llvmpipe: force constant interpolation of flatshade colors
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include <limits.h>
62 #include "pipe/p_defines.h"
63 #include "util/u_memory.h"
64 #include "util/u_format.h"
65 #include "util/u_debug_dump.h"
66 #include "pipe/internal/p_winsys_screen.h"
67 #include "pipe/p_shader_tokens.h"
68 #include "draw/draw_context.h"
69 #include "tgsi/tgsi_dump.h"
70 #include "tgsi/tgsi_scan.h"
71 #include "tgsi/tgsi_parse.h"
72 #include "lp_bld_type.h"
73 #include "lp_bld_const.h"
74 #include "lp_bld_conv.h"
75 #include "lp_bld_intr.h"
76 #include "lp_bld_logic.h"
77 #include "lp_bld_depth.h"
78 #include "lp_bld_interp.h"
79 #include "lp_bld_tgsi.h"
80 #include "lp_bld_alpha.h"
81 #include "lp_bld_blend.h"
82 #include "lp_bld_swizzle.h"
83 #include "lp_bld_flow.h"
84 #include "lp_bld_debug.h"
85 #include "lp_screen.h"
86 #include "lp_context.h"
87 #include "lp_buffer.h"
88 #include "lp_setup.h"
89 #include "lp_state.h"
90 #include "lp_tex_sample.h"
91 #include "lp_debug.h"
92
93
94 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
95 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
96
97
98 /*
99 * Derive from the quad's upper left scalar coordinates the coordinates for
100 * all other quad pixels
101 */
102 static void
103 generate_pos0(LLVMBuilderRef builder,
104 LLVMValueRef x,
105 LLVMValueRef y,
106 LLVMValueRef *x0,
107 LLVMValueRef *y0)
108 {
109 LLVMTypeRef int_elem_type = LLVMInt32Type();
110 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
111 LLVMTypeRef elem_type = LLVMFloatType();
112 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
113 LLVMValueRef x_offsets[QUAD_SIZE];
114 LLVMValueRef y_offsets[QUAD_SIZE];
115 unsigned i;
116
117 x = lp_build_broadcast(builder, int_vec_type, x);
118 y = lp_build_broadcast(builder, int_vec_type, y);
119
120 for(i = 0; i < QUAD_SIZE; ++i) {
121 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
122 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
123 }
124
125 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
126 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
127
128 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
129 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
130 }
131
132
133 /**
134 * Generate the depth test.
135 */
136 static void
137 generate_depth(LLVMBuilderRef builder,
138 const struct lp_fragment_shader_variant_key *key,
139 struct lp_type src_type,
140 struct lp_build_mask_context *mask,
141 LLVMValueRef src,
142 LLVMValueRef dst_ptr)
143 {
144 const struct util_format_description *format_desc;
145 struct lp_type dst_type;
146
147 if(!key->depth.enabled)
148 return;
149
150 format_desc = util_format_description(key->zsbuf_format);
151 assert(format_desc);
152
153 /*
154 * Depths are expected to be between 0 and 1, even if they are stored in
155 * floats. Setting these bits here will ensure that the lp_build_conv() call
156 * below won't try to unnecessarily clamp the incoming values.
157 */
158 if(src_type.floating) {
159 src_type.sign = FALSE;
160 src_type.norm = TRUE;
161 }
162 else {
163 assert(!src_type.sign);
164 assert(src_type.norm);
165 }
166
167 /* Pick the depth type. */
168 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
169
170 /* FIXME: Cope with a depth test type with a different bit width. */
171 assert(dst_type.width == src_type.width);
172 assert(dst_type.length == src_type.length);
173
174 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
175
176 dst_ptr = LLVMBuildBitCast(builder,
177 dst_ptr,
178 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
179
180 lp_build_depth_test(builder,
181 &key->depth,
182 dst_type,
183 format_desc,
184 mask,
185 src,
186 dst_ptr);
187 }
188
189
190 /**
191 * Generate the code to do inside/outside triangle testing for the
192 * four pixels in a 2x2 quad. This will set the four elements of the
193 * quad mask vector to 0 or ~0.
