec4, out */
213 LLVMValueRef c0, /* int32 */
214 LLVMValueRef c1, /* int32 */
215 LLVMValueRef c2, /* int32 */
216 LLVMValueRef step0_ptr, /* ivec4 */
217 LLVMValueRef step1_ptr, /* ivec4 */
218 LLVMValueRef step2_ptr) /* ivec4 */
219 {
220 #define OPTIMIZE_IN_OUT_TEST 0
221 #if OPTIMIZE_IN_OUT_TEST
222 struct lp_build_if_state ifctx;
223 LLVMValueRef not_draw_all;
224 #endif
225 struct lp_build_flow_context *flow;
226 struct lp_type i32_type;
227 LLVMTypeRef i32vec4_type;
228 LLVMValueRef c0_vec, c1_vec, c2_vec;
229 LLVMValueRef in_out_mask;
230
231 assert(i < 4);
232
233 /* int32 vector type */
234 memset(&i32_type, 0, sizeof i32_type);
235 i32_type.floating = FALSE; /* values are integers */
236 i32_type.sign = TRUE; /* values are signed */
237 i32_type.norm = FALSE; /* values are not normalized */
238 i32_type.width = 32; /* 32-bit int values */
239 i32_type.length = 4; /* 4 elements per vector */
240
241 i32vec4_type = lp_build_int32_vec4_type();
242
243 /*
244 * Use a conditional here to do detailed pixel in/out testing.
245 * We only have to do this if c0 != INT_MIN.
246 */
247 flow = lp_build_flow_create(builder);
248 lp_build_flow_scope_begin(flow);
249
250 {
251 #if OPTIMIZE_IN_OUT_TEST
252 /* not_draw_all = (c0 != INT_MIN) */
253 not_draw_all = LLVMBuildICmp(builder,
254 LLVMIntNE,
255 c0,
256 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
257 "");
258
259 in_out_mask = lp_build_const_int_vec(i32_type, ~0);
260
261
262 lp_build_flow_scope_declare(flow, &in_out_mask);
263
264 /* if (not_draw_all) {... */
265 lp_build_if(&ifctx, flow, builder, not_draw_all);
266 #endif
267 {
268 LLVMValueRef step0_vec, step1_vec, step2_vec;
269 LLVMValueRef m0_vec, m1_vec, m2_vec;
270 LLVMValueRef index, m;
271
272 /* c0_vec = {c0, c0, c0, c0}
273 * Note that we emit this code four times but LLVM optimizes away
274 * three instances of it.
275 */
276 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
277 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
278 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
279 lp_build_name(c0_vec, "edgeconst0vec");
280 lp_build_name(c1_vec, "edgeconst1vec");
281 lp_build_name(c2_vec, "edgeconst2vec");
282
283 /* load step0vec, step1, step2 vec from memory */
284 index = LLVMConstInt(LLVMInt32Type(), i, 0);
285 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
286 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
287 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
288 lp_build_name(step0_vec, "step0vec");
289 lp_build_name(step1_vec, "step1vec");
290 lp_build_name(step2_vec, "step2vec");
291
292 /* m0_vec = step0_ptr[i] > c0_vec */
293 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
294 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
295 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
296
297 /* in_out_mask = m0_vec & m1_vec & m2_vec */
298 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
299 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
300 lp_build_name(in_out_mask, "inoutmaskvec");
301 }
302 #if OPTIMIZE_IN_OUT_TEST
303 lp_build_endif(&ifctx);
304 #endif
305
306 }
307 lp_build_flow_scope_end(flow);
308 lp_build_flow_destroy(flow);
309
310 /* This is the initial alive/dead pixel mask for a quad of four pixels.
311 * It's an int[4] vector with each word set to 0 or ~0.
312 * Words will get cleared when pixels faile the Z test, etc.
