llvmpipe: Implement alpha_to_coverage for non-MSAA framebuffers.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "os/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_swizzle.h"
84 #include "gallivm/lp_bld_flow.h"
85 #include "gallivm/lp_bld_debug.h"
86 #include "gallivm/lp_bld_arit.h"
87 #include "gallivm/lp_bld_pack.h"
88 #include "gallivm/lp_bld_format.h"
89 #include "gallivm/lp_bld_quad.h"
90
91 #include "lp_bld_alpha.h"
92 #include "lp_bld_blend.h"
93 #include "lp_bld_depth.h"
94 #include "lp_bld_interp.h"
95 #include "lp_context.h"
96 #include "lp_debug.h"
97 #include "lp_perf.h"
98 #include "lp_setup.h"
99 #include "lp_state.h"
100 #include "lp_tex_sample.h"
101 #include "lp_flush.h"
102 #include "lp_state_fs.h"
103 #include "lp_rast.h"
104
105
106 /** Fragment shader number (for debugging) */
107 static unsigned fs_no = 0;
108
109
110 /**
111 * Expand the relevant bits of mask_input to a n*4-dword mask for the
112 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
113 * quad mask vector to 0 or ~0.
114 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
115 * quad arguments with fs length 8.
116 *
117 * \param first_quad which quad(s) of the quad group to test, in [0,3]
118 * \param mask_input bitwise mask for the whole 4x4 stamp
119 */
120 static LLVMValueRef
121 generate_quad_mask(struct gallivm_state *gallivm,
122 struct lp_type fs_type,
123 unsigned first_quad,
124 LLVMValueRef mask_input) /* int32 */
125 {
126 LLVMBuilderRef builder = gallivm->builder;
127 struct lp_type mask_type;
128 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
129 LLVMValueRef bits[16];
130 LLVMValueRef mask;
131 int shift, i;
132
133 /*
134 * XXX: We'll need a different path for 16 x u8
135 */
136 assert(fs_type.width == 32);
137 assert(fs_type.length <= Elements(bits));
138 mask_type = lp_int_type(fs_type);
139
140 /*
141 * mask_input >>= (quad * 4)
142 */
143 switch (first_quad) {
144 case 0:
145 shift = 0;
146 break;
147 case 1:
148 assert(fs_type.length == 4);
149 shift = 2;
150 break;
151 case 2:
152 shift = 8;
153 break;
154 case 3:
155 assert(fs_type.length == 4);
156 shift = 10;
157 break;
158 default:
159 assert(0);
160 shift = 0;
161 }
162
163 mask_input = LLVMBuildLShr(builder,
164 mask_input,
165 LLVMConstInt(i32t, shift, 0),
166 "");
167
168 /*
169 * mask = { mask_input & (1 << i), for i in [0,3] }
170 */
171 mask = lp_build_broadcast(gallivm,
172 lp_build_vec_type(gallivm, mask_type),
173 mask_input);
174
175 for (i = 0; i < fs_type.length / 4; i++) {
176 unsigned j = 2 * (i % 2) + (i / 2) * 8;
177 bits[4*i + 0] = LLVMConstInt(i32t, 1 << (j + 0), 0);
178 bits[4*i + 1] = LLVMConstInt(i32t, 1 << (j + 1), 0);
179 bits[4*i + 2] = LLVMConstInt(i32t, 1 << (j + 4), 0);
180 bits[4*i + 3] = LLVMConstInt(i32t, 1 << (j + 5), 0);
181 }
182 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, fs_type.length), "");
183
184 /*
185 * mask = mask != 0 ? ~0 : 0
186 */
187 mask = lp_build_compare(gallivm,
188 mask_type, PIPE_FUNC_NOTEQUAL,
189 mask,
190 lp_build_const_int_vec(gallivm, mask_type, 0));
191
192 return mask;
193 }
194
195
196 #define EARLY_DEPTH_TEST 0x1
197 #define LATE_DEPTH_TEST 0x2
198 #define EARLY_DEPTH_WRITE 0x4
199 #define LATE_DEPTH_WRITE 0x8
200
201 static int
202 find_output_by_semantic( const struct tgsi_shader_info *info,
203 unsigned semantic,
204 unsigned index )
205 {
206 int i;
207
208 for (i = 0; i < info->num_outputs; i++)
209 if (info->output_semantic_name[i] == semantic &&
210 info->output_semantic_index[i] == index)
211 return i;
212
213 return -1;
214 }
215
216
217 /**
218 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
219 */
220 static LLVMValueRef
221 lp_llvm_viewport(LLVMValueRef context_ptr,
222 struct gallivm_state *gallivm,
223 LLVMValueRef viewport_index)
224 {
225 LLVMBuilderRef builder = gallivm->builder;
226 LLVMValueRef ptr;
227 LLVMValueRef res;
228 struct lp_type viewport_type =
229 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
230
231 ptr = lp_jit_context_viewports(gallivm, context_ptr);
232 ptr = LLVMBuildPointerCast(builder, ptr,
233 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
234
235 res = lp_build_pointer_get(builder, ptr, viewport_index);
236
237 return res;
238 }
239
240
241 /**
242 * Generate the fragment shader, depth/stencil test, and alpha tests.
243 */
244 static void
245 generate_fs_loop(struct gallivm_state *gallivm,
246 struct lp_fragment_shader *shader,
247 const struct lp_fragment_shader_variant_key *key,
248 LLVMBuilderRef builder,
249 struct lp_type type,
250 LLVMValueRef context_ptr,
251 LLVMValueRef num_loop,
252 struct lp_build_interp_soa_context *interp,
253 struct lp_build_sampler_soa *sampler,
254 LLVMValueRef mask_store,
255 LLVMValueRef (*out_color)[4],
256 LLVMValueRef depth_ptr,
257 LLVMValueRef depth_stride,
258 LLVMValueRef facing,
259 LLVMValueRef thread_data_ptr)
260 {
261 const struct util_format_description *zs_format_desc = NULL;
262 const struct tgsi_token *tokens = shader->base.tokens;
263 LLVMTypeRef vec_type;
264 LLVMValueRef mask_ptr, mask_val;
265 LLVMValueRef consts_ptr;
266 LLVMValueRef z;
267 LLVMValueRef z_value, s_value;
268 LLVMValueRef z_fb, s_fb;
269 LLVMValueRef stencil_refs[2];
270 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
271 struct lp_build_for_loop_state loop_state;
272 struct lp_build_mask_context mask;
273 /*
274 * TODO: figure out if simple_shader optimization is really worthwile to
275 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
276 * code since tests tend to take another codepath than real shaders.
277 */
278 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
279 shader->info.base.num_inputs < 3 &&
280 shader->info.base.num_instructions < 8) && 0;
281 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
282 util_blend_state_is_dual(&key->blend, 0);
283 unsigned attrib;
284 unsigned chan;
285 unsigned cbuf;
286 unsigned depth_mode;
287
288 struct lp_bld_tgsi_system_values system_values;
289
290 memset(&system_values, 0, sizeof(system_values));
291
292 if (key->depth.enabled ||
293 key->stencil[0].enabled) {
294
295 zs_format_desc = util_format_description(key->zsbuf_format);
296 assert(zs_format_desc);
297
298 if (!shader->info.base.writes_z) {
299 if (key->alpha.enabled ||
300 key->blend.alpha_to_coverage ||
301 shader->info.base.uses_kill) {
302 /* With alpha test and kill, can do the depth test early
303 * and hopefully eliminate some quads. But need to do a
304 * special deferred depth write once the final mask value
305 * is known. This only works though if there's either no
306 * stencil test or the stencil value isn't written.
307 */
308 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
309 (key->stencil[1].enabled &&
310 key->stencil[1].writemask)))
311 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
312 else
313 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
314 }
315 else
316 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
317 }
318 else {
319 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
320 }
321
322 if (!(key->depth.enabled && key->depth.writemask) &&
323 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
324 (key->stencil[1].enabled &&
325 key->stencil[1].writemask))))
326 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
327 }
328 else {
329 depth_mode = 0;
330 }
331
332
333 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
334 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
335
336 vec_type = lp_build_vec_type(gallivm, type);
337
338 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
339
340 lp_build_for_loop_begin(&loop_state, gallivm,
341 lp_build_const_int32(gallivm, 0),
342 LLVMIntULT,
343 num_loop,
344 lp_build_const_int32(gallivm, 1));
345
346 mask_ptr = LLVMBuildGEP(builder, mask_store,
347 &loop_state.counter, 1, "mask_ptr");
348 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
349
350 memset(outputs, 0, sizeof outputs);
351
352 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
353 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
354 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
355 lp_build_vec_type(gallivm,
356 type),
357 num_loop, "color");
358 }
359 }
360 if (dual_source_blend) {
361 assert(key->nr_cbufs <= 1);
362 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
363 out_color[1][chan] = lp_build_array_alloca(gallivm,
364 lp_build_vec_type(gallivm,
365 type),
366 num_loop, "color1");
367 }
368 }
369
370
371 /* 'mask' will control execution based on quad's pixel alive/killed state */
372 lp_build_mask_begin(&mask, gallivm, type, mask_val);
373
374 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
375 lp_build_mask_check(&mask);
376
377 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
378 z = interp->pos[2];
379
380 if (depth_mode & EARLY_DEPTH_TEST) {
381 lp_build_depth_stencil_load_swizzled(gallivm, type,
382 zs_format_desc, key->resource_1d,
383 depth_ptr, depth_stride,
384 &z_fb, &s_fb, loop_state.counter);
385 lp_build_depth_stencil_test(gallivm,
386 &key->depth,
387 key->stencil,
388 type,
389 zs_format_desc,
390 &mask,
391 stencil_refs,
392 z, z_fb, s_fb,
393 facing,
394 &z_value, &s_value,
395 !simple_shader);
396
397 if (depth_mode & EARLY_DEPTH_WRITE) {
398 lp_build_depth_stencil_write_swizzled(gallivm, type,
399 zs_format_desc, key->resource_1d,
400 NULL, NULL, NULL, loop_state.counter,
401 depth_ptr, depth_stride,
402 z_value, s_value);
403 }
404 /*
405 * Note mask check if stencil is enabled must be after ds write not after
406 * stencil test otherwise new stencil values may not get written if all
407 * fragments got killed by depth/stencil test.
408 */
409 if (!simple_shader && key->stencil[0].enabled)
410 lp_build_mask_check(&mask);
411 }
412
413 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
414
415 /* Build the actual shader */
416 lp_build_tgsi_soa(gallivm, tokens, type, &mask,
417 consts_ptr, &system_values,
418 interp->inputs,
419 outputs, sampler, &shader->info.base, NULL);
420
421 /* Alpha test */
422 if (key->alpha.enabled) {
423 int color0 = find_output_by_semantic(&shader->info.base,
424 TGSI_SEMANTIC_COLOR,
425 0);
426
427 if (color0 != -1 && outputs[color0][3]) {
428 const struct util_format_description *cbuf_format_desc;
429 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
430 LLVMValueRef alpha_ref_value;
431
432 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
433 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
434
435 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
436
437 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
438 &mask, alpha, alpha_ref_value,
439 (depth_mode & LATE_DEPTH_TEST) != 0);
440 }
441 }
442
443 /* Emulate Alpha to Coverage with Alpha test */
444 if (key->blend.alpha_to_coverage) {
445 int color0 = find_output_by_semantic(&shader->info.base,
446 TGSI_SEMANTIC_COLOR,
447 0);
448
449 if (color0 != -1 && outputs[color0][3]) {
450 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
451
452 lp_build_alpha_to_coverage(gallivm, type,
453 &mask, alpha,
454 (depth_mode & LATE_DEPTH_TEST) != 0);
455 }
456 }
457
458 /* Late Z test */
459 if (depth_mode & LATE_DEPTH_TEST) {
460 int pos0 = find_output_by_semantic(&shader->info.base,
461 TGSI_SEMANTIC_POSITION,
462 0);
463
464 if (pos0 != -1 && outputs[pos0][2]) {
465 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
466
467 /*
468 * Clamp according to ARB_depth_clamp semantics.
