s/Tungsten Graphics/VMware/
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 VMware, Inc.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "os/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_swizzle.h"
84 #include "gallivm/lp_bld_flow.h"
85 #include "gallivm/lp_bld_debug.h"
86 #include "gallivm/lp_bld_arit.h"
87 #include "gallivm/lp_bld_pack.h"
88 #include "gallivm/lp_bld_format.h"
89 #include "gallivm/lp_bld_quad.h"
90
91 #include "lp_bld_alpha.h"
92 #include "lp_bld_blend.h"
93 #include "lp_bld_depth.h"
94 #include "lp_bld_interp.h"
95 #include "lp_context.h"
96 #include "lp_debug.h"
97 #include "lp_perf.h"
98 #include "lp_setup.h"
99 #include "lp_state.h"
100 #include "lp_tex_sample.h"
101 #include "lp_flush.h"
102 #include "lp_state_fs.h"
103 #include "lp_rast.h"
104
105
106 /** Fragment shader number (for debugging) */
107 static unsigned fs_no = 0;
108
109
110 /**
111 * Expand the relevant bits of mask_input to a n*4-dword mask for the
112 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
113 * quad mask vector to 0 or ~0.
114 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
115 * quad arguments with fs length 8.
116 *
117 * \param first_quad which quad(s) of the quad group to test, in [0,3]
118 * \param mask_input bitwise mask for the whole 4x4 stamp
119 */
120 static LLVMValueRef
121 generate_quad_mask(struct gallivm_state *gallivm,
122 struct lp_type fs_type,
123 unsigned first_quad,
124 LLVMValueRef mask_input) /* int32 */
125 {
126 LLVMBuilderRef builder = gallivm->builder;
127 struct lp_type mask_type;
128 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
129 LLVMValueRef bits[16];
130 LLVMValueRef mask;
131 int shift, i;
132
133 /*
134 * XXX: We'll need a different path for 16 x u8
135 */
136 assert(fs_type.width == 32);
137 assert(fs_type.length <= Elements(bits));
138 mask_type = lp_int_type(fs_type);
139
140 /*
141 * mask_input >>= (quad * 4)
142 */
143 switch (first_quad) {
144 case 0:
145 shift = 0;
146 break;
147 case 1:
148 assert(fs_type.length == 4);
149 shift = 2;
150 break;
151 case 2:
152 shift = 8;
153 break;
154 case 3:
155 assert(fs_type.length == 4);
156 shift = 10;
157 break;
158 default:
159 assert(0);
160 shift = 0;
161 }
162
163 mask_input = LLVMBuildLShr(builder,
164 mask_input,
165 LLVMConstInt(i32t, shift, 0),
166 "");
167
168 /*
169 * mask = { mask_input & (1 << i), for i in [0,3] }
170 */
171 mask = lp_build_broadcast(gallivm,
172 lp_build_vec_type(gallivm, mask_type),
173 mask_input);
174
175 for (i = 0; i < fs_type.length / 4; i++) {
176 unsigned j = 2 * (i % 2) + (i / 2) * 8;
177 bits[4*i + 0] = LLVMConstInt(i32t, 1 << (j + 0), 0);
178 bits[4*i + 1] = LLVMConstInt(i32t, 1 << (j + 1), 0);
179 bits[4*i + 2] = LLVMConstInt(i32t, 1 << (j + 4), 0);
180 bits[4*i + 3] = LLVMConstInt(i32t, 1 << (j + 5), 0);
181 }
182 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, fs_type.length), "");
183
184 /*
185 * mask = mask != 0 ? ~0 : 0
186 */
187 mask = lp_build_compare(gallivm,
188 mask_type, PIPE_FUNC_NOTEQUAL,
189 mask,
190 lp_build_const_int_vec(gallivm, mask_type, 0));
191
192 return mask;
193 }
194
195
196 #define EARLY_DEPTH_TEST 0x1
197 #define LATE_DEPTH_TEST 0x2
198 #define EARLY_DEPTH_WRITE 0x4
199 #define LATE_DEPTH_WRITE 0x8
200
201 static int
202 find_output_by_semantic( const struct tgsi_shader_info *info,
203 unsigned semantic,
204 unsigned index )
205 {
206 int i;
207
208 for (i = 0; i < info->num_outputs; i++)
209 if (info->output_semantic_name[i] == semantic &&
210 info->output_semantic_index[i] == index)
211 return i;
212
213 return -1;
214 }
215
216
217 /**
218 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
219 */
220 static LLVMValueRef
221 lp_llvm_viewport(LLVMValueRef context_ptr,
222 struct gallivm_state *gallivm,
223 LLVMValueRef viewport_index)
224 {
225 LLVMBuilderRef builder = gallivm->builder;
226 LLVMValueRef ptr;
227 LLVMValueRef res;
228 struct lp_type viewport_type =
229 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
230
231 ptr = lp_jit_context_viewports(gallivm, context_ptr);
232 ptr = LLVMBuildPointerCast(builder, ptr,
233 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
234
235 res = lp_build_pointer_get(builder, ptr, viewport_index);
236
237 return res;
238 }
239
240
241 /**
242 * Generate the fragment shader, depth/stencil test, and alpha tests.
243 */
244 static void
245 generate_fs_loop(struct gallivm_state *gallivm,
246 struct lp_fragment_shader *shader,
247 const struct lp_fragment_shader_variant_key *key,
248 LLVMBuilderRef builder,
249 struct lp_type type,
250 LLVMValueRef context_ptr,
251 LLVMValueRef num_loop,
252 struct lp_build_interp_soa_context *interp,
253 struct lp_build_sampler_soa *sampler,
254 LLVMValueRef mask_store,
255 LLVMValueRef (*out_color)[4],
256 LLVMValueRef depth_ptr,
257 LLVMValueRef depth_stride,
258 LLVMValueRef facing,
259 LLVMValueRef thread_data_ptr)
260 {
261 const struct util_format_description *zs_format_desc = NULL;
262 const struct tgsi_token *tokens = shader->base.tokens;
263 LLVMTypeRef vec_type;
264 LLVMValueRef mask_ptr, mask_val;
265 LLVMValueRef consts_ptr, num_consts_ptr;
266 LLVMValueRef z;
267 LLVMValueRef z_value, s_value;
268 LLVMValueRef z_fb, s_fb;
269 LLVMValueRef stencil_refs[2];
270 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
271 struct lp_build_for_loop_state loop_state;
272 struct lp_build_mask_context mask;
273 /*
274 * TODO: figure out if simple_shader optimization is really worthwile to
275 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
276 * code since tests tend to take another codepath than real shaders.
277 */
278 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
279 shader->info.base.num_inputs < 3 &&
280 shader->info.base.num_instructions < 8) && 0;
281 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
282 util_blend_state_is_dual(&key->blend, 0);
283 unsigned attrib;
284 unsigned chan;
285 unsigned cbuf;
286 unsigned depth_mode;
287
288 struct lp_bld_tgsi_system_values system_values;
289
290 memset(&system_values, 0, sizeof(system_values));
291
292 if (key->depth.enabled ||
293 key->stencil[0].enabled) {
294
295 zs_format_desc = util_format_description(key->zsbuf_format);
296 assert(zs_format_desc);
297
298 if (!shader->info.base.writes_z) {
299 if (key->alpha.enabled ||
300 key->blend.alpha_to_coverage ||
301 shader->info.base.uses_kill) {
302 /* With alpha test and kill, can do the depth test early
303 * and hopefully eliminate some quads. But need to do a
304 * special deferred depth write once the final mask value
305 * is known. This only works though if there's either no
306 * stencil test or the stencil value isn't written.
307 */
308 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
309 (key->stencil[1].enabled &&
310 key->stencil[1].writemask)))
311 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
312 else
313 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
314 }
315 else
316 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
317 }
318 else {
319 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
320 }
321
322 if (!(key->depth.enabled && key->depth.writemask) &&
323 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
324 (key->stencil[1].enabled &&
325 key->stencil[1].writemask))))
326 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
327 }
328 else {
329 depth_mode = 0;
330 }
331
332
333 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
334 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
335
336 vec_type = lp_build_vec_type(gallivm, type);
337
338 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
339 num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
340
341 lp_build_for_loop_begin(&loop_state, gallivm,
342 lp_build_const_int32(gallivm, 0),
343 LLVMIntULT,
344 num_loop,
345 lp_build_const_int32(gallivm, 1));
346
347 mask_ptr = LLVMBuildGEP(builder, mask_store,
348 &loop_state.counter, 1, "mask_ptr");
349 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
350
351 memset(outputs, 0, sizeof outputs);
352
353 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
354 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
355 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
356 lp_build_vec_type(gallivm,
357 type),
358 num_loop, "color");
359 }
360 }
361 if (dual_source_blend) {
362 assert(key->nr_cbufs <= 1);
363 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
364 out_color[1][chan] = lp_build_array_alloca(gallivm,
365 lp_build_vec_type(gallivm,
366 type),
367 num_loop, "color1");
368 }
369 }
370
371
372 /* 'mask' will control execution based on quad's pixel alive/killed state */
373 lp_build_mask_begin(&mask, gallivm, type, mask_val);
374
375 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
376 lp_build_mask_check(&mask);
377
378 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
379 z = interp->pos[2];
380
381 if (depth_mode & EARLY_DEPTH_TEST) {
382 lp_build_depth_stencil_load_swizzled(gallivm, type,
383 zs_format_desc, key->resource_1d,
384 depth_ptr, depth_stride,
385 &z_fb, &s_fb, loop_state.counter);
386 lp_build_depth_stencil_test(gallivm,
387 &key->depth,
388 key->stencil,
389 type,
390 zs_format_desc,
391 &mask,
392 stencil_refs,
393 z, z_fb, s_fb,
394 facing,
395 &z_value, &s_value,
396 !simple_shader);
397
398 if (depth_mode & EARLY_DEPTH_WRITE) {
399 lp_build_depth_stencil_write_swizzled(gallivm, type,
400 zs_format_desc, key->resource_1d,
401 NULL, NULL, NULL, loop_state.counter,
402 depth_ptr, depth_stride,
403 z_value, s_value);
404 }
405 /*
406 * Note mask check if stencil is enabled must be after ds write not after
407 * stencil test otherwise new stencil values may not get written if all
408 * fragments got killed by depth/stencil test.
409 */
410 if (!simple_shader && key->stencil[0].enabled)
411 lp_build_mask_check(&mask);
412 }
413
414 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
415
416 /* Build the actual shader */
417 lp_build_tgsi_soa(gallivm, tokens, type, &mask,
418 consts_ptr, num_consts_ptr, &system_values,
419 interp->inputs,
420 outputs, sampler, &shader->info.base, NULL);
421
422 /* Alpha test */
423 if (key->alpha.enabled) {
424 int color0 = find_output_by_semantic(&shader->info.base,
425 TGSI_SEMANTIC_COLOR,
426 0);
427
428 if (color0 != -1 && outputs[color0][3]) {
429 const struct util_format_description *cbuf_format_desc;
430 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
431 LLVMValueRef alpha_ref_value;
432
433 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
434 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
435
436 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
437
438 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
439 &mask, alpha, alpha_ref_value,
440 (depth_mode & LATE_DEPTH_TEST) != 0);
441 }
442 }
443
444 /* Emulate Alpha to Coverage with Alpha test */
445 if (key->blend.alpha_to_coverage) {
446 int color0 = find_output_by_semantic(&shader->info.base,
447 TGSI_SEMANTIC_COLOR,
448 0);
449
450 if (color0 != -1 && outputs[color0][3]) {
451 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
452
453 lp_build_alpha_to_coverage(gallivm, type,
454 &mask, alpha,
455 (depth_mode & LATE_DEPTH_TEST) != 0);
456 }
457 }
458
459 /* Late Z test */
460 if (depth_mode & LATE_DEPTH_TEST) {
461 int pos0 = find_output_by_semantic(&shader->info.base,
462 TGSI_SEMANTIC_POSITION,
463 0);
464
465 if (pos0 != -1 && outputs[pos0][2]) {
466 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
467
468 /*
469 * Clamp according to ARB_depth_clamp semantics.
