gallium: Prefix #defines in tgsi_exec.h with TGSI_
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_init.h"
79 #include "gallivm/lp_bld_intr.h"
80 #include "gallivm/lp_bld_logic.h"
81 #include "gallivm/lp_bld_tgsi.h"
82 #include "gallivm/lp_bld_swizzle.h"
83 #include "gallivm/lp_bld_flow.h"
84 #include "gallivm/lp_bld_debug.h"
85
86 #include "lp_bld_alpha.h"
87 #include "lp_bld_blend.h"
88 #include "lp_bld_depth.h"
89 #include "lp_bld_interp.h"
90 #include "lp_context.h"
91 #include "lp_debug.h"
92 #include "lp_perf.h"
93 #include "lp_setup.h"
94 #include "lp_state.h"
95 #include "lp_tex_sample.h"
96 #include "lp_flush.h"
97 #include "lp_state_fs.h"
98
99
100 #include <llvm-c/Analysis.h>
101 #include <llvm-c/BitWriter.h>
102
103
104 /** Fragment shader number (for debugging) */
105 static unsigned fs_no = 0;
106
107
108 /**
109 * Expand the relevent bits of mask_input to a 4-dword mask for the
110 * four pixels in a 2x2 quad. This will set the four elements of the
111 * quad mask vector to 0 or ~0.
112 *
113 * \param quad which quad of the quad group to test, in [0,3]
114 * \param mask_input bitwise mask for the whole 4x4 stamp
115 */
116 static LLVMValueRef
117 generate_quad_mask(struct gallivm_state *gallivm,
118 struct lp_type fs_type,
119 unsigned quad,
120 LLVMValueRef mask_input) /* int32 */
121 {
122 LLVMBuilderRef builder = gallivm->builder;
123 struct lp_type mask_type;
124 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
125 LLVMValueRef bits[4];
126 LLVMValueRef mask;
127 int shift;
128
129 /*
130 * XXX: We'll need a different path for 16 x u8
131 */
132 assert(fs_type.width == 32);
133 assert(fs_type.length == 4);
134 mask_type = lp_int_type(fs_type);
135
136 /*
137 * mask_input >>= (quad * 4)
138 */
139 switch (quad) {
140 case 0:
141 shift = 0;
142 break;
143 case 1:
144 shift = 2;
145 break;
146 case 2:
147 shift = 8;
148 break;
149 case 3:
150 shift = 10;
151 break;
152 default:
153 assert(0);
154 shift = 0;
155 }
156
157 mask_input = LLVMBuildLShr(builder,
158 mask_input,
159 LLVMConstInt(i32t, shift, 0),
160 "");
161
162 /*
163 * mask = { mask_input & (1 << i), for i in [0,3] }
164 */
165 mask = lp_build_broadcast(gallivm,
166 lp_build_vec_type(gallivm, mask_type),
167 mask_input);
168
169 bits[0] = LLVMConstInt(i32t, 1 << 0, 0);
170 bits[1] = LLVMConstInt(i32t, 1 << 1, 0);
171 bits[2] = LLVMConstInt(i32t, 1 << 4, 0);
172 bits[3] = LLVMConstInt(i32t, 1 << 5, 0);
173
174 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, 4), "");
175
176 /*
177 * mask = mask != 0 ? ~0 : 0
178 */
179 mask = lp_build_compare(gallivm,
180 mask_type, PIPE_FUNC_NOTEQUAL,
181 mask,
182 lp_build_const_int_vec(gallivm, mask_type, 0));
183
184 return mask;
185 }
186
187
188 #define EARLY_DEPTH_TEST 0x1
189 #define LATE_DEPTH_TEST 0x2
190 #define EARLY_DEPTH_WRITE 0x4
191 #define LATE_DEPTH_WRITE 0x8
192
193 static int
194 find_output_by_semantic( const struct tgsi_shader_info *info,
195 unsigned semantic,
196 unsigned index )
197 {
198 int i;
199
200 for (i = 0; i < info->num_outputs; i++)
201 if (info->output_semantic_name[i] == semantic &&
202 info->output_semantic_index[i] == index)
203 return i;
204
205 return -1;
206 }
207
208
209 /**
210 * Generate the fragment shader, depth/stencil test, and alpha tests.