469 */
470 if (key->depth_clamp) {
471 LLVMValueRef viewport, min_depth, max_depth;
472 LLVMValueRef viewport_index;
473 struct lp_build_context f32_bld;
474
475 assert(type.floating);
476 lp_build_context_init(&f32_bld, gallivm, type);
477
478 /*
479 * Assumes clamping of the viewport index will occur in setup/gs. Value
480 * is passed through the rasterization stage via lp_rast_shader_inputs.
481 *
482 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
483 * semantics.
484 */
485 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
486 thread_data_ptr);
487
488 /*
489 * Load the min and max depth from the lp_jit_context.viewports
490 * array of lp_jit_viewport structures.
491 */
492 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
493
494 /* viewports[viewport_index].min_depth */
495 min_depth = LLVMBuildExtractElement(builder, viewport,
496 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH),
497 "");
498 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
499
500 /* viewports[viewport_index].max_depth */
501 max_depth = LLVMBuildExtractElement(builder, viewport,
502 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH),
503 "");
504 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
505
506 /*
507 * Clamp to the min and max depth values for the given viewport.
508 */
509 z = lp_build_clamp(&f32_bld, z, min_depth, max_depth);
510 }
511 }
512
513 lp_build_depth_stencil_load_swizzled(gallivm, type,
514 zs_format_desc, key->resource_1d,
515 depth_ptr, depth_stride,
516 &z_fb, &s_fb, loop_state.counter);
517
518 lp_build_depth_stencil_test(gallivm,
519 &key->depth,
520 key->stencil,
521 type,
522 zs_format_desc,
523 &mask,
524 stencil_refs,
525 z, z_fb, s_fb,
526 facing,
527 &z_value, &s_value,
528 !simple_shader);
529 /* Late Z write */
530 if (depth_mode & LATE_DEPTH_WRITE) {
531 lp_build_depth_stencil_write_swizzled(gallivm, type,
532 zs_format_desc, key->resource_1d,
533 NULL, NULL, NULL, loop_state.counter,
534 depth_ptr, depth_stride,
535 z_value, s_value);
536 }
537 }
538 else if ((depth_mode & EARLY_DEPTH_TEST) &&
539 (depth_mode & LATE_DEPTH_WRITE))
540 {
541 /* Need to apply a reduced mask to the depth write. Reload the
542 * depth value, update from zs_value with the new mask value and
543 * write that out.
544 */
545 lp_build_depth_stencil_write_swizzled(gallivm, type,
546 zs_format_desc, key->resource_1d,
547 &mask, z_fb, s_fb, loop_state.counter,
548 depth_ptr, depth_stride,
549 z_value, s_value);
550 }
551
552
553 /* Color write */
554 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
555 {
556 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
557 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
558 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
559 {
560 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
561 if(outputs[attrib][chan]) {
562 /* XXX: just initialize outputs to point at colors[] and
563 * skip this.
564 */
565 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
566 LLVMValueRef color_ptr;
567 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
568 &loop_state.counter, 1, "");
569 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
570 LLVMBuildStore(builder, out, color_ptr);
571 }
572 }
573 }
574 }
575
576 if (key->occlusion_count) {
577 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
578 lp_build_name(counter, "counter");
579 lp_build_occlusion_count(gallivm, type,
580 lp_build_mask_value(&mask), counter);
581 }
582
583 mask_val = lp_build_mask_end(&mask);
584 LLVMBuildStore(builder, mask_val, mask_ptr);
585 lp_build_for_loop_end(&loop_state);
586 }
587
588
589 /**
590 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
591 *
592 * Fragment Shader outputs pixels in small 2x2 blocks
593 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
594 *
595 * However in memory pixels are stored in rows
596 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
597 *
598 * @param type fragment shader type (4x or 8x float)
599 * @param num_fs number of fs_src
600 * @param is_1d whether we're outputting to a 1d resource
601 * @param dst_channels number of output channels
602 * @param fs_src output from fragment shader
603 * @param dst pointer to store result
604 * @param pad_inline is channel padding inline or at end of row
605 * @return the number of dsts
606 */
607 static int
608 generate_fs_twiddle(struct gallivm_state *gallivm,
609 struct lp_type type,
610 unsigned num_fs,
611 unsigned dst_channels,
612 LLVMValueRef fs_src[][4],
613 LLVMValueRef* dst,
614 bool pad_inline)
615 {
616 LLVMValueRef src[16];
617
618 bool swizzle_pad;
619 bool twiddle;
620 bool split;
621
622 unsigned pixels = type.length / 4;
623 unsigned reorder_group;
624 unsigned src_channels;
625 unsigned src_count;
626 unsigned i;
627
628 src_channels = dst_channels < 3 ? dst_channels : 4;
629 src_count = num_fs * src_channels;
630
631 assert(pixels == 2 || pixels == 1);
632 assert(num_fs * src_channels <= Elements(src));
633
634 /*
635 * Transpose from SoA -> AoS
636 */
637 for (i = 0; i < num_fs; ++i) {
638 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
639 }
640
641 /*
642 * Pick transformation options
643 */
644 swizzle_pad = false;
645 twiddle = false;
646 split = false;
647 reorder_group = 0;
648
649 if (dst_channels == 1) {
650 twiddle = true;
651
652 if (pixels == 2) {
653 split = true;
654 }
655 } else if (dst_channels == 2) {
656 if (pixels == 1) {
657 reorder_group = 1;
658 }
659 } else if (dst_channels > 2) {
660 if (pixels == 1) {
661 reorder_group = 2;
662 } else {
663 twiddle = true;
664 }
665
666 if (!pad_inline && dst_channels == 3 && pixels > 1) {
667 swizzle_pad = true;
668 }
669 }
670
671 /*
672 * Split the src in half
673 */
674 if (split) {
675 for (i = num_fs; i > 0; --i) {
676 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
677 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
678 }
679
680 src_count *= 2;
681 type.length = 4;
682 }
683
684 /*
685 * Ensure pixels are in memory order
686 */
687 if (reorder_group) {
688 /* Twiddle pixels by reordering the array, e.g.:
689 *
690 * src_count = 8 -> 0 2 1 3 4 6 5 7
691 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
692 */
693 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
694
695 for (i = 0; i < src_count; ++i) {
696 unsigned group = i / reorder_group;
697 unsigned block = (group / 4) * 4 * reorder_group;
698 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
699 dst[i] = src[j];
700 }
701 } else if (twiddle) {
702 /* Twiddle pixels across elements of array */
703 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
704 } else {
705 /* Do nothing */
706 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
707 }
708
709 /*
710 * Moves any padding between pixels to the end
711 * e.g. RGBXRGBX -> RGBRGBXX
712 */
713 if (swizzle_pad) {
714 unsigned char swizzles[16];
715 unsigned elems = pixels * dst_channels;
716
717 for (i = 0; i < type.length; ++i) {
718 if (i < elems)
719 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
720 else
721 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
722 }
723
724 for (i = 0; i < src_count; ++i) {
725 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
726 }
727 }
728
729 return src_count;
730 }
731
732
733 /**
734 * Load an unswizzled block of pixels from memory
735 */
736 static void
737 load_unswizzled_block(struct gallivm_state *gallivm,
738 LLVMValueRef base_ptr,
739 LLVMValueRef stride,
740 unsigned block_width,
741 unsigned block_height,
742 LLVMValueRef* dst,
743 struct lp_type dst_type,
744 unsigned dst_count,
745 unsigned dst_alignment)
746 {
747 LLVMBuilderRef builder = gallivm->builder;
748 unsigned row_size = dst_count / block_height;
749 unsigned i;
750
751 /* Ensure block exactly fits into dst */
752 assert((block_width * block_height) % dst_count == 0);
753
754 for (i = 0; i < dst_count; ++i) {
755 unsigned x = i % row_size;
756 unsigned y = i / row_size;
757
758 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
759 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
760
761 LLVMValueRef gep[2];
762 LLVMValueRef dst_ptr;
763
764 gep[0] = lp_build_const_int32(gallivm, 0);
765 gep[1] = LLVMBuildAdd(builder, bx, by, "");
766
767 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
768 dst_ptr = LLVMBuildBitCast(builder, dst_ptr, LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
769
770 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
771
772 lp_set_load_alignment(dst[i], dst_alignment);
773 }
774 }
775
776
777 /**
778 * Store an unswizzled block of pixels to memory
779 */
780 static void
781 store_unswizzled_block(struct gallivm_state *gallivm,
782 LLVMValueRef base_ptr,
783 LLVMValueRef stride,
784 unsigned block_width,
785 unsigned block_height,
786 LLVMValueRef* src,
787 struct lp_type src_type,
788 unsigned src_count,
789 unsigned src_alignment)
790 {
791 LLVMBuilderRef builder = gallivm->builder;
792 unsigned row_size = src_count / block_height;
793 unsigned i;
794
795 /* Ensure src exactly fits into block */
796 assert((block_width * block_height) % src_count == 0);
797
798 for (i = 0; i < src_count; ++i) {
799 unsigned x = i % row_size;
800 unsigned y = i / row_size;
801
802 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
803 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
804
805 LLVMValueRef gep[2];
806 LLVMValueRef src_ptr;
807
808 gep[0] = lp_build_const_int32(gallivm, 0);
809 gep[1] = LLVMBuildAdd(builder, bx, by, "");
810
811 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
812 src_ptr = LLVMBuildBitCast(builder, src_ptr, LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
813
814 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
815
816 lp_set_store_alignment(src_ptr, src_alignment);
817 }
818 }
819
820
821 /**
822 * Checks if a format description is an arithmetic format
823 *
824 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
825 */
826 static INLINE boolean
827 is_arithmetic_format(const struct util_format_description *format_desc)
828 {
829 boolean arith = false;
830 unsigned i;
831
832 for (i = 0; i < format_desc->nr_channels; ++i) {
833 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
834 arith |= (format_desc->channel[i].size % 8) != 0;
835 }
836
837 return arith;
838 }
839
840
841 /**
842 * Checks if this format requires special handling due to required expansion
843 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
844 * SoA conversion.
845 */
846 static INLINE boolean
847 format_expands_to_float_soa(const struct util_format_description *format_desc)
848 {
849 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
850 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
851 return true;
852 }
853 return false;
854 }
855
856
857 /**
858 * Retrieves the type representing the memory layout for a format
859 *
860 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
861 */
862 static INLINE void
863 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
864 struct lp_type* type)
865 {
866 unsigned i;
867 unsigned chan;
868
869 if (format_expands_to_float_soa(format_desc)) {
870 /* just make this a 32bit uint */
871 type->floating = false;
872 type->fixed = false;
873 type->sign = false;
874 type->norm = false;
875 type->width = 32;
876 type->length = 1;
877 return;
878 }
879
880 for (i = 0; i < 4; i++)
881 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
882 break;
883 chan = i;
884
885 memset(type, 0, sizeof(struct lp_type));
886 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
887 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
888 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
889 type->norm = format_desc->channel[chan].normalized;
890
891 if (is_arithmetic_format(format_desc)) {
892 type->width = 0;
893 type->length = 1;
894
895 for (i = 0; i < format_desc->nr_channels; ++i) {
896 type->width += format_desc->channel[i].size;
897 }
898 } else {
899 type->width = format_desc->channel[chan].size;
900 type->length = format_desc->nr_channels;
901 }
902 }
903
904
905 /**
906 * Retrieves the type for a format which is usable in the blending code.
