llvmpipe: Get jit_context/jit_function across the rasterizer.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include "pipe/p_defines.h"
62 #include "util/u_memory.h"
63 #include "util/u_format.h"
64 #include "util/u_debug_dump.h"
65 #include "pipe/internal/p_winsys_screen.h"
66 #include "pipe/p_shader_tokens.h"
67 #include "draw/draw_context.h"
68 #include "tgsi/tgsi_dump.h"
69 #include "tgsi/tgsi_scan.h"
70 #include "tgsi/tgsi_parse.h"
71 #include "lp_bld_type.h"
72 #include "lp_bld_const.h"
73 #include "lp_bld_conv.h"
74 #include "lp_bld_intr.h"
75 #include "lp_bld_logic.h"
76 #include "lp_bld_depth.h"
77 #include "lp_bld_interp.h"
78 #include "lp_bld_tgsi.h"
79 #include "lp_bld_alpha.h"
80 #include "lp_bld_blend.h"
81 #include "lp_bld_swizzle.h"
82 #include "lp_bld_flow.h"
83 #include "lp_bld_debug.h"
84 #include "lp_screen.h"
85 #include "lp_context.h"
86 #include "lp_buffer.h"
87 #include "lp_setup.h"
88 #include "lp_state.h"
89 #include "lp_tex_sample.h"
90 #include "lp_debug.h"
91
92
93 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
94 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
95
96
97 /*
98 * Derive from the quad's upper left scalar coordinates the coordinates for
99 * all other quad pixels
100 */
101 static void
102 generate_pos0(LLVMBuilderRef builder,
103 LLVMValueRef x,
104 LLVMValueRef y,
105 LLVMValueRef *x0,
106 LLVMValueRef *y0)
107 {
108 LLVMTypeRef int_elem_type = LLVMInt32Type();
109 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
110 LLVMTypeRef elem_type = LLVMFloatType();
111 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
112 LLVMValueRef x_offsets[QUAD_SIZE];
113 LLVMValueRef y_offsets[QUAD_SIZE];
114 unsigned i;
115
116 x = lp_build_broadcast(builder, int_vec_type, x);
117 y = lp_build_broadcast(builder, int_vec_type, y);
118
119 for(i = 0; i < QUAD_SIZE; ++i) {
120 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
121 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
122 }
123
124 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
125 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
126
127 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
128 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
129 }
130
131
132 /**
133 * Generate the depth test.
134 */
135 static void
136 generate_depth(LLVMBuilderRef builder,
137 const struct lp_fragment_shader_variant_key *key,
138 struct lp_type src_type,
139 struct lp_build_mask_context *mask,
140 LLVMValueRef src,
141 LLVMValueRef dst_ptr)
142 {
143 const struct util_format_description *format_desc;
144 struct lp_type dst_type;
145
146 if(!key->depth.enabled)
147 return;
148
149 format_desc = util_format_description(key->zsbuf_format);
150 assert(format_desc);
151
152 /* Pick the depth type. */
153 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
154
155 /* FIXME: Cope with a depth test type with a different bit width. */
156 assert(dst_type.width == src_type.width);
157 assert(dst_type.length == src_type.length);
158
159 #if 1
160 src = lp_build_clamped_float_to_unsigned_norm(builder,
161 src_type,
162 dst_type.width,
163 src);
164 #else
165 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
166 #endif
167
168 lp_build_depth_test(builder,
169 &key->depth,
170 dst_type,
171 format_desc,
172 mask,
173 src,
174 dst_ptr);
175 }
176
177
178 /**
179 * Generate the fragment shader, depth/stencil test, and alpha tests.
