llvmpipe: pass linear masks to fragment shader
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_init.h"
79 #include "gallivm/lp_bld_intr.h"
80 #include "gallivm/lp_bld_logic.h"
81 #include "gallivm/lp_bld_tgsi.h"
82 #include "gallivm/lp_bld_swizzle.h"
83 #include "gallivm/lp_bld_flow.h"
84 #include "gallivm/lp_bld_debug.h"
85
86 #include "lp_bld_alpha.h"
87 #include "lp_bld_blend.h"
88 #include "lp_bld_depth.h"
89 #include "lp_bld_interp.h"
90 #include "lp_context.h"
91 #include "lp_debug.h"
92 #include "lp_perf.h"
93 #include "lp_screen.h"
94 #include "lp_setup.h"
95 #include "lp_state.h"
96 #include "lp_tex_sample.h"
97 #include "lp_flush.h"
98 #include "lp_state_fs.h"
99
100
101 #include <llvm-c/Analysis.h>
102
103
104 static unsigned fs_no = 0;
105
106
107 /**
108 * Generate the depth /stencil test code.
109 */
110 static void
111 generate_depth_stencil(LLVMBuilderRef builder,
112 const struct lp_fragment_shader_variant_key *key,
113 struct lp_type src_type,
114 struct lp_build_mask_context *mask,
115 LLVMValueRef stencil_refs[2],
116 LLVMValueRef src,
117 LLVMValueRef dst_ptr,
118 LLVMValueRef facing,
119 LLVMValueRef counter)
120 {
121 const struct util_format_description *format_desc;
122 struct lp_type dst_type;
123
124 if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
125 return;
126
127 format_desc = util_format_description(key->zsbuf_format);
128 assert(format_desc);
129
130 /*
131 * Depths are expected to be between 0 and 1, even if they are stored in
132 * floats. Setting these bits here will ensure that the lp_build_conv() call
133 * below won't try to unnecessarily clamp the incoming values.
134 */
135 if(src_type.floating) {
136 src_type.sign = FALSE;
137 src_type.norm = TRUE;
138 }
139 else {
140 assert(!src_type.sign);
141 assert(src_type.norm);
142 }
143
144 /* Pick the depth type. */
145 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
146
147 /* FIXME: Cope with a depth test type with a different bit width. */
148 assert(dst_type.width == src_type.width);
149 assert(dst_type.length == src_type.length);
150
151 /* Convert fragment Z from float to integer */
152 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
153
154 dst_ptr = LLVMBuildBitCast(builder,
155 dst_ptr,
156 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
157 lp_build_depth_stencil_test(builder,
158 &key->depth,
159 key->stencil,
160 dst_type,
161 format_desc,
162 mask,
163 stencil_refs,
164 src,
165 dst_ptr,
166 facing,
167 counter);
168 }
169
170
171 /**
172 * Expand the relevent bits of mask_input to a 4-dword mask for the
173 * four pixels in a 2x2 quad. This will set the four elements of the
174 * quad mask vector to 0 or ~0.
175 *
176 * \param quad which quad of the quad group to test, in [0,3]
177 * \param mask_input bitwise mask for the whole 4x4 stamp
178 */
179 static LLVMValueRef
180 generate_quad_mask(LLVMBuilderRef builder,
181 struct lp_type fs_type,
182 unsigned quad,
183 LLVMValueRef mask_input) /* int32 */
184 {
185 struct lp_type mask_type;
186 LLVMTypeRef i32t = LLVMInt32Type();
187 LLVMValueRef bits[4];
188 LLVMValueRef mask;
189 int shift;
190
191 /*
192 * XXX: We'll need a different path for 16 x u8
193 */
194 assert(fs_type.width == 32);
195 assert(fs_type.length == 4);
196 mask_type = lp_int_type(fs_type);
197
198 /*
199 * mask_input >>= (quad * 4)
200 */
201
202 switch (quad) {
203 case 0:
204 shift = 0;
205 break;
206 case 1:
207 shift = 2;
208 break;
209 case 2:
210 shift = 8;
211 break;
212 case 3:
213 shift = 10;
214 break;
215 }
216
217 mask_input = LLVMBuildLShr(builder,
218 mask_input,
219 LLVMConstInt(i32t, shift, 0),
220 "");
221
222 /*
223 * mask = { mask_input & (1 << i), for i in [0,3] }
224 */
225
226 mask = lp_build_broadcast(builder, lp_build_vec_type(mask_type), mask_input);
227
228 bits[0] = LLVMConstInt(i32t, 1 << 0, 0);
229 bits[1] = LLVMConstInt(i32t, 1 << 1, 0);
230 bits[2] = LLVMConstInt(i32t, 1 << 4, 0);
231 bits[3] = LLVMConstInt(i32t, 1 << 5, 0);
232
233 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, 4), "");
234
235 /*
236 * mask = mask != 0 ? ~0 : 0
237 */
238
239 mask = lp_build_compare(builder,
240 mask_type, PIPE_FUNC_NOTEQUAL,
241 mask,
242 lp_build_const_int_vec(mask_type, 0));
243
244 return mask;
245 }
246
247
248
249 /**
250 * Generate the fragment shader, depth/stencil test, and alpha tests.