211 * \param i which quad in the tile, in range [0,3]
212 * \param partial_mask if 1, do mask_input testing
213 */
214 static void
215 generate_fs(struct gallivm_state *gallivm,
216 struct lp_fragment_shader *shader,
217 const struct lp_fragment_shader_variant_key *key,
218 LLVMBuilderRef builder,
219 struct lp_type type,
220 LLVMValueRef context_ptr,
221 unsigned i,
222 struct lp_build_interp_soa_context *interp,
223 struct lp_build_sampler_soa *sampler,
224 LLVMValueRef *pmask,
225 LLVMValueRef (*color)[4],
226 LLVMValueRef depth_ptr,
227 LLVMValueRef facing,
228 unsigned partial_mask,
229 LLVMValueRef mask_input,
230 LLVMValueRef counter)
231 {
232 const struct util_format_description *zs_format_desc = NULL;
233 const struct tgsi_token *tokens = shader->base.tokens;
234 LLVMTypeRef vec_type;
235 LLVMValueRef consts_ptr;
236 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
237 LLVMValueRef z;
238 LLVMValueRef zs_value = NULL;
239 LLVMValueRef stencil_refs[2];
240 struct lp_build_mask_context mask;
241 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
242 shader->info.base.num_inputs < 3 &&
243 shader->info.base.num_instructions < 8);
244 unsigned attrib;
245 unsigned chan;
246 unsigned cbuf;
247 unsigned depth_mode;
248
249 if (key->depth.enabled ||
250 key->stencil[0].enabled ||
251 key->stencil[1].enabled) {
252
253 zs_format_desc = util_format_description(key->zsbuf_format);
254 assert(zs_format_desc);
255
256 if (!shader->info.base.writes_z) {
257 if (key->alpha.enabled || shader->info.base.uses_kill)
258 /* With alpha test and kill, can do the depth test early
259 * and hopefully eliminate some quads. But need to do a
260 * special deferred depth write once the final mask value
261 * is known.
262 */
263 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
264 else
265 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
266 }
267 else {
268 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
269 }
270
271 if (!(key->depth.enabled && key->depth.writemask) &&
272 !(key->stencil[0].enabled && key->stencil[0].writemask))
273 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
274 }
275 else {
276 depth_mode = 0;
277 }
278
279 assert(i < 4);
280
281 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
282 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
283
284 vec_type = lp_build_vec_type(gallivm, type);
285
286 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
287
288 memset(outputs, 0, sizeof outputs);
289
290 /* Declare the color and z variables */
291 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
292 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
293 color[cbuf][chan] = lp_build_alloca(gallivm, vec_type, "color");
294 }
295 }
296
297 /* do triangle edge testing */
298 if (partial_mask) {
299 *pmask = generate_quad_mask(gallivm, type,
300 i, mask_input);
301 }
302 else {
303 *pmask = lp_build_const_int_vec(gallivm, type, ~0);
304 }
305
306 /* 'mask' will control execution based on quad's pixel alive/killed state */
307 lp_build_mask_begin(&mask, gallivm, type, *pmask);
308
309 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
310 lp_build_mask_check(&mask);
311
312 lp_build_interp_soa_update_pos(interp, gallivm, i);
313 z = interp->pos[2];
314
315 if (depth_mode & EARLY_DEPTH_TEST) {
316 lp_build_depth_stencil_test(gallivm,
317 &key->depth,
318 key->stencil,
319 type,
320 zs_format_desc,
321 &mask,
322 stencil_refs,
323 z,
324 depth_ptr, facing,
325 &zs_value,
326 !simple_shader);
327
328 if (depth_mode & EARLY_DEPTH_WRITE) {
329 lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value);
330 }
331 }
332
333 lp_build_interp_soa_update_inputs(interp, gallivm, i);
334
335 /* Build the actual shader */
336 lp_build_tgsi_soa(gallivm, tokens, type, &mask,
337 consts_ptr, NULL, /* sys values array */
338 interp->pos, interp->inputs,
339 outputs, sampler, &shader->info.base);
340
341 /* Alpha test */
342 if (key->alpha.enabled) {
343 int color0 = find_output_by_semantic(&shader->info.base,
344 TGSI_SEMANTIC_COLOR,
345 0);
346
347 if (color0 != -1 && outputs[color0][3]) {
348 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
349 LLVMValueRef alpha_ref_value;
350
351 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
352 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
353
354 lp_build_alpha_test(gallivm, key->alpha.func, type,
355 &mask, alpha, alpha_ref_value,
356 (depth_mode & LATE_DEPTH_TEST) != 0);
357 }
358 }
359
360 /* Late Z test */
361 if (depth_mode & LATE_DEPTH_TEST) {
362 int pos0 = find_output_by_semantic(&shader->info.base,
363 TGSI_SEMANTIC_POSITION,
364 0);
365
366 if (pos0 != -1 && outputs[pos0][2]) {
367 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
368 }
369
370 lp_build_depth_stencil_test(gallivm,
371 &key->depth,
372 key->stencil,
373 type,
374 zs_format_desc,
375 &mask,
376 stencil_refs,
377 z,
378 depth_ptr, facing,
379 &zs_value,
380 !simple_shader);
381 /* Late Z write */
382 if (depth_mode & LATE_DEPTH_WRITE) {
383 lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value);
384 }
385 }
386 else if ((depth_mode & EARLY_DEPTH_TEST) &&
387 (depth_mode & LATE_DEPTH_WRITE))
388 {
389 /* Need to apply a reduced mask to the depth write. Reload the
390 * depth value, update from zs_value with the new mask value and
391 * write that out.
392 */
393 lp_build_deferred_depth_write(gallivm,
394 type,
395 zs_format_desc,
396 &mask,
397 depth_ptr,
398 zs_value);
399 }
400
401
402 /* Color write */
403 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
404 {
405 if (shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR &&
406 shader->info.base.output_semantic_index[attrib] < key->nr_cbufs)
407 {
408 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
409 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
410 if(outputs[attrib][chan]) {
411 /* XXX: just initialize outputs to point at colors[] and
412 * skip this.