313 */
314 *mask = in_out_mask;
315 }
316
317
318 static LLVMValueRef
319 generate_scissor_test(LLVMBuilderRef builder,
320 LLVMValueRef context_ptr,
321 const struct lp_build_interp_soa_context *interp,
322 struct lp_type type)
323 {
324 LLVMTypeRef vec_type = lp_build_vec_type(type);
325 LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1];
326 LLVMValueRef xmin, ymin, xmax, ymax;
327 LLVMValueRef m0, m1, m2, m3, m;
328
329 /* xpos, ypos contain the window coords for the four pixels in the quad */
330 assert(xpos);
331 assert(ypos);
332
333 /* get the current scissor bounds, convert to vectors */
334 xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr);
335 xmin = lp_build_broadcast(builder, vec_type, xmin);
336
337 ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr);
338 ymin = lp_build_broadcast(builder, vec_type, ymin);
339
340 xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr);
341 xmax = lp_build_broadcast(builder, vec_type, xmax);
342
343 ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr);
344 ymax = lp_build_broadcast(builder, vec_type, ymax);
345
346 /* compare the fragment's position coordinates against the scissor bounds */
347 m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin);
348 m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin);
349 m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax);
350 m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax);
351
352 /* AND all the masks together */
353 m = LLVMBuildAnd(builder, m0, m1, "");
354 m = LLVMBuildAnd(builder, m, m2, "");
355 m = LLVMBuildAnd(builder, m, m3, "");
356
357 lp_build_name(m, "scissormask");
358
359 return m;
360 }
361
362
363 static LLVMValueRef
364 build_int32_vec_const(int value)
365 {
366 struct lp_type i32_type;
367
368 memset(&i32_type, 0, sizeof i32_type);
369 i32_type.floating = FALSE; /* values are integers */
370 i32_type.sign = TRUE; /* values are signed */
371 i32_type.norm = FALSE; /* values are not normalized */
372 i32_type.width = 32; /* 32-bit int values */
373 i32_type.length = 4; /* 4 elements per vector */
374 return lp_build_const_int_vec(i32_type, value);
375 }
376
377
378
379 /**
380 * Generate the fragment shader, depth/stencil test, and alpha tests.
381 * \param i which quad in the tile, in range [0,3]
382 * \param do_tri_test if 1, do triangle edge in/out testing
383 */
384 static void
385 generate_fs(struct llvmpipe_context *lp,
386 struct lp_fragment_shader *shader,
387 const struct lp_fragment_shader_variant_key *key,
388 LLVMBuilderRef builder,
389 struct lp_type type,
390 LLVMValueRef context_ptr,
391 unsigned i,
392 const struct lp_build_interp_soa_context *interp,
393 struct lp_build_sampler_soa *sampler,
394 LLVMValueRef *pmask,
395 LLVMValueRef (*color)[4],
396 LLVMValueRef depth_ptr,
397 LLVMValueRef facing,
398 unsigned do_tri_test,
399 LLVMValueRef c0,
400 LLVMValueRef c1,
401 LLVMValueRef c2,
402 LLVMValueRef step0_ptr,
403 LLVMValueRef step1_ptr,
404 LLVMValueRef step2_ptr,
405 LLVMValueRef counter)
406 {
407 const struct tgsi_token *tokens = shader->base.tokens;
408 LLVMTypeRef vec_type;
409 LLVMValueRef consts_ptr;
410 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
411 LLVMValueRef z = interp->pos[2];
412 LLVMValueRef stencil_refs[2];
413 struct lp_build_flow_context *flow;
414 struct lp_build_mask_context mask;
415 boolean early_depth_stencil_test;
416 unsigned attrib;
417 unsigned chan;
418 unsigned cbuf;
419
420 assert(i < 4);
421
422 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
423 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
424
425 vec_type = lp_build_vec_type(type);
426
427 consts_ptr = lp_jit_context_constants(builder, context_ptr);
428
429 flow = lp_build_flow_create(builder);
430
431 memset(outputs, 0, sizeof outputs);
432
433 lp_build_flow_scope_begin(flow);
434
435 /* Declare the color and z variables */
436 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
437 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
438 color[cbuf][chan] = LLVMGetUndef(vec_type);
439 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
440 }
441 }
442 lp_build_flow_scope_declare(flow, &z);
443
444 /* do triangle edge testing */
445 if (do_tri_test) {
446 generate_tri_edge_mask(builder, i, pmask,
447 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
448 }
449 else {
450 *pmask = build_int32_vec_const(~0);
451 }
452
453 /* 'mask' will control execution based on quad's pixel alive/killed state */
454 lp_build_mask_begin(&mask, flow, type, *pmask);