251 * \param i which quad in the tile, in range [0,3]
252 * \param partial_mask if 1, do mask_input testing
253 */
254 static void
255 generate_fs(struct llvmpipe_context *lp,
256 struct lp_fragment_shader *shader,
257 const struct lp_fragment_shader_variant_key *key,
258 LLVMBuilderRef builder,
259 struct lp_type type,
260 LLVMValueRef context_ptr,
261 unsigned i,
262 const struct lp_build_interp_soa_context *interp,
263 struct lp_build_sampler_soa *sampler,
264 LLVMValueRef *pmask,
265 LLVMValueRef (*color)[4],
266 LLVMValueRef depth_ptr,
267 LLVMValueRef facing,
268 unsigned partial_mask,
269 LLVMValueRef mask_input,
270 LLVMValueRef counter)
271 {
272 const struct tgsi_token *tokens = shader->base.tokens;
273 LLVMTypeRef vec_type;
274 LLVMValueRef consts_ptr;
275 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
276 LLVMValueRef z = interp->pos[2];
277 LLVMValueRef stencil_refs[2];
278 struct lp_build_flow_context *flow;
279 struct lp_build_mask_context mask;
280 boolean early_depth_stencil_test;
281 unsigned attrib;
282 unsigned chan;
283 unsigned cbuf;
284
285 assert(i < 4);
286
287 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
288 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
289
290 vec_type = lp_build_vec_type(type);
291
292 consts_ptr = lp_jit_context_constants(builder, context_ptr);
293
294 flow = lp_build_flow_create(builder);
295
296 memset(outputs, 0, sizeof outputs);
297
298 lp_build_flow_scope_begin(flow);
299
300 /* Declare the color and z variables */
301 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
302 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
303 color[cbuf][chan] = LLVMGetUndef(vec_type);
304 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
305 }
306 }
307 lp_build_flow_scope_declare(flow, &z);
308
309 /* do triangle edge testing */
310 if (partial_mask) {
311 *pmask = generate_quad_mask(builder, type,
312 i, mask_input);
313 }
314 else {
315 *pmask = lp_build_const_int_vec(type, ~0);
316 }
317
318 /* 'mask' will control execution based on quad's pixel alive/killed state */
319 lp_build_mask_begin(&mask, flow, type, *pmask);
320
321 early_depth_stencil_test =
322 (key->depth.enabled || key->stencil[0].enabled) &&
323 !key->alpha.enabled &&
324 !shader->info.uses_kill &&
325 !shader->info.writes_z;
326
327 if (early_depth_stencil_test)
328 generate_depth_stencil(builder, key,
329 type, &mask,
330 stencil_refs, z, depth_ptr, facing, counter);
331
332 lp_build_tgsi_soa(builder, tokens, type, &mask,
333 consts_ptr, interp->pos, interp->inputs,
334 outputs, sampler, &shader->info);
335
336 /* loop over fragment shader outputs/results */
337 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
338 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
339 if(outputs[attrib][chan]) {
340 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
341 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
342
343 switch (shader->info.output_semantic_name[attrib]) {
344 case TGSI_SEMANTIC_COLOR:
345 {
346 unsigned cbuf = shader->info.output_semantic_index[attrib];
347
348 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
349
350 /* Alpha test */
351 /* XXX: should only test the final assignment to alpha */
352 if (cbuf == 0 && chan == 3 && key->alpha.enabled) {
353 LLVMValueRef alpha = out;
354 LLVMValueRef alpha_ref_value;
355 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
356 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
357 lp_build_alpha_test(builder, key->alpha.func, type,
358 &mask, alpha, alpha_ref_value);
359 }
360
361 color[cbuf][chan] = out;
362 break;
363 }
364
365 case TGSI_SEMANTIC_POSITION:
366 if(chan == 2)
367 z = out;
368 break;
369 }
370 }
371 }
372 }
373
374 if (!early_depth_stencil_test)
375 generate_depth_stencil(builder, key,
376 type, &mask,
377 stencil_refs, z, depth_ptr, facing, counter);
378
379 lp_build_mask_end(&mask);
380
381 lp_build_flow_scope_end(flow);
382
383 lp_build_flow_destroy(flow);
384
385 *pmask = mask.value;
386
387 }
388
389
390 /**
391 * Generate color blending and color output.