413 */
414 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
415 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
416 LLVMBuildStore(builder, out, color[cbuf][chan]);
417 }
418 }
419 }
420 }
421
422 if (counter)
423 lp_build_occlusion_count(gallivm, type,
424 lp_build_mask_value(&mask), counter);
425
426 *pmask = lp_build_mask_end(&mask);
427 }
428
429
430 /**
431 * Generate color blending and color output.
432 * \param rt the render target index (to index blend, colormask state)
433 * \param type the pixel color type
434 * \param context_ptr pointer to the runtime JIT context
435 * \param mask execution mask (active fragment/pixel mask)
436 * \param src colors from the fragment shader
437 * \param dst_ptr the destination color buffer pointer
438 */
439 static void
440 generate_blend(struct gallivm_state *gallivm,
441 const struct pipe_blend_state *blend,
442 unsigned rt,
443 LLVMBuilderRef builder,
444 struct lp_type type,
445 LLVMValueRef context_ptr,
446 LLVMValueRef mask,
447 LLVMValueRef *src,
448 LLVMValueRef dst_ptr,
449 boolean do_branch)
450 {
451 struct lp_build_context bld;
452 struct lp_build_mask_context mask_ctx;
453 LLVMTypeRef vec_type;
454 LLVMValueRef const_ptr;
455 LLVMValueRef con[4];
456 LLVMValueRef dst[4];
457 LLVMValueRef res[4];
458 unsigned chan;
459
460 lp_build_context_init(&bld, gallivm, type);
461
462 lp_build_mask_begin(&mask_ctx, gallivm, type, mask);
463 if (do_branch)
464 lp_build_mask_check(&mask_ctx);
465
466 vec_type = lp_build_vec_type(gallivm, type);
467
468 const_ptr = lp_jit_context_blend_color(gallivm, context_ptr);
469 const_ptr = LLVMBuildBitCast(builder, const_ptr,
470 LLVMPointerType(vec_type, 0), "");
471
472 /* load constant blend color and colors from the dest color buffer */
473 for(chan = 0; chan < 4; ++chan) {
474 LLVMValueRef index = lp_build_const_int32(gallivm, chan);
475 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
476
477 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
478
479 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
480 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
481 }
482
483 /* do blend */
484 lp_build_blend_soa(gallivm, blend, type, rt, src, dst, con, res);
485
486 /* store results to color buffer */
487 for(chan = 0; chan < 4; ++chan) {
488 if(blend->rt[rt].colormask & (1 << chan)) {
489 LLVMValueRef index = lp_build_const_int32(gallivm, chan);
490 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
491 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
492 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
493 }
494 }
495
496 lp_build_mask_end(&mask_ctx);
497 }
498
499
500 /**
501 * Generate the runtime callable function for the whole fragment pipeline.
502 * Note that the function which we generate operates on a block of 16
503 * pixels at at time. The block contains 2x2 quads. Each quad contains
504 * 2x2 pixels.
505 */
506 static void
507 generate_fragment(struct llvmpipe_context *lp,
508 struct lp_fragment_shader *shader,
509 struct lp_fragment_shader_variant *variant,
510 unsigned partial_mask)
511 {
512 struct gallivm_state *gallivm = lp->gallivm;
513 const struct lp_fragment_shader_variant_key *key = &variant->key;
514 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
515 char func_name[256];
516 struct lp_type fs_type;
517 struct lp_type blend_type;
518 LLVMTypeRef fs_elem_type;
519 LLVMTypeRef blend_vec_type;
520 LLVMTypeRef arg_types[11];
521 LLVMTypeRef func_type;
522 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
523 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
524 LLVMValueRef context_ptr;
525 LLVMValueRef x;
526 LLVMValueRef y;
527 LLVMValueRef a0_ptr;
528 LLVMValueRef dadx_ptr;
529 LLVMValueRef dady_ptr;
530 LLVMValueRef color_ptr_ptr;
531 LLVMValueRef depth_ptr;
532 LLVMValueRef mask_input;
533 LLVMValueRef counter = NULL;
534 LLVMBasicBlockRef block;
535 LLVMBuilderRef builder;
536 struct lp_build_sampler_soa *sampler;
537 struct lp_build_interp_soa_context interp;
538 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
539 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
540 LLVMValueRef blend_mask;
541 LLVMValueRef function;
542 LLVMValueRef facing;
543 const struct util_format_description *zs_format_desc;
544 unsigned num_fs;
545 unsigned i;
546 unsigned chan;
547 unsigned cbuf;
548 boolean cbuf0_write_all;
549
550 /* Adjust color input interpolation according to flatshade state:
551 */
552 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
553 for (i = 0; i < shader->info.base.num_inputs; i++) {
554 if (inputs[i].interp == LP_INTERP_COLOR) {
555 if (key->flatshade)
556 inputs[i].interp = LP_INTERP_CONSTANT;
557 else
558 inputs[i].interp = LP_INTERP_LINEAR;
559 }
560 }
561
562 /* check if writes to cbuf[0] are to be copied to all cbufs */
563 cbuf0_write_all = FALSE;
564 for (i = 0;i < shader->info.base.num_properties; i++) {
565 if (shader->info.base.properties[i].name ==
566 TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS) {
567 cbuf0_write_all = TRUE;
568 break;
569 }
570 }
571
572 /* TODO: actually pick these based on the fs and color buffer