194 * \param i which quad of the quad group to test, in [0,3]
195 */
196 static void
197 generate_tri_edge_mask(LLVMBuilderRef builder,
198 unsigned i,
199 LLVMValueRef *mask, /* ivec4, out */
200 LLVMValueRef c0, /* int32 */
201 LLVMValueRef c1, /* int32 */
202 LLVMValueRef c2, /* int32 */
203 LLVMValueRef step0_ptr, /* ivec4 */
204 LLVMValueRef step1_ptr, /* ivec4 */
205 LLVMValueRef step2_ptr) /* ivec4 */
206 {
207 /*
208 c0_vec = splat(c0)
209 c1_vec = splat(c1)
210 c2_vec = splat(c2)
211 m0_vec = step0_ptr[i] > c0_vec
212 m1_vec = step1_ptr[i] > c1_vec
213 m2_vec = step2_ptr[i] > c2_vec
214 mask = m0_vec & m1_vec & m2_vec
215 */
216 struct lp_build_flow_context *flow;
217 struct lp_build_if_state ifctx;
218 struct lp_type i32_type;
219 LLVMTypeRef i32vec4_type, mask_type;
220
221 LLVMValueRef c0_vec, c1_vec, c2_vec;
222
223 LLVMValueRef int_min_vec;
224 LLVMValueRef not_draw_all;
225 LLVMValueRef in_out_mask;
226
227 assert(i < 4);
228
229 /* int32 vector type */
230 memset(&i32_type, 0, sizeof i32_type);
231 i32_type.floating = FALSE; /* values are integers */
232 i32_type.sign = TRUE; /* values are signed */
233 i32_type.norm = FALSE; /* values are not normalized */
234 i32_type.width = 32; /* 32-bit int values */
235 i32_type.length = 4; /* 4 elements per vector */
236
237 i32vec4_type = lp_build_int32_vec4_type();
238
239 mask_type = LLVMIntType(32 * 4);
240
241 /* int_min_vec = {INT_MIN, INT_MIN, INT_MIN, INT_MIN} */
242 int_min_vec = lp_build_int_const_scalar(i32_type, INT_MIN);
243
244
245 /* c0_vec = {c0, c0, c0, c0}
246 * Note that we emit this code four times but LLVM optimizes away
247 * three instances of it.
248 */
249 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
250 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
251 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
252 lp_build_name(c0_vec, "edgeconst0vec");
253 lp_build_name(c1_vec, "edgeconst1vec");
254 lp_build_name(c2_vec, "edgeconst2vec");
255
256 /*
257 * Use a conditional here to do detailed pixel in/out testing.
258 * We only have to do this if c0 != {INT_MIN, INT_MIN, INT_MIN, INT_MIN}
259 */
260 flow = lp_build_flow_create(builder);
261 lp_build_flow_scope_begin(flow);
262
263 #define OPTIMIZE_IN_OUT_TEST 0
264 #if OPTIMIZE_IN_OUT_TEST
265 in_out_mask = lp_build_compare(builder, i32_type, PIPE_FUNC_EQUAL, c0_vec, int_min_vec);
266 lp_build_name(in_out_mask, "inoutmaskvec");
267
268 not_draw_all = LLVMBuildICmp(builder,
269 LLVMIntEQ,
270 LLVMBuildBitCast(builder, in_out_mask, mask_type, ""),
271 LLVMConstNull(mask_type),
272 "");
273
274 lp_build_flow_scope_declare(flow, &in_out_mask);
275
276 lp_build_if(&ifctx, flow, builder, not_draw_all);
277 #endif
278 {
279 LLVMValueRef step0_vec, step1_vec, step2_vec;
280 LLVMValueRef m0_vec, m1_vec, m2_vec;
281 LLVMValueRef index, m;
282
283 index = LLVMConstInt(LLVMInt32Type(), i, 0);
284 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
285 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
286 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
287
288 lp_build_name(step0_vec, "step0vec");
289 lp_build_name(step1_vec, "step1vec");
290 lp_build_name(step2_vec, "step2vec");
291
292 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
293 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
294 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
295
296 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
297 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
298 lp_build_name(in_out_mask, "inoutmaskvec");
299
300 /* This is the initial alive/dead pixel mask. Additional bits will get cleared
301 * when the Z test fails, etc.
302 */
303 }
304 #if OPTIMIZE_IN_OUT_TEST
305 lp_build_endif(&ifctx);
306 #endif
307
308 lp_build_flow_scope_end(flow);
309 lp_build_flow_destroy(flow);
310
311 *mask = in_out_mask;
312 }
313
314
315 /**
316 * Generate the fragment shader, depth/stencil test, and alpha tests.