392 * \param rt the render target index (to index blend, colormask state)
393 * \param type the pixel color type
394 * \param context_ptr pointer to the runtime JIT context
395 * \param mask execution mask (active fragment/pixel mask)
396 * \param src colors from the fragment shader
397 * \param dst_ptr the destination color buffer pointer
398 */
399 static void
400 generate_blend(const struct pipe_blend_state *blend,
401 unsigned rt,
402 LLVMBuilderRef builder,
403 struct lp_type type,
404 LLVMValueRef context_ptr,
405 LLVMValueRef mask,
406 LLVMValueRef *src,
407 LLVMValueRef dst_ptr)
408 {
409 struct lp_build_context bld;
410 struct lp_build_flow_context *flow;
411 struct lp_build_mask_context mask_ctx;
412 LLVMTypeRef vec_type;
413 LLVMValueRef const_ptr;
414 LLVMValueRef con[4];
415 LLVMValueRef dst[4];
416 LLVMValueRef res[4];
417 unsigned chan;
418
419 lp_build_context_init(&bld, builder, type);
420
421 flow = lp_build_flow_create(builder);
422
423 /* we'll use this mask context to skip blending if all pixels are dead */
424 lp_build_mask_begin(&mask_ctx, flow, type, mask);
425
426 vec_type = lp_build_vec_type(type);
427
428 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
429 const_ptr = LLVMBuildBitCast(builder, const_ptr,
430 LLVMPointerType(vec_type, 0), "");
431
432 /* load constant blend color and colors from the dest color buffer */
433 for(chan = 0; chan < 4; ++chan) {
434 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
435 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
436
437 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
438
439 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
440 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
441 }
442
443 /* do blend */
444 lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
445
446 /* store results to color buffer */
447 for(chan = 0; chan < 4; ++chan) {
448 if(blend->rt[rt].colormask & (1 << chan)) {
449 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
450 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
451 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
452 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
453 }
454 }
455
456 lp_build_mask_end(&mask_ctx);
457 lp_build_flow_destroy(flow);
458 }
459
460
461 /**
462 * Generate the runtime callable function for the whole fragment pipeline.
463 * Note that the function which we generate operates on a block of 16
464 * pixels at at time. The block contains 2x2 quads. Each quad contains
465 * 2x2 pixels.
466 */
467 static void
468 generate_fragment(struct llvmpipe_context *lp,
469 struct lp_fragment_shader *shader,
470 struct lp_fragment_shader_variant *variant,
471 unsigned partial_mask)
472 {
473 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
474 const struct lp_fragment_shader_variant_key *key = &variant->key;
475 char func_name[256];
476 struct lp_type fs_type;
477 struct lp_type blend_type;
478 LLVMTypeRef fs_elem_type;
479 LLVMTypeRef fs_int_vec_type;
480 LLVMTypeRef blend_vec_type;
481 LLVMTypeRef arg_types[11];
482 LLVMTypeRef func_type;
483 LLVMValueRef context_ptr;
484 LLVMValueRef x;
485 LLVMValueRef y;
486 LLVMValueRef a0_ptr;
487 LLVMValueRef dadx_ptr;
488 LLVMValueRef dady_ptr;
489 LLVMValueRef color_ptr_ptr;
490 LLVMValueRef depth_ptr;
491 LLVMValueRef mask_input;
492 LLVMValueRef counter = NULL;
493 LLVMBasicBlockRef block;
494 LLVMBuilderRef builder;
495 struct lp_build_sampler_soa *sampler;
496 struct lp_build_interp_soa_context interp;
497 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
498 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
499 LLVMValueRef blend_mask;
500 LLVMValueRef function;
501 LLVMValueRef facing;
502 unsigned num_fs;
503 unsigned i;
504 unsigned chan;
505 unsigned cbuf;
506
507
508 /* TODO: actually pick these based on the fs and color buffer
509 * characteristics. */
510
511 memset(&fs_type, 0, sizeof fs_type);
512 fs_type.floating = TRUE; /* floating point values */
513 fs_type.sign = TRUE; /* values are signed */
514 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
515 fs_type.width = 32; /* 32-bit float */
516 fs_type.length = 4; /* 4 elements per vector */
517 num_fs = 4; /* number of quads per block */
518
519 memset(&blend_type, 0, sizeof blend_type);