455
456 if (key->scissor) {
457 LLVMValueRef smask =
458 generate_scissor_test(builder, context_ptr, interp, type);
459 lp_build_mask_update(&mask, smask);
460 }
461
462 early_depth_stencil_test =
463 (key->depth.enabled || key->stencil[0].enabled) &&
464 !key->alpha.enabled &&
465 !shader->info.uses_kill &&
466 !shader->info.writes_z;
467
468 if (early_depth_stencil_test)
469 generate_depth_stencil(builder, key,
470 type, &mask,
471 stencil_refs, z, depth_ptr, facing, counter);
472
473 lp_build_tgsi_soa(builder, tokens, type, &mask,
474 consts_ptr, interp->pos, interp->inputs,
475 outputs, sampler, &shader->info);
476
477 /* loop over fragment shader outputs/results */
478 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
479 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
480 if(outputs[attrib][chan]) {
481 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
482 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
483
484 switch (shader->info.output_semantic_name[attrib]) {
485 case TGSI_SEMANTIC_COLOR:
486 {
487 unsigned cbuf = shader->info.output_semantic_index[attrib];
488
489 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
490
491 /* Alpha test */
492 /* XXX: should the alpha reference value be passed separately? */
493 /* XXX: should only test the final assignment to alpha */
494 if(cbuf == 0 && chan == 3) {
495 LLVMValueRef alpha = out;
496 LLVMValueRef alpha_ref_value;
497 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
498 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
499 lp_build_alpha_test(builder, &key->alpha, type,
500 &mask, alpha, alpha_ref_value);
501 }
502
503 color[cbuf][chan] = out;
504 break;
505 }
506
507 case TGSI_SEMANTIC_POSITION:
508 if(chan == 2)
509 z = out;
510 break;
511 }
512 }
513 }
514 }
515
516 if (!early_depth_stencil_test)
517 generate_depth_stencil(builder, key,
518 type, &mask,
519 stencil_refs, z, depth_ptr, facing, counter);
520
521 lp_build_mask_end(&mask);
522
523 lp_build_flow_scope_end(flow);
524
525 lp_build_flow_destroy(flow);
526
527 *pmask = mask.value;
528
529 }
530
531
532 /**
533 * Generate color blending and color output.
534 * \param rt the render target index (to index blend, colormask state)
535 * \param type the pixel color type
536 * \param context_ptr pointer to the runtime JIT context
537 * \param mask execution mask (active fragment/pixel mask)
538 * \param src colors from the fragment shader
539 * \param dst_ptr the destination color buffer pointer
540 */
541 static void
542 generate_blend(const struct pipe_blend_state *blend,
543 unsigned rt,
544 LLVMBuilderRef builder,
545 struct lp_type type,
546 LLVMValueRef context_ptr,
547 LLVMValueRef mask,
548 LLVMValueRef *src,
549 LLVMValueRef dst_ptr)
550 {
551 struct lp_build_context bld;
552 struct lp_build_flow_context *flow;
553 struct lp_build_mask_context mask_ctx;
554 LLVMTypeRef vec_type;
555 LLVMValueRef const_ptr;
556 LLVMValueRef con[4];
557 LLVMValueRef dst[4];
558 LLVMValueRef res[4];
559 unsigned chan;
560
561 lp_build_context_init(&bld, builder, type);
562
563 flow = lp_build_flow_create(builder);
564
565 /* we'll use this mask context to skip blending if all pixels are dead */
566 lp_build_mask_begin(&mask_ctx, flow, type, mask);
567
568 vec_type = lp_build_vec_type(type);
569
570 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
571 const_ptr = LLVMBuildBitCast(builder, const_ptr,
572 LLVMPointerType(vec_type, 0), "");
573
574 /* load constant blend color and colors from the dest color buffer */
575 for(chan = 0; chan < 4; ++chan) {
576 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
577 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
578
579 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
580
581 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
582 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
583 }
584
585 /* do blend */
586 lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
587
588 /* store results to color buffer */
589 for(chan = 0; chan < 4; ++chan) {
590 if(blend->rt[rt].colormask & (1 << chan)) {
591 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
592 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
593 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
594 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
595 }
596 }
597
598 lp_build_mask_end(&mask_ctx);
599 lp_build_flow_destroy(flow);
600 }
601
602
603 /**
604 * Generate the runtime callable function for the whole fragment pipeline.