180 */
181 static void
182 generate_fs(struct llvmpipe_context *lp,
183 struct lp_fragment_shader *shader,
184 const struct lp_fragment_shader_variant_key *key,
185 LLVMBuilderRef builder,
186 struct lp_type type,
187 LLVMValueRef context_ptr,
188 unsigned i,
189 const struct lp_build_interp_soa_context *interp,
190 struct lp_build_sampler_soa *sampler,
191 LLVMValueRef *pmask,
192 LLVMValueRef *color,
193 LLVMValueRef depth_ptr)
194 {
195 const struct tgsi_token *tokens = shader->base.tokens;
196 LLVMTypeRef elem_type;
197 LLVMTypeRef vec_type;
198 LLVMTypeRef int_vec_type;
199 LLVMValueRef consts_ptr;
200 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
201 LLVMValueRef z = interp->pos[2];
202 struct lp_build_flow_context *flow;
203 struct lp_build_mask_context mask;
204 boolean early_depth_test;
205 unsigned attrib;
206 unsigned chan;
207
208 elem_type = lp_build_elem_type(type);
209 vec_type = lp_build_vec_type(type);
210 int_vec_type = lp_build_int_vec_type(type);
211
212 consts_ptr = lp_jit_context_constants(builder, context_ptr);
213
214 flow = lp_build_flow_create(builder);
215
216 memset(outputs, 0, sizeof outputs);
217
218 lp_build_flow_scope_begin(flow);
219
220 /* Declare the color and z variables */
221 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
222 color[chan] = LLVMGetUndef(vec_type);
223 lp_build_flow_scope_declare(flow, &color[chan]);
224 }
225 lp_build_flow_scope_declare(flow, &z);
226
227 lp_build_mask_begin(&mask, flow, type, *pmask);
228
229 early_depth_test =
230 key->depth.enabled &&
231 !key->alpha.enabled &&
232 !shader->info.uses_kill &&
233 !shader->info.writes_z;
234
235 if(early_depth_test)
236 generate_depth(builder, key,
237 type, &mask,
238 z, depth_ptr);
239
240 lp_build_tgsi_soa(builder, tokens, type, &mask,
241 consts_ptr, interp->pos, interp->inputs,
242 outputs, sampler);
243
244 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
245 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
246 if(outputs[attrib][chan]) {
247 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
248
249 switch (shader->info.output_semantic_name[attrib]) {
250 case TGSI_SEMANTIC_COLOR:
251 {
252 unsigned cbuf = shader->info.output_semantic_index[attrib];
253
254 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
255
256 /* Alpha test */
257 /* XXX: should the alpha reference value be passed separately? */
258 if(cbuf == 0 && chan == 3) {
259 LLVMValueRef alpha = outputs[attrib][chan];
260 LLVMValueRef alpha_ref_value;
261 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
262 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
263 lp_build_alpha_test(builder, &key->alpha, type,
264 &mask, alpha, alpha_ref_value);
265 }
266
267 if(cbuf == 0)
268 color[chan] = outputs[attrib][chan];
269
270 break;
271 }
272
273 case TGSI_SEMANTIC_POSITION:
274 if(chan == 2)
275 z = outputs[attrib][chan];
276 break;
277 }
278 }
279 }
280 }
281
282 if(!early_depth_test)
283 generate_depth(builder, key,
284 type, &mask,
285 z, depth_ptr);
286
287 lp_build_mask_end(&mask);
288
289 lp_build_flow_scope_end(flow);
290
291 lp_build_flow_destroy(flow);
292
293 *pmask = mask.value;
294
295 }
296
297
298 /**
299 * Generate color blending and color output.
300 */
301 static void
302 generate_blend(const struct pipe_blend_state *blend,
303 LLVMBuilderRef builder,
304 struct lp_type type,
305 LLVMValueRef context_ptr,
306 LLVMValueRef mask,
307 LLVMValueRef *src,
308 LLVMValueRef dst_ptr)
309 {
310 struct lp_build_context bld;
311 struct lp_build_flow_context *flow;
312 struct lp_build_mask_context mask_ctx;
313 LLVMTypeRef vec_type;
314 LLVMTypeRef int_vec_type;
315 LLVMValueRef const_ptr;
316 LLVMValueRef con[4];
317 LLVMValueRef dst[4];
318 LLVMValueRef res[4];
319 unsigned chan;
320
321 lp_build_context_init(&bld, builder, type);
322
323 flow = lp_build_flow_create(builder);
324 lp_build_mask_begin(&mask_ctx, flow, type, mask);
325
326 vec_type = lp_build_vec_type(type);
327 int_vec_type = lp_build_int_vec_type(type);
328
329 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
330 const_ptr = LLVMBuildBitCast(builder, const_ptr,
331 LLVMPointerType(vec_type, 0), "");
332
333 for(chan = 0; chan < 4; ++chan) {
334 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
335 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
336
337 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
338
339 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
340 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
341 }
342
343 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
344
345 for(chan = 0; chan < 4; ++chan) {
346 if(blend->colormask & (1 << chan)) {
347 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
348 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
349 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
350 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
351 }
352 }
353
354 lp_build_mask_end(&mask_ctx);
355 lp_build_flow_destroy(flow);
356 }
357
358
359 /**
360 * Generate the runtime callable function for the whole fragment pipeline.