907 *
908 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
909 */
910 static INLINE void
911 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
912 struct lp_type* type)
913 {
914 unsigned i;
915 unsigned chan;
916
917 if (format_expands_to_float_soa(format_desc)) {
918 /* always use ordinary floats for blending */
919 type->floating = true;
920 type->fixed = false;
921 type->sign = true;
922 type->norm = false;
923 type->width = 32;
924 type->length = 4;
925 return;
926 }
927
928 for (i = 0; i < 4; i++)
929 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
930 break;
931 chan = i;
932
933 memset(type, 0, sizeof(struct lp_type));
934 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
935 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
936 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
937 type->norm = format_desc->channel[chan].normalized;
938 type->width = format_desc->channel[chan].size;
939 type->length = format_desc->nr_channels;
940
941 for (i = 1; i < format_desc->nr_channels; ++i) {
942 if (format_desc->channel[i].size > type->width)
943 type->width = format_desc->channel[i].size;
944 }
945
946 if (type->floating) {
947 type->width = 32;
948 } else {
949 if (type->width <= 8) {
950 type->width = 8;
951 } else if (type->width <= 16) {
952 type->width = 16;
953 } else {
954 type->width = 32;
955 }
956 }
957
958 if (is_arithmetic_format(format_desc) && type->length == 3) {
959 type->length = 4;
960 }
961 }
962
963
964 /**
965 * Scale a normalized value from src_bits to dst_bits.
966 *
967 * The exact calculation is
968 *
969 * dst = iround(src * dst_mask / src_mask)
970 *
971 * or with integer rounding
972 *
973 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
974 *
975 * where
976 *
977 * src_mask = (1 << src_bits) - 1
978 * dst_mask = (1 << dst_bits) - 1
979 *
980 * but we try to avoid division and multiplication through shifts.
981 */
982 static INLINE LLVMValueRef
983 scale_bits(struct gallivm_state *gallivm,
984 int src_bits,
985 int dst_bits,
986 LLVMValueRef src,
987 struct lp_type src_type)
988 {
989 LLVMBuilderRef builder = gallivm->builder;
990 LLVMValueRef result = src;
991
992 if (dst_bits < src_bits) {
993 int delta_bits = src_bits - dst_bits;
994
995 if (delta_bits <= dst_bits) {
996 /*
997 * Approximate the rescaling with a single shift.
998 *
999 * This gives the wrong rounding.
1000 */
1001
1002 result = LLVMBuildLShr(builder,
1003 src,
1004 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1005 "");
1006
1007 } else {
1008 /*
1009 * Try more accurate rescaling.
1010 */
1011
1012 /*
1013 * Drop the least significant bits to make space for the multiplication.
1014 *
1015 * XXX: A better approach would be to use a wider integer type as intermediate. But
1016 * this is enough to convert alpha from 16bits -> 2 when rendering to
1017 * PIPE_FORMAT_R10G10B10A2_UNORM.
1018 */
1019 result = LLVMBuildLShr(builder,
1020 src,
1021 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1022 "");
1023
1024
1025 result = LLVMBuildMul(builder,
1026 result,
1027 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1028 "");
1029
1030 /*
1031 * Add a rounding term before the division.
1032 *
1033 * TODO: Handle signed integers too.
1034 */
1035 if (!src_type.sign) {
1036 result = LLVMBuildAdd(builder,
1037 result,
1038 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1039 "");
1040 }
1041
1042 /*
1043 * Approximate the division by src_mask with a src_bits shift.
1044 *
1045 * Given the src has already been shifted by dst_bits, all we need
1046 * to do is to shift by the difference.
1047 */
1048
1049 result = LLVMBuildLShr(builder,
1050 result,
1051 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1052 "");
1053 }
1054
1055 } else if (dst_bits > src_bits) {
1056 /* Scale up bits */
1057 int db = dst_bits - src_bits;
1058
1059 /* Shift left by difference in bits */
1060 result = LLVMBuildShl(builder,
1061 src,
1062 lp_build_const_int_vec(gallivm, src_type, db),
1063 "");
1064
1065 if (db < src_bits) {
1066 /* Enough bits in src to fill the remainder */
1067 LLVMValueRef lower = LLVMBuildLShr(builder,
1068 src,
1069 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1070 "");
1071
1072 result = LLVMBuildOr(builder, result, lower, "");
1073 } else if (db > src_bits) {
1074 /* Need to repeatedly copy src bits to fill remainder in dst */
1075 unsigned n;
1076
1077 for (n = src_bits; n < dst_bits; n *= 2) {
1078 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1079
1080 result = LLVMBuildOr(builder,
1081 result,
1082 LLVMBuildLShr(builder, result, shuv, ""),
1083 "");
1084 }
1085 }
1086 }
1087
1088 return result;
1089 }
1090
1091
1092 /**
1093 * Convert from memory format to blending format
1094 *
1095 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1096 */
1097 static void
1098 convert_to_blend_type(struct gallivm_state *gallivm,
1099 unsigned block_size,
1100 const struct util_format_description *src_fmt,
1101 struct lp_type src_type,
1102 struct lp_type dst_type,
1103 LLVMValueRef* src, // and dst
1104 unsigned num_srcs)
1105 {
1106 LLVMValueRef *dst = src;
1107 LLVMBuilderRef builder = gallivm->builder;
1108 struct lp_type blend_type;
1109 struct lp_type mem_type;
1110 unsigned i, j, k;
1111 unsigned pixels = block_size / num_srcs;
1112 bool is_arith;
1113
1114 /*
1115 * full custom path for packed floats and srgb formats - none of the later
1116 * functions would do anything useful, and given the lp_type representation they
1117 * can't be fixed. Should really have some SoA blend path for these kind of
1118 * formats rather than hacking them in here.
1119 */
1120 if (format_expands_to_float_soa(src_fmt)) {
1121 LLVMValueRef tmpsrc[4];
1122 /*
1123 * This is pretty suboptimal for this case blending in SoA would be much
1124 * better, since conversion gets us SoA values so need to convert back.
1125 */
1126 assert(src_type.width == 32);
1127 assert(dst_type.floating);
1128 assert(dst_type.width == 32);
1129 assert(dst_type.length % 4 == 0);
1130 assert(num_srcs % 4 == 0);
1131
1132 for (i = 0; i < 4; i++) {
1133 tmpsrc[i] = src[i];
1134 }
1135 for (i = 0; i < num_srcs / 4; i++) {
1136 LLVMValueRef tmpsoa[4];
1137 LLVMValueRef tmps = tmpsrc[i];
1138 if (dst_type.length == 8) {
1139 LLVMValueRef shuffles[8];
1140 unsigned j;
1141 /* fetch was 4 values but need 8-wide output values */
1142 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1143 /*
1144 * for 8-wide aos transpose would give us wrong order not matching
1145 * incoming converted fs values and mask. ARGH.
1146 */
1147 for (j = 0; j < 4; j++) {
1148 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1149 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1150 }
1151 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1152 LLVMConstVector(shuffles, 8), "");
1153 }
1154 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1155 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1156 }
1157 else {
1158 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1159 }
1160 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1161 }
1162 return;
1163 }
1164
1165 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1166 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1167
1168 /* Is the format arithmetic */
1169 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1170 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1171
1172 /* Pad if necessary */
1173 if (!is_arith && src_type.length < dst_type.length) {
1174 for (i = 0; i < num_srcs; ++i) {
1175 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1176 }
1177
1178 src_type.length = dst_type.length;
1179 }
1180
1181 /* Special case for half-floats */
1182 if (mem_type.width == 16 && mem_type.floating) {
1183 assert(blend_type.width == 32 && blend_type.floating);
1184 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1185 is_arith = false;
1186 }
1187
1188 if (!is_arith) {
1189 return;
1190 }
1191
1192 src_type.width = blend_type.width * blend_type.length;
1193 blend_type.length *= pixels;
1194 src_type.length *= pixels / (src_type.length / mem_type.length);
1195
1196 for (i = 0; i < num_srcs; ++i) {
1197 LLVMValueRef chans[4];
1198 LLVMValueRef res = NULL;
1199
1200 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1201
1202 for (j = 0; j < src_fmt->nr_channels; ++j) {
1203 unsigned mask = 0;
1204 unsigned sa = src_fmt->channel[j].shift;
1205 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1206 unsigned from_lsb = j;
1207 #else
1208 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1209 #endif
1210
1211 for (k = 0; k < src_fmt->channel[j].size; ++k) {
1212 mask |= 1 << k;
1213 }
1214
1215 /* Extract bits from source */
1216 chans[j] = LLVMBuildLShr(builder,
1217 dst[i],
1218 lp_build_const_int_vec(gallivm, src_type, sa),
1219 "");
1220
1221 chans[j] = LLVMBuildAnd(builder,
1222 chans[j],
1223 lp_build_const_int_vec(gallivm, src_type, mask),
1224 "");
1225
1226 /* Scale bits */
1227 if (src_type.norm) {
1228 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1229 blend_type.width, chans[j], src_type);
1230 }
1231
1232 /* Insert bits into correct position */
1233 chans[j] = LLVMBuildShl(builder,
1234 chans[j],
1235 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1236 "");
1237
1238 if (j == 0) {
1239 res = chans[j];
1240 } else {
1241 res = LLVMBuildOr(builder, res, chans[j], "");
1242 }
1243 }
1244
1245 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1246 }
1247 }
1248
1249
1250 /**
1251 * Convert from blending format to memory format
1252 *
1253 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1254 */
1255 static void
1256 convert_from_blend_type(struct gallivm_state *gallivm,
1257 unsigned block_size,
1258 const struct util_format_description *src_fmt,
1259 struct lp_type src_type,
1260 struct lp_type dst_type,
1261 LLVMValueRef* src, // and dst
1262 unsigned num_srcs)
1263 {
1264 LLVMValueRef* dst = src;
1265 unsigned i, j, k;
1266 struct lp_type mem_type;
1267 struct lp_type blend_type;
1268 LLVMBuilderRef builder = gallivm->builder;
1269 unsigned pixels = block_size / num_srcs;
1270 bool is_arith;
1271
1272 /*
1273 * full custom path for packed floats and srgb formats - none of the later
1274 * functions would do anything useful, and given the lp_type representation they
1275 * can't be fixed. Should really have some SoA blend path for these kind of
1276 * formats rather than hacking them in here.
1277 */
1278 if (format_expands_to_float_soa(src_fmt)) {
1279 /*
1280 * This is pretty suboptimal for this case blending in SoA would be much
1281 * better - we need to transpose the AoS values back to SoA values for
1282 * conversion/packing.