520 blend_type.floating = FALSE; /* values are integers */
521 blend_type.sign = FALSE; /* values are unsigned */
522 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
523 blend_type.width = 8; /* 8-bit ubyte values */
524 blend_type.length = 16; /* 16 elements per vector */
525
526 /*
527 * Generate the function prototype. Any change here must be reflected in
528 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
529 */
530
531 fs_elem_type = lp_build_elem_type(fs_type);
532 fs_int_vec_type = lp_build_int_vec_type(fs_type);
533
534 blend_vec_type = lp_build_vec_type(blend_type);
535
536 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
537 shader->no, variant->no, partial_mask ? "partial" : "whole");
538
539 arg_types[0] = screen->context_ptr_type; /* context */
540 arg_types[1] = LLVMInt32Type(); /* x */
541 arg_types[2] = LLVMInt32Type(); /* y */
542 arg_types[3] = LLVMFloatType(); /* facing */
543 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
544 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
545 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
546 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
547 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
548 arg_types[9] = LLVMInt32Type(); /* mask_input */
549 arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
550
551 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
552
553 function = LLVMAddFunction(screen->module, func_name, func_type);
554 LLVMSetFunctionCallConv(function, LLVMCCallConv);
555
556 variant->function[partial_mask] = function;
557
558
559 /* XXX: need to propagate noalias down into color param now we are
560 * passing a pointer-to-pointer?
561 */
562 for(i = 0; i < Elements(arg_types); ++i)
563 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
564 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
565
566 context_ptr = LLVMGetParam(function, 0);
567 x = LLVMGetParam(function, 1);
568 y = LLVMGetParam(function, 2);
569 facing = LLVMGetParam(function, 3);
570 a0_ptr = LLVMGetParam(function, 4);
571 dadx_ptr = LLVMGetParam(function, 5);
572 dady_ptr = LLVMGetParam(function, 6);
573 color_ptr_ptr = LLVMGetParam(function, 7);
574 depth_ptr = LLVMGetParam(function, 8);
575 mask_input = LLVMGetParam(function, 9);
576
577 lp_build_name(context_ptr, "context");
578 lp_build_name(x, "x");
579 lp_build_name(y, "y");
580 lp_build_name(a0_ptr, "a0");
581 lp_build_name(dadx_ptr, "dadx");
582 lp_build_name(dady_ptr, "dady");
583 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
584 lp_build_name(depth_ptr, "depth");
585 lp_build_name(mask_input, "mask_input");
586
587 if (key->occlusion_count) {
588 counter = LLVMGetParam(function, 10);
589 lp_build_name(counter, "counter");
590 }
591
592 /*
593 * Function body
594 */
595
596 block = LLVMAppendBasicBlock(function, "entry");
597 builder = LLVMCreateBuilder();
598 LLVMPositionBuilderAtEnd(builder, block);
599
600 /*
601 * The shader input interpolation info is not explicitely baked in the
602 * shader key, but everything it derives from (TGSI, and flatshade) is
603 * already included in the shader key.
604 */
605 lp_build_interp_soa_init(&interp,
606 lp->num_inputs,
607 lp->inputs,
608 builder, fs_type,
609 a0_ptr, dadx_ptr, dady_ptr,
610 x, y);
611
612 /* code generated texture sampling */
613 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
614
615 /* loop over quads in the block */
616 for(i = 0; i < num_fs; ++i) {
617 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
618 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
619 LLVMValueRef depth_ptr_i;
620
621 if(i != 0)
622 lp_build_interp_soa_update(&interp, i);
623
624 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
625
626 generate_fs(lp, shader, key,
627 builder,
628 fs_type,
629 context_ptr,
630 i,
631 &interp,
632 sampler,
633 &fs_mask[i], /* output */
634 out_color,
635 depth_ptr_i,
636 facing,
637 partial_mask,
638 mask_input,
639 counter);
640
641 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
642 for(chan = 0; chan < NUM_CHANNELS; ++chan)
643 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
644 }
645
646 sampler->destroy(sampler);
647
648 /* Loop over color outputs / color buffers to do blending.