470 */
471 if (key->depth_clamp) {
472 LLVMValueRef viewport, min_depth, max_depth;
473 LLVMValueRef viewport_index;
474 struct lp_build_context f32_bld;
475
476 assert(type.floating);
477 lp_build_context_init(&f32_bld, gallivm, type);
478
479 /*
480 * Assumes clamping of the viewport index will occur in setup/gs. Value
481 * is passed through the rasterization stage via lp_rast_shader_inputs.
482 *
483 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
484 * semantics.
485 */
486 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
487 thread_data_ptr);
488
489 /*
490 * Load the min and max depth from the lp_jit_context.viewports
491 * array of lp_jit_viewport structures.
492 */
493 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
494
495 /* viewports[viewport_index].min_depth */
496 min_depth = LLVMBuildExtractElement(builder, viewport,
497 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH),
498 "");
499 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
500
501 /* viewports[viewport_index].max_depth */
502 max_depth = LLVMBuildExtractElement(builder, viewport,
503 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH),
504 "");
505 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
506
507 /*
508 * Clamp to the min and max depth values for the given viewport.
509 */
510 z = lp_build_clamp(&f32_bld, z, min_depth, max_depth);
511 }
512 }
513
514 lp_build_depth_stencil_load_swizzled(gallivm, type,
515 zs_format_desc, key->resource_1d,
516 depth_ptr, depth_stride,
517 &z_fb, &s_fb, loop_state.counter);
518
519 lp_build_depth_stencil_test(gallivm,
520 &key->depth,
521 key->stencil,
522 type,
523 zs_format_desc,
524 &mask,
525 stencil_refs,
526 z, z_fb, s_fb,
527 facing,
528 &z_value, &s_value,
529 !simple_shader);
530 /* Late Z write */
531 if (depth_mode & LATE_DEPTH_WRITE) {
532 lp_build_depth_stencil_write_swizzled(gallivm, type,
533 zs_format_desc, key->resource_1d,
534 NULL, NULL, NULL, loop_state.counter,
535 depth_ptr, depth_stride,
536 z_value, s_value);
537 }
538 }
539 else if ((depth_mode & EARLY_DEPTH_TEST) &&
540 (depth_mode & LATE_DEPTH_WRITE))
541 {
542 /* Need to apply a reduced mask to the depth write. Reload the
543 * depth value, update from zs_value with the new mask value and
544 * write that out.
545 */
546 lp_build_depth_stencil_write_swizzled(gallivm, type,
547 zs_format_desc, key->resource_1d,
548 &mask, z_fb, s_fb, loop_state.counter,
549 depth_ptr, depth_stride,
550 z_value, s_value);
551 }
552
553
554 /* Color write */
555 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
556 {
557 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
558 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
559 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
560 {
561 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
562 if(outputs[attrib][chan]) {
563 /* XXX: just initialize outputs to point at colors[] and
564 * skip this.
565 */
566 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
567 LLVMValueRef color_ptr;
568 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
569 &loop_state.counter, 1, "");
570 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
571 LLVMBuildStore(builder, out, color_ptr);
572 }
573 }
574 }
575 }
576
577 if (key->occlusion_count) {
578 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
579 lp_build_name(counter, "counter");
580 lp_build_occlusion_count(gallivm, type,
581 lp_build_mask_value(&mask), counter);
582 }
583
584 mask_val = lp_build_mask_end(&mask);
585 LLVMBuildStore(builder, mask_val, mask_ptr);
586 lp_build_for_loop_end(&loop_state);
587 }
588
589
590 /**
591 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
592 *
593 * Fragment Shader outputs pixels in small 2x2 blocks
594 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
595 *
596 * However in memory pixels are stored in rows
597 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
598 *
599 * @param type fragment shader type (4x or 8x float)
600 * @param num_fs number of fs_src
601 * @param is_1d whether we're outputting to a 1d resource
602 * @param dst_channels number of output channels
603 * @param fs_src output from fragment shader
604 * @param dst pointer to store result
605 * @param pad_inline is channel padding inline or at end of row
606 * @return the number of dsts
607 */
608 static int
609 generate_fs_twiddle(struct gallivm_state *gallivm,
610 struct lp_type type,
611 unsigned num_fs,
612 unsigned dst_channels,
613 LLVMValueRef fs_src[][4],
614 LLVMValueRef* dst,
615 bool pad_inline)
616 {
617 LLVMValueRef src[16];
618
619 bool swizzle_pad;
620 bool twiddle;
621 bool split;
622
623 unsigned pixels = type.length / 4;
624 unsigned reorder_group;
625 unsigned src_channels;
626 unsigned src_count;
627 unsigned i;
628
629 src_channels = dst_channels < 3 ? dst_channels : 4;
630 src_count = num_fs * src_channels;
631
632 assert(pixels == 2 || pixels == 1);
633 assert(num_fs * src_channels <= Elements(src));
634
635 /*
636 * Transpose from SoA -> AoS
637 */
638 for (i = 0; i < num_fs; ++i) {
639 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
640 }
641
642 /*
643 * Pick transformation options
644 */
645 swizzle_pad = false;
646 twiddle = false;
647 split = false;
648 reorder_group = 0;
649
650 if (dst_channels == 1) {
651 twiddle = true;
652
653 if (pixels == 2) {
654 split = true;
655 }
656 } else if (dst_channels == 2) {
657 if (pixels == 1) {
658 reorder_group = 1;
659 }
660 } else if (dst_channels > 2) {
661 if (pixels == 1) {
662 reorder_group = 2;
663 } else {
664 twiddle = true;
665 }
666
667 if (!pad_inline && dst_channels == 3 && pixels > 1) {
668 swizzle_pad = true;
669 }
670 }
671
672 /*
673 * Split the src in half
674 */
675 if (split) {
676 for (i = num_fs; i > 0; --i) {
677 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
678 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
679 }
680
681 src_count *= 2;
682 type.length = 4;
683 }
684
685 /*
686 * Ensure pixels are in memory order
687 */
688 if (reorder_group) {
689 /* Twiddle pixels by reordering the array, e.g.:
690 *
691 * src_count = 8 -> 0 2 1 3 4 6 5 7
692 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
693 */
694 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
695
696 for (i = 0; i < src_count; ++i) {
697 unsigned group = i / reorder_group;
698 unsigned block = (group / 4) * 4 * reorder_group;
699 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
700 dst[i] = src[j];
701 }
702 } else if (twiddle) {
703 /* Twiddle pixels across elements of array */
704 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
705 } else {
706 /* Do nothing */
707 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
708 }
709
710 /*
711 * Moves any padding between pixels to the end
712 * e.g. RGBXRGBX -> RGBRGBXX
713 */
714 if (swizzle_pad) {
715 unsigned char swizzles[16];
716 unsigned elems = pixels * dst_channels;
717
718 for (i = 0; i < type.length; ++i) {
719 if (i < elems)
720 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
721 else
722 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
723 }
724
725 for (i = 0; i < src_count; ++i) {
726 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
727 }
728 }
729
730 return src_count;
731 }
732
733
734 /**
735 * Load an unswizzled block of pixels from memory
736 */
737 static void
738 load_unswizzled_block(struct gallivm_state *gallivm,
739 LLVMValueRef base_ptr,
740 LLVMValueRef stride,
741 unsigned block_width,
742 unsigned block_height,
743 LLVMValueRef* dst,
744 struct lp_type dst_type,
745 unsigned dst_count,
746 unsigned dst_alignment)
747 {
748 LLVMBuilderRef builder = gallivm->builder;
749 unsigned row_size = dst_count / block_height;
750 unsigned i;
751
752 /* Ensure block exactly fits into dst */
753 assert((block_width * block_height) % dst_count == 0);
754
755 for (i = 0; i < dst_count; ++i) {
756 unsigned x = i % row_size;
757 unsigned y = i / row_size;
758
759 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
760 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
761
762 LLVMValueRef gep[2];
763 LLVMValueRef dst_ptr;
764
765 gep[0] = lp_build_const_int32(gallivm, 0);
766 gep[1] = LLVMBuildAdd(builder, bx, by, "");
767
768 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
769 dst_ptr = LLVMBuildBitCast(builder, dst_ptr, LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
770
771 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
772
773 lp_set_load_alignment(dst[i], dst_alignment);
774 }
775 }
776
777
778 /**
779 * Store an unswizzled block of pixels to memory
780 */
781 static void
782 store_unswizzled_block(struct gallivm_state *gallivm,
783 LLVMValueRef base_ptr,
784 LLVMValueRef stride,
785 unsigned block_width,
786 unsigned block_height,
787 LLVMValueRef* src,
788 struct lp_type src_type,
789 unsigned src_count,
790 unsigned src_alignment)
791 {
792 LLVMBuilderRef builder = gallivm->builder;
793 unsigned row_size = src_count / block_height;
794 unsigned i;
795
796 /* Ensure src exactly fits into block */
797 assert((block_width * block_height) % src_count == 0);
798
799 for (i = 0; i < src_count; ++i) {
800 unsigned x = i % row_size;
801 unsigned y = i / row_size;
802
803 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
804 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
805
806 LLVMValueRef gep[2];
807 LLVMValueRef src_ptr;
808
809 gep[0] = lp_build_const_int32(gallivm, 0);
810 gep[1] = LLVMBuildAdd(builder, bx, by, "");
811
812 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
813 src_ptr = LLVMBuildBitCast(builder, src_ptr, LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
814
815 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
816
817 lp_set_store_alignment(src_ptr, src_alignment);
818 }
819 }
820
821
822 /**
823 * Checks if a format description is an arithmetic format
824 *
825 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
826 */
827 static INLINE boolean
828 is_arithmetic_format(const struct util_format_description *format_desc)
829 {
830 boolean arith = false;
831 unsigned i;
832
833 for (i = 0; i < format_desc->nr_channels; ++i) {
834 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
835 arith |= (format_desc->channel[i].size % 8) != 0;
836 }
837
838 return arith;
839 }
840
841
842 /**
843 * Checks if this format requires special handling due to required expansion
844 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
845 * SoA conversion.
846 */
847 static INLINE boolean
848 format_expands_to_float_soa(const struct util_format_description *format_desc)
849 {
850 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
851 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
852 return true;
853 }
854 return false;
855 }
856
857
858 /**
859 * Retrieves the type representing the memory layout for a format
860 *
861 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
862 */
863 static INLINE void
864 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
865 struct lp_type* type)
866 {
867 unsigned i;
868 unsigned chan;
869
870 if (format_expands_to_float_soa(format_desc)) {
871 /* just make this a 32bit uint */
872 type->floating = false;
873 type->fixed = false;
874 type->sign = false;
875 type->norm = false;
876 type->width = 32;
877 type->length = 1;
878 return;
879 }
880
881 for (i = 0; i < 4; i++)
882 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
883 break;
884 chan = i;
885
886 memset(type, 0, sizeof(struct lp_type));
887 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
888 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
889 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
890 type->norm = format_desc->channel[chan].normalized;
891
892 if (is_arithmetic_format(format_desc)) {
893 type->width = 0;
894 type->length = 1;
895
896 for (i = 0; i < format_desc->nr_channels; ++i) {
897 type->width += format_desc->channel[i].size;
898 }
899 } else {
900 type->width = format_desc->channel[chan].size;
901 type->length = format_desc->nr_channels;
902 }
903 }
904
905
906 /**
907 * Retrieves the type for a format which is usable in the blending code.