1283 */
1284 assert(src_type.floating);
1285 assert(src_type.width == 32);
1286 assert(src_type.length % 4 == 0);
1287 assert(dst_type.width == 32);
1288
1289 for (i = 0; i < num_srcs / 4; i++) {
1290 LLVMValueRef tmpsoa[4], tmpdst;
1291 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1292 /* really really need SoA here */
1293
1294 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1295 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1296 }
1297 else {
1298 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1299 src_type, tmpsoa);
1300 }
1301
1302 if (src_type.length == 8) {
1303 LLVMValueRef tmpaos, shuffles[8];
1304 unsigned j;
1305 /*
1306 * for 8-wide aos transpose has given us wrong order not matching
1307 * output order. HMPF. Also need to split the output values manually.
1308 */
1309 for (j = 0; j < 4; j++) {
1310 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1311 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1312 }
1313 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1314 LLVMConstVector(shuffles, 8), "");
1315 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1316 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1317 }
1318 else {
1319 src[i] = tmpdst;
1320 }
1321 }
1322 return;
1323 }
1324
1325 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1326 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1327
1328 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1329
1330 /* Special case for half-floats */
1331 if (mem_type.width == 16 && mem_type.floating) {
1332 int length = dst_type.length;
1333 assert(blend_type.width == 32 && blend_type.floating);
1334
1335 dst_type.length = src_type.length;
1336
1337 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1338
1339 dst_type.length = length;
1340 is_arith = false;
1341 }
1342
1343 /* Remove any padding */
1344 if (!is_arith && (src_type.length % mem_type.length)) {
1345 src_type.length -= (src_type.length % mem_type.length);
1346
1347 for (i = 0; i < num_srcs; ++i) {
1348 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1349 }
1350 }
1351
1352 /* No bit arithmetic to do */
1353 if (!is_arith) {
1354 return;
1355 }
1356
1357 src_type.length = pixels;
1358 src_type.width = blend_type.length * blend_type.width;
1359 dst_type.length = pixels;
1360
1361 for (i = 0; i < num_srcs; ++i) {
1362 LLVMValueRef chans[4];
1363 LLVMValueRef res = NULL;
1364
1365 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1366
1367 for (j = 0; j < src_fmt->nr_channels; ++j) {
1368 unsigned mask = 0;
1369 unsigned sa = src_fmt->channel[j].shift;
1370 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1371 unsigned from_lsb = j;
1372 #else
1373 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1374 #endif
1375
1376 assert(blend_type.width > src_fmt->channel[j].size);
1377
1378 for (k = 0; k < blend_type.width; ++k) {
1379 mask |= 1 << k;
1380 }
1381
1382 /* Extract bits */
1383 chans[j] = LLVMBuildLShr(builder,
1384 dst[i],
1385 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1386 "");
1387
1388 chans[j] = LLVMBuildAnd(builder,
1389 chans[j],
1390 lp_build_const_int_vec(gallivm, src_type, mask),
1391 "");
1392
1393 /* Scale down bits */
1394 if (src_type.norm) {
1395 chans[j] = scale_bits(gallivm, blend_type.width,
1396 src_fmt->channel[j].size, chans[j], src_type);
1397 }
1398
1399 /* Insert bits */
1400 chans[j] = LLVMBuildShl(builder,
1401 chans[j],
1402 lp_build_const_int_vec(gallivm, src_type, sa),
1403 "");
1404
1405 sa += src_fmt->channel[j].size;
1406
1407 if (j == 0) {
1408 res = chans[j];
1409 } else {
1410 res = LLVMBuildOr(builder, res, chans[j], "");
1411 }
1412 }
1413
1414 assert (dst_type.width != 24);
1415
1416 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1417 }
1418 }
1419
1420
1421 /**
1422 * Convert alpha to same blend type as src
1423 */
1424 static void
1425 convert_alpha(struct gallivm_state *gallivm,
1426 struct lp_type row_type,
1427 struct lp_type alpha_type,
1428 const unsigned block_size,
1429 const unsigned block_height,
1430 const unsigned src_count,
1431 const unsigned dst_channels,
1432 const bool pad_inline,
1433 LLVMValueRef* src_alpha)
1434 {
1435 LLVMBuilderRef builder = gallivm->builder;
1436 unsigned i, j;
1437 unsigned length = row_type.length;
1438 row_type.length = alpha_type.length;
1439
1440 /* Twiddle the alpha to match pixels */
1441 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1442
1443 /*
1444 * TODO this should use single lp_build_conv call for
1445 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1446 */
1447 for (i = 0; i < block_height; ++i) {
1448 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1449 }
1450
1451 alpha_type = row_type;
1452 row_type.length = length;
1453
1454 /* If only one channel we can only need the single alpha value per pixel */
1455 if (src_count == 1 && dst_channels == 1) {
1456
1457 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1458 } else {
1459 /* If there are more srcs than rows then we need to split alpha up */
1460 if (src_count > block_height) {
1461 for (i = src_count; i > 0; --i) {
1462 unsigned pixels = block_size / src_count;
1463 unsigned idx = i - 1;
1464
1465 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1466 (idx * pixels) % 4, pixels);
1467 }
1468 }
1469
1470 /* If there is a src for each pixel broadcast the alpha across whole row */
1471 if (src_count == block_size) {
1472 for (i = 0; i < src_count; ++i) {
1473 src_alpha[i] = lp_build_broadcast(gallivm, lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1474 }
1475 } else {
1476 unsigned pixels = block_size / src_count;
1477 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1478 unsigned alpha_span = 1;
1479 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1480
1481 /* Check if we need 2 src_alphas for our shuffles */
1482 if (pixels > alpha_type.length) {
1483 alpha_span = 2;
1484 }
1485
1486 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1487 for (j = 0; j < row_type.length; ++j) {
1488 if (j < pixels * channels) {
1489 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1490 } else {
1491 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1492 }
1493 }
1494
1495 for (i = 0; i < src_count; ++i) {
1496 unsigned idx1 = i, idx2 = i;
1497
1498 if (alpha_span > 1){
1499 idx1 *= alpha_span;
1500 idx2 = idx1 + 1;
1501 }
1502
1503 src_alpha[i] = LLVMBuildShuffleVector(builder,
1504 src_alpha[idx1],
1505 src_alpha[idx2],
1506 LLVMConstVector(shuffles, row_type.length),
1507 "");
1508 }
1509 }
1510 }
1511 }
1512
1513
1514 /**
1515 * Generates the blend function for unswizzled colour buffers
1516 * Also generates the read & write from colour buffer
1517 */
1518 static void
1519 generate_unswizzled_blend(struct gallivm_state *gallivm,
1520 unsigned rt,
1521 struct lp_fragment_shader_variant *variant,
1522 enum pipe_format out_format,
1523 unsigned int num_fs,
1524 struct lp_type fs_type,
1525 LLVMValueRef* fs_mask,
1526 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1527 LLVMValueRef context_ptr,
1528 LLVMValueRef color_ptr,
1529 LLVMValueRef stride,
1530 unsigned partial_mask,
1531 boolean do_branch)
1532 {
1533 const unsigned alpha_channel = 3;
1534 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1535 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1536 const unsigned block_size = block_width * block_height;
1537 const unsigned lp_integer_vector_width = 128;
1538
1539 LLVMBuilderRef builder = gallivm->builder;
1540 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1541 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1542 LLVMValueRef src_alpha[4 * 4];
1543 LLVMValueRef src1_alpha[4 * 4];
1544 LLVMValueRef src_mask[4 * 4];
1545 LLVMValueRef src[4 * 4];
1546 LLVMValueRef src1[4 * 4];
1547 LLVMValueRef dst[4 * 4];
1548 LLVMValueRef blend_color;
1549 LLVMValueRef blend_alpha;
1550 LLVMValueRef i32_zero;
1551 LLVMValueRef check_mask;
1552 LLVMValueRef undef_src_val;
1553
1554 struct lp_build_mask_context mask_ctx;
1555 struct lp_type mask_type;
1556 struct lp_type blend_type;
1557 struct lp_type row_type;
1558 struct lp_type dst_type;
1559
1560 unsigned char swizzle[TGSI_NUM_CHANNELS];
1561 unsigned vector_width;
1562 unsigned src_channels = TGSI_NUM_CHANNELS;
1563 unsigned dst_channels;
1564 unsigned dst_count;
1565 unsigned src_count;
1566 unsigned i, j;
1567
1568 const struct util_format_description* out_format_desc = util_format_description(out_format);
1569
1570 unsigned dst_alignment;
1571
1572 bool pad_inline = is_arithmetic_format(out_format_desc);
1573 bool has_alpha = false;
1574 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1575 util_blend_state_is_dual(&variant->key.blend, 0);
1576
1577 const boolean is_1d = variant->key.resource_1d;
1578 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1579 LLVMValueRef fpstate = 0;
1580
1581 /* Get type from output format */
1582 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1583 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1584
1585 /*
1586 * Technically this code should go into lp_build_smallfloat_to_float
1587 * and lp_build_float_to_smallfloat but due to the
1588 * http://llvm.org/bugs/show_bug.cgi?id=6393
1589 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1590 * So the ordering is important here and there shouldn't be any
1591 * llvm ir instrunctions in this function before
1592 * this, otherwise half-float format conversions won't work
1593 * (again due to llvm bug #6393).
1594 */
1595 if (dst_type.floating && dst_type.width != 32) {
1596 /* We need to make sure that denorms are ok for half float
1597 conversions */
1598 fpstate = lp_build_fpstate_get(gallivm);
1599 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1600 }
1601
1602 mask_type = lp_int32_vec4_type();
1603 mask_type.length = fs_type.length;
1604
1605 for (i = num_fs; i < num_fullblock_fs; i++) {
1606 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1607 }
1608
1609 /* Do not bother executing code when mask is empty.. */
1610 if (do_branch) {
1611 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1612
1613 for (i = 0; i < num_fullblock_fs; ++i) {
1614 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1615 }
1616
1617 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1618 lp_build_mask_check(&mask_ctx);
1619 }
1620
1621 partial_mask |= !variant->opaque;
1622 i32_zero = lp_build_const_int32(gallivm, 0);
1623
1624 #if HAVE_LLVM < 0x0302
1625 /*
1626 * undef triggers a crash in LLVMBuildTrunc in convert_from_blend_type in some
1627 * cases (seen with r10g10b10a2, 128bit wide vectors) (only used for 1d case).
1628 */
1629 undef_src_val = lp_build_zero(gallivm, fs_type);
1630 #else
1631 undef_src_val = lp_build_undef(gallivm, fs_type);
1632 #endif
1633
1634 row_type.length = fs_type.length;
1635 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1636
1637 /* Compute correct swizzle and count channels */
1638 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1639 dst_channels = 0;
1640
1641 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1642 /* Ensure channel is used */
1643 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1644 continue;
1645 }
1646
1647 /* Ensure not already written to (happens in case with GL_ALPHA) */
1648 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1649 continue;
1650 }
1651
1652 /* Ensure we havn't already found all channels */
1653 if (dst_channels >= out_format_desc->nr_channels) {
1654 continue;
1655 }
1656
1657 swizzle[out_format_desc->swizzle[i]] = i;
1658 ++dst_channels;
1659
1660 if (i == alpha_channel) {
1661 has_alpha = true;
1662 }
1663 }
1664
1665 if (format_expands_to_float_soa(out_format_desc)) {
1666 /*
1667 * the code above can't work for layout_other
1668 * for srgb it would sort of work but we short-circuit swizzles, etc.
1669 * as that is done as part of unpack / pack.