317 * \param i which quad in the tile, in range [0,3]
318 */
319 static void
320 generate_fs(struct llvmpipe_context *lp,
321 struct lp_fragment_shader *shader,
322 const struct lp_fragment_shader_variant_key *key,
323 LLVMBuilderRef builder,
324 struct lp_type type,
325 LLVMValueRef context_ptr,
326 unsigned i,
327 const struct lp_build_interp_soa_context *interp,
328 struct lp_build_sampler_soa *sampler,
329 LLVMValueRef *pmask,
330 LLVMValueRef (*color)[4],
331 LLVMValueRef depth_ptr,
332 LLVMValueRef c0,
333 LLVMValueRef c1,
334 LLVMValueRef c2,
335 LLVMValueRef step0_ptr,
336 LLVMValueRef step1_ptr,
337 LLVMValueRef step2_ptr)
338 {
339 const struct tgsi_token *tokens = shader->base.tokens;
340 LLVMTypeRef elem_type;
341 LLVMTypeRef vec_type;
342 LLVMTypeRef int_vec_type;
343 LLVMValueRef consts_ptr;
344 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
345 LLVMValueRef z = interp->pos[2];
346 struct lp_build_flow_context *flow;
347 struct lp_build_mask_context mask;
348 boolean early_depth_test;
349 unsigned attrib;
350 unsigned chan;
351 unsigned cbuf;
352
353 assert(i < 4);
354
355 elem_type = lp_build_elem_type(type);
356 vec_type = lp_build_vec_type(type);
357 int_vec_type = lp_build_int_vec_type(type);
358
359 consts_ptr = lp_jit_context_constants(builder, context_ptr);
360
361 flow = lp_build_flow_create(builder);
362
363 memset(outputs, 0, sizeof outputs);
364
365 lp_build_flow_scope_begin(flow);
366
367 /* Declare the color and z variables */
368 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
369 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
370 color[cbuf][chan] = LLVMGetUndef(vec_type);
371 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
372 }
373 }
374 lp_build_flow_scope_declare(flow, &z);
375
376 /* do triangle edge testing */
377 generate_tri_edge_mask(builder, i, pmask,
378 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
379
380 /* 'mask' will control execution based on quad's pixel alive/killed state */
381 lp_build_mask_begin(&mask, flow, type, *pmask);
382
383
384 early_depth_test =
385 key->depth.enabled &&
386 !key->alpha.enabled &&
387 !shader->info.uses_kill &&
388 !shader->info.writes_z;
389
390 if(early_depth_test)
391 generate_depth(builder, key,
392 type, &mask,
393 z, depth_ptr);
394
395 lp_build_tgsi_soa(builder, tokens, type, &mask,
396 consts_ptr, interp->pos, interp->inputs,
397 outputs, sampler);
398
399 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
400 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
401 if(outputs[attrib][chan]) {
402 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
403
404 switch (shader->info.output_semantic_name[attrib]) {
405 case TGSI_SEMANTIC_COLOR:
406 {
407 unsigned cbuf = shader->info.output_semantic_index[attrib];
408
409 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
410
411 /* Alpha test */
412 /* XXX: should the alpha reference value be passed separately? */
413 /* XXX: should only test the final assignment to alpha */
414 if(cbuf == 0 && chan == 3) {
415 LLVMValueRef alpha = outputs[attrib][chan];
416 LLVMValueRef alpha_ref_value;
417 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
418 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
419 lp_build_alpha_test(builder, &key->alpha, type,
420 &mask, alpha, alpha_ref_value);
421 }
422
423 color[cbuf][chan] = outputs[attrib][chan];
424 break;
425 }
426
427 case TGSI_SEMANTIC_POSITION:
428 if(chan == 2)
429 z = outputs[attrib][chan];
430 break;
431 }
432 }
433 }
434 }
435
436 if(!early_depth_test)
437 generate_depth(builder, key,
438 type, &mask,
439 z, depth_ptr);
440
441 lp_build_mask_end(&mask);
442
443 lp_build_flow_scope_end(flow);
444
445 lp_build_flow_destroy(flow);
446
447 *pmask = mask.value;
448
449 }
450
451
452 /**
453 * Generate color blending and color output.