649 */
650 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
651 LLVMValueRef color_ptr;
652 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
653 LLVMValueRef blend_in_color[NUM_CHANNELS];
654 unsigned rt;
655
656 /*
657 * Convert the fs's output color and mask to fit to the blending type.
658 */
659 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
660 lp_build_conv(builder, fs_type, blend_type,
661 fs_out_color[cbuf][chan], num_fs,
662 &blend_in_color[chan], 1);
663 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
664 }
665
666 if (partial_mask || !variant->opaque) {
667 lp_build_conv_mask(builder, fs_type, blend_type,
668 fs_mask, num_fs,
669 &blend_mask, 1);
670 } else {
671 blend_mask = lp_build_const_int_vec(blend_type, ~0);
672 }
673
674 color_ptr = LLVMBuildLoad(builder,
675 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
676 "");
677 lp_build_name(color_ptr, "color_ptr%d", cbuf);
678
679 /* which blend/colormask state to use */
680 rt = key->blend.independent_blend_enable ? cbuf : 0;
681
682 /*
683 * Blending.
684 */
685 generate_blend(&key->blend,
686 rt,
687 builder,
688 blend_type,
689 context_ptr,
690 blend_mask,
691 blend_in_color,
692 color_ptr);
693 }
694
695 #ifdef PIPE_ARCH_X86
696 /* Avoid corrupting the FPU stack on 32bit OSes. */
697 lp_build_intrinsic(builder, "llvm.x86.mmx.emms", LLVMVoidType(), NULL, 0);
698 #endif
699
700 LLVMBuildRetVoid(builder);
701
702 LLVMDisposeBuilder(builder);
703
704
705 /* Verify the LLVM IR. If invalid, dump and abort */
706 #ifdef DEBUG
707 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
708 if (1)
709 lp_debug_dump_value(function);
710 abort();
711 }
712 #endif
713
714 /* Apply optimizations to LLVM IR */
715 LLVMRunFunctionPassManager(screen->pass, function);
716
717 if (gallivm_debug & GALLIVM_DEBUG_IR) {
718 /* Print the LLVM IR to stderr */
719 lp_debug_dump_value(function);
720 debug_printf("\n");
721 }
722
723 /*
724 * Translate the LLVM IR into machine code.
725 */
726 {
727 void *f = LLVMGetPointerToGlobal(screen->engine, function);
728
729 variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);
730
731 if (gallivm_debug & GALLIVM_DEBUG_ASM) {
732 lp_disassemble(f);
733 }
734 lp_func_delete_body(function);
735 }
736 }
737
738
739 static void
740 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
741 {
742 unsigned i;
743
744 debug_printf("fs variant %p:\n", (void *) key);
745
746 for (i = 0; i < key->nr_cbufs; ++i) {
747 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
748 }
749 if (key->depth.enabled) {
750 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
751 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
752 debug_printf("depth.writemask = %u\n", key->depth.writemask);
753 }
754
755 for (i = 0; i < 2; ++i) {
756 if (key->stencil[i].enabled) {
757 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
758 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
759 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
760 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
761 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
762 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
763 }
764 }
765
766 if (key->alpha.enabled) {
767 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
768 }
769
770 if (key->blend.logicop_enable) {
771 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
772 }
773 else if (key->blend.rt[0].blend_enable) {
774 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
775 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
776 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
777 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
778 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
779 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
780 }
781 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
782 for (i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
783 if (key->sampler[i].format) {
784 debug_printf("sampler[%u] = \n", i);
785 debug_printf(" .format = %s\n",
786 util_format_name(key->sampler[i].format));
787 debug_printf(" .target = %s\n",
788 util_dump_tex_target(key->sampler[i].target, TRUE));
789 debug_printf(" .pot = %u %u %u\n",
790 key->sampler[i].pot_width,
791 key->sampler[i].pot_height,
792 key->sampler[i].pot_depth);
793 debug_printf(" .wrap = %s %s %s\n",
794 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
795 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
796 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
797 debug_printf(" .min_img_filter = %s\n",
798 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
799 debug_printf(" .min_mip_filter = %s\n",
800 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
801 debug_printf(" .mag_img_filter = %s\n",
802 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
803 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
804 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
805 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
806 }
807 }
808 }
809
810
811 void
812 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
813 {
814 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
815 variant->shader->no, variant->no);
816 tgsi_dump(variant->shader->base.tokens, 0);
817 dump_fs_variant_key(&variant->key);
818 debug_printf("variant->opaque = %u\n", variant->opaque);
819 debug_printf("\n");
820 }
821
822 static struct lp_fragment_shader_variant *
823 generate_variant(struct llvmpipe_context *lp,
824 struct lp_fragment_shader *shader,
825 const struct lp_fragment_shader_variant_key *key)
826 {
827 struct lp_fragment_shader_variant *variant;
828 boolean fullcolormask;
829
830 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
831 if(!variant)
832 return NULL;
833
834 variant->shader = shader;
835 variant->list_item_global.base = variant;
836 variant->list_item_local.base = variant;
837 variant->no = shader->variants_created++;
838
839 memcpy(&variant->key, key, shader->variant_key_size);
840
841 /*
842 * Determine whether we are touching all channels in the color buffer.