908 *
909 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
910 */
911 static INLINE void
912 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
913 struct lp_type* type)
914 {
915 unsigned i;
916 unsigned chan;
917
918 if (format_expands_to_float_soa(format_desc)) {
919 /* always use ordinary floats for blending */
920 type->floating = true;
921 type->fixed = false;
922 type->sign = true;
923 type->norm = false;
924 type->width = 32;
925 type->length = 4;
926 return;
927 }
928
929 for (i = 0; i < 4; i++)
930 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
931 break;
932 chan = i;
933
934 memset(type, 0, sizeof(struct lp_type));
935 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
936 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
937 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
938 type->norm = format_desc->channel[chan].normalized;
939 type->width = format_desc->channel[chan].size;
940 type->length = format_desc->nr_channels;
941
942 for (i = 1; i < format_desc->nr_channels; ++i) {
943 if (format_desc->channel[i].size > type->width)
944 type->width = format_desc->channel[i].size;
945 }
946
947 if (type->floating) {
948 type->width = 32;
949 } else {
950 if (type->width <= 8) {
951 type->width = 8;
952 } else if (type->width <= 16) {
953 type->width = 16;
954 } else {
955 type->width = 32;
956 }
957 }
958
959 if (is_arithmetic_format(format_desc) && type->length == 3) {
960 type->length = 4;
961 }
962 }
963
964
965 /**
966 * Scale a normalized value from src_bits to dst_bits.
967 *
968 * The exact calculation is
969 *
970 * dst = iround(src * dst_mask / src_mask)
971 *
972 * or with integer rounding
973 *
974 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
975 *
976 * where
977 *
978 * src_mask = (1 << src_bits) - 1
979 * dst_mask = (1 << dst_bits) - 1
980 *
981 * but we try to avoid division and multiplication through shifts.
982 */
983 static INLINE LLVMValueRef
984 scale_bits(struct gallivm_state *gallivm,
985 int src_bits,
986 int dst_bits,
987 LLVMValueRef src,
988 struct lp_type src_type)
989 {
990 LLVMBuilderRef builder = gallivm->builder;
991 LLVMValueRef result = src;
992
993 if (dst_bits < src_bits) {
994 int delta_bits = src_bits - dst_bits;
995
996 if (delta_bits <= dst_bits) {
997 /*
998 * Approximate the rescaling with a single shift.
999 *
1000 * This gives the wrong rounding.
1001 */
1002
1003 result = LLVMBuildLShr(builder,
1004 src,
1005 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1006 "");
1007
1008 } else {
1009 /*
1010 * Try more accurate rescaling.
1011 */
1012
1013 /*
1014 * Drop the least significant bits to make space for the multiplication.
1015 *
1016 * XXX: A better approach would be to use a wider integer type as intermediate. But
1017 * this is enough to convert alpha from 16bits -> 2 when rendering to
1018 * PIPE_FORMAT_R10G10B10A2_UNORM.
1019 */
1020 result = LLVMBuildLShr(builder,
1021 src,
1022 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1023 "");
1024
1025
1026 result = LLVMBuildMul(builder,
1027 result,
1028 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1029 "");
1030
1031 /*
1032 * Add a rounding term before the division.
1033 *
1034 * TODO: Handle signed integers too.
1035 */
1036 if (!src_type.sign) {
1037 result = LLVMBuildAdd(builder,
1038 result,
1039 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1040 "");
1041 }
1042
1043 /*
1044 * Approximate the division by src_mask with a src_bits shift.
1045 *
1046 * Given the src has already been shifted by dst_bits, all we need
1047 * to do is to shift by the difference.
1048 */
1049
1050 result = LLVMBuildLShr(builder,
1051 result,
1052 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1053 "");
1054 }
1055
1056 } else if (dst_bits > src_bits) {
1057 /* Scale up bits */
1058 int db = dst_bits - src_bits;
1059
1060 /* Shift left by difference in bits */
1061 result = LLVMBuildShl(builder,
1062 src,
1063 lp_build_const_int_vec(gallivm, src_type, db),
1064 "");
1065
1066 if (db < src_bits) {
1067 /* Enough bits in src to fill the remainder */
1068 LLVMValueRef lower = LLVMBuildLShr(builder,
1069 src,
1070 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1071 "");
1072
1073 result = LLVMBuildOr(builder, result, lower, "");
1074 } else if (db > src_bits) {
1075 /* Need to repeatedly copy src bits to fill remainder in dst */
1076 unsigned n;
1077
1078 for (n = src_bits; n < dst_bits; n *= 2) {
1079 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1080
1081 result = LLVMBuildOr(builder,
1082 result,
1083 LLVMBuildLShr(builder, result, shuv, ""),
1084 "");
1085 }
1086 }
1087 }
1088
1089 return result;
1090 }
1091
1092
1093 /**
1094 * Convert from memory format to blending format
1095 *
1096 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1097 */
1098 static void
1099 convert_to_blend_type(struct gallivm_state *gallivm,
1100 unsigned block_size,
1101 const struct util_format_description *src_fmt,
1102 struct lp_type src_type,
1103 struct lp_type dst_type,
1104 LLVMValueRef* src, // and dst
1105 unsigned num_srcs)
1106 {
1107 LLVMValueRef *dst = src;
1108 LLVMBuilderRef builder = gallivm->builder;
1109 struct lp_type blend_type;
1110 struct lp_type mem_type;
1111 unsigned i, j, k;
1112 unsigned pixels = block_size / num_srcs;
1113 bool is_arith;
1114
1115 /*
1116 * full custom path for packed floats and srgb formats - none of the later
1117 * functions would do anything useful, and given the lp_type representation they
1118 * can't be fixed. Should really have some SoA blend path for these kind of
1119 * formats rather than hacking them in here.
1120 */
1121 if (format_expands_to_float_soa(src_fmt)) {
1122 LLVMValueRef tmpsrc[4];
1123 /*
1124 * This is pretty suboptimal for this case blending in SoA would be much
1125 * better, since conversion gets us SoA values so need to convert back.
1126 */
1127 assert(src_type.width == 32);
1128 assert(dst_type.floating);
1129 assert(dst_type.width == 32);
1130 assert(dst_type.length % 4 == 0);
1131 assert(num_srcs % 4 == 0);
1132
1133 for (i = 0; i < 4; i++) {
1134 tmpsrc[i] = src[i];
1135 }
1136 for (i = 0; i < num_srcs / 4; i++) {
1137 LLVMValueRef tmpsoa[4];
1138 LLVMValueRef tmps = tmpsrc[i];
1139 if (dst_type.length == 8) {
1140 LLVMValueRef shuffles[8];
1141 unsigned j;
1142 /* fetch was 4 values but need 8-wide output values */
1143 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1144 /*
1145 * for 8-wide aos transpose would give us wrong order not matching
1146 * incoming converted fs values and mask. ARGH.
1147 */
1148 for (j = 0; j < 4; j++) {
1149 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1150 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1151 }
1152 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1153 LLVMConstVector(shuffles, 8), "");
1154 }
1155 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1156 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1157 }
1158 else {
1159 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1160 }
1161 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1162 }
1163 return;
1164 }
1165
1166 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1167 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1168
1169 /* Is the format arithmetic */
1170 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1171 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1172
1173 /* Pad if necessary */
1174 if (!is_arith && src_type.length < dst_type.length) {
1175 for (i = 0; i < num_srcs; ++i) {
1176 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1177 }
1178
1179 src_type.length = dst_type.length;
1180 }
1181
1182 /* Special case for half-floats */
1183 if (mem_type.width == 16 && mem_type.floating) {
1184 assert(blend_type.width == 32 && blend_type.floating);
1185 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1186 is_arith = false;
1187 }
1188
1189 if (!is_arith) {
1190 return;
1191 }
1192
1193 src_type.width = blend_type.width * blend_type.length;
1194 blend_type.length *= pixels;
1195 src_type.length *= pixels / (src_type.length / mem_type.length);
1196
1197 for (i = 0; i < num_srcs; ++i) {
1198 LLVMValueRef chans[4];
1199 LLVMValueRef res = NULL;
1200
1201 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1202
1203 for (j = 0; j < src_fmt->nr_channels; ++j) {
1204 unsigned mask = 0;
1205 unsigned sa = src_fmt->channel[j].shift;
1206 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1207 unsigned from_lsb = j;
1208 #else
1209 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1210 #endif
1211
1212 for (k = 0; k < src_fmt->channel[j].size; ++k) {
1213 mask |= 1 << k;
1214 }
1215
1216 /* Extract bits from source */
1217 chans[j] = LLVMBuildLShr(builder,
1218 dst[i],
1219 lp_build_const_int_vec(gallivm, src_type, sa),
1220 "");
1221
1222 chans[j] = LLVMBuildAnd(builder,
1223 chans[j],
1224 lp_build_const_int_vec(gallivm, src_type, mask),
1225 "");
1226
1227 /* Scale bits */
1228 if (src_type.norm) {
1229 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1230 blend_type.width, chans[j], src_type);
1231 }
1232
1233 /* Insert bits into correct position */
1234 chans[j] = LLVMBuildShl(builder,
1235 chans[j],
1236 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1237 "");
1238
1239 if (j == 0) {
1240 res = chans[j];
1241 } else {
1242 res = LLVMBuildOr(builder, res, chans[j], "");
1243 }
1244 }
1245
1246 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1247 }
1248 }
1249
1250
1251 /**
1252 * Convert from blending format to memory format
1253 *
1254 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1255 */
1256 static void
1257 convert_from_blend_type(struct gallivm_state *gallivm,
1258 unsigned block_size,
1259 const struct util_format_description *src_fmt,
1260 struct lp_type src_type,
1261 struct lp_type dst_type,
1262 LLVMValueRef* src, // and dst
1263 unsigned num_srcs)
1264 {
1265 LLVMValueRef* dst = src;
1266 unsigned i, j, k;
1267 struct lp_type mem_type;
1268 struct lp_type blend_type;
1269 LLVMBuilderRef builder = gallivm->builder;
1270 unsigned pixels = block_size / num_srcs;
1271 bool is_arith;
1272
1273 /*
1274 * full custom path for packed floats and srgb formats - none of the later
1275 * functions would do anything useful, and given the lp_type representation they
1276 * can't be fixed. Should really have some SoA blend path for these kind of
1277 * formats rather than hacking them in here.
1278 */
1279 if (format_expands_to_float_soa(src_fmt)) {
1280 /*
1281 * This is pretty suboptimal for this case blending in SoA would be much
1282 * better - we need to transpose the AoS values back to SoA values for
1283 * conversion/packing.
1284 */
1285 assert(src_type.floating);
1286 assert(src_type.width == 32);
1287 assert(src_type.length % 4 == 0);
1288 assert(dst_type.width == 32);
1289
1290 for (i = 0; i < num_srcs / 4; i++) {
1291 LLVMValueRef tmpsoa[4], tmpdst;
1292 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1293 /* really really need SoA here */
1294
1295 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1296 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1297 }
1298 else {
1299 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1300 src_type, tmpsoa);
1301 }
1302
1303 if (src_type.length == 8) {
1304 LLVMValueRef tmpaos, shuffles[8];
1305 unsigned j;
1306 /*
1307 * for 8-wide aos transpose has given us wrong order not matching
1308 * output order. HMPF. Also need to split the output values manually.