454 */
455 static void
456 generate_blend(const struct pipe_blend_state *blend,
457 LLVMBuilderRef builder,
458 struct lp_type type,
459 LLVMValueRef context_ptr,
460 LLVMValueRef mask,
461 LLVMValueRef *src,
462 LLVMValueRef dst_ptr)
463 {
464 struct lp_build_context bld;
465 struct lp_build_flow_context *flow;
466 struct lp_build_mask_context mask_ctx;
467 LLVMTypeRef vec_type;
468 LLVMTypeRef int_vec_type;
469 LLVMValueRef const_ptr;
470 LLVMValueRef con[4];
471 LLVMValueRef dst[4];
472 LLVMValueRef res[4];
473 unsigned chan;
474
475 lp_build_context_init(&bld, builder, type);
476
477 flow = lp_build_flow_create(builder);
478
479 /* we'll use this mask context to skip blending if all pixels are dead */
480 lp_build_mask_begin(&mask_ctx, flow, type, mask);
481
482 vec_type = lp_build_vec_type(type);
483 int_vec_type = lp_build_int_vec_type(type);
484
485 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
486 const_ptr = LLVMBuildBitCast(builder, const_ptr,
487 LLVMPointerType(vec_type, 0), "");
488
489 for(chan = 0; chan < 4; ++chan) {
490 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
491 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
492
493 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
494
495 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
496 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
497 }
498
499 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
500
501 for(chan = 0; chan < 4; ++chan) {
502 if(blend->colormask & (1 << chan)) {
503 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
504 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
505 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
506 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
507 }
508 }
509
510 lp_build_mask_end(&mask_ctx);
511 lp_build_flow_destroy(flow);
512 }
513
514
515 /**
516 * Generate the runtime callable function for the whole fragment pipeline.
517 * Note that the function which we generate operates on a block of 16
518 * pixels at at time. The block contains 2x2 quads. Each quad contains
519 * 2x2 pixels.
520 */
521 static struct lp_fragment_shader_variant *
522 generate_fragment(struct llvmpipe_context *lp,
523 struct lp_fragment_shader *shader,
524 const struct lp_fragment_shader_variant_key *key)
525 {
526 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
527 struct lp_fragment_shader_variant *variant;
528 struct lp_type fs_type;
529 struct lp_type blend_type;
530 LLVMTypeRef fs_elem_type;
531 LLVMTypeRef fs_vec_type;
532 LLVMTypeRef fs_int_vec_type;
533 LLVMTypeRef blend_vec_type;
534 LLVMTypeRef blend_int_vec_type;
535 LLVMTypeRef arg_types[14];
536 LLVMTypeRef func_type;
537 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
538 LLVMValueRef context_ptr;
539 LLVMValueRef x;
540 LLVMValueRef y;
541 LLVMValueRef a0_ptr;
542 LLVMValueRef dadx_ptr;
543 LLVMValueRef dady_ptr;
544 LLVMValueRef color_ptr_ptr;
545 LLVMValueRef depth_ptr;
546 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
547 LLVMBasicBlockRef block;
548 LLVMBuilderRef builder;
549 LLVMValueRef x0;
550 LLVMValueRef y0;
551 struct lp_build_sampler_soa *sampler;
552 struct lp_build_interp_soa_context interp;
553 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
554 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
555 LLVMValueRef blend_mask;
556 LLVMValueRef blend_in_color[NUM_CHANNELS];
557 unsigned num_fs;
558 unsigned i;
559 unsigned chan;
560 unsigned cbuf;
561
562 if (LP_DEBUG & DEBUG_JIT) {
563 tgsi_dump(shader->base.tokens, 0);
564 if(key->depth.enabled) {
565 debug_printf("depth.format = %s\n", pf_name(key->zsbuf_format));
566 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
567 debug_printf("depth.writemask = %u\n", key->depth.writemask);
568 }
569 if(key->alpha.enabled) {
570 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
571 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
572 }
573 if(key->blend.logicop_enable) {
574 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
575 }
576 else if(key->blend.blend_enable) {
577 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
578 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