573 * characteristics. */
574
575 memset(&fs_type, 0, sizeof fs_type);
576 fs_type.floating = TRUE; /* floating point values */
577 fs_type.sign = TRUE; /* values are signed */
578 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
579 fs_type.width = 32; /* 32-bit float */
580 fs_type.length = 4; /* 4 elements per vector */
581 num_fs = 4; /* number of quads per block */
582
583 memset(&blend_type, 0, sizeof blend_type);
584 blend_type.floating = FALSE; /* values are integers */
585 blend_type.sign = FALSE; /* values are unsigned */
586 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
587 blend_type.width = 8; /* 8-bit ubyte values */
588 blend_type.length = 16; /* 16 elements per vector */
589
590 /*
591 * Generate the function prototype. Any change here must be reflected in
592 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
593 */
594
595 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
596
597 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
598
599 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
600 shader->no, variant->no, partial_mask ? "partial" : "whole");
601
602 arg_types[0] = lp_jit_get_context_type(lp); /* context */
603 arg_types[1] = int32_type; /* x */
604 arg_types[2] = int32_type; /* y */
605 arg_types[3] = int32_type; /* facing */
606 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
607 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
608 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
609 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
610 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
611 arg_types[9] = int32_type; /* mask_input */
612 arg_types[10] = LLVMPointerType(int32_type, 0); /* counter */
613
614 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
615 arg_types, Elements(arg_types), 0);
616
617 function = LLVMAddFunction(gallivm->module, func_name, func_type);
618 LLVMSetFunctionCallConv(function, LLVMCCallConv);
619
620 variant->function[partial_mask] = function;
621
622 /* XXX: need to propagate noalias down into color param now we are
623 * passing a pointer-to-pointer?
624 */
625 for(i = 0; i < Elements(arg_types); ++i)
626 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
627 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
628
629 context_ptr = LLVMGetParam(function, 0);
630 x = LLVMGetParam(function, 1);
631 y = LLVMGetParam(function, 2);
632 facing = LLVMGetParam(function, 3);
633 a0_ptr = LLVMGetParam(function, 4);
634 dadx_ptr = LLVMGetParam(function, 5);
635 dady_ptr = LLVMGetParam(function, 6);
636 color_ptr_ptr = LLVMGetParam(function, 7);
637 depth_ptr = LLVMGetParam(function, 8);
638 mask_input = LLVMGetParam(function, 9);
639
640 lp_build_name(context_ptr, "context");
641 lp_build_name(x, "x");
642 lp_build_name(y, "y");
643 lp_build_name(a0_ptr, "a0");
644 lp_build_name(dadx_ptr, "dadx");
645 lp_build_name(dady_ptr, "dady");
646 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
647 lp_build_name(depth_ptr, "depth");
648 lp_build_name(mask_input, "mask_input");
649
650 if (key->occlusion_count) {
651 counter = LLVMGetParam(function, 10);
652 lp_build_name(counter, "counter");
653 }
654
655 /*
656 * Function body
657 */
658
659 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
660 builder = gallivm->builder;
661 assert(builder);
662 LLVMPositionBuilderAtEnd(builder, block);
663
664 /*
665 * The shader input interpolation info is not explicitely baked in the
666 * shader key, but everything it derives from (TGSI, and flatshade) is
667 * already included in the shader key.
668 */
669 lp_build_interp_soa_init(&interp,
670 gallivm,
671 shader->info.base.num_inputs,
672 inputs,
673 builder, fs_type,
674 a0_ptr, dadx_ptr, dady_ptr,
675 x, y);
676
677 /* code generated texture sampling */
678 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
679
680 /* loop over quads in the block */
681 zs_format_desc = util_format_description(key->zsbuf_format);
682
683 for(i = 0; i < num_fs; ++i) {
684 LLVMValueRef depth_offset = LLVMConstInt(int32_type,
685 i*fs_type.length*zs_format_desc->block.bits/8,
686 0);
687 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
688 LLVMValueRef depth_ptr_i;
689
690 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &depth_offset, 1, "");
691
692 generate_fs(gallivm,
693 shader, key,
694 builder,
695 fs_type,
696 context_ptr,
697 i,
698 &interp,
699 sampler,
700 &fs_mask[i], /* output */
701 out_color,
702 depth_ptr_i,
703 facing,
704 partial_mask,
705 mask_input,
706 counter);
707
708 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
709 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
710 fs_out_color[cbuf][chan][i] =
711 out_color[cbuf * !cbuf0_write_all][chan];
712 }
713
714 sampler->destroy(sampler);
715
716 /* Loop over color outputs / color buffers to do blending.
717 */
718 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
719 LLVMValueRef color_ptr;
720 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
721 LLVMValueRef blend_in_color[TGSI_NUM_CHANNELS];
722 unsigned rt;
723
724 /*
725 * Convert the fs's output color and mask to fit to the blending type.