361 */
362 static struct lp_fragment_shader_variant *
363 generate_fragment(struct llvmpipe_context *lp,
364 struct lp_fragment_shader *shader,
365 const struct lp_fragment_shader_variant_key *key)
366 {
367 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
368 struct lp_fragment_shader_variant *variant;
369 struct lp_type fs_type;
370 struct lp_type blend_type;
371 LLVMTypeRef fs_elem_type;
372 LLVMTypeRef fs_vec_type;
373 LLVMTypeRef fs_int_vec_type;
374 LLVMTypeRef blend_vec_type;
375 LLVMTypeRef blend_int_vec_type;
376 LLVMTypeRef arg_types[9];
377 LLVMTypeRef func_type;
378 LLVMValueRef context_ptr;
379 LLVMValueRef x;
380 LLVMValueRef y;
381 LLVMValueRef a0_ptr;
382 LLVMValueRef dadx_ptr;
383 LLVMValueRef dady_ptr;
384 LLVMValueRef mask_ptr;
385 LLVMValueRef color_ptr;
386 LLVMValueRef depth_ptr;
387 LLVMBasicBlockRef block;
388 LLVMBuilderRef builder;
389 LLVMValueRef x0;
390 LLVMValueRef y0;
391 struct lp_build_sampler_soa *sampler;
392 struct lp_build_interp_soa_context interp;
393 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
394 LLVMValueRef fs_out_color[NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
395 LLVMValueRef blend_mask;
396 LLVMValueRef blend_in_color[NUM_CHANNELS];
397 unsigned num_fs;
398 unsigned i;
399 unsigned chan;
400
401 if (LP_DEBUG & DEBUG_JIT) {
402 tgsi_dump(shader->base.tokens, 0);
403 if(key->depth.enabled) {
404 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
405 debug_printf("depth.writemask = %u\n", key->depth.writemask);
406 }
407 if(key->alpha.enabled) {
408 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
409 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
410 }
411 if(key->blend.logicop_enable) {
412 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
413 }
414 else if(key->blend.blend_enable) {
415 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
416 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
417 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
418 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
419 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
420 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
421 }
422 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
423 }
424
425 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
426 if(!variant)
427 return NULL;
428
429 variant->shader = shader;
430 memcpy(&variant->key, key, sizeof *key);
431
432 /* TODO: actually pick these based on the fs and color buffer
433 * characteristics. */
434
435 memset(&fs_type, 0, sizeof fs_type);
436 fs_type.floating = TRUE; /* floating point values */
437 fs_type.sign = TRUE; /* values are signed */
438 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
439 fs_type.width = 32; /* 32-bit float */
440 fs_type.length = 4; /* 4 element per vector */
441 num_fs = 4;
442
443 memset(&blend_type, 0, sizeof blend_type);
444 blend_type.floating = FALSE; /* values are integers */
445 blend_type.sign = FALSE; /* values are unsigned */
446 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
447 blend_type.width = 8; /* 8-bit ubyte values */
448 blend_type.length = 16; /* 16 elements per vector */
449
450 /*
451 * Generate the function prototype. Any change here must be reflected in
452 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
453 */
454
455 fs_elem_type = lp_build_elem_type(fs_type);
456 fs_vec_type = lp_build_vec_type(fs_type);
457 fs_int_vec_type = lp_build_int_vec_type(fs_type);
458
459 blend_vec_type = lp_build_vec_type(blend_type);
460 blend_int_vec_type = lp_build_int_vec_type(blend_type);