579 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
580 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
581 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
582 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
583 }
584 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
585 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
586 if(key->sampler[i].format) {
587 debug_printf("sampler[%u] = \n", i);
588 debug_printf(" .format = %s\n",
589 pf_name(key->sampler[i].format));
590 debug_printf(" .target = %s\n",
591 debug_dump_tex_target(key->sampler[i].target, TRUE));
592 debug_printf(" .pot = %u %u %u\n",
593 key->sampler[i].pot_width,
594 key->sampler[i].pot_height,
595 key->sampler[i].pot_depth);
596 debug_printf(" .wrap = %s %s %s\n",
597 debug_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
598 debug_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
599 debug_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
600 debug_printf(" .min_img_filter = %s\n",
601 debug_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
602 debug_printf(" .min_mip_filter = %s\n",
603 debug_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
604 debug_printf(" .mag_img_filter = %s\n",
605 debug_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
606 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
607 debug_printf(" .compare_func = %s\n", debug_dump_func(key->sampler[i].compare_func, TRUE));
608 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
609 debug_printf(" .prefilter = %u\n", key->sampler[i].prefilter);
610 }
611 }
612 }
613
614 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
615 if(!variant)
616 return NULL;
617
618 variant->shader = shader;
619 memcpy(&variant->key, key, sizeof *key);
620
621 /* TODO: actually pick these based on the fs and color buffer
622 * characteristics. */
623
624 memset(&fs_type, 0, sizeof fs_type);
625 fs_type.floating = TRUE; /* floating point values */
626 fs_type.sign = TRUE; /* values are signed */
627 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
628 fs_type.width = 32; /* 32-bit float */
629 fs_type.length = 4; /* 4 elements per vector */
630 num_fs = 4; /* number of quads per block */
631
632 memset(&blend_type, 0, sizeof blend_type);
633 blend_type.floating = FALSE; /* values are integers */
634 blend_type.sign = FALSE; /* values are unsigned */
635 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
636 blend_type.width = 8; /* 8-bit ubyte values */
637 blend_type.length = 16; /* 16 elements per vector */
638
639 /*
640 * Generate the function prototype. Any change here must be reflected in
641 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
642 */
643
644 fs_elem_type = lp_build_elem_type(fs_type);
645 fs_vec_type = lp_build_vec_type(fs_type);
646 fs_int_vec_type = lp_build_int_vec_type(fs_type);
647
648 blend_vec_type = lp_build_vec_type(blend_type);
649 blend_int_vec_type = lp_build_int_vec_type(blend_type);
650
651 arg_types[0] = screen->context_ptr_type; /* context */
652 arg_types[1] = LLVMInt32Type(); /* x */
653 arg_types[2] = LLVMInt32Type(); /* y */
654 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
655 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
656 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
657 arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
658 arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
659 arg_types[8] = LLVMInt32Type(); /* c0 */
660 arg_types[9] = LLVMInt32Type(); /* c1 */
661 arg_types[10] = LLVMInt32Type(); /* c2 */
662 /* Note: the step arrays are built as int32[16] but we interpret
663 * them here as int32_vec4[4].
664 */
665 arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
666 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
667 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
668
669 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
670
671 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
672 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
673
674 /* XXX: need to propagate noalias down into color param now we are
675 * passing a pointer-to-pointer?