726 */
727 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
728 LLVMValueRef fs_color_vals[LP_MAX_VECTOR_LENGTH];
729
730 for (i = 0; i < num_fs; i++) {
731 fs_color_vals[i] =
732 LLVMBuildLoad(builder, fs_out_color[cbuf][chan][i], "fs_color_vals");
733 }
734
735 lp_build_conv(gallivm, fs_type, blend_type,
736 fs_color_vals,
737 num_fs,
738 &blend_in_color[chan], 1);
739
740 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
741 }
742
743 if (partial_mask || !variant->opaque) {
744 lp_build_conv_mask(lp->gallivm, fs_type, blend_type,
745 fs_mask, num_fs,
746 &blend_mask, 1);
747 } else {
748 blend_mask = lp_build_const_int_vec(lp->gallivm, blend_type, ~0);
749 }
750
751 color_ptr = LLVMBuildLoad(builder,
752 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
753 "");
754 lp_build_name(color_ptr, "color_ptr%d", cbuf);
755
756 /* which blend/colormask state to use */
757 rt = key->blend.independent_blend_enable ? cbuf : 0;
758
759 /*
760 * Blending.
761 */
762 {
763 /* Could the 4x4 have been killed?
764 */
765 boolean do_branch = ((key->depth.enabled || key->stencil[0].enabled) &&
766 !key->alpha.enabled &&
767 !shader->info.base.uses_kill);
768
769 generate_blend(lp->gallivm,
770 &key->blend,
771 rt,
772 builder,
773 blend_type,
774 context_ptr,
775 blend_mask,
776 blend_in_color,
777 color_ptr,
778 do_branch);
779 }
780 }
781
782 LLVMBuildRetVoid(builder);
783
784 /* Verify the LLVM IR. If invalid, dump and abort */
785 #ifdef DEBUG
786 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
787 if (1)
788 lp_debug_dump_value(function);
789 abort();
790 }
791 #endif
792
793 /* Apply optimizations to LLVM IR */
794 LLVMRunFunctionPassManager(gallivm->passmgr, function);
795
796 if ((gallivm_debug & GALLIVM_DEBUG_IR) || (LP_DEBUG & DEBUG_FS)) {
797 /* Print the LLVM IR to stderr */
798 lp_debug_dump_value(function);
799 debug_printf("\n");
800 }
801
802 /* Dump byte code to a file */
803 if (0) {
804 LLVMWriteBitcodeToFile(gallivm->module, "llvmpipe.bc");
805 }
806
807 variant->nr_instrs += lp_build_count_instructions(function);
808 /*
809 * Translate the LLVM IR into machine code.
810 */
811 {
812 void *f = LLVMGetPointerToGlobal(gallivm->engine, function);
813
814 variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);
815
816 if ((gallivm_debug & GALLIVM_DEBUG_ASM) || (LP_DEBUG & DEBUG_FS)) {
817 lp_disassemble(f);
818 }
819 lp_func_delete_body(function);
820 }
821 }
822
823
824 static void
825 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
826 {
827 unsigned i;
828
829 debug_printf("fs variant %p:\n", (void *) key);
830
831 if (key->flatshade) {
832 debug_printf("flatshade = 1\n");
833 }
834 for (i = 0; i < key->nr_cbufs; ++i) {
835 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
836 }
837 if (key->depth.enabled) {
838 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
839 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
840 debug_printf("depth.writemask = %u\n", key->depth.writemask);
841 }
842
843 for (i = 0; i < 2; ++i) {
844 if (key->stencil[i].enabled) {
845 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
846 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
847 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
848 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
849 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
850 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
851 }
852 }
853
854 if (key->alpha.enabled) {
855 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
856 }
857
858 if (key->occlusion_count) {
859 debug_printf("occlusion_count = 1\n");
860 }
861
862 if (key->blend.logicop_enable) {
863 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
864 }
865 else if (key->blend.rt[0].blend_enable) {
866 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
867 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
868 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
869 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
870 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
871 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
872 }
873 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
874 for (i = 0; i < key->nr_samplers; ++i) {
875 debug_printf("sampler[%u] = \n", i);
876 debug_printf(" .format = %s\n",
877 util_format_name(key->sampler[i].format));
878 debug_printf(" .target = %s\n",
879 util_dump_tex_target(key->sampler[i].target, TRUE));
880 debug_printf(" .pot = %u %u %u\n",
881 key->sampler[i].pot_width,
882 key->sampler[i].pot_height,
883 key->sampler[i].pot_depth);
884 debug_printf(" .wrap = %s %s %s\n",
885 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
886 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
887 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
888 debug_printf(" .min_img_filter = %s\n",
889 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
890 debug_printf(" .min_mip_filter = %s\n",
891 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
892 debug_printf(" .mag_img_filter = %s\n",
893 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
894 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
895 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
896 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
897 debug_printf(" .min_max_lod_equal = %u\n", key->sampler[i].min_max_lod_equal);
898 debug_printf(" .lod_bias_non_zero = %u\n", key->sampler[i].lod_bias_non_zero);
899 debug_printf(" .apply_min_lod = %u\n", key->sampler[i].apply_min_lod);
900 debug_printf(" .apply_max_lod = %u\n", key->sampler[i].apply_max_lod);
901 }
902 }
903
904
905 void
906 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
907 {
908 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
909 variant->shader->no, variant->no);
910 tgsi_dump(variant->shader->base.tokens, 0);
911 dump_fs_variant_key(&variant->key);
912 debug_printf("variant->opaque = %u\n", variant->opaque);
913 debug_printf("\n");
914 }
915
916
917 /**
918 * Generate a new fragment shader variant from the shader code and
919 * other state indicated by the key.