1670 */
1671 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1672 has_alpha = true;
1673 swizzle[0] = 0;
1674 swizzle[1] = 1;
1675 swizzle[2] = 2;
1676 swizzle[3] = 3;
1677 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1678 }
1679
1680 /* If 3 channels then pad to include alpha for 4 element transpose */
1681 if (dst_channels == 3 && !has_alpha) {
1682 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1683 if (swizzle[i] > TGSI_NUM_CHANNELS)
1684 swizzle[i] = 3;
1685 }
1686 if (out_format_desc->nr_channels == 4) {
1687 dst_channels = 4;
1688 }
1689 }
1690
1691 /*
1692 * Load shader output
1693 */
1694 for (i = 0; i < num_fullblock_fs; ++i) {
1695 /* Always load alpha for use in blending */
1696 LLVMValueRef alpha;
1697 if (i < num_fs) {
1698 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1699 }
1700 else {
1701 alpha = undef_src_val;
1702 }
1703
1704 /* Load each channel */
1705 for (j = 0; j < dst_channels; ++j) {
1706 assert(swizzle[j] < 4);
1707 if (i < num_fs) {
1708 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1709 }
1710 else {
1711 fs_src[i][j] = undef_src_val;
1712 }
1713 }
1714
1715 /* If 3 channels then pad to include alpha for 4 element transpose */
1716 /*
1717 * XXX If we include that here maybe could actually use it instead of
1718 * separate alpha for blending?
1719 */
1720 if (dst_channels == 3 && !has_alpha) {
1721 fs_src[i][3] = alpha;
1722 }
1723
1724 /* We split the row_mask and row_alpha as we want 128bit interleave */
1725 if (fs_type.length == 8) {
1726 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i], 0, src_channels);
1727 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i], src_channels, src_channels);
1728
1729 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1730 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha, src_channels, src_channels);
1731 } else {
1732 src_mask[i] = fs_mask[i];
1733 src_alpha[i] = alpha;
1734 }
1735 }
1736 if (dual_source_blend) {
1737 /* same as above except different src/dst, skip masks and comments... */
1738 for (i = 0; i < num_fullblock_fs; ++i) {
1739 LLVMValueRef alpha;
1740 if (i < num_fs) {
1741 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1742 }
1743 else {
1744 alpha = undef_src_val;
1745 }
1746
1747 for (j = 0; j < dst_channels; ++j) {
1748 assert(swizzle[j] < 4);
1749 if (i < num_fs) {
1750 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1751 }
1752 else {
1753 fs_src1[i][j] = undef_src_val;
1754 }
1755 }
1756 if (dst_channels == 3 && !has_alpha) {
1757 fs_src1[i][3] = alpha;
1758 }
1759 if (fs_type.length == 8) {
1760 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1761 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha, src_channels, src_channels);
1762 } else {
1763 src1_alpha[i] = alpha;
1764 }
1765 }
1766 }
1767
1768 if (util_format_is_pure_integer(out_format)) {
1769 /*
1770 * In this case fs_type was really ints or uints disguised as floats,
1771 * fix that up now.
1772 */
1773 fs_type.floating = 0;
1774 fs_type.sign = dst_type.sign;
1775 for (i = 0; i < num_fullblock_fs; ++i) {
1776 for (j = 0; j < dst_channels; ++j) {
1777 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
1778 lp_build_vec_type(gallivm, fs_type), "");
1779 }
1780 if (dst_channels == 3 && !has_alpha) {
1781 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
1782 lp_build_vec_type(gallivm, fs_type), "");
1783 }
1784 }
1785 }
1786
1787 /*
1788 * Pixel twiddle from fragment shader order to memory order
1789 */
1790 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
1791 dst_channels, fs_src, src, pad_inline);
1792 if (dual_source_blend) {
1793 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
1794 fs_src1, src1, pad_inline);
1795 }
1796
1797 src_channels = dst_channels < 3 ? dst_channels : 4;
1798 if (src_count != num_fullblock_fs * src_channels) {
1799 unsigned ds = src_count / (num_fullblock_fs * src_channels);
1800 row_type.length /= ds;
1801 fs_type.length = row_type.length;
1802 }
1803
1804 blend_type = row_type;
1805 mask_type.length = 4;
1806
1807 /* Convert src to row_type */
1808 if (dual_source_blend) {
1809 struct lp_type old_row_type = row_type;
1810 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
1811 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
1812 }
1813 else {
1814 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
1815 }
1816
1817 /* If the rows are not an SSE vector, combine them to become SSE size! */
1818 if ((row_type.width * row_type.length) % 128) {
1819 unsigned bits = row_type.width * row_type.length;
1820 unsigned combined;
1821
1822 assert(src_count >= (vector_width / bits));
1823
1824 dst_count = src_count / (vector_width / bits);
1825
1826 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
1827 if (dual_source_blend) {
1828 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
1829 }
1830
1831 row_type.length *= combined;
1832 src_count /= combined;
1833
1834 bits = row_type.width * row_type.length;
1835 assert(bits == 128 || bits == 256);
1836 }
1837
1838
1839 /*
1840 * Blend Colour conversion
1841 */
1842 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
1843 blend_color = LLVMBuildPointerCast(builder, blend_color, LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
1844 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color, &i32_zero, 1, ""), "");
1845
1846 /* Convert */
1847 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
1848
1849 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1850 /*
1851 * since blending is done with floats, there was no conversion.
1852 * However, the rules according to fixed point renderbuffers still
1853 * apply, that is we must clamp inputs to 0.0/1.0.
1854 * (This would apply to separate alpha conversion too but we currently
1855 * force has_alpha to be true.)
1856 * TODO: should skip this with "fake" blend, since post-blend conversion
1857 * will clamp anyway.
1858 * TODO: could also skip this if fragment color clamping is enabled. We
1859 * don't support it natively so it gets baked into the shader however, so
1860 * can't really tell here.
1861 */
1862 struct lp_build_context f32_bld;
1863 assert(row_type.floating);
1864 lp_build_context_init(&f32_bld, gallivm, row_type);
1865 for (i = 0; i < src_count; i++) {
1866 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
1867 }
1868 if (dual_source_blend) {
1869 for (i = 0; i < src_count; i++) {
1870 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
1871 }
1872 }
1873 /* probably can't be different than row_type but better safe than sorry... */
1874 lp_build_context_init(&f32_bld, gallivm, blend_type);
1875 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
1876 }
1877
1878 /* Extract alpha */
1879 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
1880
1881 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
1882 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
1883 if (pad_inline) {
1884 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
1885 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
1886 } else {
1887 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
1888 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
1889 }
1890
1891 /*
1892 * Mask conversion
1893 */
1894 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
1895
1896 if (src_count < block_height) {
1897 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
1898 } else if (src_count > block_height) {
1899 for (i = src_count; i > 0; --i) {
1900 unsigned pixels = block_size / src_count;
1901 unsigned idx = i - 1;
1902
1903 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
1904 (idx * pixels) % 4, pixels);
1905 }
1906 }
1907
1908 assert(mask_type.width == 32);
1909
1910 for (i = 0; i < src_count; ++i) {
1911 unsigned pixels = block_size / src_count;
1912 unsigned pixel_width = row_type.width * dst_channels;
1913
1914 if (pixel_width == 24) {
1915 mask_type.width = 8;
1916 mask_type.length = vector_width / mask_type.width;
1917 } else {
1918 mask_type.length = pixels;
1919 mask_type.width = row_type.width * dst_channels;
1920
1921 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i], lp_build_int_vec_type(gallivm, mask_type), "");
1922
1923 mask_type.length *= dst_channels;
1924 mask_type.width /= dst_channels;
1925 }
1926
1927 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i], lp_build_int_vec_type(gallivm, mask_type), "");
1928 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
1929 }
1930
1931 /*
1932 * Alpha conversion
1933 */
1934 if (!has_alpha) {
1935 struct lp_type alpha_type = fs_type;
1936 alpha_type.length = 4;
1937 convert_alpha(gallivm, row_type, alpha_type,
1938 block_size, block_height,
1939 src_count, dst_channels,
1940 pad_inline, src_alpha);
1941 if (dual_source_blend) {
1942 convert_alpha(gallivm, row_type, alpha_type,
1943 block_size, block_height,
1944 src_count, dst_channels,
1945 pad_inline, src1_alpha);
1946 }
1947 }
1948
1949
1950 /*
1951 * Load dst from memory
1952 */
1953 if (src_count < block_height) {
1954 dst_count = block_height;
1955 } else {
1956 dst_count = src_count;
1957 }
1958
1959 dst_type.length *= block_size / dst_count;
1960
1961 if (format_expands_to_float_soa(out_format_desc)) {
1962 /*
1963 * we need multiple values at once for the conversion, so can as well
1964 * load them vectorized here too instead of concatenating later.
1965 * (Still need concatenation later for 8-wide vectors).
1966 */
1967 dst_count = block_height;
1968 dst_type.length = block_width;
1969 }
1970
1971 /*
1972 * Compute the alignment of the destination pointer in bytes
1973 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
1974 * are always aligned by MIN2(16, fetch_width) except for buffers (not
1975 * 1d tex but can't distinguish here) so need to stick with per-pixel
1976 * alignment in this case.
1977 */
1978 if (is_1d) {
1979 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
1980 }
1981 else {
1982 dst_alignment = dst_type.length * dst_type.width / 8;
1983 }
1984 /* Force power-of-two alignment by extracting only the least-significant-bit */
1985 dst_alignment = 1 << (ffs(dst_alignment) - 1);
1986 /*
1987 * Resource base and stride pointers are aligned to 16 bytes, so that's
1988 * the maximum alignment we can guarantee
1989 */
1990 dst_alignment = MIN2(16, dst_alignment);
1991
1992 if (is_1d) {
1993 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
1994 dst, dst_type, dst_count / 4, dst_alignment);
1995 for (i = dst_count / 4; i < dst_count; i++) {
1996 dst[i] = lp_build_undef(gallivm, dst_type);
1997 }
1998
1999 }
2000 else {
2001 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2002 dst, dst_type, dst_count, dst_alignment);
2003 }
2004
2005
2006 /*
2007 * Convert from dst/output format to src/blending format.
2008 *
2009 * This is necessary as we can only read 1 row from memory at a time,
2010 * so the minimum dst_count will ever be at this point is 4.
2011 *
2012 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2013 * this will take the 4 dsts and combine them into 1 src so we can perform blending
2014 * on all 16 pixels in that single vector at once.
2015 */
2016 if (dst_count > src_count) {
2017 lp_build_concat_n(gallivm, dst_type, dst, 4, dst, src_count);
2018 }
2019
2020 /*
2021 * Blending
2022 */
2023 /* XXX this is broken for RGB8 formats -
2024 * they get expanded from 12 to 16 elements (to include alpha)
2025 * by convert_to_blend_type then reduced to 15 instead of 12
2026 * by convert_from_blend_type (a simple fix though breaks A8...).
2027 * R16G16B16 also crashes differently however something going wrong
2028 * inside llvm handling npot vector sizes seemingly.
2029 * It seems some cleanup could be done here (like skipping conversion/blend
2030 * when not needed).
2031 */
2032 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type, row_type, dst, src_count);
2033
2034 /*
2035 * FIXME: Really should get logic ops / masks out of generic blend / row
2036 * format. Logic ops will definitely not work on the blend float format
2037 * used for SRGB here and I think OpenGL expects this to work as expected
2038 * (that is incoming values converted to srgb then logic op applied).