676 */
677 for(i = 0; i < Elements(arg_types); ++i)
678 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
679 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
680
681 context_ptr = LLVMGetParam(variant->function, 0);
682 x = LLVMGetParam(variant->function, 1);
683 y = LLVMGetParam(variant->function, 2);
684 a0_ptr = LLVMGetParam(variant->function, 3);
685 dadx_ptr = LLVMGetParam(variant->function, 4);
686 dady_ptr = LLVMGetParam(variant->function, 5);
687 color_ptr_ptr = LLVMGetParam(variant->function, 6);
688 depth_ptr = LLVMGetParam(variant->function, 7);
689 c0 = LLVMGetParam(variant->function, 8);
690 c1 = LLVMGetParam(variant->function, 9);
691 c2 = LLVMGetParam(variant->function, 10);
692 step0_ptr = LLVMGetParam(variant->function, 11);
693 step1_ptr = LLVMGetParam(variant->function, 12);
694 step2_ptr = LLVMGetParam(variant->function, 13);
695
696 lp_build_name(context_ptr, "context");
697 lp_build_name(x, "x");
698 lp_build_name(y, "y");
699 lp_build_name(a0_ptr, "a0");
700 lp_build_name(dadx_ptr, "dadx");
701 lp_build_name(dady_ptr, "dady");
702 lp_build_name(color_ptr_ptr, "color_ptr");
703 lp_build_name(depth_ptr, "depth");
704 lp_build_name(c0, "c0");
705 lp_build_name(c1, "c1");
706 lp_build_name(c2, "c2");
707 lp_build_name(step0_ptr, "step0");
708 lp_build_name(step1_ptr, "step1");
709 lp_build_name(step2_ptr, "step2");
710
711 /*
712 * Function body
713 */
714
715 block = LLVMAppendBasicBlock(variant->function, "entry");
716 builder = LLVMCreateBuilder();
717 LLVMPositionBuilderAtEnd(builder, block);
718
719 generate_pos0(builder, x, y, &x0, &y0);
720
721 lp_build_interp_soa_init(&interp,
722 shader->base.tokens,
723 key->flatshade,
724 builder, fs_type,
725 a0_ptr, dadx_ptr, dady_ptr,
726 x0, y0);
727
728 /* code generated texture sampling */
729 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
730
731 /* loop over quads in the block */
732 for(i = 0; i < num_fs; ++i) {
733 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
734 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
735 LLVMValueRef depth_ptr_i;
736 int cbuf;
737
738 if(i != 0)
739 lp_build_interp_soa_update(&interp, i);
740
741 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
742
743 generate_fs(lp, shader, key,
744 builder,
745 fs_type,
746 context_ptr,
747 i,
748 &interp,
749 sampler,
750 &fs_mask[i], /* output */
751 out_color,
752 depth_ptr_i,
753 c0, c1, c2,
754 step0_ptr, step1_ptr, step2_ptr);
755
756 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
757 for(chan = 0; chan < NUM_CHANNELS; ++chan)
758 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
759 }
760
761 sampler->destroy(sampler);
762
763 /* Loop over color outputs / color buffers to do blending.
764 */
765 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
766 LLVMValueRef color_ptr;
767 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
768
769 /*
770 * Convert the fs's output color and mask to fit to the blending type.
771 */
772 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
773 lp_build_conv(builder, fs_type, blend_type,
774 fs_out_color[cbuf][chan], num_fs,
775 &blend_in_color[chan], 1);
776 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
777 }
778
779 lp_build_conv_mask(builder, fs_type, blend_type,
780 fs_mask, num_fs,
781 &blend_mask, 1);
782
783 color_ptr = LLVMBuildLoad(builder,
784 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
785 "");
786 lp_build_name(color_ptr, "color_ptr%d", cbuf);
787
788 /*
789 * Blending.
790 */
791 generate_blend(&key->blend,
792 builder,
793 blend_type,
794 context_ptr,
795 blend_mask,
796 blend_in_color,
797 color_ptr);
798 }
799
800 LLVMBuildRetVoid(builder);
801
802 LLVMDisposeBuilder(builder);
803
804
805 /* Verify the LLVM IR. If invalid, dump and abort */
806 #ifdef DEBUG
807 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
808 if (1)
809 LLVMDumpValue(variant->function);
810 abort();
811 }
812 #endif
813
814 /* Apply optimizations to LLVM IR */
815 if (1)
816 LLVMRunFunctionPassManager(screen->pass, variant->function);
817
818 if (LP_DEBUG & DEBUG_JIT) {
819 /* Print the LLVM IR to stderr */
820 LLVMDumpValue(variant->function);
821 debug_printf("\n");
822 }
823
824 /*
825 * Translate the LLVM IR into machine code.