1309 */
1310 for (j = 0; j < 4; j++) {
1311 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1312 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1313 }
1314 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1315 LLVMConstVector(shuffles, 8), "");
1316 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1317 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1318 }
1319 else {
1320 src[i] = tmpdst;
1321 }
1322 }
1323 return;
1324 }
1325
1326 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1327 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1328
1329 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1330
1331 /* Special case for half-floats */
1332 if (mem_type.width == 16 && mem_type.floating) {
1333 int length = dst_type.length;
1334 assert(blend_type.width == 32 && blend_type.floating);
1335
1336 dst_type.length = src_type.length;
1337
1338 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1339
1340 dst_type.length = length;
1341 is_arith = false;
1342 }
1343
1344 /* Remove any padding */
1345 if (!is_arith && (src_type.length % mem_type.length)) {
1346 src_type.length -= (src_type.length % mem_type.length);
1347
1348 for (i = 0; i < num_srcs; ++i) {
1349 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1350 }
1351 }
1352
1353 /* No bit arithmetic to do */
1354 if (!is_arith) {
1355 return;
1356 }
1357
1358 src_type.length = pixels;
1359 src_type.width = blend_type.length * blend_type.width;
1360 dst_type.length = pixels;
1361
1362 for (i = 0; i < num_srcs; ++i) {
1363 LLVMValueRef chans[4];
1364 LLVMValueRef res = NULL;
1365
1366 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1367
1368 for (j = 0; j < src_fmt->nr_channels; ++j) {
1369 unsigned mask = 0;
1370 unsigned sa = src_fmt->channel[j].shift;
1371 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1372 unsigned from_lsb = j;
1373 #else
1374 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1375 #endif
1376
1377 assert(blend_type.width > src_fmt->channel[j].size);
1378
1379 for (k = 0; k < blend_type.width; ++k) {
1380 mask |= 1 << k;
1381 }
1382
1383 /* Extract bits */
1384 chans[j] = LLVMBuildLShr(builder,
1385 dst[i],
1386 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1387 "");
1388
1389 chans[j] = LLVMBuildAnd(builder,
1390 chans[j],
1391 lp_build_const_int_vec(gallivm, src_type, mask),
1392 "");
1393
1394 /* Scale down bits */
1395 if (src_type.norm) {
1396 chans[j] = scale_bits(gallivm, blend_type.width,
1397 src_fmt->channel[j].size, chans[j], src_type);
1398 }
1399
1400 /* Insert bits */
1401 chans[j] = LLVMBuildShl(builder,
1402 chans[j],
1403 lp_build_const_int_vec(gallivm, src_type, sa),
1404 "");
1405
1406 sa += src_fmt->channel[j].size;
1407
1408 if (j == 0) {
1409 res = chans[j];
1410 } else {
1411 res = LLVMBuildOr(builder, res, chans[j], "");
1412 }
1413 }
1414
1415 assert (dst_type.width != 24);
1416
1417 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1418 }
1419 }
1420
1421
1422 /**
1423 * Convert alpha to same blend type as src
1424 */
1425 static void
1426 convert_alpha(struct gallivm_state *gallivm,
1427 struct lp_type row_type,
1428 struct lp_type alpha_type,
1429 const unsigned block_size,
1430 const unsigned block_height,
1431 const unsigned src_count,
1432 const unsigned dst_channels,
1433 const bool pad_inline,
1434 LLVMValueRef* src_alpha)
1435 {
1436 LLVMBuilderRef builder = gallivm->builder;
1437 unsigned i, j;
1438 unsigned length = row_type.length;
1439 row_type.length = alpha_type.length;
1440
1441 /* Twiddle the alpha to match pixels */
1442 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1443
1444 /*
1445 * TODO this should use single lp_build_conv call for
1446 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1447 */
1448 for (i = 0; i < block_height; ++i) {
1449 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1450 }
1451
1452 alpha_type = row_type;
1453 row_type.length = length;
1454
1455 /* If only one channel we can only need the single alpha value per pixel */
1456 if (src_count == 1 && dst_channels == 1) {
1457
1458 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1459 } else {
1460 /* If there are more srcs than rows then we need to split alpha up */
1461 if (src_count > block_height) {
1462 for (i = src_count; i > 0; --i) {
1463 unsigned pixels = block_size / src_count;
1464 unsigned idx = i - 1;
1465
1466 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1467 (idx * pixels) % 4, pixels);
1468 }
1469 }
1470
1471 /* If there is a src for each pixel broadcast the alpha across whole row */
1472 if (src_count == block_size) {
1473 for (i = 0; i < src_count; ++i) {
1474 src_alpha[i] = lp_build_broadcast(gallivm, lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1475 }
1476 } else {
1477 unsigned pixels = block_size / src_count;
1478 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1479 unsigned alpha_span = 1;
1480 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1481
1482 /* Check if we need 2 src_alphas for our shuffles */
1483 if (pixels > alpha_type.length) {
1484 alpha_span = 2;
1485 }
1486
1487 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1488 for (j = 0; j < row_type.length; ++j) {
1489 if (j < pixels * channels) {
1490 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1491 } else {
1492 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1493 }
1494 }
1495
1496 for (i = 0; i < src_count; ++i) {
1497 unsigned idx1 = i, idx2 = i;
1498
1499 if (alpha_span > 1){
1500 idx1 *= alpha_span;
1501 idx2 = idx1 + 1;
1502 }
1503
1504 src_alpha[i] = LLVMBuildShuffleVector(builder,
1505 src_alpha[idx1],
1506 src_alpha[idx2],
1507 LLVMConstVector(shuffles, row_type.length),
1508 "");
1509 }
1510 }
1511 }
1512 }
1513
1514
1515 /**
1516 * Generates the blend function for unswizzled colour buffers
1517 * Also generates the read & write from colour buffer
1518 */
1519 static void
1520 generate_unswizzled_blend(struct gallivm_state *gallivm,
1521 unsigned rt,
1522 struct lp_fragment_shader_variant *variant,
1523 enum pipe_format out_format,
1524 unsigned int num_fs,
1525 struct lp_type fs_type,
1526 LLVMValueRef* fs_mask,
1527 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1528 LLVMValueRef context_ptr,
1529 LLVMValueRef color_ptr,
1530 LLVMValueRef stride,
1531 unsigned partial_mask,
1532 boolean do_branch)
1533 {
1534 const unsigned alpha_channel = 3;
1535 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1536 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1537 const unsigned block_size = block_width * block_height;
1538 const unsigned lp_integer_vector_width = 128;
1539
1540 LLVMBuilderRef builder = gallivm->builder;
1541 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1542 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1543 LLVMValueRef src_alpha[4 * 4];
1544 LLVMValueRef src1_alpha[4 * 4];
1545 LLVMValueRef src_mask[4 * 4];
1546 LLVMValueRef src[4 * 4];
1547 LLVMValueRef src1[4 * 4];
1548 LLVMValueRef dst[4 * 4];
1549 LLVMValueRef blend_color;
1550 LLVMValueRef blend_alpha;
1551 LLVMValueRef i32_zero;
1552 LLVMValueRef check_mask;
1553 LLVMValueRef undef_src_val;
1554
1555 struct lp_build_mask_context mask_ctx;
1556 struct lp_type mask_type;
1557 struct lp_type blend_type;
1558 struct lp_type row_type;
1559 struct lp_type dst_type;
1560
1561 unsigned char swizzle[TGSI_NUM_CHANNELS];
1562 unsigned vector_width;
1563 unsigned src_channels = TGSI_NUM_CHANNELS;
1564 unsigned dst_channels;
1565 unsigned dst_count;
1566 unsigned src_count;
1567 unsigned i, j;
1568
1569 const struct util_format_description* out_format_desc = util_format_description(out_format);
1570
1571 unsigned dst_alignment;
1572
1573 bool pad_inline = is_arithmetic_format(out_format_desc);
1574 bool has_alpha = false;
1575 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1576 util_blend_state_is_dual(&variant->key.blend, 0);
1577
1578 const boolean is_1d = variant->key.resource_1d;
1579 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1580 LLVMValueRef fpstate = 0;
1581
1582 /* Get type from output format */
1583 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1584 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1585
1586 /*
1587 * Technically this code should go into lp_build_smallfloat_to_float
1588 * and lp_build_float_to_smallfloat but due to the
1589 * http://llvm.org/bugs/show_bug.cgi?id=6393
1590 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1591 * So the ordering is important here and there shouldn't be any
1592 * llvm ir instrunctions in this function before
1593 * this, otherwise half-float format conversions won't work
1594 * (again due to llvm bug #6393).
1595 */
1596 if (dst_type.floating && dst_type.width != 32) {
1597 /* We need to make sure that denorms are ok for half float
1598 conversions */
1599 fpstate = lp_build_fpstate_get(gallivm);
1600 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1601 }
1602
1603 mask_type = lp_int32_vec4_type();
1604 mask_type.length = fs_type.length;
1605
1606 for (i = num_fs; i < num_fullblock_fs; i++) {
1607 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1608 }
1609
1610 /* Do not bother executing code when mask is empty.. */
1611 if (do_branch) {
1612 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1613
1614 for (i = 0; i < num_fullblock_fs; ++i) {
1615 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1616 }
1617
1618 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1619 lp_build_mask_check(&mask_ctx);
1620 }
1621
1622 partial_mask |= !variant->opaque;
1623 i32_zero = lp_build_const_int32(gallivm, 0);
1624
1625 #if HAVE_LLVM < 0x0302
1626 /*
1627 * undef triggers a crash in LLVMBuildTrunc in convert_from_blend_type in some
1628 * cases (seen with r10g10b10a2, 128bit wide vectors) (only used for 1d case).
1629 */
1630 undef_src_val = lp_build_zero(gallivm, fs_type);
1631 #else
1632 undef_src_val = lp_build_undef(gallivm, fs_type);
1633 #endif
1634
1635 row_type.length = fs_type.length;
1636 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1637
1638 /* Compute correct swizzle and count channels */
1639 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1640 dst_channels = 0;
1641
1642 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1643 /* Ensure channel is used */
1644 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1645 continue;
1646 }
1647
1648 /* Ensure not already written to (happens in case with GL_ALPHA) */
1649 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1650 continue;
1651 }
1652
1653 /* Ensure we havn't already found all channels */
1654 if (dst_channels >= out_format_desc->nr_channels) {
1655 continue;
1656 }
1657
1658 swizzle[out_format_desc->swizzle[i]] = i;
1659 ++dst_channels;
1660
1661 if (i == alpha_channel) {
1662 has_alpha = true;
1663 }
1664 }
1665
1666 if (format_expands_to_float_soa(out_format_desc)) {
1667 /*
1668 * the code above can't work for layout_other
1669 * for srgb it would sort of work but we short-circuit swizzles, etc.
1670 * as that is done as part of unpack / pack.