461
462 arg_types[0] = screen->context_ptr_type; /* context */
463 arg_types[1] = LLVMInt32Type(); /* x */
464 arg_types[2] = LLVMInt32Type(); /* y */
465 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
466 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
467 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
468 arg_types[6] = LLVMPointerType(fs_int_vec_type, 0); /* mask */
469 arg_types[7] = LLVMPointerType(blend_vec_type, 0); /* color */
470 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
471
472 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
473
474 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
475 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
476 for(i = 0; i < Elements(arg_types); ++i)
477 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
478 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
479
480 context_ptr = LLVMGetParam(variant->function, 0);
481 x = LLVMGetParam(variant->function, 1);
482 y = LLVMGetParam(variant->function, 2);
483 a0_ptr = LLVMGetParam(variant->function, 3);
484 dadx_ptr = LLVMGetParam(variant->function, 4);
485 dady_ptr = LLVMGetParam(variant->function, 5);
486 mask_ptr = LLVMGetParam(variant->function, 6);
487 color_ptr = LLVMGetParam(variant->function, 7);
488 depth_ptr = LLVMGetParam(variant->function, 8);
489
490 lp_build_name(context_ptr, "context");
491 lp_build_name(x, "x");
492 lp_build_name(y, "y");
493 lp_build_name(a0_ptr, "a0");
494 lp_build_name(dadx_ptr, "dadx");
495 lp_build_name(dady_ptr, "dady");
496 lp_build_name(mask_ptr, "mask");
497 lp_build_name(color_ptr, "color");
498 lp_build_name(depth_ptr, "depth");
499
500 /*
501 * Function body
502 */
503
504 block = LLVMAppendBasicBlock(variant->function, "entry");
505 builder = LLVMCreateBuilder();
506 LLVMPositionBuilderAtEnd(builder, block);
507
508 generate_pos0(builder, x, y, &x0, &y0);
509
510 lp_build_interp_soa_init(&interp, shader->base.tokens, builder, fs_type,
511 a0_ptr, dadx_ptr, dady_ptr,
512 x0, y0, 2, 0);
513
514 /* code generated texture sampling */
515 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
516
517 for(i = 0; i < num_fs; ++i) {
518 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
519 LLVMValueRef out_color[NUM_CHANNELS];
520 LLVMValueRef depth_ptr_i;
521
522 if(i != 0)
523 lp_build_interp_soa_update(&interp);
524
525 fs_mask[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, mask_ptr, &index, 1, ""), "");
526 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
527
528 generate_fs(lp, shader, key,
529 builder,
530 fs_type,
531 context_ptr,
532 i,
533 &interp,
534 sampler,
535 &fs_mask[i],
536 out_color,
537 depth_ptr_i);
538
539 for(chan = 0; chan < NUM_CHANNELS; ++chan)
540 fs_out_color[chan][i] = out_color[chan];
541 }
542
543 sampler->destroy(sampler);
544
545 /*
546 * Convert the fs's output color and mask to fit to the blending type.
547 */
548
549 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
550 lp_build_conv(builder, fs_type, blend_type,
551 fs_out_color[chan], num_fs,
552 &blend_in_color[chan], 1);
553 lp_build_name(blend_in_color[chan], "color.%c", "rgba"[chan]);
554
555 }
556
557 lp_build_conv_mask(builder, fs_type, blend_type,
558 fs_mask, num_fs,
559 &blend_mask, 1);
560
561 /*
562 * Blending.
563 */
564
565 generate_blend(&key->blend,
566 builder,
567 blend_type,
568 context_ptr,
569 blend_mask,
570 blend_in_color,
571 color_ptr);
572
573 LLVMBuildRetVoid(builder);
574
575 LLVMDisposeBuilder(builder);
576
577 /*
578 * Translate the LLVM IR into machine code.