2039 */
2040 for (i = 0; i < src_count; ++i) {
2041 dst[i] = lp_build_blend_aos(gallivm,
2042 &variant->key.blend,
2043 out_format,
2044 row_type,
2045 rt,
2046 src[i],
2047 has_alpha ? NULL : src_alpha[i],
2048 src1[i],
2049 has_alpha ? NULL : src1_alpha[i],
2050 dst[i],
2051 partial_mask ? src_mask[i] : NULL,
2052 blend_color,
2053 has_alpha ? NULL : blend_alpha,
2054 swizzle,
2055 pad_inline ? 4 : dst_channels);
2056 }
2057
2058 convert_from_blend_type(gallivm, block_size, out_format_desc, row_type, dst_type, dst, src_count);
2059
2060 /* Split the blend rows back to memory rows */
2061 if (dst_count > src_count) {
2062 row_type.length = dst_type.length * (dst_count / src_count);
2063
2064 if (src_count == 1) {
2065 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2066 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2067
2068 row_type.length /= 2;
2069 src_count *= 2;
2070 }
2071
2072 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2073 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2074 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2075 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2076
2077 row_type.length /= 2;
2078 src_count *= 2;
2079 }
2080
2081 /*
2082 * Store blend result to memory
2083 */
2084 if (is_1d) {
2085 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2086 dst, dst_type, dst_count / 4, dst_alignment);
2087 }
2088 else {
2089 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2090 dst, dst_type, dst_count, dst_alignment);
2091 }
2092
2093 if (dst_type.floating && dst_type.width != 32) {
2094 lp_build_fpstate_set(gallivm, fpstate);
2095 }
2096
2097 if (do_branch) {
2098 lp_build_mask_end(&mask_ctx);
2099 }
2100 }
2101
2102
2103 /**
2104 * Generate the runtime callable function for the whole fragment pipeline.
2105 * Note that the function which we generate operates on a block of 16
2106 * pixels at at time. The block contains 2x2 quads. Each quad contains
2107 * 2x2 pixels.
2108 */
2109 static void
2110 generate_fragment(struct llvmpipe_context *lp,
2111 struct lp_fragment_shader *shader,
2112 struct lp_fragment_shader_variant *variant,
2113 unsigned partial_mask)
2114 {
2115 struct gallivm_state *gallivm = variant->gallivm;
2116 const struct lp_fragment_shader_variant_key *key = &variant->key;
2117 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2118 char func_name[256];
2119 struct lp_type fs_type;
2120 struct lp_type blend_type;
2121 LLVMTypeRef fs_elem_type;
2122 LLVMTypeRef blend_vec_type;
2123 LLVMTypeRef arg_types[13];
2124 LLVMTypeRef func_type;
2125 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2126 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2127 LLVMValueRef context_ptr;
2128 LLVMValueRef x;
2129 LLVMValueRef y;
2130 LLVMValueRef a0_ptr;
2131 LLVMValueRef dadx_ptr;
2132 LLVMValueRef dady_ptr;
2133 LLVMValueRef color_ptr_ptr;
2134 LLVMValueRef stride_ptr;
2135 LLVMValueRef depth_ptr;
2136 LLVMValueRef depth_stride;
2137 LLVMValueRef mask_input;
2138 LLVMValueRef thread_data_ptr;
2139 LLVMBasicBlockRef block;
2140 LLVMBuilderRef builder;
2141 struct lp_build_sampler_soa *sampler;
2142 struct lp_build_interp_soa_context interp;
2143 LLVMValueRef fs_mask[16 / 4];
2144 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2145 LLVMValueRef function;
2146 LLVMValueRef facing;
2147 unsigned num_fs;
2148 unsigned i;
2149 unsigned chan;
2150 unsigned cbuf;
2151 boolean cbuf0_write_all;
2152 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2153 util_blend_state_is_dual(&key->blend, 0);
2154
2155 assert(lp_native_vector_width / 32 >= 4);
2156
2157 /* Adjust color input interpolation according to flatshade state:
2158 */
2159 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2160 for (i = 0; i < shader->info.base.num_inputs; i++) {
2161 if (inputs[i].interp == LP_INTERP_COLOR) {
2162 if (key->flatshade)
2163 inputs[i].interp = LP_INTERP_CONSTANT;
2164 else
2165 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2166 }
2167 }
2168
2169 /* check if writes to cbuf[0] are to be copied to all cbufs */
2170 cbuf0_write_all = FALSE;
2171 for (i = 0;i < shader->info.base.num_properties; i++) {
2172 if (shader->info.base.properties[i].name ==
2173 TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS) {
2174 cbuf0_write_all = TRUE;
2175 break;
2176 }
2177 }
2178
2179 /* TODO: actually pick these based on the fs and color buffer
2180 * characteristics. */
2181
2182 memset(&fs_type, 0, sizeof fs_type);
2183 fs_type.floating = TRUE; /* floating point values */
2184 fs_type.sign = TRUE; /* values are signed */
2185 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2186 fs_type.width = 32; /* 32-bit float */
2187 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2188
2189 memset(&blend_type, 0, sizeof blend_type);
2190 blend_type.floating = FALSE; /* values are integers */
2191 blend_type.sign = FALSE; /* values are unsigned */
2192 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2193 blend_type.width = 8; /* 8-bit ubyte values */
2194 blend_type.length = 16; /* 16 elements per vector */
2195
2196 /*
2197 * Generate the function prototype. Any change here must be reflected in
2198 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2199 */
2200
2201 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2202
2203 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2204
2205 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2206 shader->no, variant->no, partial_mask ? "partial" : "whole");
2207
2208 arg_types[0] = variant->jit_context_ptr_type; /* context */
2209 arg_types[1] = int32_type; /* x */
2210 arg_types[2] = int32_type; /* y */
2211 arg_types[3] = int32_type; /* facing */
2212 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2213 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2214 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2215 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2216 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2217 arg_types[9] = int32_type; /* mask_input */
2218 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2219 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2220 arg_types[12] = int32_type; /* depth_stride */
2221
2222 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2223 arg_types, Elements(arg_types), 0);
2224
2225 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2226 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2227
2228 variant->function[partial_mask] = function;
2229
2230 /* XXX: need to propagate noalias down into color param now we are
2231 * passing a pointer-to-pointer?
2232 */
2233 for(i = 0; i < Elements(arg_types); ++i)
2234 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2235 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
2236
2237 context_ptr = LLVMGetParam(function, 0);
2238 x = LLVMGetParam(function, 1);
2239 y = LLVMGetParam(function, 2);
2240 facing = LLVMGetParam(function, 3);
2241 a0_ptr = LLVMGetParam(function, 4);
2242 dadx_ptr = LLVMGetParam(function, 5);
2243 dady_ptr = LLVMGetParam(function, 6);
2244 color_ptr_ptr = LLVMGetParam(function, 7);
2245 depth_ptr = LLVMGetParam(function, 8);
2246 mask_input = LLVMGetParam(function, 9);
2247 thread_data_ptr = LLVMGetParam(function, 10);
2248 stride_ptr = LLVMGetParam(function, 11);
2249 depth_stride = LLVMGetParam(function, 12);
2250
2251 lp_build_name(context_ptr, "context");
2252 lp_build_name(x, "x");
2253 lp_build_name(y, "y");
2254 lp_build_name(a0_ptr, "a0");
2255 lp_build_name(dadx_ptr, "dadx");
2256 lp_build_name(dady_ptr, "dady");
2257 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2258 lp_build_name(depth_ptr, "depth");
2259 lp_build_name(thread_data_ptr, "thread_data");
2260 lp_build_name(mask_input, "mask_input");
2261 lp_build_name(stride_ptr, "stride_ptr");
2262 lp_build_name(depth_stride, "depth_stride");
2263
2264 /*
2265 * Function body
2266 */
2267
2268 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2269 builder = gallivm->builder;
2270 assert(builder);
2271 LLVMPositionBuilderAtEnd(builder, block);
2272
2273 /* code generated texture sampling */
2274 sampler = lp_llvm_sampler_soa_create(key->state, context_ptr);
2275
2276 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2277 /* for 1d resources only run "upper half" of stamp */
2278 if (key->resource_1d)
2279 num_fs /= 2;
2280
2281 {
2282 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2283 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2284 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2285 num_loop, "mask_store");
2286 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2287
2288 /*
2289 * The shader input interpolation info is not explicitely baked in the
2290 * shader key, but everything it derives from (TGSI, and flatshade) is
2291 * already included in the shader key.
2292 */
2293 lp_build_interp_soa_init(&interp,
2294 gallivm,
2295 shader->info.base.num_inputs,
2296 inputs,
2297 shader->info.base.pixel_center_integer,
2298 builder, fs_type,
2299 a0_ptr, dadx_ptr, dady_ptr,
2300 x, y);
2301
2302 for (i = 0; i < num_fs; i++) {
2303 LLVMValueRef mask;
2304 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2305 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2306 &indexi, 1, "mask_ptr");
2307
2308 if (partial_mask) {
2309 mask = generate_quad_mask(gallivm, fs_type,
2310 i*fs_type.length/4, mask_input);
2311 }
2312 else {
2313 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2314 }
2315 LLVMBuildStore(builder, mask, mask_ptr);
2316 }
2317
2318 generate_fs_loop(gallivm,
2319 shader, key,
2320 builder,
2321 fs_type,
2322 context_ptr,
2323 num_loop,
2324 &interp,
2325 sampler,
2326 mask_store, /* output */
2327 color_store,
2328 depth_ptr,
2329 depth_stride,
2330 facing,
2331 thread_data_ptr);
2332
2333 for (i = 0; i < num_fs; i++) {
2334 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2335 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2336 &indexi, 1, "");
2337 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2338 /* This is fucked up need to reorganize things */
2339 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2340 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2341 ptr = LLVMBuildGEP(builder,
2342 color_store[cbuf * !cbuf0_write_all][chan],
2343 &indexi, 1, "");
2344 fs_out_color[cbuf][chan][i] = ptr;
2345 }
2346 }
2347 if (dual_source_blend) {
2348 /* only support one dual source blend target hence always use output 1 */
2349 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2350 ptr = LLVMBuildGEP(builder,
2351 color_store[1][chan],
2352 &indexi, 1, "");
2353 fs_out_color[1][chan][i] = ptr;
2354 }
2355 }
2356 }
2357 }
2358
2359 sampler->destroy(sampler);
2360
2361 /* Loop over color outputs / color buffers to do blending.