1671 */
1672 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1673 has_alpha = true;
1674 swizzle[0] = 0;
1675 swizzle[1] = 1;
1676 swizzle[2] = 2;
1677 swizzle[3] = 3;
1678 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1679 }
1680
1681 /* If 3 channels then pad to include alpha for 4 element transpose */
1682 if (dst_channels == 3 && !has_alpha) {
1683 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1684 if (swizzle[i] > TGSI_NUM_CHANNELS)
1685 swizzle[i] = 3;
1686 }
1687 if (out_format_desc->nr_channels == 4) {
1688 dst_channels = 4;
1689 }
1690 }
1691
1692 /*
1693 * Load shader output
1694 */
1695 for (i = 0; i < num_fullblock_fs; ++i) {
1696 /* Always load alpha for use in blending */
1697 LLVMValueRef alpha;
1698 if (i < num_fs) {
1699 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1700 }
1701 else {
1702 alpha = undef_src_val;
1703 }
1704
1705 /* Load each channel */
1706 for (j = 0; j < dst_channels; ++j) {
1707 assert(swizzle[j] < 4);
1708 if (i < num_fs) {
1709 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1710 }
1711 else {
1712 fs_src[i][j] = undef_src_val;
1713 }
1714 }
1715
1716 /* If 3 channels then pad to include alpha for 4 element transpose */
1717 /*
1718 * XXX If we include that here maybe could actually use it instead of
1719 * separate alpha for blending?
1720 */
1721 if (dst_channels == 3 && !has_alpha) {
1722 fs_src[i][3] = alpha;
1723 }
1724
1725 /* We split the row_mask and row_alpha as we want 128bit interleave */
1726 if (fs_type.length == 8) {
1727 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i], 0, src_channels);
1728 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i], src_channels, src_channels);
1729
1730 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1731 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha, src_channels, src_channels);
1732 } else {
1733 src_mask[i] = fs_mask[i];
1734 src_alpha[i] = alpha;
1735 }
1736 }
1737 if (dual_source_blend) {
1738 /* same as above except different src/dst, skip masks and comments... */
1739 for (i = 0; i < num_fullblock_fs; ++i) {
1740 LLVMValueRef alpha;
1741 if (i < num_fs) {
1742 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1743 }
1744 else {
1745 alpha = undef_src_val;
1746 }
1747
1748 for (j = 0; j < dst_channels; ++j) {
1749 assert(swizzle[j] < 4);
1750 if (i < num_fs) {
1751 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1752 }
1753 else {
1754 fs_src1[i][j] = undef_src_val;
1755 }
1756 }
1757 if (dst_channels == 3 && !has_alpha) {
1758 fs_src1[i][3] = alpha;
1759 }
1760 if (fs_type.length == 8) {
1761 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1762 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha, src_channels, src_channels);
1763 } else {
1764 src1_alpha[i] = alpha;
1765 }
1766 }
1767 }
1768
1769 if (util_format_is_pure_integer(out_format)) {
1770 /*
1771 * In this case fs_type was really ints or uints disguised as floats,
1772 * fix that up now.
1773 */
1774 fs_type.floating = 0;
1775 fs_type.sign = dst_type.sign;
1776 for (i = 0; i < num_fullblock_fs; ++i) {
1777 for (j = 0; j < dst_channels; ++j) {
1778 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
1779 lp_build_vec_type(gallivm, fs_type), "");
1780 }
1781 if (dst_channels == 3 && !has_alpha) {
1782 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
1783 lp_build_vec_type(gallivm, fs_type), "");
1784 }
1785 }
1786 }
1787
1788 /*
1789 * Pixel twiddle from fragment shader order to memory order
1790 */
1791 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
1792 dst_channels, fs_src, src, pad_inline);
1793 if (dual_source_blend) {
1794 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
1795 fs_src1, src1, pad_inline);
1796 }
1797
1798 src_channels = dst_channels < 3 ? dst_channels : 4;
1799 if (src_count != num_fullblock_fs * src_channels) {
1800 unsigned ds = src_count / (num_fullblock_fs * src_channels);
1801 row_type.length /= ds;
1802 fs_type.length = row_type.length;
1803 }
1804
1805 blend_type = row_type;
1806 mask_type.length = 4;
1807
1808 /* Convert src to row_type */
1809 if (dual_source_blend) {
1810 struct lp_type old_row_type = row_type;
1811 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
1812 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
1813 }
1814 else {
1815 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
1816 }
1817
1818 /* If the rows are not an SSE vector, combine them to become SSE size! */
1819 if ((row_type.width * row_type.length) % 128) {
1820 unsigned bits = row_type.width * row_type.length;
1821 unsigned combined;
1822
1823 assert(src_count >= (vector_width / bits));
1824
1825 dst_count = src_count / (vector_width / bits);
1826
1827 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
1828 if (dual_source_blend) {
1829 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
1830 }
1831
1832 row_type.length *= combined;
1833 src_count /= combined;
1834
1835 bits = row_type.width * row_type.length;
1836 assert(bits == 128 || bits == 256);
1837 }
1838
1839
1840 /*
1841 * Blend Colour conversion
1842 */
1843 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
1844 blend_color = LLVMBuildPointerCast(builder, blend_color, LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
1845 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color, &i32_zero, 1, ""), "");
1846
1847 /* Convert */
1848 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
1849
1850 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1851 /*
1852 * since blending is done with floats, there was no conversion.
1853 * However, the rules according to fixed point renderbuffers still
1854 * apply, that is we must clamp inputs to 0.0/1.0.
1855 * (This would apply to separate alpha conversion too but we currently
1856 * force has_alpha to be true.)
1857 * TODO: should skip this with "fake" blend, since post-blend conversion
1858 * will clamp anyway.
1859 * TODO: could also skip this if fragment color clamping is enabled. We
1860 * don't support it natively so it gets baked into the shader however, so
1861 * can't really tell here.
1862 */
1863 struct lp_build_context f32_bld;
1864 assert(row_type.floating);
1865 lp_build_context_init(&f32_bld, gallivm, row_type);
1866 for (i = 0; i < src_count; i++) {
1867 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
1868 }
1869 if (dual_source_blend) {
1870 for (i = 0; i < src_count; i++) {
1871 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
1872 }
1873 }
1874 /* probably can't be different than row_type but better safe than sorry... */
1875 lp_build_context_init(&f32_bld, gallivm, blend_type);
1876 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
1877 }
1878
1879 /* Extract alpha */
1880 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
1881
1882 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
1883 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
1884 if (pad_inline) {
1885 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
1886 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
1887 } else {
1888 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
1889 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
1890 }
1891
1892 /*
1893 * Mask conversion
1894 */
1895 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
1896
1897 if (src_count < block_height) {
1898 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
1899 } else if (src_count > block_height) {
1900 for (i = src_count; i > 0; --i) {
1901 unsigned pixels = block_size / src_count;
1902 unsigned idx = i - 1;
1903
1904 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
1905 (idx * pixels) % 4, pixels);
1906 }
1907 }
1908
1909 assert(mask_type.width == 32);
1910
1911 for (i = 0; i < src_count; ++i) {
1912 unsigned pixels = block_size / src_count;
1913 unsigned pixel_width = row_type.width * dst_channels;
1914
1915 if (pixel_width == 24) {
1916 mask_type.width = 8;
1917 mask_type.length = vector_width / mask_type.width;
1918 } else {
1919 mask_type.length = pixels;
1920 mask_type.width = row_type.width * dst_channels;
1921
1922 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i], lp_build_int_vec_type(gallivm, mask_type), "");
1923
1924 mask_type.length *= dst_channels;
1925 mask_type.width /= dst_channels;
1926 }
1927
1928 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i], lp_build_int_vec_type(gallivm, mask_type), "");
1929 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
1930 }
1931
1932 /*
1933 * Alpha conversion
1934 */
1935 if (!has_alpha) {
1936 struct lp_type alpha_type = fs_type;
1937 alpha_type.length = 4;
1938 convert_alpha(gallivm, row_type, alpha_type,
1939 block_size, block_height,
1940 src_count, dst_channels,
1941 pad_inline, src_alpha);
1942 if (dual_source_blend) {
1943 convert_alpha(gallivm, row_type, alpha_type,
1944 block_size, block_height,
1945 src_count, dst_channels,
1946 pad_inline, src1_alpha);
1947 }
1948 }
1949
1950
1951 /*
1952 * Load dst from memory
1953 */
1954 if (src_count < block_height) {
1955 dst_count = block_height;
1956 } else {
1957 dst_count = src_count;
1958 }
1959
1960 dst_type.length *= block_size / dst_count;
1961
1962 if (format_expands_to_float_soa(out_format_desc)) {
1963 /*
1964 * we need multiple values at once for the conversion, so can as well
1965 * load them vectorized here too instead of concatenating later.
1966 * (Still need concatenation later for 8-wide vectors).
1967 */
1968 dst_count = block_height;
1969 dst_type.length = block_width;
1970 }
1971
1972 /*
1973 * Compute the alignment of the destination pointer in bytes
1974 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
1975 * are always aligned by MIN2(16, fetch_width) except for buffers (not
1976 * 1d tex but can't distinguish here) so need to stick with per-pixel
1977 * alignment in this case.
1978 */
1979 if (is_1d) {
1980 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
1981 }
1982 else {
1983 dst_alignment = dst_type.length * dst_type.width / 8;
1984 }
1985 /* Force power-of-two alignment by extracting only the least-significant-bit */
1986 dst_alignment = 1 << (ffs(dst_alignment) - 1);
1987 /*
1988 * Resource base and stride pointers are aligned to 16 bytes, so that's
1989 * the maximum alignment we can guarantee
1990 */
1991 dst_alignment = MIN2(16, dst_alignment);
1992
1993 if (is_1d) {
1994 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
1995 dst, dst_type, dst_count / 4, dst_alignment);
1996 for (i = dst_count / 4; i < dst_count; i++) {
1997 dst[i] = lp_build_undef(gallivm, dst_type);
1998 }
1999
2000 }
2001 else {
2002 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2003 dst, dst_type, dst_count, dst_alignment);
2004 }
2005
2006
2007 /*
2008 * Convert from dst/output format to src/blending format.
2009 *
2010 * This is necessary as we can only read 1 row from memory at a time,
2011 * so the minimum dst_count will ever be at this point is 4.
2012 *
2013 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2014 * this will take the 4 dsts and combine them into 1 src so we can perform blending
2015 * on all 16 pixels in that single vector at once.
2016 */
2017 if (dst_count > src_count) {
2018 lp_build_concat_n(gallivm, dst_type, dst, 4, dst, src_count);
2019 }
2020
2021 /*
2022 * Blending
2023 */
2024 /* XXX this is broken for RGB8 formats -
2025 * they get expanded from 12 to 16 elements (to include alpha)
2026 * by convert_to_blend_type then reduced to 15 instead of 12
2027 * by convert_from_blend_type (a simple fix though breaks A8...).
2028 * R16G16B16 also crashes differently however something going wrong
2029 * inside llvm handling npot vector sizes seemingly.
2030 * It seems some cleanup could be done here (like skipping conversion/blend
2031 * when not needed).
2032 */
2033 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type, row_type, dst, src_count);
2034
2035 /*
2036 * FIXME: Really should get logic ops / masks out of generic blend / row
2037 * format. Logic ops will definitely not work on the blend float format
2038 * used for SRGB here and I think OpenGL expects this to work as expected
2039 * (that is incoming values converted to srgb then logic op applied).