605 * Note that the function which we generate operates on a block of 16
606 * pixels at at time. The block contains 2x2 quads. Each quad contains
607 * 2x2 pixels.
608 */
609 static void
610 generate_fragment(struct llvmpipe_context *lp,
611 struct lp_fragment_shader *shader,
612 struct lp_fragment_shader_variant *variant,
613 unsigned do_tri_test)
614 {
615 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
616 const struct lp_fragment_shader_variant_key *key = &variant->key;
617 struct lp_type fs_type;
618 struct lp_type blend_type;
619 LLVMTypeRef fs_elem_type;
620 LLVMTypeRef fs_int_vec_type;
621 LLVMTypeRef blend_vec_type;
622 LLVMTypeRef arg_types[16];
623 LLVMTypeRef func_type;
624 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
625 LLVMValueRef context_ptr;
626 LLVMValueRef x;
627 LLVMValueRef y;
628 LLVMValueRef a0_ptr;
629 LLVMValueRef dadx_ptr;
630 LLVMValueRef dady_ptr;
631 LLVMValueRef color_ptr_ptr;
632 LLVMValueRef depth_ptr;
633 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr, counter = NULL;
634 LLVMBasicBlockRef block;
635 LLVMBuilderRef builder;
636 LLVMValueRef x0;
637 LLVMValueRef y0;
638 struct lp_build_sampler_soa *sampler;
639 struct lp_build_interp_soa_context interp;
640 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
641 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
642 LLVMValueRef blend_mask;
643 LLVMValueRef function;
644 LLVMValueRef facing;
645 unsigned num_fs;
646 unsigned i;
647 unsigned chan;
648 unsigned cbuf;
649
650
651 /* TODO: actually pick these based on the fs and color buffer
652 * characteristics. */
653
654 memset(&fs_type, 0, sizeof fs_type);
655 fs_type.floating = TRUE; /* floating point values */
656 fs_type.sign = TRUE; /* values are signed */
657 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
658 fs_type.width = 32; /* 32-bit float */
659 fs_type.length = 4; /* 4 elements per vector */
660 num_fs = 4; /* number of quads per block */
661
662 memset(&blend_type, 0, sizeof blend_type);
663 blend_type.floating = FALSE; /* values are integers */
664 blend_type.sign = FALSE; /* values are unsigned */
665 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
666 blend_type.width = 8; /* 8-bit ubyte values */
667 blend_type.length = 16; /* 16 elements per vector */
668
669 /*
670 * Generate the function prototype. Any change here must be reflected in
671 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
672 */
673
674 fs_elem_type = lp_build_elem_type(fs_type);
675 fs_int_vec_type = lp_build_int_vec_type(fs_type);
676
677 blend_vec_type = lp_build_vec_type(blend_type);
678
679 arg_types[0] = screen->context_ptr_type; /* context */
680 arg_types[1] = LLVMInt32Type(); /* x */
681 arg_types[2] = LLVMInt32Type(); /* y */
682 arg_types[3] = LLVMFloatType(); /* facing */
683 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
684 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
685 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
686 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
687 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
688 arg_types[9] = LLVMInt32Type(); /* c0 */
689 arg_types[10] = LLVMInt32Type(); /* c1 */
690 arg_types[11] = LLVMInt32Type(); /* c2 */
691 /* Note: the step arrays are built as int32[16] but we interpret
692 * them here as int32_vec4[4].
693 */
694 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
695 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
696 arg_types[14] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
697 arg_types[15] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
698
699 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
700
701 function = LLVMAddFunction(screen->module, "shader", func_type);
702 LLVMSetFunctionCallConv(function, LLVMCCallConv);
703
704 variant->function[do_tri_test] = function;
705
706
707 /* XXX: need to propagate noalias down into color param now we are
708 * passing a pointer-to-pointer?