2362 */
2363 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2364 LLVMValueRef color_ptr;
2365 LLVMValueRef stride;
2366 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2367
2368 boolean do_branch = ((key->depth.enabled
2369 || key->stencil[0].enabled
2370 || key->alpha.enabled)
2371 && !shader->info.base.uses_kill);
2372
2373 color_ptr = LLVMBuildLoad(builder,
2374 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
2375 "");
2376
2377 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2378
2379 stride = LLVMBuildLoad(builder,
2380 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2381 "");
2382
2383 generate_unswizzled_blend(gallivm, cbuf, variant, key->cbuf_format[cbuf],
2384 num_fs, fs_type, fs_mask, fs_out_color,
2385 context_ptr, color_ptr, stride, partial_mask, do_branch);
2386 }
2387
2388 LLVMBuildRetVoid(builder);
2389
2390 gallivm_verify_function(gallivm, function);
2391
2392 variant->nr_instrs += lp_build_count_instructions(function);
2393 }
2394
2395
2396 static void
2397 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
2398 {
2399 unsigned i;
2400
2401 debug_printf("fs variant %p:\n", (void *) key);
2402
2403 if (key->flatshade) {
2404 debug_printf("flatshade = 1\n");
2405 }
2406 for (i = 0; i < key->nr_cbufs; ++i) {
2407 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2408 }
2409 if (key->depth.enabled) {
2410 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2411 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
2412 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2413 }
2414
2415 for (i = 0; i < 2; ++i) {
2416 if (key->stencil[i].enabled) {
2417 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
2418 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
2419 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
2420 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
2421 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2422 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2423 }
2424 }
2425
2426 if (key->alpha.enabled) {
2427 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
2428 }
2429
2430 if (key->occlusion_count) {
2431 debug_printf("occlusion_count = 1\n");
2432 }
2433
2434 if (key->blend.logicop_enable) {
2435 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
2436 }
2437 else if (key->blend.rt[0].blend_enable) {
2438 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
2439 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2440 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2441 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
2442 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2443 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2444 }
2445 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2446 if (key->blend.alpha_to_coverage) {
2447 debug_printf("blend.alpha_to_coverage is enabled\n");
2448 }
2449 for (i = 0; i < key->nr_samplers; ++i) {
2450 const struct lp_static_sampler_state *sampler = &key->state[i].sampler_state;
2451 debug_printf("sampler[%u] = \n", i);
2452 debug_printf(" .wrap = %s %s %s\n",
2453 util_dump_tex_wrap(sampler->wrap_s, TRUE),
2454 util_dump_tex_wrap(sampler->wrap_t, TRUE),
2455 util_dump_tex_wrap(sampler->wrap_r, TRUE));
2456 debug_printf(" .min_img_filter = %s\n",
2457 util_dump_tex_filter(sampler->min_img_filter, TRUE));
2458 debug_printf(" .min_mip_filter = %s\n",
2459 util_dump_tex_mipfilter(sampler->min_mip_filter, TRUE));
2460 debug_printf(" .mag_img_filter = %s\n",
2461 util_dump_tex_filter(sampler->mag_img_filter, TRUE));
2462 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2463 debug_printf(" .compare_func = %s\n", util_dump_func(sampler->compare_func, TRUE));
2464 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
2465 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2466 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2467 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
2468 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
2469 }
2470 for (i = 0; i < key->nr_sampler_views; ++i) {
2471 const struct lp_static_texture_state *texture = &key->state[i].texture_state;
2472 debug_printf("texture[%u] = \n", i);
2473 debug_printf(" .format = %s\n",
2474 util_format_name(texture->format));
2475 debug_printf(" .target = %s\n",
2476 util_dump_tex_target(texture->target, TRUE));
2477 debug_printf(" .level_zero_only = %u\n",
2478 texture->level_zero_only);
2479 debug_printf(" .pot = %u %u %u\n",
2480 texture->pot_width,
2481 texture->pot_height,
2482 texture->pot_depth);
2483 }
2484 }
2485
2486
2487 void
2488 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
2489 {
2490 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2491 variant->shader->no, variant->no);
2492 tgsi_dump(variant->shader->base.tokens, 0);
2493 dump_fs_variant_key(&variant->key);
2494 debug_printf("variant->opaque = %u\n", variant->opaque);
2495 debug_printf("\n");
2496 }
2497
2498
2499 /**
2500 * Generate a new fragment shader variant from the shader code and
2501 * other state indicated by the key.
2502 */
2503 static struct lp_fragment_shader_variant *
2504 generate_variant(struct llvmpipe_context *lp,
2505 struct lp_fragment_shader *shader,
2506 const struct lp_fragment_shader_variant_key *key)
2507 {
2508 struct lp_fragment_shader_variant *variant;
2509 const struct util_format_description *cbuf0_format_desc;
2510 boolean fullcolormask;
2511
2512 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
2513 if(!variant)
2514 return NULL;
2515
2516 variant->gallivm = gallivm_create();
2517 if (!variant->gallivm) {
2518 FREE(variant);
2519 return NULL;
2520 }
2521
2522 variant->shader = shader;
2523 variant->list_item_global.base = variant;
2524 variant->list_item_local.base = variant;
2525 variant->no = shader->variants_created++;
2526
2527 memcpy(&variant->key, key, shader->variant_key_size);
2528
2529 /*
2530 * Determine whether we are touching all channels in the color buffer.
2531 */
2532 fullcolormask = FALSE;
2533 if (key->nr_cbufs == 1) {
2534 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2535 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2536 }
2537
2538 variant->opaque =
2539 !key->blend.logicop_enable &&
2540 !key->blend.rt[0].blend_enable &&
2541 fullcolormask &&
2542 !key->stencil[0].enabled &&
2543 !key->alpha.enabled &&
2544 !key->blend.alpha_to_coverage &&
2545 !key->depth.enabled &&
2546 !shader->info.base.uses_kill
2547 ? TRUE : FALSE;
2548
2549 if ((shader->info.base.num_tokens <= 1) &&
2550 !key->depth.enabled && !key->stencil[0].enabled) {
2551 variant->ps_inv_multiplier = 0;
2552 } else {
2553 variant->ps_inv_multiplier = 1;
2554 }
2555
2556 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2557 lp_debug_fs_variant(variant);
2558 }
2559
2560 lp_jit_init_types(variant);
2561
2562 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2563 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2564
2565 if (variant->jit_function[RAST_WHOLE] == NULL) {
2566 if (variant->opaque) {
2567 /* Specialized shader, which doesn't need to read the color buffer. */
2568 generate_fragment(lp, shader, variant, RAST_WHOLE);
2569 }
2570 }
2571
2572 /*
2573 * Compile everything
2574 */
2575
2576 gallivm_compile_module(variant->gallivm);
2577
2578 if (variant->function[RAST_EDGE_TEST]) {
2579 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2580 gallivm_jit_function(variant->gallivm,
2581 variant->function[RAST_EDGE_TEST]);
2582 }
2583
2584 if (variant->function[RAST_WHOLE]) {
2585 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2586 gallivm_jit_function(variant->gallivm,
2587 variant->function[RAST_WHOLE]);
2588 } else if (!variant->jit_function[RAST_WHOLE]) {
2589 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2590 }
2591
2592 return variant;
2593 }
2594
2595
2596 static void *
2597 llvmpipe_create_fs_state(struct pipe_context *pipe,
2598 const struct pipe_shader_state *templ)
2599 {
2600 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2601 struct lp_fragment_shader *shader;
2602 int nr_samplers;
2603 int nr_sampler_views;
2604 int i;
2605
2606 shader = CALLOC_STRUCT(lp_fragment_shader);
2607 if (!shader)
2608 return NULL;
2609
2610 shader->no = fs_no++;
2611 make_empty_list(&shader->variants);
2612
2613 /* get/save the summary info for this shader */
2614 lp_build_tgsi_info(templ->tokens, &shader->info);
2615
2616 /* we need to keep a local copy of the tokens */
2617 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
2618
2619 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
2620 if (shader->draw_data == NULL) {
2621 FREE((void *) shader->base.tokens);
2622 FREE(shader);
2623 return NULL;
2624 }
2625
2626 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2627 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2628
2629 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
2630 state[MAX2(nr_samplers, nr_sampler_views)]);
2631
2632 for (i = 0; i < shader->info.base.num_inputs; i++) {
2633 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
2634 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
2635
2636 switch (shader->info.base.input_interpolate[i]) {
2637 case TGSI_INTERPOLATE_CONSTANT:
2638 shader->inputs[i].interp = LP_INTERP_CONSTANT;
2639 break;
2640 case TGSI_INTERPOLATE_LINEAR:
2641 shader->inputs[i].interp = LP_INTERP_LINEAR;
2642 break;
2643 case TGSI_INTERPOLATE_PERSPECTIVE:
2644 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
2645 break;
2646 case TGSI_INTERPOLATE_COLOR:
2647 shader->inputs[i].interp = LP_INTERP_COLOR;
2648 break;
2649 default:
2650 assert(0);
2651 break;
2652 }
2653
2654 switch (shader->info.base.input_semantic_name[i]) {
2655 case TGSI_SEMANTIC_FACE:
2656 shader->inputs[i].interp = LP_INTERP_FACING;
2657 break;
2658 case TGSI_SEMANTIC_POSITION:
2659 /* Position was already emitted above
2660 */
2661 shader->inputs[i].interp = LP_INTERP_POSITION;
2662 shader->inputs[i].src_index = 0;
2663 continue;
2664 }
2665
2666 shader->inputs[i].src_index = i+1;
2667 }
2668
2669 if (LP_DEBUG & DEBUG_TGSI) {
2670 unsigned attrib;
2671 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
2672 shader->no, (void *) shader);
2673 tgsi_dump(templ->tokens, 0);
2674 debug_printf("usage masks:\n");
2675 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
2676 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
2677 debug_printf(" IN[%u].%s%s%s%s\n",
2678 attrib,
2679 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
2680 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
2681 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
2682 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
2683 }
2684 debug_printf("\n");
2685 }
2686
2687 return shader;
2688 }
2689
2690
2691 static void
2692 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
2693 {
2694 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2695
2696 if (llvmpipe->fs == fs)
2697 return;
2698
2699 llvmpipe->fs = (struct lp_fragment_shader *) fs;
2700
2701 draw_bind_fragment_shader(llvmpipe->draw,
2702 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
2703
2704 llvmpipe->dirty |= LP_NEW_FS;
2705 }
2706
2707
2708 /**
2709 * Remove shader variant from two lists: the shader's variant list
2710 * and the context's variant list.
2711 */
2712 void
2713 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
2714 struct lp_fragment_shader_variant *variant)
2715 {
2716 unsigned i;
2717
2718 if (gallivm_debug & GALLIVM_DEBUG_IR) {
2719 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached"
2720 " #%u v total cached #%u\n",
2721 variant->shader->no,
2722 variant->no,
2723 variant->shader->variants_created,
2724 variant->shader->variants_cached,
2725 lp->nr_fs_variants);
2726 }
2727
2728 /* free all the variant's JIT'd functions */
2729 for (i = 0; i < Elements(variant->function); i++) {
2730 if (variant->function[i]) {
2731 gallivm_free_function(variant->gallivm,
2732 variant->function[i],
2733 variant->jit_function[i]);
2734 }
2735 }
2736
2737 gallivm_destroy(variant->gallivm);
2738
2739 /* remove from shader's list */
2740 remove_from_list(&variant->list_item_local);
2741 variant->shader->variants_cached--;
2742
2743 /* remove from context's list */
2744 remove_from_list(&variant->list_item_global);
2745 lp->nr_fs_variants--;
2746 lp->nr_fs_instrs -= variant->nr_instrs;
2747
2748 FREE(variant);
2749 }
2750
2751
2752 static void
2753 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
2754 {
2755 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2756 struct lp_fragment_shader *shader = fs;
2757 struct lp_fs_variant_list_item *li;
2758
2759 assert(fs != llvmpipe->fs);
2760
2761 /*
2762 * XXX: we need to flush the context until we have some sort of reference
2763 * counting in fragment shaders as they may still be binned
2764 * Flushing alone might not sufficient we need to wait on it too.