843 */
844 fullcolormask = FALSE;
845 if (key->nr_cbufs == 1) {
846 const struct util_format_description *format_desc;
847 format_desc = util_format_description(key->cbuf_format[0]);
848 if ((~key->blend.rt[0].colormask &
849 util_format_colormask(format_desc)) == 0) {
850 fullcolormask = TRUE;
851 }
852 }
853
854 variant->opaque =
855 !key->blend.logicop_enable &&
856 !key->blend.rt[0].blend_enable &&
857 fullcolormask &&
858 !key->stencil[0].enabled &&
859 !key->alpha.enabled &&
860 !key->depth.enabled &&
861 !shader->info.uses_kill
862 ? TRUE : FALSE;
863
864
865 if (gallivm_debug & GALLIVM_DEBUG_IR) {
866 lp_debug_fs_variant(variant);
867 }
868
869 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
870
871 if (variant->opaque) {
872 /* Specialized shader, which doesn't need to read the color buffer. */
873 generate_fragment(lp, shader, variant, RAST_WHOLE);
874 } else {
875 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
876 }
877
878 return variant;
879 }
880
881
882 static void *
883 llvmpipe_create_fs_state(struct pipe_context *pipe,
884 const struct pipe_shader_state *templ)
885 {
886 struct lp_fragment_shader *shader;
887 int nr_samplers;
888
889 shader = CALLOC_STRUCT(lp_fragment_shader);
890 if (!shader)
891 return NULL;
892
893 shader->no = fs_no++;
894 make_empty_list(&shader->variants);
895
896 /* get/save the summary info for this shader */
897 tgsi_scan_shader(templ->tokens, &shader->info);
898
899 /* we need to keep a local copy of the tokens */
900 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
901
902 nr_samplers = shader->info.file_max[TGSI_FILE_SAMPLER] + 1;
903
904 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
905 sampler[nr_samplers]);
906
907 if (LP_DEBUG & DEBUG_TGSI) {
908 unsigned attrib;
909 debug_printf("llvmpipe: Create fragment shader #%u %p:\n", shader->no, (void *) shader);
910 tgsi_dump(templ->tokens, 0);
911 debug_printf("usage masks:\n");
912 for (attrib = 0; attrib < shader->info.num_inputs; ++attrib) {
913 unsigned usage_mask = shader->info.input_usage_mask[attrib];
914 debug_printf(" IN[%u].%s%s%s%s\n",
915 attrib,
916 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
917 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
918 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
919 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
920 }
921 debug_printf("\n");
922 }
923
924 return shader;
925 }
926
927
928 static void
929 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
930 {
931 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
932
933 if (llvmpipe->fs == fs)
934 return;
935
936 draw_flush(llvmpipe->draw);
937
938 llvmpipe->fs = fs;
939
940 llvmpipe->dirty |= LP_NEW_FS;
941 }
942
943 static void
944 remove_shader_variant(struct llvmpipe_context *lp,
945 struct lp_fragment_shader_variant *variant)
946 {
947 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
948 unsigned i;
949
950 if (gallivm_debug & GALLIVM_DEBUG_IR) {
951 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached #%u v total cached #%u\n",
952 variant->shader->no, variant->no, variant->shader->variants_created,
953 variant->shader->variants_cached, lp->nr_fs_variants);
954 }
955 for (i = 0; i < Elements(variant->function); i++) {
956 if (variant->function[i]) {
957 if (variant->jit_function[i])
958 LLVMFreeMachineCodeForFunction(screen->engine,
959 variant->function[i]);
960 LLVMDeleteFunction(variant->function[i]);
961 }
962 }
963 remove_from_list(&variant->list_item_local);
964 variant->shader->variants_cached--;
965 remove_from_list(&variant->list_item_global);
966 lp->nr_fs_variants--;
967 FREE(variant);
968 }
969
970 static void
971 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
972 {
973 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
974 struct lp_fragment_shader *shader = fs;
975 struct lp_fs_variant_list_item *li;
976
977 assert(fs != llvmpipe->fs);
978 (void) llvmpipe;
979
980 /*
981 * XXX: we need to flush the context until we have some sort of reference
982 * counting in fragment shaders as they may still be binned
983 * Flushing alone might not sufficient we need to wait on it too.