920 */
921 static struct lp_fragment_shader_variant *
922 generate_variant(struct llvmpipe_context *lp,
923 struct lp_fragment_shader *shader,
924 const struct lp_fragment_shader_variant_key *key)
925 {
926 struct lp_fragment_shader_variant *variant;
927 boolean fullcolormask;
928
929 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
930 if(!variant)
931 return NULL;
932
933 variant->shader = shader;
934 variant->list_item_global.base = variant;
935 variant->list_item_local.base = variant;
936 variant->no = shader->variants_created++;
937
938 memcpy(&variant->key, key, shader->variant_key_size);
939
940 /*
941 * Determine whether we are touching all channels in the color buffer.
942 */
943 fullcolormask = FALSE;
944 if (key->nr_cbufs == 1) {
945 const struct util_format_description *format_desc;
946 format_desc = util_format_description(key->cbuf_format[0]);
947 if ((~key->blend.rt[0].colormask &
948 util_format_colormask(format_desc)) == 0) {
949 fullcolormask = TRUE;
950 }
951 }
952
953 variant->opaque =
954 !key->blend.logicop_enable &&
955 !key->blend.rt[0].blend_enable &&
956 fullcolormask &&
957 !key->stencil[0].enabled &&
958 !key->alpha.enabled &&
959 !key->depth.enabled &&
960 !shader->info.base.uses_kill
961 ? TRUE : FALSE;
962
963
964 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
965 lp_debug_fs_variant(variant);
966 }
967
968 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
969
970 if (variant->opaque) {
971 /* Specialized shader, which doesn't need to read the color buffer. */
972 generate_fragment(lp, shader, variant, RAST_WHOLE);
973 } else {
974 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
975 }
976
977 return variant;
978 }
979
980
981 static void *
982 llvmpipe_create_fs_state(struct pipe_context *pipe,
983 const struct pipe_shader_state *templ)
984 {
985 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
986 struct lp_fragment_shader *shader;
987 int nr_samplers;
988 int i;
989
990 shader = CALLOC_STRUCT(lp_fragment_shader);
991 if (!shader)
992 return NULL;
993
994 shader->no = fs_no++;
995 make_empty_list(&shader->variants);
996
997 /* get/save the summary info for this shader */
998 lp_build_tgsi_info(templ->tokens, &shader->info);
999
1000 /* we need to keep a local copy of the tokens */
1001 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
1002
1003 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
1004 if (shader->draw_data == NULL) {
1005 FREE((void *) shader->base.tokens);
1006 FREE(shader);
1007 return NULL;
1008 }
1009
1010 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
1011
1012 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
1013 sampler[nr_samplers]);
1014
1015 for (i = 0; i < shader->info.base.num_inputs; i++) {
1016 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
1017
1018 switch (shader->info.base.input_interpolate[i]) {
1019 case TGSI_INTERPOLATE_CONSTANT:
1020 shader->inputs[i].interp = LP_INTERP_CONSTANT;
1021 break;
1022 case TGSI_INTERPOLATE_LINEAR:
1023 shader->inputs[i].interp = LP_INTERP_LINEAR;
1024 break;
1025 case TGSI_INTERPOLATE_PERSPECTIVE:
1026 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
1027 break;
1028 case TGSI_INTERPOLATE_COLOR:
1029 shader->inputs[i].interp = LP_INTERP_COLOR;
1030 break;
1031 default:
1032 assert(0);
1033 break;
1034 }
1035
1036 switch (shader->info.base.input_semantic_name[i]) {
1037 case TGSI_SEMANTIC_FACE:
1038 shader->inputs[i].interp = LP_INTERP_FACING;
1039 break;
1040 case TGSI_SEMANTIC_POSITION:
1041 /* Position was already emitted above
1042 */
1043 shader->inputs[i].interp = LP_INTERP_POSITION;
1044 shader->inputs[i].src_index = 0;
1045 continue;
1046 }
1047
1048 shader->inputs[i].src_index = i+1;
1049 }
1050
1051 if (LP_DEBUG & DEBUG_TGSI) {
1052 unsigned attrib;
1053 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
1054 shader->no, (void *) shader);
1055 tgsi_dump(templ->tokens, 0);
1056 debug_printf("usage masks:\n");
1057 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
1058 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
1059 debug_printf(" IN[%u].%s%s%s%s\n",
1060 attrib,
1061 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
1062 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
1063 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
1064 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
1065 }
1066 debug_printf("\n");
1067 }
1068
1069 return shader;
1070 }
1071
1072
1073 static void
1074 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
1075 {
1076 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1077
1078 if (llvmpipe->fs == fs)
1079 return;
1080
1081 draw_flush(llvmpipe->draw);
1082
1083 llvmpipe->fs = (struct lp_fragment_shader *) fs;
1084
1085 draw_bind_fragment_shader(llvmpipe->draw,
1086 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
1087
1088 llvmpipe->dirty |= LP_NEW_FS;
1089 }
1090
1091
1092 /**
1093 * Remove shader variant from two lists: the shader's variant list
1094 * and the context's variant list.