2765 */
2766 llvmpipe_finish(pipe, __FUNCTION__);
2767
2768 /* Delete all the variants */
2769 li = first_elem(&shader->variants);
2770 while(!at_end(&shader->variants, li)) {
2771 struct lp_fs_variant_list_item *next = next_elem(li);
2772 llvmpipe_remove_shader_variant(llvmpipe, li->base);
2773 li = next;
2774 }
2775
2776 /* Delete draw module's data */
2777 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
2778
2779 assert(shader->variants_cached == 0);
2780 FREE((void *) shader->base.tokens);
2781 FREE(shader);
2782 }
2783
2784
2785
2786 static void
2787 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
2788 uint shader, uint index,
2789 struct pipe_constant_buffer *cb)
2790 {
2791 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2792 struct pipe_resource *constants = cb ? cb->buffer : NULL;
2793
2794 assert(shader < PIPE_SHADER_TYPES);
2795 assert(index < Elements(llvmpipe->constants[shader]));
2796
2797 /* note: reference counting */
2798 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
2799
2800 if (shader == PIPE_SHADER_VERTEX ||
2801 shader == PIPE_SHADER_GEOMETRY) {
2802 /* Pass the constants to the 'draw' module */
2803 const unsigned size = cb ? cb->buffer_size : 0;
2804 const ubyte *data;
2805
2806 if (constants) {
2807 data = (ubyte *) llvmpipe_resource_data(constants);
2808 }
2809 else if (cb && cb->user_buffer) {
2810 data = (ubyte *) cb->user_buffer;
2811 }
2812 else {
2813 data = NULL;
2814 }
2815
2816 if (data)
2817 data += cb->buffer_offset;
2818
2819 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
2820 index, data, size);
2821 }
2822
2823 llvmpipe->dirty |= LP_NEW_CONSTANTS;
2824
2825 if (cb && cb->user_buffer) {
2826 pipe_resource_reference(&constants, NULL);
2827 }
2828 }
2829
2830
2831 /**
2832 * Return the blend factor equivalent to a destination alpha of one.
2833 */
2834 static INLINE unsigned
2835 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
2836 {
2837 switch(factor) {
2838 case PIPE_BLENDFACTOR_DST_ALPHA:
2839 return PIPE_BLENDFACTOR_ONE;
2840 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
2841 return PIPE_BLENDFACTOR_ZERO;
2842 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
2843 if (clamped_zero)
2844 return PIPE_BLENDFACTOR_ZERO;
2845 else
2846 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
2847 }
2848
2849 return factor;
2850 }
2851
2852
2853 /**
2854 * We need to generate several variants of the fragment pipeline to match
2855 * all the combinations of the contributing state atoms.
2856 *
2857 * TODO: there is actually no reason to tie this to context state -- the
2858 * generated code could be cached globally in the screen.
2859 */
2860 static void
2861 make_variant_key(struct llvmpipe_context *lp,
2862 struct lp_fragment_shader *shader,
2863 struct lp_fragment_shader_variant_key *key)
2864 {
2865 unsigned i;
2866
2867 memset(key, 0, shader->variant_key_size);
2868
2869 if (lp->framebuffer.zsbuf) {
2870 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
2871 const struct util_format_description *zsbuf_desc =
2872 util_format_description(zsbuf_format);
2873
2874 if (lp->depth_stencil->depth.enabled &&
2875 util_format_has_depth(zsbuf_desc)) {
2876 key->zsbuf_format = zsbuf_format;
2877 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
2878 }
2879 if (lp->depth_stencil->stencil[0].enabled &&
2880 util_format_has_stencil(zsbuf_desc)) {
2881 key->zsbuf_format = zsbuf_format;
2882 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
2883 }
2884 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
2885 key->resource_1d = TRUE;
2886 }
2887 }
2888
2889 /*
2890 * Propagate the depth clamp setting from the rasterizer state.
2891 * depth_clip == 0 implies depth clamping is enabled.
2892 *
2893 * When clip_halfz is enabled, then always clamp the depth values.
2894 */
2895 if (lp->rasterizer->clip_halfz) {
2896 key->depth_clamp = 1;
2897 } else {
2898 key->depth_clamp = (lp->rasterizer->depth_clip == 0) ? 1 : 0;
2899 }
2900
2901 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
2902 if (!lp->framebuffer.nr_cbufs ||
2903 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
2904 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
2905 }
2906 if(key->alpha.enabled)
2907 key->alpha.func = lp->depth_stencil->alpha.func;
2908 /* alpha.ref_value is passed in jit_context */
2909
2910 key->flatshade = lp->rasterizer->flatshade;
2911 if (lp->active_occlusion_queries) {
2912 key->occlusion_count = TRUE;
2913 }
2914
2915 if (lp->framebuffer.nr_cbufs) {
2916 memcpy(&key->blend, lp->blend, sizeof key->blend);
2917 }
2918
2919 key->nr_cbufs = lp->framebuffer.nr_cbufs;
2920
2921 if (!key->blend.independent_blend_enable) {
2922 /* we always need independent blend otherwise the fixups below won't work */
2923 for (i = 1; i < key->nr_cbufs; i++) {
2924 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
2925 }
2926 key->blend.independent_blend_enable = 1;
2927 }
2928
2929 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
2930 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
2931 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
2932 const struct util_format_description *format_desc;
2933
2934 key->cbuf_format[i] = format;
2935
2936 /*
2937 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
2938 * mixing of 2d textures with height 1 and 1d textures, so make sure
2939 * we pick 1d if any cbuf or zsbuf is 1d.
2940 */
2941 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[0]->texture)) {
2942 key->resource_1d = TRUE;
2943 }
2944
2945 format_desc = util_format_description(format);
2946 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
2947 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
2948
2949 /*
2950 * Mask out color channels not present in the color buffer.
2951 */
2952 blend_rt->colormask &= util_format_colormask(format_desc);
2953
2954 /*
2955 * Disable blend for integer formats.
2956 */
2957 if (util_format_is_pure_integer(format)) {
2958 blend_rt->blend_enable = 0;
2959 }
2960
2961 /*
2962 * Our swizzled render tiles always have an alpha channel, but the linear
2963 * render target format often does not, so force here the dst alpha to be
2964 * one.
2965 *
2966 * This is not a mere optimization. Wrong results will be produced if the
2967 * dst alpha is used, the dst format does not have alpha, and the previous
2968 * rendering was not flushed from the swizzled to linear buffer. For
2969 * example, NonPowTwo DCT.
2970 *
2971 * TODO: This should be generalized to all channels for better
2972 * performance, but only alpha causes correctness issues.
2973 *
2974 * Also, force rgb/alpha func/factors match, to make AoS blending easier.
2975 */
2976 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W ||
2977 format_desc->swizzle[3] == format_desc->swizzle[0]) {
2978 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
2979 boolean clamped_zero = !util_format_is_float(format) &&
2980 !util_format_is_snorm(format);
2981 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor,
2982 clamped_zero);
2983 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor,
2984 clamped_zero);
2985 blend_rt->alpha_func = blend_rt->rgb_func;
2986 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
2987 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
2988 }
2989 }
2990
2991 /* This value will be the same for all the variants of a given shader:
2992 */
2993 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2994
2995 for(i = 0; i < key->nr_samplers; ++i) {
2996 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
2997 lp_sampler_static_sampler_state(&key->state[i].sampler_state,
2998 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
2999 }
3000 }
3001
3002 /*
3003 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3004 * are dx10-style? Can't really have mixed opcodes, at least not
3005 * if we want to skip the holes here (without rescanning tgsi).
3006 */
3007 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3008 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3009 for(i = 0; i < key->nr_sampler_views; ++i) {
3010 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1 << i)) {
3011 lp_sampler_static_texture_state(&key->state[i].texture_state,
3012 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3013 }
3014 }
3015 }
3016 else {
3017 key->nr_sampler_views = key->nr_samplers;
3018 for(i = 0; i < key->nr_sampler_views; ++i) {
3019 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3020 lp_sampler_static_texture_state(&key->state[i].texture_state,
3021 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3022 }
3023 }
3024 }
3025 }
3026
3027
3028
3029 /**
3030 * Update fragment shader state. This is called just prior to drawing
3031 * something when some fragment-related state has changed.
3032 */
3033 void
3034 llvmpipe_update_fs(struct llvmpipe_context *lp)
3035 {
3036 struct lp_fragment_shader *shader = lp->fs;
3037 struct lp_fragment_shader_variant_key key;
3038 struct lp_fragment_shader_variant *variant = NULL;
3039 struct lp_fs_variant_list_item *li;
3040
3041 make_variant_key(lp, shader, &key);
3042
3043 /* Search the variants for one which matches the key */
3044 li = first_elem(&shader->variants);
3045 while(!at_end(&shader->variants, li)) {
3046 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
3047 variant = li->base;
3048 break;
3049 }
3050 li = next_elem(li);
3051 }
3052
3053 if (variant) {
3054 /* Move this variant to the head of the list to implement LRU
3055 * deletion of shader's when we have too many.
3056 */
3057 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3058 }
3059 else {
3060 /* variant not found, create it now */
3061 int64_t t0, t1, dt;
3062 unsigned i;
3063 unsigned variants_to_cull;
3064
3065 if (0) {
3066 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3067 lp->nr_fs_variants,
3068 lp->nr_fs_instrs,
3069 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3070 }
3071
3072 /* First, check if we've exceeded the max number of shader variants.
3073 * If so, free 25% of them (the least recently used ones).
3074 */
3075 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 4 : 0;
3076
3077 if (variants_to_cull ||
3078 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3079 struct pipe_context *pipe = &lp->pipe;
3080
3081 /*
3082 * XXX: we need to flush the context until we have some sort of
3083 * reference counting in fragment shaders as they may still be binned
3084 * Flushing alone might not be sufficient we need to wait on it too.
3085 */
3086 llvmpipe_finish(pipe, __FUNCTION__);
3087
3088 /*
3089 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3090 * number of shader variants (potentially all of them) could be
3091 * pending for destruction on flush.
3092 */
3093
3094 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3095 struct lp_fs_variant_list_item *item;
3096 if (is_empty_list(&lp->fs_variants_list)) {
3097 break;
3098 }
3099 item = last_elem(&lp->fs_variants_list);
3100 assert(item);
3101 assert(item->base);
3102 llvmpipe_remove_shader_variant(lp, item->base);
3103 }
3104 }
3105
3106 /*
3107 * Generate the new variant.
3108 */
3109 t0 = os_time_get();
3110 variant = generate_variant(lp, shader, &key);
3111 t1 = os_time_get();
3112 dt = t1 - t0;
3113 LP_COUNT_ADD(llvm_compile_time, dt);
3114 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3115
3116 llvmpipe_variant_count++;
3117
3118 /* Put the new variant into the list */
3119 if (variant) {
3120 insert_at_head(&shader->variants, &variant->list_item_local);
3121 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3122 lp->nr_fs_variants++;
3123 lp->nr_fs_instrs += variant->nr_instrs;
3124 shader->variants_cached++;
3125 }
3126 }
3127
3128 /* Bind this variant */
3129 lp_setup_set_fs_variant(lp->setup, variant);
3130 }
3131
3132
3133
3134
3135
3136 void
3137 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3138 {
3139 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3140 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3141 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3142
3143 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3144 }
3145
3146 /*
3147 * Rasterization is disabled if there is no pixel shader and
3148 * both depth and stencil testing are disabled:
3149 * http://msdn.microsoft.com/en-us/library/windows/desktop/bb205125
3150 */
3151 boolean
3152 llvmpipe_rasterization_disabled(struct llvmpipe_context *lp)
3153 {
3154 boolean null_fs = !lp->fs || lp->fs->info.base.num_tokens <= 1;
3155
3156 return (null_fs &&
3157 !lp->depth_stencil->depth.enabled &&
3158 !lp->depth_stencil->stencil[0].enabled);
3159 }