2040 */
2041 for (i = 0; i < src_count; ++i) {
2042 dst[i] = lp_build_blend_aos(gallivm,
2043 &variant->key.blend,
2044 out_format,
2045 row_type,
2046 rt,
2047 src[i],
2048 has_alpha ? NULL : src_alpha[i],
2049 src1[i],
2050 has_alpha ? NULL : src1_alpha[i],
2051 dst[i],
2052 partial_mask ? src_mask[i] : NULL,
2053 blend_color,
2054 has_alpha ? NULL : blend_alpha,
2055 swizzle,
2056 pad_inline ? 4 : dst_channels);
2057 }
2058
2059 convert_from_blend_type(gallivm, block_size, out_format_desc, row_type, dst_type, dst, src_count);
2060
2061 /* Split the blend rows back to memory rows */
2062 if (dst_count > src_count) {
2063 row_type.length = dst_type.length * (dst_count / src_count);
2064
2065 if (src_count == 1) {
2066 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2067 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2068
2069 row_type.length /= 2;
2070 src_count *= 2;
2071 }
2072
2073 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2074 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2075 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2076 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2077
2078 row_type.length /= 2;
2079 src_count *= 2;
2080 }
2081
2082 /*
2083 * Store blend result to memory
2084 */
2085 if (is_1d) {
2086 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2087 dst, dst_type, dst_count / 4, dst_alignment);
2088 }
2089 else {
2090 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2091 dst, dst_type, dst_count, dst_alignment);
2092 }
2093
2094 if (dst_type.floating && dst_type.width != 32) {
2095 lp_build_fpstate_set(gallivm, fpstate);
2096 }
2097
2098 if (do_branch) {
2099 lp_build_mask_end(&mask_ctx);
2100 }
2101 }
2102
2103
2104 /**
2105 * Generate the runtime callable function for the whole fragment pipeline.
2106 * Note that the function which we generate operates on a block of 16
2107 * pixels at at time. The block contains 2x2 quads. Each quad contains
2108 * 2x2 pixels.
2109 */
2110 static void
2111 generate_fragment(struct llvmpipe_context *lp,
2112 struct lp_fragment_shader *shader,
2113 struct lp_fragment_shader_variant *variant,
2114 unsigned partial_mask)
2115 {
2116 struct gallivm_state *gallivm = variant->gallivm;
2117 const struct lp_fragment_shader_variant_key *key = &variant->key;
2118 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2119 char func_name[256];
2120 struct lp_type fs_type;
2121 struct lp_type blend_type;
2122 LLVMTypeRef fs_elem_type;
2123 LLVMTypeRef blend_vec_type;
2124 LLVMTypeRef arg_types[13];
2125 LLVMTypeRef func_type;
2126 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2127 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2128 LLVMValueRef context_ptr;
2129 LLVMValueRef x;
2130 LLVMValueRef y;
2131 LLVMValueRef a0_ptr;
2132 LLVMValueRef dadx_ptr;
2133 LLVMValueRef dady_ptr;
2134 LLVMValueRef color_ptr_ptr;
2135 LLVMValueRef stride_ptr;
2136 LLVMValueRef depth_ptr;
2137 LLVMValueRef depth_stride;
2138 LLVMValueRef mask_input;
2139 LLVMValueRef thread_data_ptr;
2140 LLVMBasicBlockRef block;
2141 LLVMBuilderRef builder;
2142 struct lp_build_sampler_soa *sampler;
2143 struct lp_build_interp_soa_context interp;
2144 LLVMValueRef fs_mask[16 / 4];
2145 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2146 LLVMValueRef function;
2147 LLVMValueRef facing;
2148 unsigned num_fs;
2149 unsigned i;
2150 unsigned chan;
2151 unsigned cbuf;
2152 boolean cbuf0_write_all;
2153 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2154 util_blend_state_is_dual(&key->blend, 0);
2155
2156 assert(lp_native_vector_width / 32 >= 4);
2157
2158 /* Adjust color input interpolation according to flatshade state:
2159 */
2160 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2161 for (i = 0; i < shader->info.base.num_inputs; i++) {
2162 if (inputs[i].interp == LP_INTERP_COLOR) {
2163 if (key->flatshade)
2164 inputs[i].interp = LP_INTERP_CONSTANT;
2165 else
2166 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2167 }
2168 }
2169
2170 /* check if writes to cbuf[0] are to be copied to all cbufs */
2171 cbuf0_write_all = FALSE;
2172 for (i = 0;i < shader->info.base.num_properties; i++) {
2173 if (shader->info.base.properties[i].name ==
2174 TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS) {
2175 cbuf0_write_all = TRUE;
2176 break;
2177 }
2178 }
2179
2180 /* TODO: actually pick these based on the fs and color buffer
2181 * characteristics. */
2182
2183 memset(&fs_type, 0, sizeof fs_type);
2184 fs_type.floating = TRUE; /* floating point values */
2185 fs_type.sign = TRUE; /* values are signed */
2186 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2187 fs_type.width = 32; /* 32-bit float */
2188 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2189
2190 memset(&blend_type, 0, sizeof blend_type);
2191 blend_type.floating = FALSE; /* values are integers */
2192 blend_type.sign = FALSE; /* values are unsigned */
2193 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2194 blend_type.width = 8; /* 8-bit ubyte values */
2195 blend_type.length = 16; /* 16 elements per vector */
2196
2197 /*
2198 * Generate the function prototype. Any change here must be reflected in
2199 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2200 */
2201
2202 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2203
2204 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2205
2206 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2207 shader->no, variant->no, partial_mask ? "partial" : "whole");
2208
2209 arg_types[0] = variant->jit_context_ptr_type; /* context */
2210 arg_types[1] = int32_type; /* x */
2211 arg_types[2] = int32_type; /* y */
2212 arg_types[3] = int32_type; /* facing */
2213 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2214 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2215 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2216 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2217 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2218 arg_types[9] = int32_type; /* mask_input */
2219 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2220 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2221 arg_types[12] = int32_type; /* depth_stride */
2222
2223 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2224 arg_types, Elements(arg_types), 0);
2225
2226 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2227 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2228
2229 variant->function[partial_mask] = function;
2230
2231 /* XXX: need to propagate noalias down into color param now we are
2232 * passing a pointer-to-pointer?
2233 */
2234 for(i = 0; i < Elements(arg_types); ++i)
2235 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2236 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
2237
2238 context_ptr = LLVMGetParam(function, 0);
2239 x = LLVMGetParam(function, 1);
2240 y = LLVMGetParam(function, 2);
2241 facing = LLVMGetParam(function, 3);
2242 a0_ptr = LLVMGetParam(function, 4);
2243 dadx_ptr = LLVMGetParam(function, 5);
2244 dady_ptr = LLVMGetParam(function, 6);
2245 color_ptr_ptr = LLVMGetParam(function, 7);
2246 depth_ptr = LLVMGetParam(function, 8);
2247 mask_input = LLVMGetParam(function, 9);
2248 thread_data_ptr = LLVMGetParam(function, 10);
2249 stride_ptr = LLVMGetParam(function, 11);
2250 depth_stride = LLVMGetParam(function, 12);
2251
2252 lp_build_name(context_ptr, "context");
2253 lp_build_name(x, "x");
2254 lp_build_name(y, "y");
2255 lp_build_name(a0_ptr, "a0");
2256 lp_build_name(dadx_ptr, "dadx");
2257 lp_build_name(dady_ptr, "dady");
2258 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2259 lp_build_name(depth_ptr, "depth");
2260 lp_build_name(thread_data_ptr, "thread_data");
2261 lp_build_name(mask_input, "mask_input");
2262 lp_build_name(stride_ptr, "stride_ptr");
2263 lp_build_name(depth_stride, "depth_stride");
2264
2265 /*
2266 * Function body
2267 */
2268
2269 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2270 builder = gallivm->builder;
2271 assert(builder);
2272 LLVMPositionBuilderAtEnd(builder, block);
2273
2274 /* code generated texture sampling */
2275 sampler = lp_llvm_sampler_soa_create(key->state, context_ptr);
2276
2277 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2278 /* for 1d resources only run "upper half" of stamp */
2279 if (key->resource_1d)
2280 num_fs /= 2;
2281
2282 {
2283 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2284 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2285 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2286 num_loop, "mask_store");
2287 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2288
2289 /*
2290 * The shader input interpolation info is not explicitely baked in the
2291 * shader key, but everything it derives from (TGSI, and flatshade) is
2292 * already included in the shader key.
2293 */
2294 lp_build_interp_soa_init(&interp,
2295 gallivm,
2296 shader->info.base.num_inputs,
2297 inputs,
2298 shader->info.base.pixel_center_integer,
2299 builder, fs_type,
2300 a0_ptr, dadx_ptr, dady_ptr,
2301 x, y);
2302
2303 for (i = 0; i < num_fs; i++) {
2304 LLVMValueRef mask;
2305 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2306 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2307 &indexi, 1, "mask_ptr");
2308
2309 if (partial_mask) {
2310 mask = generate_quad_mask(gallivm, fs_type,
2311 i*fs_type.length/4, mask_input);
2312 }
2313 else {
2314 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2315 }
2316 LLVMBuildStore(builder, mask, mask_ptr);
2317 }
2318
2319 generate_fs_loop(gallivm,
2320 shader, key,
2321 builder,
2322 fs_type,
2323 context_ptr,
2324 num_loop,
2325 &interp,
2326 sampler,
2327 mask_store, /* output */
2328 color_store,
2329 depth_ptr,
2330 depth_stride,
2331 facing,
2332 thread_data_ptr);
2333
2334 for (i = 0; i < num_fs; i++) {
2335 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2336 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2337 &indexi, 1, "");
2338 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2339 /* This is fucked up need to reorganize things */
2340 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2341 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2342 ptr = LLVMBuildGEP(builder,
2343 color_store[cbuf * !cbuf0_write_all][chan],
2344 &indexi, 1, "");
2345 fs_out_color[cbuf][chan][i] = ptr;
2346 }
2347 }
2348 if (dual_source_blend) {
2349 /* only support one dual source blend target hence always use output 1 */
2350 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2351 ptr = LLVMBuildGEP(builder,
2352 color_store[1][chan],
2353 &indexi, 1, "");
2354 fs_out_color[1][chan][i] = ptr;
2355 }
2356 }
2357 }
2358 }
2359
2360 sampler->destroy(sampler);
2361
2362 /* Loop over color outputs / color buffers to do blending.