1095 */
1096 void
1097 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
1098 struct lp_fragment_shader_variant *variant)
1099 {
1100 unsigned i;
1101
1102 if (gallivm_debug & GALLIVM_DEBUG_IR) {
1103 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached"
1104 " #%u v total cached #%u\n",
1105 variant->shader->no,
1106 variant->no,
1107 variant->shader->variants_created,
1108 variant->shader->variants_cached,
1109 lp->nr_fs_variants);
1110 }
1111
1112 /* free all the variant's JIT'd functions */
1113 for (i = 0; i < Elements(variant->function); i++) {
1114 if (variant->function[i]) {
1115 if (variant->jit_function[i])
1116 LLVMFreeMachineCodeForFunction(lp->gallivm->engine,
1117 variant->function[i]);
1118 LLVMDeleteFunction(variant->function[i]);
1119 }
1120 }
1121
1122 /* remove from shader's list */
1123 remove_from_list(&variant->list_item_local);
1124 variant->shader->variants_cached--;
1125
1126 /* remove from context's list */
1127 remove_from_list(&variant->list_item_global);
1128 lp->nr_fs_variants--;
1129 lp->nr_fs_instrs -= variant->nr_instrs;
1130
1131 FREE(variant);
1132 }
1133
1134
1135 static void
1136 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1137 {
1138 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1139 struct lp_fragment_shader *shader = fs;
1140 struct lp_fs_variant_list_item *li;
1141
1142 assert(fs != llvmpipe->fs);
1143
1144 /*
1145 * XXX: we need to flush the context until we have some sort of reference
1146 * counting in fragment shaders as they may still be binned
1147 * Flushing alone might not sufficient we need to wait on it too.
1148 */
1149 llvmpipe_finish(pipe, __FUNCTION__);
1150
1151 /* Delete all the variants */
1152 li = first_elem(&shader->variants);
1153 while(!at_end(&shader->variants, li)) {
1154 struct lp_fs_variant_list_item *next = next_elem(li);
1155 llvmpipe_remove_shader_variant(llvmpipe, li->base);
1156 li = next;
1157 }
1158
1159 /* Delete draw module's data */
1160 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
1161
1162 assert(shader->variants_cached == 0);
1163 FREE((void *) shader->base.tokens);
1164 FREE(shader);
1165 }
1166
1167
1168
1169 static void
1170 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1171 uint shader, uint index,
1172 struct pipe_resource *constants)
1173 {
1174 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1175 unsigned size = constants ? constants->width0 : 0;
1176 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1177
1178 assert(shader < PIPE_SHADER_TYPES);
1179 assert(index < PIPE_MAX_CONSTANT_BUFFERS);
1180
1181 if(llvmpipe->constants[shader][index] == constants)
1182 return;
1183
1184 draw_flush(llvmpipe->draw);
1185
1186 /* note: reference counting */
1187 pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
1188
1189 if(shader == PIPE_SHADER_VERTEX ||
1190 shader == PIPE_SHADER_GEOMETRY) {
1191 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
1192 index, data, size);
1193 }
1194
1195 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1196 }
1197
1198
1199 /**
1200 * Return the blend factor equivalent to a destination alpha of one.
1201 */
1202 static INLINE unsigned
1203 force_dst_alpha_one(unsigned factor)
1204 {
1205 switch(factor) {
1206 case PIPE_BLENDFACTOR_DST_ALPHA:
1207 return PIPE_BLENDFACTOR_ONE;
1208 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1209 return PIPE_BLENDFACTOR_ZERO;
1210 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1211 return PIPE_BLENDFACTOR_ZERO;
1212 }
1213
1214 return factor;
1215 }
1216
1217
1218 /**
1219 * We need to generate several variants of the fragment pipeline to match
1220 * all the combinations of the contributing state atoms.
1221 *
1222 * TODO: there is actually no reason to tie this to context state -- the
1223 * generated code could be cached globally in the screen.
1224 */
1225 static void
1226 make_variant_key(struct llvmpipe_context *lp,
1227 struct lp_fragment_shader *shader,
1228 struct lp_fragment_shader_variant_key *key)
1229 {
1230 unsigned i;
1231
1232 memset(key, 0, shader->variant_key_size);
1233
1234 if (lp->framebuffer.zsbuf) {
1235 if (lp->depth_stencil->depth.enabled) {
1236 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1237 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1238 }
1239 if (lp->depth_stencil->stencil[0].enabled) {
1240 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1241 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1242 }
1243 }
1244
1245 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1246 if(key->alpha.enabled)
1247 key->alpha.func = lp->depth_stencil->alpha.func;
1248 /* alpha.ref_value is passed in jit_context */
1249
1250 key->flatshade = lp->rasterizer->flatshade;
1251 if (lp->active_query_count) {
1252 key->occlusion_count = TRUE;
1253 }
1254
1255 if (lp->framebuffer.nr_cbufs) {
1256 memcpy(&key->blend, lp->blend, sizeof key->blend);
1257 }
1258
1259 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1260 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1261 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
1262 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1263 const struct util_format_description *format_desc;
1264
1265 key->cbuf_format[i] = format;
1266
1267 format_desc = util_format_description(format);
1268 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1269 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1270
1271 blend_rt->colormask = lp->blend->rt[i].colormask;
1272
1273 /*
1274 * Mask out color channels not present in the color buffer.