709 */
710 for(i = 0; i < Elements(arg_types); ++i)
711 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
712 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
713
714 context_ptr = LLVMGetParam(function, 0);
715 x = LLVMGetParam(function, 1);
716 y = LLVMGetParam(function, 2);
717 facing = LLVMGetParam(function, 3);
718 a0_ptr = LLVMGetParam(function, 4);
719 dadx_ptr = LLVMGetParam(function, 5);
720 dady_ptr = LLVMGetParam(function, 6);
721 color_ptr_ptr = LLVMGetParam(function, 7);
722 depth_ptr = LLVMGetParam(function, 8);
723 c0 = LLVMGetParam(function, 9);
724 c1 = LLVMGetParam(function, 10);
725 c2 = LLVMGetParam(function, 11);
726 step0_ptr = LLVMGetParam(function, 12);
727 step1_ptr = LLVMGetParam(function, 13);
728 step2_ptr = LLVMGetParam(function, 14);
729
730 lp_build_name(context_ptr, "context");
731 lp_build_name(x, "x");
732 lp_build_name(y, "y");
733 lp_build_name(a0_ptr, "a0");
734 lp_build_name(dadx_ptr, "dadx");
735 lp_build_name(dady_ptr, "dady");
736 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
737 lp_build_name(depth_ptr, "depth");
738 lp_build_name(c0, "c0");
739 lp_build_name(c1, "c1");
740 lp_build_name(c2, "c2");
741 lp_build_name(step0_ptr, "step0");
742 lp_build_name(step1_ptr, "step1");
743 lp_build_name(step2_ptr, "step2");
744
745 if (key->occlusion_count) {
746 counter = LLVMGetParam(function, 15);
747 lp_build_name(counter, "counter");
748 }
749
750 /*
751 * Function body
752 */
753
754 block = LLVMAppendBasicBlock(function, "entry");
755 builder = LLVMCreateBuilder();
756 LLVMPositionBuilderAtEnd(builder, block);
757
758 generate_pos0(builder, x, y, &x0, &y0);
759
760 lp_build_interp_soa_init(&interp,
761 shader->base.tokens,
762 key->flatshade,
763 builder, fs_type,
764 a0_ptr, dadx_ptr, dady_ptr,
765 x0, y0);
766
767 /* code generated texture sampling */
768 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
769
770 /* loop over quads in the block */
771 for(i = 0; i < num_fs; ++i) {
772 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
773 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
774 LLVMValueRef depth_ptr_i;
775
776 if(i != 0)
777 lp_build_interp_soa_update(&interp, i);
778
779 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
780
781 generate_fs(lp, shader, key,
782 builder,
783 fs_type,
784 context_ptr,
785 i,
786 &interp,
787 sampler,
788 &fs_mask[i], /* output */
789 out_color,
790 depth_ptr_i,
791 facing,
792 do_tri_test,
793 c0, c1, c2,
794 step0_ptr, step1_ptr, step2_ptr, counter);
795
796 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
797 for(chan = 0; chan < NUM_CHANNELS; ++chan)
798 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
799 }
800
801 sampler->destroy(sampler);
802
803 /* Loop over color outputs / color buffers to do blending.
804 */
805 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
806 LLVMValueRef color_ptr;
807 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
808 LLVMValueRef blend_in_color[NUM_CHANNELS];
809 unsigned rt;
810
811 /*
812 * Convert the fs's output color and mask to fit to the blending type.
813 */
814 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
815 lp_build_conv(builder, fs_type, blend_type,
816 fs_out_color[cbuf][chan], num_fs,
817 &blend_in_color[chan], 1);
818 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
819 }
820
821 lp_build_conv_mask(builder, fs_type, blend_type,
822 fs_mask, num_fs,
823 &blend_mask, 1);
824
825 color_ptr = LLVMBuildLoad(builder,
826 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
827 "");
828 lp_build_name(color_ptr, "color_ptr%d", cbuf);
829
830 /* which blend/colormask state to use */
831 rt = key->blend.independent_blend_enable ? cbuf : 0;
832
833 /*
834 * Blending.