2363 */
2364 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2365 if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
2366 LLVMValueRef color_ptr;
2367 LLVMValueRef stride;
2368 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2369
2370 boolean do_branch = ((key->depth.enabled
2371 || key->stencil[0].enabled
2372 || key->alpha.enabled)
2373 && !shader->info.base.uses_kill);
2374
2375 color_ptr = LLVMBuildLoad(builder,
2376 LLVMBuildGEP(builder, color_ptr_ptr,
2377 &index, 1, ""),
2378 "");
2379
2380 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2381
2382 stride = LLVMBuildLoad(builder,
2383 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2384 "");
2385
2386 generate_unswizzled_blend(gallivm, cbuf, variant,
2387 key->cbuf_format[cbuf],
2388 num_fs, fs_type, fs_mask, fs_out_color,
2389 context_ptr, color_ptr, stride,
2390 partial_mask, do_branch);
2391 }
2392 }
2393
2394 LLVMBuildRetVoid(builder);
2395
2396 gallivm_verify_function(gallivm, function);
2397
2398 variant->nr_instrs += lp_build_count_instructions(function);
2399 }
2400
2401
2402 static void
2403 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
2404 {
2405 unsigned i;
2406
2407 debug_printf("fs variant %p:\n", (void *) key);
2408
2409 if (key->flatshade) {
2410 debug_printf("flatshade = 1\n");
2411 }
2412 for (i = 0; i < key->nr_cbufs; ++i) {
2413 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2414 }
2415 if (key->depth.enabled) {
2416 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2417 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
2418 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2419 }
2420
2421 for (i = 0; i < 2; ++i) {
2422 if (key->stencil[i].enabled) {
2423 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
2424 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
2425 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
2426 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
2427 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2428 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2429 }
2430 }
2431
2432 if (key->alpha.enabled) {
2433 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
2434 }
2435
2436 if (key->occlusion_count) {
2437 debug_printf("occlusion_count = 1\n");
2438 }
2439
2440 if (key->blend.logicop_enable) {
2441 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
2442 }
2443 else if (key->blend.rt[0].blend_enable) {
2444 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
2445 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2446 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2447 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
2448 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2449 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2450 }
2451 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2452 if (key->blend.alpha_to_coverage) {
2453 debug_printf("blend.alpha_to_coverage is enabled\n");
2454 }
2455 for (i = 0; i < key->nr_samplers; ++i) {
2456 const struct lp_static_sampler_state *sampler = &key->state[i].sampler_state;
2457 debug_printf("sampler[%u] = \n", i);
2458 debug_printf(" .wrap = %s %s %s\n",
2459 util_dump_tex_wrap(sampler->wrap_s, TRUE),
2460 util_dump_tex_wrap(sampler->wrap_t, TRUE),
2461 util_dump_tex_wrap(sampler->wrap_r, TRUE));
2462 debug_printf(" .min_img_filter = %s\n",
2463 util_dump_tex_filter(sampler->min_img_filter, TRUE));
2464 debug_printf(" .min_mip_filter = %s\n",
2465 util_dump_tex_mipfilter(sampler->min_mip_filter, TRUE));
2466 debug_printf(" .mag_img_filter = %s\n",
2467 util_dump_tex_filter(sampler->mag_img_filter, TRUE));
2468 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2469 debug_printf(" .compare_func = %s\n", util_dump_func(sampler->compare_func, TRUE));
2470 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
2471 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2472 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2473 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
2474 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
2475 }
2476 for (i = 0; i < key->nr_sampler_views; ++i) {
2477 const struct lp_static_texture_state *texture = &key->state[i].texture_state;
2478 debug_printf("texture[%u] = \n", i);
2479 debug_printf(" .format = %s\n",
2480 util_format_name(texture->format));
2481 debug_printf(" .target = %s\n",
2482 util_dump_tex_target(texture->target, TRUE));
2483 debug_printf(" .level_zero_only = %u\n",
2484 texture->level_zero_only);
2485 debug_printf(" .pot = %u %u %u\n",
2486 texture->pot_width,
2487 texture->pot_height,
2488 texture->pot_depth);
2489 }
2490 }
2491
2492
2493 void
2494 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
2495 {
2496 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2497 variant->shader->no, variant->no);
2498 tgsi_dump(variant->shader->base.tokens, 0);
2499 dump_fs_variant_key(&variant->key);
2500 debug_printf("variant->opaque = %u\n", variant->opaque);
2501 debug_printf("\n");
2502 }
2503
2504
2505 /**
2506 * Generate a new fragment shader variant from the shader code and
2507 * other state indicated by the key.
2508 */
2509 static struct lp_fragment_shader_variant *
2510 generate_variant(struct llvmpipe_context *lp,
2511 struct lp_fragment_shader *shader,
2512 const struct lp_fragment_shader_variant_key *key)
2513 {
2514 struct lp_fragment_shader_variant *variant;
2515 const struct util_format_description *cbuf0_format_desc;
2516 boolean fullcolormask;
2517
2518 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
2519 if(!variant)
2520 return NULL;
2521
2522 variant->gallivm = gallivm_create();
2523 if (!variant->gallivm) {
2524 FREE(variant);
2525 return NULL;
2526 }
2527
2528 variant->shader = shader;
2529 variant->list_item_global.base = variant;
2530 variant->list_item_local.base = variant;
2531 variant->no = shader->variants_created++;
2532
2533 memcpy(&variant->key, key, shader->variant_key_size);
2534
2535 /*
2536 * Determine whether we are touching all channels in the color buffer.
2537 */
2538 fullcolormask = FALSE;
2539 if (key->nr_cbufs == 1) {
2540 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2541 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2542 }
2543
2544 variant->opaque =
2545 !key->blend.logicop_enable &&
2546 !key->blend.rt[0].blend_enable &&
2547 fullcolormask &&
2548 !key->stencil[0].enabled &&
2549 !key->alpha.enabled &&
2550 !key->blend.alpha_to_coverage &&
2551 !key->depth.enabled &&
2552 !shader->info.base.uses_kill
2553 ? TRUE : FALSE;
2554
2555 if ((shader->info.base.num_tokens <= 1) &&
2556 !key->depth.enabled && !key->stencil[0].enabled) {
2557 variant->ps_inv_multiplier = 0;
2558 } else {
2559 variant->ps_inv_multiplier = 1;
2560 }
2561
2562 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2563 lp_debug_fs_variant(variant);
2564 }
2565
2566 lp_jit_init_types(variant);
2567
2568 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2569 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2570
2571 if (variant->jit_function[RAST_WHOLE] == NULL) {
2572 if (variant->opaque) {
2573 /* Specialized shader, which doesn't need to read the color buffer. */
2574 generate_fragment(lp, shader, variant, RAST_WHOLE);
2575 }
2576 }
2577
2578 /*
2579 * Compile everything
2580 */
2581
2582 gallivm_compile_module(variant->gallivm);
2583
2584 if (variant->function[RAST_EDGE_TEST]) {
2585 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2586 gallivm_jit_function(variant->gallivm,
2587 variant->function[RAST_EDGE_TEST]);
2588 }
2589
2590 if (variant->function[RAST_WHOLE]) {
2591 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2592 gallivm_jit_function(variant->gallivm,
2593 variant->function[RAST_WHOLE]);
2594 } else if (!variant->jit_function[RAST_WHOLE]) {
2595 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2596 }
2597
2598 return variant;
2599 }
2600
2601
2602 static void *
2603 llvmpipe_create_fs_state(struct pipe_context *pipe,
2604 const struct pipe_shader_state *templ)
2605 {
2606 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2607 struct lp_fragment_shader *shader;
2608 int nr_samplers;
2609 int nr_sampler_views;
2610 int i;
2611
2612 shader = CALLOC_STRUCT(lp_fragment_shader);
2613 if (!shader)
2614 return NULL;
2615
2616 shader->no = fs_no++;
2617 make_empty_list(&shader->variants);
2618
2619 /* get/save the summary info for this shader */
2620 lp_build_tgsi_info(templ->tokens, &shader->info);
2621
2622 /* we need to keep a local copy of the tokens */
2623 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
2624
2625 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
2626 if (shader->draw_data == NULL) {
2627 FREE((void *) shader->base.tokens);
2628 FREE(shader);
2629 return NULL;
2630 }
2631
2632 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2633 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2634
2635 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
2636 state[MAX2(nr_samplers, nr_sampler_views)]);
2637
2638 for (i = 0; i < shader->info.base.num_inputs; i++) {
2639 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
2640 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
2641
2642 switch (shader->info.base.input_interpolate[i]) {
2643 case TGSI_INTERPOLATE_CONSTANT:
2644 shader->inputs[i].interp = LP_INTERP_CONSTANT;
2645 break;
2646 case TGSI_INTERPOLATE_LINEAR:
2647 shader->inputs[i].interp = LP_INTERP_LINEAR;
2648 break;
2649 case TGSI_INTERPOLATE_PERSPECTIVE:
2650 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
2651 break;
2652 case TGSI_INTERPOLATE_COLOR:
2653 shader->inputs[i].interp = LP_INTERP_COLOR;
2654 break;
2655 default:
2656 assert(0);
2657 break;
2658 }
2659
2660 switch (shader->info.base.input_semantic_name[i]) {
2661 case TGSI_SEMANTIC_FACE:
2662 shader->inputs[i].interp = LP_INTERP_FACING;
2663 break;
2664 case TGSI_SEMANTIC_POSITION:
2665 /* Position was already emitted above
2666 */
2667 shader->inputs[i].interp = LP_INTERP_POSITION;
2668 shader->inputs[i].src_index = 0;
2669 continue;
2670 }
2671
2672 shader->inputs[i].src_index = i+1;
2673 }
2674
2675 if (LP_DEBUG & DEBUG_TGSI) {
2676 unsigned attrib;
2677 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
2678 shader->no, (void *) shader);
2679 tgsi_dump(templ->tokens, 0);
2680 debug_printf("usage masks:\n");
2681 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
2682 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
2683 debug_printf(" IN[%u].%s%s%s%s\n",
2684 attrib,
2685 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
2686 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
2687 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
2688 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
2689 }
2690 debug_printf("\n");
2691 }
2692
2693 return shader;
2694 }
2695
2696
2697 static void
2698 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
2699 {
2700 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2701
2702 if (llvmpipe->fs == fs)
2703 return;
2704
2705 llvmpipe->fs = (struct lp_fragment_shader *) fs;
2706
2707 draw_bind_fragment_shader(llvmpipe->draw,
2708 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
2709
2710 llvmpipe->dirty |= LP_NEW_FS;
2711 }
2712
2713
2714 /**
2715 * Remove shader variant from two lists: the shader's variant list
2716 * and the context's variant list.
2717 */
2718 void
2719 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
2720 struct lp_fragment_shader_variant *variant)
2721 {
2722 unsigned i;
2723
2724 if (gallivm_debug & GALLIVM_DEBUG_IR) {
2725 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached"
2726 " #%u v total cached #%u\n",
2727 variant->shader->no,
2728 variant->no,
2729 variant->shader->variants_created,
2730 variant->shader->variants_cached,
2731 lp->nr_fs_variants);
2732 }
2733
2734 /* free all the variant's JIT'd functions */
2735 for (i = 0; i < Elements(variant->function); i++) {
2736 if (variant->function[i]) {
2737 gallivm_free_function(variant->gallivm,
2738 variant->function[i],
2739 variant->jit_function[i]);
2740 }
2741 }
2742
2743 gallivm_destroy(variant->gallivm);
2744
2745 /* remove from shader's list */
2746 remove_from_list(&variant->list_item_local);
2747 variant->shader->variants_cached--;
2748
2749 /* remove from context's list */
2750 remove_from_list(&variant->list_item_global);
2751 lp->nr_fs_variants--;
2752 lp->nr_fs_instrs -= variant->nr_instrs;
2753
2754 FREE(variant);
2755 }
2756
2757
2758 static void
2759 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
2760 {
2761 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2762 struct lp_fragment_shader *shader = fs;
2763 struct lp_fs_variant_list_item *li;
2764
2765 assert(fs != llvmpipe->fs);
2766
2767 /*
2768 * XXX: we need to flush the context until we have some sort of reference
2769 * counting in fragment shaders as they may still be binned
2770 * Flushing alone might not sufficient we need to wait on it too.