579 */
580
581 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
582 LLVMDumpValue(variant->function);
583 abort();
584 }
585
586 LLVMRunFunctionPassManager(screen->pass, variant->function);
587
588 if (LP_DEBUG & DEBUG_JIT) {
589 LLVMDumpValue(variant->function);
590 debug_printf("\n");
591 }
592
593 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
594
595 if (LP_DEBUG & DEBUG_ASM)
596 lp_disassemble(variant->jit_function);
597
598 variant->next = shader->variants;
599 shader->variants = variant;
600
601 return variant;
602 }
603
604
605 void *
606 llvmpipe_create_fs_state(struct pipe_context *pipe,
607 const struct pipe_shader_state *templ)
608 {
609 struct lp_fragment_shader *shader;
610
611 shader = CALLOC_STRUCT(lp_fragment_shader);
612 if (!shader)
613 return NULL;
614
615 /* get/save the summary info for this shader */
616 tgsi_scan_shader(templ->tokens, &shader->info);
617
618 /* we need to keep a local copy of the tokens */
619 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
620
621 return shader;
622 }
623
624
625 void
626 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
627 {
628 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
629
630 llvmpipe->fs = (struct lp_fragment_shader *) fs;
631
632 llvmpipe->dirty |= LP_NEW_FS;
633 }
634
635
636 void
637 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
638 {
639 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
640 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
641 struct lp_fragment_shader *shader = fs;
642 struct lp_fragment_shader_variant *variant;
643
644 assert(fs != llvmpipe->fs);
645
646 variant = shader->variants;
647 while(variant) {
648 struct lp_fragment_shader_variant *next = variant->next;
649
650 if(variant->function) {
651 if(variant->jit_function)
652 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
653 LLVMDeleteFunction(variant->function);
654 }
655
656 FREE(variant);
657
658 variant = next;
659 }
660
661 FREE((void *) shader->base.tokens);
662 FREE(shader);
663 }
664
665
666
667 void
668 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
669 uint shader, uint index,
670 const struct pipe_constant_buffer *constants)
671 {
672 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
673 struct pipe_buffer *buffer = constants ? constants->buffer : NULL;
674 unsigned size = buffer ? buffer->size : 0;
675 const void *data = buffer ? llvmpipe_buffer(buffer)->data : NULL;
676
677 assert(shader < PIPE_SHADER_TYPES);
678 assert(index == 0);
679
680 if(llvmpipe->constants[shader].buffer == buffer)
681 return;
682
683 if(shader == PIPE_SHADER_VERTEX)
684 draw_flush(llvmpipe->draw);
685
686 /* note: reference counting */
687 pipe_buffer_reference(&llvmpipe->constants[shader].buffer, buffer);
688
689 if(shader == PIPE_SHADER_VERTEX) {
690 draw_set_mapped_constant_buffer(llvmpipe->draw, data, size);
691 }
692
693 llvmpipe->dirty |= LP_NEW_CONSTANTS;
694 }
695
696
697 /**
698 * We need to generate several variants of the fragment pipeline to match
699 * all the combinations of the contributing state atoms.
700 *
701 * TODO: there is actually no reason to tie this to context state -- the
702 * generated code could be cached globally in the screen.
703 */
704 static void
705 make_variant_key(struct llvmpipe_context *lp,
706 struct lp_fragment_shader *shader,
707 struct lp_fragment_shader_variant_key *key)
708 {
709 unsigned i;
710
711 memset(key, 0, sizeof *key);
712
713 if(lp->framebuffer.zsbuf &&
714 lp->depth_stencil->depth.enabled) {
715 key->zsbuf_format = lp->framebuffer.zsbuf->format;
716 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
717 }
718
719 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
720 if(key->alpha.enabled)
721 key->alpha.func = lp->depth_stencil->alpha.func;
722 /* alpha.ref_value is passed in jit_context */
723
724 if(lp->framebuffer.cbufs[0]) {
725 const struct util_format_description *format_desc;
726 unsigned chan;
727
728 memcpy(&key->blend, lp->blend, sizeof key->blend);
729
730 format_desc = util_format_description(lp->framebuffer.cbufs[0]->format);
731 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
732 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
733
734 /* mask out color channels not present in the color buffer */
735 for(chan = 0; chan < 4; ++chan) {
736 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
737 if(swizzle > 4)
738 key->blend.colormask &= ~(1 << chan);
739 }
740 }
741
742 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
743 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
744 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
745 }
746
747
748 void
749 llvmpipe_update_fs(struct llvmpipe_context *lp)
750 {
751 struct lp_fragment_shader *shader = lp->fs;
752 struct lp_fragment_shader_variant_key key;
753 struct lp_fragment_shader_variant *variant;
754
755 make_variant_key(lp, shader, &key);
756
757 variant = shader->variants;
758 while(variant) {
759 if(memcmp(&variant->key, &key, sizeof key) == 0)
760 break;
761
762 variant = variant->next;
763 }
764
765 if(!variant)
766 variant = generate_fragment(lp, shader, &key);
767
768 shader->current = variant;
769
770 lp_setup_set_fs(lp->setup, shader);
771 }