835 */
836 generate_blend(&key->blend,
837 rt,
838 builder,
839 blend_type,
840 context_ptr,
841 blend_mask,
842 blend_in_color,
843 color_ptr);
844 }
845
846 LLVMBuildRetVoid(builder);
847
848 LLVMDisposeBuilder(builder);
849
850
851 /* Verify the LLVM IR. If invalid, dump and abort */
852 #ifdef DEBUG
853 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
854 if (1)
855 lp_debug_dump_value(function);
856 abort();
857 }
858 #endif
859
860 /* Apply optimizations to LLVM IR */
861 if (1)
862 LLVMRunFunctionPassManager(screen->pass, function);
863
864 if (gallivm_debug & GALLIVM_DEBUG_IR) {
865 /* Print the LLVM IR to stderr */
866 lp_debug_dump_value(function);
867 debug_printf("\n");
868 }
869
870 /*
871 * Translate the LLVM IR into machine code.
872 */
873 {
874 void *f = LLVMGetPointerToGlobal(screen->engine, function);
875
876 variant->jit_function[do_tri_test] = cast_voidptr_to_lp_jit_frag_func(f);
877
878 if (gallivm_debug & GALLIVM_DEBUG_ASM) {
879 lp_disassemble(f);
880 }
881 }
882 }
883
884
885 static struct lp_fragment_shader_variant *
886 generate_variant(struct llvmpipe_context *lp,
887 struct lp_fragment_shader *shader,
888 const struct lp_fragment_shader_variant_key *key)
889 {
890 struct lp_fragment_shader_variant *variant;
891
892 if (gallivm_debug & GALLIVM_DEBUG_IR) {
893 unsigned i;
894
895 tgsi_dump(shader->base.tokens, 0);
896 if(key->depth.enabled) {
897 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
898 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
899 debug_printf("depth.writemask = %u\n", key->depth.writemask);
900 }
901 for (i = 0; i < 2; ++i) {
902 if(key->stencil[i].enabled) {
903 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
904 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
905 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
906 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
907 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
908 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
909 }
910 }
911 if(key->alpha.enabled) {
912 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
913 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
914 }
915 if(key->blend.logicop_enable) {
916 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
917 }
918 else if(key->blend.rt[0].blend_enable) {
919 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
920 debug_printf("rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
921 debug_printf("rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
922 debug_printf("alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
923 debug_printf("alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
924 debug_printf("alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
925 }
926 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
927 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
928 if(key->sampler[i].format) {
929 debug_printf("sampler[%u] = \n", i);
930 debug_printf(" .format = %s\n",
931 util_format_name(key->sampler[i].format));
932 debug_printf(" .target = %s\n",
933 util_dump_tex_target(key->sampler[i].target, TRUE));
934 debug_printf(" .pot = %u %u %u\n",
935 key->sampler[i].pot_width,
936 key->sampler[i].pot_height,
937 key->sampler[i].pot_depth);
938 debug_printf(" .wrap = %s %s %s\n",
939 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
940 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
941 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
942 debug_printf(" .min_img_filter = %s\n",
943 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
944 debug_printf(" .min_mip_filter = %s\n",
945 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
946 debug_printf(" .mag_img_filter = %s\n",
947 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
948 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
949 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
950 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
951 }
952 }
953 }
954
955 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
956 if(!variant)
957 return NULL;
958
959 memcpy(&variant->key, key, sizeof *key);
960
961 generate_fragment(lp, shader, variant, RAST_WHOLE);
962 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
963
964 /* TODO: most of these can be relaxed, in particular the colormask */
965 variant->opaque =
966 !key->blend.logicop_enable &&