2771 */
2772 llvmpipe_finish(pipe, __FUNCTION__);
2773
2774 /* Delete all the variants */
2775 li = first_elem(&shader->variants);
2776 while(!at_end(&shader->variants, li)) {
2777 struct lp_fs_variant_list_item *next = next_elem(li);
2778 llvmpipe_remove_shader_variant(llvmpipe, li->base);
2779 li = next;
2780 }
2781
2782 /* Delete draw module's data */
2783 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
2784
2785 assert(shader->variants_cached == 0);
2786 FREE((void *) shader->base.tokens);
2787 FREE(shader);
2788 }
2789
2790
2791
2792 static void
2793 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
2794 uint shader, uint index,
2795 struct pipe_constant_buffer *cb)
2796 {
2797 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2798 struct pipe_resource *constants = cb ? cb->buffer : NULL;
2799
2800 assert(shader < PIPE_SHADER_TYPES);
2801 assert(index < Elements(llvmpipe->constants[shader]));
2802
2803 /* note: reference counting */
2804 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
2805
2806 if (shader == PIPE_SHADER_VERTEX ||
2807 shader == PIPE_SHADER_GEOMETRY) {
2808 /* Pass the constants to the 'draw' module */
2809 const unsigned size = cb ? cb->buffer_size : 0;
2810 const ubyte *data;
2811
2812 if (constants) {
2813 data = (ubyte *) llvmpipe_resource_data(constants);
2814 }
2815 else if (cb && cb->user_buffer) {
2816 data = (ubyte *) cb->user_buffer;
2817 }
2818 else {
2819 data = NULL;
2820 }
2821
2822 if (data)
2823 data += cb->buffer_offset;
2824
2825 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
2826 index, data, size);
2827 }
2828
2829 llvmpipe->dirty |= LP_NEW_CONSTANTS;
2830
2831 if (cb && cb->user_buffer) {
2832 pipe_resource_reference(&constants, NULL);
2833 }
2834 }
2835
2836
2837 /**
2838 * Return the blend factor equivalent to a destination alpha of one.
2839 */
2840 static INLINE unsigned
2841 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
2842 {
2843 switch(factor) {
2844 case PIPE_BLENDFACTOR_DST_ALPHA:
2845 return PIPE_BLENDFACTOR_ONE;
2846 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
2847 return PIPE_BLENDFACTOR_ZERO;
2848 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
2849 if (clamped_zero)
2850 return PIPE_BLENDFACTOR_ZERO;
2851 else
2852 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
2853 }
2854
2855 return factor;
2856 }
2857
2858
2859 /**
2860 * We need to generate several variants of the fragment pipeline to match
2861 * all the combinations of the contributing state atoms.
2862 *
2863 * TODO: there is actually no reason to tie this to context state -- the
2864 * generated code could be cached globally in the screen.
2865 */
2866 static void
2867 make_variant_key(struct llvmpipe_context *lp,
2868 struct lp_fragment_shader *shader,
2869 struct lp_fragment_shader_variant_key *key)
2870 {
2871 unsigned i;
2872
2873 memset(key, 0, shader->variant_key_size);
2874
2875 if (lp->framebuffer.zsbuf) {
2876 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
2877 const struct util_format_description *zsbuf_desc =
2878 util_format_description(zsbuf_format);
2879
2880 if (lp->depth_stencil->depth.enabled &&
2881 util_format_has_depth(zsbuf_desc)) {
2882 key->zsbuf_format = zsbuf_format;
2883 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
2884 }
2885 if (lp->depth_stencil->stencil[0].enabled &&
2886 util_format_has_stencil(zsbuf_desc)) {
2887 key->zsbuf_format = zsbuf_format;
2888 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
2889 }
2890 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
2891 key->resource_1d = TRUE;
2892 }
2893 }
2894
2895 /*
2896 * Propagate the depth clamp setting from the rasterizer state.
2897 * depth_clip == 0 implies depth clamping is enabled.
2898 *
2899 * When clip_halfz is enabled, then always clamp the depth values.
2900 */
2901 if (lp->rasterizer->clip_halfz) {
2902 key->depth_clamp = 1;
2903 } else {
2904 key->depth_clamp = (lp->rasterizer->depth_clip == 0) ? 1 : 0;
2905 }
2906
2907 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
2908 if (!lp->framebuffer.nr_cbufs ||
2909 !lp->framebuffer.cbufs[0] ||
2910 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
2911 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
2912 }
2913 if(key->alpha.enabled)
2914 key->alpha.func = lp->depth_stencil->alpha.func;
2915 /* alpha.ref_value is passed in jit_context */
2916
2917 key->flatshade = lp->rasterizer->flatshade;
2918 if (lp->active_occlusion_queries) {
2919 key->occlusion_count = TRUE;
2920 }
2921
2922 if (lp->framebuffer.nr_cbufs) {
2923 memcpy(&key->blend, lp->blend, sizeof key->blend);
2924 }
2925
2926 key->nr_cbufs = lp->framebuffer.nr_cbufs;
2927
2928 if (!key->blend.independent_blend_enable) {
2929 /* we always need independent blend otherwise the fixups below won't work */
2930 for (i = 1; i < key->nr_cbufs; i++) {
2931 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
2932 }
2933 key->blend.independent_blend_enable = 1;
2934 }
2935
2936 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
2937 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
2938
2939 if (lp->framebuffer.cbufs[i]) {
2940 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
2941 const struct util_format_description *format_desc;
2942
2943 key->cbuf_format[i] = format;
2944
2945 /*
2946 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
2947 * mixing of 2d textures with height 1 and 1d textures, so make sure
2948 * we pick 1d if any cbuf or zsbuf is 1d.
2949 */
2950 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
2951 key->resource_1d = TRUE;
2952 }
2953
2954 format_desc = util_format_description(format);
2955 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
2956 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
2957
2958 /*
2959 * Mask out color channels not present in the color buffer.
2960 */
2961 blend_rt->colormask &= util_format_colormask(format_desc);
2962
2963 /*
2964 * Disable blend for integer formats.
2965 */
2966 if (util_format_is_pure_integer(format)) {
2967 blend_rt->blend_enable = 0;
2968 }
2969
2970 /*
2971 * Our swizzled render tiles always have an alpha channel, but the
2972 * linear render target format often does not, so force here the dst
2973 * alpha to be one.
2974 *
2975 * This is not a mere optimization. Wrong results will be produced if
2976 * the dst alpha is used, the dst format does not have alpha, and the
2977 * previous rendering was not flushed from the swizzled to linear
2978 * buffer. For example, NonPowTwo DCT.
2979 *
2980 * TODO: This should be generalized to all channels for better
2981 * performance, but only alpha causes correctness issues.
2982 *
2983 * Also, force rgb/alpha func/factors match, to make AoS blending
2984 * easier.
2985 */
2986 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W ||
2987 format_desc->swizzle[3] == format_desc->swizzle[0]) {
2988 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
2989 boolean clamped_zero = !util_format_is_float(format) &&
2990 !util_format_is_snorm(format);
2991 blend_rt->rgb_src_factor =
2992 force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
2993 blend_rt->rgb_dst_factor =
2994 force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
2995 blend_rt->alpha_func = blend_rt->rgb_func;
2996 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
2997 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
2998 }
2999 }
3000 else {
3001 /* no color buffer for this fragment output */
3002 key->cbuf_format[i] = PIPE_FORMAT_NONE;
3003 blend_rt->colormask = 0x0;
3004 blend_rt->blend_enable = 0;
3005 }
3006 }
3007
3008 /* This value will be the same for all the variants of a given shader:
3009 */
3010 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3011
3012 for(i = 0; i < key->nr_samplers; ++i) {
3013 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3014 lp_sampler_static_sampler_state(&key->state[i].sampler_state,
3015 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
3016 }
3017 }
3018
3019 /*
3020 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
3021 * are dx10-style? Can't really have mixed opcodes, at least not
3022 * if we want to skip the holes here (without rescanning tgsi).
3023 */
3024 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
3025 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3026 for(i = 0; i < key->nr_sampler_views; ++i) {
3027 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1 << i)) {
3028 lp_sampler_static_texture_state(&key->state[i].texture_state,
3029 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3030 }
3031 }
3032 }
3033 else {
3034 key->nr_sampler_views = key->nr_samplers;
3035 for(i = 0; i < key->nr_sampler_views; ++i) {
3036 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
3037 lp_sampler_static_texture_state(&key->state[i].texture_state,
3038 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3039 }
3040 }
3041 }
3042 }
3043
3044
3045
3046 /**
3047 * Update fragment shader state. This is called just prior to drawing
3048 * something when some fragment-related state has changed.
3049 */
3050 void
3051 llvmpipe_update_fs(struct llvmpipe_context *lp)
3052 {
3053 struct lp_fragment_shader *shader = lp->fs;
3054 struct lp_fragment_shader_variant_key key;
3055 struct lp_fragment_shader_variant *variant = NULL;
3056 struct lp_fs_variant_list_item *li;
3057
3058 make_variant_key(lp, shader, &key);
3059
3060 /* Search the variants for one which matches the key */
3061 li = first_elem(&shader->variants);
3062 while(!at_end(&shader->variants, li)) {
3063 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
3064 variant = li->base;
3065 break;
3066 }
3067 li = next_elem(li);
3068 }
3069
3070 if (variant) {
3071 /* Move this variant to the head of the list to implement LRU
3072 * deletion of shader's when we have too many.
3073 */
3074 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3075 }
3076 else {
3077 /* variant not found, create it now */
3078 int64_t t0, t1, dt;
3079 unsigned i;
3080 unsigned variants_to_cull;
3081
3082 if (0) {
3083 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3084 lp->nr_fs_variants,
3085 lp->nr_fs_instrs,
3086 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3087 }
3088
3089 /* First, check if we've exceeded the max number of shader variants.
3090 * If so, free 25% of them (the least recently used ones).
3091 */
3092 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 4 : 0;
3093
3094 if (variants_to_cull ||
3095 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3096 struct pipe_context *pipe = &lp->pipe;
3097
3098 /*
3099 * XXX: we need to flush the context until we have some sort of
3100 * reference counting in fragment shaders as they may still be binned
3101 * Flushing alone might not be sufficient we need to wait on it too.
3102 */
3103 llvmpipe_finish(pipe, __FUNCTION__);
3104
3105 /*
3106 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3107 * number of shader variants (potentially all of them) could be
3108 * pending for destruction on flush.
3109 */
3110
3111 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3112 struct lp_fs_variant_list_item *item;
3113 if (is_empty_list(&lp->fs_variants_list)) {
3114 break;
3115 }
3116 item = last_elem(&lp->fs_variants_list);
3117 assert(item);
3118 assert(item->base);
3119 llvmpipe_remove_shader_variant(lp, item->base);
3120 }
3121 }
3122
3123 /*
3124 * Generate the new variant.
3125 */
3126 t0 = os_time_get();
3127 variant = generate_variant(lp, shader, &key);
3128 t1 = os_time_get();
3129 dt = t1 - t0;
3130 LP_COUNT_ADD(llvm_compile_time, dt);
3131 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3132
3133 llvmpipe_variant_count++;
3134
3135 /* Put the new variant into the list */
3136 if (variant) {
3137 insert_at_head(&shader->variants, &variant->list_item_local);
3138 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3139 lp->nr_fs_variants++;
3140 lp->nr_fs_instrs += variant->nr_instrs;
3141 shader->variants_cached++;
3142 }
3143 }
3144
3145 /* Bind this variant */
3146 lp_setup_set_fs_variant(lp->setup, variant);
3147 }
3148
3149
3150
3151
3152
3153 void
3154 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3155 {
3156 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3157 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3158 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3159
3160 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3161 }
3162
3163 /*
3164 * Rasterization is disabled if there is no pixel shader and
3165 * both depth and stencil testing are disabled:
3166 * http://msdn.microsoft.com/en-us/library/windows/desktop/bb205125
3167 */
3168 boolean
3169 llvmpipe_rasterization_disabled(struct llvmpipe_context *lp)
3170 {
3171 boolean null_fs = !lp->fs || lp->fs->info.base.num_tokens <= 1;
3172
3173 return (null_fs &&
3174 !lp->depth_stencil->depth.enabled &&
3175 !lp->depth_stencil->stencil[0].enabled);
3176 }