1275 */
1276 blend_rt->colormask &= util_format_colormask(format_desc);
1277
1278 /*
1279 * Our swizzled render tiles always have an alpha channel, but the linear
1280 * render target format often does not, so force here the dst alpha to be
1281 * one.
1282 *
1283 * This is not a mere optimization. Wrong results will be produced if the
1284 * dst alpha is used, the dst format does not have alpha, and the previous
1285 * rendering was not flushed from the swizzled to linear buffer. For
1286 * example, NonPowTwo DCT.
1287 *
1288 * TODO: This should be generalized to all channels for better
1289 * performance, but only alpha causes correctness issues.
1290 *
1291 * Also, force rgb/alpha func/factors match, to make AoS blending easier.
1292 */
1293 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W ||
1294 format_desc->swizzle[3] == format_desc->swizzle[0]) {
1295 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor);
1296 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor);
1297 blend_rt->alpha_func = blend_rt->rgb_func;
1298 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
1299 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
1300 }
1301 }
1302
1303 /* This value will be the same for all the variants of a given shader:
1304 */
1305 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
1306
1307 for(i = 0; i < key->nr_samplers; ++i) {
1308 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
1309 lp_sampler_static_state(&key->sampler[i],
1310 lp->fragment_sampler_views[i],
1311 lp->sampler[i]);
1312 }
1313 }
1314 }
1315
1316
1317
1318 /**
1319 * Update fragment shader state. This is called just prior to drawing
1320 * something when some fragment-related state has changed.
1321 */
1322 void
1323 llvmpipe_update_fs(struct llvmpipe_context *lp)
1324 {
1325 struct lp_fragment_shader *shader = lp->fs;
1326 struct lp_fragment_shader_variant_key key;
1327 struct lp_fragment_shader_variant *variant = NULL;
1328 struct lp_fs_variant_list_item *li;
1329
1330 make_variant_key(lp, shader, &key);
1331
1332 /* Search the variants for one which matches the key */
1333 li = first_elem(&shader->variants);
1334 while(!at_end(&shader->variants, li)) {
1335 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
1336 variant = li->base;
1337 break;
1338 }
1339 li = next_elem(li);
1340 }
1341
1342 if (variant) {
1343 /* Move this variant to the head of the list to implement LRU
1344 * deletion of shader's when we have too many.
1345 */
1346 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1347 }
1348 else {
1349 /* variant not found, create it now */
1350 int64_t t0, t1, dt;
1351 unsigned i;
1352 unsigned variants_to_cull;
1353
1354 if (0) {
1355 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
1356 lp->nr_fs_variants,
1357 lp->nr_fs_instrs,
1358 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
1359 }
1360
1361 /* First, check if we've exceeded the max number of shader variants.
1362 * If so, free 25% of them (the least recently used ones).
1363 */
1364 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 4 : 0;
1365
1366 if (variants_to_cull ||
1367 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
1368 struct pipe_context *pipe = &lp->pipe;
1369
1370 /*
1371 * XXX: we need to flush the context until we have some sort of
1372 * reference counting in fragment shaders as they may still be binned
1373 * Flushing alone might not be sufficient we need to wait on it too.
1374 */
1375 llvmpipe_finish(pipe, __FUNCTION__);
1376
1377 /*
1378 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
1379 * number of shader variants (potentially all of them) could be
1380 * pending for destruction on flush.
1381 */
1382
1383 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
1384 struct lp_fs_variant_list_item *item;
1385 if (is_empty_list(&lp->fs_variants_list)) {
1386 break;
1387 }
1388 item = last_elem(&lp->fs_variants_list);
1389 assert(item);
1390 assert(item->base);
1391 llvmpipe_remove_shader_variant(lp, item->base);
1392 }
1393 }
1394
1395 /*
1396 * Generate the new variant.
1397 */
1398 t0 = os_time_get();
1399 variant = generate_variant(lp, shader, &key);
1400 t1 = os_time_get();
1401 dt = t1 - t0;
1402 LP_COUNT_ADD(llvm_compile_time, dt);
1403 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1404
1405 llvmpipe_variant_count++;
1406
1407 /* Put the new variant into the list */
1408 if (variant) {
1409 insert_at_head(&shader->variants, &variant->list_item_local);
1410 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1411 lp->nr_fs_variants++;
1412 lp->nr_fs_instrs += variant->nr_instrs;
1413 shader->variants_cached++;
1414 }
1415 }
1416
1417 /* Bind this variant */
1418 lp_setup_set_fs_variant(lp->setup, variant);
1419 }
1420
1421
1422
1423
1424
1425
1426
1427 void
1428 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1429 {
1430 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1431 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1432 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1433
1434 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1435 }