984 */
985
986 llvmpipe_finish(pipe, __FUNCTION__);
987
988 li = first_elem(&shader->variants);
989 while(!at_end(&shader->variants, li)) {
990 struct lp_fs_variant_list_item *next = next_elem(li);
991 remove_shader_variant(llvmpipe, li->base);
992 li = next;
993 }
994
995 assert(shader->variants_cached == 0);
996 FREE((void *) shader->base.tokens);
997 FREE(shader);
998 }
999
1000
1001
1002 static void
1003 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1004 uint shader, uint index,
1005 struct pipe_resource *constants)
1006 {
1007 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1008 unsigned size = constants ? constants->width0 : 0;
1009 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1010
1011 assert(shader < PIPE_SHADER_TYPES);
1012 assert(index < PIPE_MAX_CONSTANT_BUFFERS);
1013
1014 if(llvmpipe->constants[shader][index] == constants)
1015 return;
1016
1017 draw_flush(llvmpipe->draw);
1018
1019 /* note: reference counting */
1020 pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
1021
1022 if(shader == PIPE_SHADER_VERTEX ||
1023 shader == PIPE_SHADER_GEOMETRY) {
1024 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
1025 index, data, size);
1026 }
1027
1028 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1029 }
1030
1031
1032 /**
1033 * Return the blend factor equivalent to a destination alpha of one.
1034 */
1035 static INLINE unsigned
1036 force_dst_alpha_one(unsigned factor, boolean alpha)
1037 {
1038 switch(factor) {
1039 case PIPE_BLENDFACTOR_DST_ALPHA:
1040 return PIPE_BLENDFACTOR_ONE;
1041 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1042 return PIPE_BLENDFACTOR_ZERO;
1043 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1044 return PIPE_BLENDFACTOR_ZERO;
1045 }
1046
1047 if (alpha) {
1048 switch(factor) {
1049 case PIPE_BLENDFACTOR_DST_COLOR:
1050 return PIPE_BLENDFACTOR_ONE;
1051 case PIPE_BLENDFACTOR_INV_DST_COLOR:
1052 return PIPE_BLENDFACTOR_ZERO;
1053 }
1054 }
1055
1056 return factor;
1057 }
1058
1059
1060 /**
1061 * We need to generate several variants of the fragment pipeline to match
1062 * all the combinations of the contributing state atoms.
1063 *
1064 * TODO: there is actually no reason to tie this to context state -- the
1065 * generated code could be cached globally in the screen.
1066 */
1067 static void
1068 make_variant_key(struct llvmpipe_context *lp,
1069 struct lp_fragment_shader *shader,
1070 struct lp_fragment_shader_variant_key *key)
1071 {
1072 unsigned i;
1073
1074 memset(key, 0, shader->variant_key_size);
1075
1076 if (lp->framebuffer.zsbuf) {
1077 if (lp->depth_stencil->depth.enabled) {
1078 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1079 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1080 }
1081 if (lp->depth_stencil->stencil[0].enabled) {
1082 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1083 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1084 }
1085 }
1086
1087 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1088 if(key->alpha.enabled)
1089 key->alpha.func = lp->depth_stencil->alpha.func;
1090 /* alpha.ref_value is passed in jit_context */
1091
1092 key->flatshade = lp->rasterizer->flatshade;
1093 if (lp->active_query_count) {
1094 key->occlusion_count = TRUE;
1095 }
1096
1097 if (lp->framebuffer.nr_cbufs) {
1098 memcpy(&key->blend, lp->blend, sizeof key->blend);
1099 }
1100
1101 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1102 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1103 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
1104 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1105 const struct util_format_description *format_desc;
1106
1107 key->cbuf_format[i] = format;
1108
1109 format_desc = util_format_description(format);
1110 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1111 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1112
1113 blend_rt->colormask = lp->blend->rt[i].colormask;
1114
1115 /*
1116 * Mask out color channels not present in the color buffer.