826 */
827 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
828
829 if (LP_DEBUG & DEBUG_ASM)
830 lp_disassemble(variant->jit_function);
831
832 variant->next = shader->variants;
833 shader->variants = variant;
834
835 return variant;
836 }
837
838
839 void *
840 llvmpipe_create_fs_state(struct pipe_context *pipe,
841 const struct pipe_shader_state *templ)
842 {
843 struct lp_fragment_shader *shader;
844
845 shader = CALLOC_STRUCT(lp_fragment_shader);
846 if (!shader)
847 return NULL;
848
849 /* get/save the summary info for this shader */
850 tgsi_scan_shader(templ->tokens, &shader->info);
851
852 /* we need to keep a local copy of the tokens */
853 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
854
855 return shader;
856 }
857
858
859 void
860 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
861 {
862 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
863
864 if (llvmpipe->fs == fs)
865 return;
866
867 draw_flush(llvmpipe->draw);
868
869 llvmpipe->fs = fs;
870
871 llvmpipe->dirty |= LP_NEW_FS;
872 }
873
874
875 void
876 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
877 {
878 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
879 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
880 struct lp_fragment_shader *shader = fs;
881 struct lp_fragment_shader_variant *variant;
882
883 assert(fs != llvmpipe->fs);
884 (void) llvmpipe;
885
886 variant = shader->variants;
887 while(variant) {
888 struct lp_fragment_shader_variant *next = variant->next;
889
890 if(variant->function) {
891 if(variant->jit_function)
892 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
893 LLVMDeleteFunction(variant->function);
894 }
895
896 FREE(variant);
897
898 variant = next;
899 }
900
901 FREE((void *) shader->base.tokens);
902 FREE(shader);
903 }
904
905
906
907 void
908 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
909 uint shader, uint index,
910 const struct pipe_constant_buffer *constants)
911 {
912 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
913 struct pipe_buffer *buffer = constants ? constants->buffer : NULL;
914 unsigned size = buffer ? buffer->size : 0;
915 const void *data = buffer ? llvmpipe_buffer(buffer)->data : NULL;
916
917 assert(shader < PIPE_SHADER_TYPES);
918 assert(index == 0);
919
920 if(llvmpipe->constants[shader].buffer == buffer)
921 return;
922
923 draw_flush(llvmpipe->draw);
924
925 /* note: reference counting */
926 pipe_buffer_reference(&llvmpipe->constants[shader].buffer, buffer);
927
928 if(shader == PIPE_SHADER_VERTEX) {
929 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX,
930 data, size);
931 }
932
933 llvmpipe->dirty |= LP_NEW_CONSTANTS;
934 }
935
936
937 /**
938 * We need to generate several variants of the fragment pipeline to match
939 * all the combinations of the contributing state atoms.
940 *
941 * TODO: there is actually no reason to tie this to context state -- the
942 * generated code could be cached globally in the screen.
943 */
944 static void
945 make_variant_key(struct llvmpipe_context *lp,
946 struct lp_fragment_shader *shader,
947 struct lp_fragment_shader_variant_key *key)
948 {
949 unsigned i;
950
951 memset(key, 0, sizeof *key);
952
953 if(lp->framebuffer.zsbuf &&
954 lp->depth_stencil->depth.enabled) {
955 key->zsbuf_format = lp->framebuffer.zsbuf->format;
956 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
957 }
958
959 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
960 if(key->alpha.enabled)
961 key->alpha.func = lp->depth_stencil->alpha.func;
962 /* alpha.ref_value is passed in jit_context */
963
964 key->flatshade = lp->rasterizer->flatshade;
965
966 if (lp->framebuffer.nr_cbufs) {
967 memcpy(&key->blend, lp->blend, sizeof key->blend);
968 }
969
970 key->nr_cbufs = lp->framebuffer.nr_cbufs;
971 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
972 const struct util_format_description *format_desc;
973 unsigned chan;
974
975 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
976 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
977 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
978
979 /* mask out color channels not present in the color buffer.
980 * Should be simple to incorporate per-cbuf writemasks:
981 */
982 for(chan = 0; chan < 4; ++chan) {
983 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
984
985 if(swizzle <= UTIL_FORMAT_SWIZZLE_W)
986 key->cbuf_blend[i].colormask |= (1 << chan);
987 }
988 }
989
990 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
991 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
992 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
993 }
994
995
996 void
997 llvmpipe_update_fs(struct llvmpipe_context *lp)
998 {
999 struct lp_fragment_shader *shader = lp->fs;
1000 struct lp_fragment_shader_variant_key key;
1001 struct lp_fragment_shader_variant *variant;
1002
1003 make_variant_key(lp, shader, &key);
1004
1005 variant = shader->variants;
1006 while(variant) {
1007 if(memcmp(&variant->key, &key, sizeof key) == 0)
1008 break;
1009
1010 variant = variant->next;
1011 }
1012
1013 if(!variant)
1014 variant = generate_fragment(lp, shader, &key);
1015
1016 shader->current = variant;
1017
1018 lp_setup_set_fs_function(lp->setup,
1019 shader->current->jit_function);
1020 }