967 !key->blend.rt[0].blend_enable &&
968 key->blend.rt[0].colormask == 0xf &&
969 !key->stencil[0].enabled &&
970 !key->alpha.enabled &&
971 !key->depth.enabled &&
972 !key->scissor &&
973 !shader->info.uses_kill
974 ? TRUE : FALSE;
975
976 /* insert new variant into linked list */
977 variant->next = shader->variants;
978 shader->variants = variant;
979
980 return variant;
981 }
982
983
984 static void *
985 llvmpipe_create_fs_state(struct pipe_context *pipe,
986 const struct pipe_shader_state *templ)
987 {
988 struct lp_fragment_shader *shader;
989
990 shader = CALLOC_STRUCT(lp_fragment_shader);
991 if (!shader)
992 return NULL;
993
994 /* get/save the summary info for this shader */
995 tgsi_scan_shader(templ->tokens, &shader->info);
996
997 /* we need to keep a local copy of the tokens */
998 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
999
1000 if (gallivm_debug & GALLIVM_DEBUG_TGSI) {
1001 debug_printf("llvmpipe: Create fragment shader %p:\n", (void *) shader);
1002 tgsi_dump(templ->tokens, 0);
1003 }
1004
1005 return shader;
1006 }
1007
1008
1009 static void
1010 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
1011 {
1012 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1013
1014 if (llvmpipe->fs == fs)
1015 return;
1016
1017 draw_flush(llvmpipe->draw);
1018
1019 llvmpipe->fs = fs;
1020
1021 llvmpipe->dirty |= LP_NEW_FS;
1022 }
1023
1024
1025 static void
1026 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1027 {
1028 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1029 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
1030 struct lp_fragment_shader *shader = fs;
1031 struct lp_fragment_shader_variant *variant;
1032
1033 assert(fs != llvmpipe->fs);
1034 (void) llvmpipe;
1035
1036 /*
1037 * XXX: we need to flush the context until we have some sort of reference
1038 * counting in fragment shaders as they may still be binned
1039 */
1040 draw_flush(llvmpipe->draw);
1041 lp_setup_flush(llvmpipe->setup, 0);
1042
1043 variant = shader->variants;
1044 while(variant) {
1045 struct lp_fragment_shader_variant *next = variant->next;
1046 unsigned i;
1047
1048 for (i = 0; i < Elements(variant->function); i++) {
1049 if (variant->function[i]) {
1050 if (variant->jit_function[i])
1051 LLVMFreeMachineCodeForFunction(screen->engine,
1052 variant->function[i]);
1053 LLVMDeleteFunction(variant->function[i]);
1054 }
1055 }
1056
1057 FREE(variant);
1058
1059 variant = next;
1060 }
1061
1062 FREE((void *) shader->base.tokens);
1063 FREE(shader);
1064 }
1065
1066
1067
1068 static void
1069 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1070 uint shader, uint index,
1071 struct pipe_resource *constants)
1072 {
1073 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1074 unsigned size = constants ? constants->width0 : 0;
1075 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1076
1077 assert(shader < PIPE_SHADER_TYPES);
1078 assert(index == 0);
1079
1080 if(llvmpipe->constants[shader] == constants)
1081 return;
1082
1083 draw_flush(llvmpipe->draw);
1084
1085 /* note: reference counting */
1086 pipe_resource_reference(&llvmpipe->constants[shader], constants);
1087
1088 if(shader == PIPE_SHADER_VERTEX) {
1089 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX, 0,
1090 data, size);
1091 }
1092
1093 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1094 }
1095
1096
1097 /**
1098 * Return the blend factor equivalent to a destination alpha of one.
1099 */
1100 static INLINE unsigned
1101 force_dst_alpha_one(unsigned factor, boolean alpha)
1102 {
1103 switch(factor) {
1104 case PIPE_BLENDFACTOR_DST_ALPHA:
1105 return PIPE_BLENDFACTOR_ONE;
1106 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1107 return PIPE_BLENDFACTOR_ZERO;
1108 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1109 return PIPE_BLENDFACTOR_ZERO;
1110 }
1111
1112 if (alpha) {
1113 switch(factor) {
1114 case PIPE_BLENDFACTOR_DST_COLOR:
1115 return PIPE_BLENDFACTOR_ONE;
1116 case PIPE_BLENDFACTOR_INV_DST_COLOR:
1117 return PIPE_BLENDFACTOR_ZERO;
1118 }
1119 }
1120
1121 return factor;
1122 }
1123
1124
1125 /**
1126 * We need to generate several variants of the fragment pipeline to match
1127 * all the combinations of the contributing state atoms.
1128 *
1129 * TODO: there is actually no reason to tie this to context state -- the
1130 * generated code could be cached globally in the screen.