1117 */
1118 blend_rt->colormask &= util_format_colormask(format_desc);
1119
1120 /*
1121 * Our swizzled render tiles always have an alpha channel, but the linear
1122 * render target format often does not, so force here the dst alpha to be
1123 * one.
1124 *
1125 * This is not a mere optimization. Wrong results will be produced if the
1126 * dst alpha is used, the dst format does not have alpha, and the previous
1127 * rendering was not flushed from the swizzled to linear buffer. For
1128 * example, NonPowTwo DCT.
1129 *
1130 * TODO: This should be generalized to all channels for better
1131 * performance, but only alpha causes correctness issues.
1132 */
1133 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1134 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor, FALSE);
1135 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor, FALSE);
1136 blend_rt->alpha_src_factor = force_dst_alpha_one(blend_rt->alpha_src_factor, TRUE);
1137 blend_rt->alpha_dst_factor = force_dst_alpha_one(blend_rt->alpha_dst_factor, TRUE);
1138 }
1139 }
1140
1141 /* This value will be the same for all the variants of a given shader:
1142 */
1143 key->nr_samplers = shader->info.file_max[TGSI_FILE_SAMPLER] + 1;
1144
1145 for(i = 0; i < key->nr_samplers; ++i) {
1146 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
1147 lp_sampler_static_state(&key->sampler[i],
1148 lp->fragment_sampler_views[i],
1149 lp->sampler[i]);
1150 }
1151 }
1152 }
1153
1154 /**
1155 * Update fragment state. This is called just prior to drawing
1156 * something when some fragment-related state has changed.
1157 */
1158 void
1159 llvmpipe_update_fs(struct llvmpipe_context *lp)
1160 {
1161 struct lp_fragment_shader *shader = lp->fs;
1162 struct lp_fragment_shader_variant_key key;
1163 struct lp_fragment_shader_variant *variant = NULL;
1164 struct lp_fs_variant_list_item *li;
1165
1166 make_variant_key(lp, shader, &key);
1167
1168 li = first_elem(&shader->variants);
1169 while(!at_end(&shader->variants, li)) {
1170 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
1171 variant = li->base;
1172 break;
1173 }
1174 li = next_elem(li);
1175 }
1176
1177 if (variant) {
1178 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1179 }
1180 else {
1181 int64_t t0, t1;
1182 int64_t dt;
1183 unsigned i;
1184 if (lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS) {
1185 struct pipe_context *pipe = &lp->pipe;
1186
1187 /*
1188 * XXX: we need to flush the context until we have some sort of reference
1189 * counting in fragment shaders as they may still be binned
1190 * Flushing alone might not be sufficient we need to wait on it too.
1191 */
1192 llvmpipe_finish(pipe, __FUNCTION__);
1193
1194 for (i = 0; i < LP_MAX_SHADER_VARIANTS / 4; i++) {
1195 struct lp_fs_variant_list_item *item = last_elem(&lp->fs_variants_list);
1196 remove_shader_variant(lp, item->base);
1197 }
1198 }
1199 t0 = os_time_get();
1200
1201 variant = generate_variant(lp, shader, &key);
1202
1203 t1 = os_time_get();
1204 dt = t1 - t0;
1205 LP_COUNT_ADD(llvm_compile_time, dt);
1206 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1207
1208 if (variant) {
1209 insert_at_head(&shader->variants, &variant->list_item_local);
1210 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1211 lp->nr_fs_variants++;
1212 shader->variants_cached++;
1213 }
1214 }
1215
1216 lp_setup_set_fs_variant(lp->setup, variant);
1217 }
1218
1219
1220
1221 void
1222 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1223 {
1224 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1225 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1226 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1227
1228 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1229 }