1131 */
1132 static void
1133 make_variant_key(struct llvmpipe_context *lp,
1134 struct lp_fragment_shader *shader,
1135 struct lp_fragment_shader_variant_key *key)
1136 {
1137 unsigned i;
1138
1139 memset(key, 0, sizeof *key);
1140
1141 if (lp->framebuffer.zsbuf) {
1142 if (lp->depth_stencil->depth.enabled) {
1143 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1144 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1145 }
1146 if (lp->depth_stencil->stencil[0].enabled) {
1147 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1148 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1149 }
1150 }
1151
1152 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1153 if(key->alpha.enabled)
1154 key->alpha.func = lp->depth_stencil->alpha.func;
1155 /* alpha.ref_value is passed in jit_context */
1156
1157 key->flatshade = lp->rasterizer->flatshade;
1158 key->scissor = lp->rasterizer->scissor;
1159 if (lp->active_query_count) {
1160 key->occlusion_count = TRUE;
1161 }
1162
1163 if (lp->framebuffer.nr_cbufs) {
1164 memcpy(&key->blend, lp->blend, sizeof key->blend);
1165 }
1166
1167 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1168 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1169 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1170 const struct util_format_description *format_desc;
1171 unsigned chan;
1172
1173 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1174 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1175 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1176
1177 blend_rt->colormask = lp->blend->rt[i].colormask;
1178
1179 /* mask out color channels not present in the color buffer.
1180 * Should be simple to incorporate per-cbuf writemasks:
1181 */
1182 for(chan = 0; chan < 4; ++chan) {
1183 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1184
1185 if(swizzle > UTIL_FORMAT_SWIZZLE_W)
1186 blend_rt->colormask &= ~(1 << chan);
1187 }
1188
1189 /*
1190 * Our swizzled render tiles always have an alpha channel, but the linear
1191 * render target format often does not, so force here the dst alpha to be
1192 * one.
1193 *
1194 * This is not a mere optimization. Wrong results will be produced if the
1195 * dst alpha is used, the dst format does not have alpha, and the previous
1196 * rendering was not flushed from the swizzled to linear buffer. For
1197 * example, NonPowTwo DCT.
1198 *
1199 * TODO: This should be generalized to all channels for better
1200 * performance, but only alpha causes correctness issues.
1201 */
1202 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1203 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor, FALSE);
1204 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor, FALSE);
1205 blend_rt->alpha_src_factor = force_dst_alpha_one(blend_rt->alpha_src_factor, TRUE);
1206 blend_rt->alpha_dst_factor = force_dst_alpha_one(blend_rt->alpha_dst_factor, TRUE);
1207 }
1208 }
1209
1210 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1211 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1212 lp_sampler_static_state(&key->sampler[i], lp->fragment_sampler_views[i], lp->sampler[i]);
1213 }
1214
1215
1216 /**
1217 * Update fragment state. This is called just prior to drawing
1218 * something when some fragment-related state has changed.
1219 */
1220 void
1221 llvmpipe_update_fs(struct llvmpipe_context *lp)
1222 {
1223 struct lp_fragment_shader *shader = lp->fs;
1224 struct lp_fragment_shader_variant_key key;
1225 struct lp_fragment_shader_variant *variant;
1226
1227 make_variant_key(lp, shader, &key);
1228
1229 variant = shader->variants;
1230 while(variant) {
1231 if(memcmp(&variant->key, &key, sizeof key) == 0)
1232 break;
1233
1234 variant = variant->next;
1235 }
1236
1237 if (!variant) {
1238 int64_t t0, t1;
1239 int64_t dt;
1240 t0 = os_time_get();
1241
1242 variant = generate_variant(lp, shader, &key);
1243
1244 t1 = os_time_get();
1245 dt = t1 - t0;
1246 LP_COUNT_ADD(llvm_compile_time, dt);
1247 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1248 }
1249
1250 lp_setup_set_fs_functions(lp->setup,
1251 variant->jit_function[RAST_WHOLE],
1252 variant->jit_function[RAST_EDGE_TEST],
1253 variant->opaque);
1254 }
1255
1256
1257
1258 void
1259 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1260 {
1261 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1262 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1263 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1264
1265 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1266 }