llvmpipe: Use GALLIVM_DEBUG opt where applicable.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - triangle edge in/out testing
35 * - scissor test
36 * - stipple (TBI)
37 * - early depth test
38 * - fragment shader
39 * - alpha test
40 * - depth/stencil test
41 * - blending
42 *
43 * This file has only the glue to assemble the fragment pipeline. The actual
44 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
45 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
46 * muster the LLVM JIT execution engine to create a function that follows an
47 * established binary interface and that can be called from C directly.
48 *
49 * A big source of complexity here is that we often want to run different
50 * stages with different precisions and data types and precisions. For example,
51 * the fragment shader needs typically to be done in floats, but the
52 * depth/stencil test and blending is better done in the type that most closely
53 * matches the depth/stencil and color buffer respectively.
54 *
55 * Since the width of a SIMD vector register stays the same regardless of the
56 * element type, different types imply different number of elements, so we must
57 * code generate more instances of the stages with larger types to be able to
58 * feed/consume the stages with smaller types.
59 *
60 * @author Jose Fonseca <jfonseca@vmware.com>
61 */
62
63 #include <limits.h>
64 #include "pipe/p_defines.h"
65 #include "util/u_inlines.h"
66 #include "util/u_memory.h"
67 #include "util/u_format.h"
68 #include "util/u_dump.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_intr.h"
79 #include "gallivm/lp_bld_logic.h"
80 #include "gallivm/lp_bld_tgsi.h"
81 #include "gallivm/lp_bld_swizzle.h"
82 #include "gallivm/lp_bld_flow.h"
83 #include "gallivm/lp_bld_debug.h"
84
85 #include "lp_bld_alpha.h"
86 #include "lp_bld_blend.h"
87 #include "lp_bld_depth.h"
88 #include "lp_bld_interp.h"
89 #include "lp_context.h"
90 #include "lp_debug.h"
91 #include "lp_perf.h"
92 #include "lp_screen.h"
93 #include "lp_setup.h"
94 #include "lp_state.h"
95 #include "lp_tex_sample.h"
96
97
98 #include <llvm-c/Analysis.h>
99
100
101 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
102 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
103
104
105 /*
106 * Derive from the quad's upper left scalar coordinates the coordinates for
107 * all other quad pixels
108 */
109 static void
110 generate_pos0(LLVMBuilderRef builder,
111 LLVMValueRef x,
112 LLVMValueRef y,
113 LLVMValueRef *x0,
114 LLVMValueRef *y0)
115 {
116 LLVMTypeRef int_elem_type = LLVMInt32Type();
117 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
118 LLVMTypeRef elem_type = LLVMFloatType();
119 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
120 LLVMValueRef x_offsets[QUAD_SIZE];
121 LLVMValueRef y_offsets[QUAD_SIZE];
122 unsigned i;
123
124 x = lp_build_broadcast(builder, int_vec_type, x);
125 y = lp_build_broadcast(builder, int_vec_type, y);
126
127 for(i = 0; i < QUAD_SIZE; ++i) {
128 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
129 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
130 }
131
132 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
133 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
134
135 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
136 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
137 }
138
139
140 /**
141 * Generate the depth /stencil test code.
142 */
143 static void
144 generate_depth_stencil(LLVMBuilderRef builder,
145 const struct lp_fragment_shader_variant_key *key,
146 struct lp_type src_type,
147 struct lp_build_mask_context *mask,
148 LLVMValueRef stencil_refs[2],
149 LLVMValueRef src,
150 LLVMValueRef dst_ptr,
151 LLVMValueRef facing,
152 LLVMValueRef counter)
153 {
154 const struct util_format_description *format_desc;
155 struct lp_type dst_type;
156
157 if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
158 return;
159
160 format_desc = util_format_description(key->zsbuf_format);
161 assert(format_desc);
162
163 /*
164 * Depths are expected to be between 0 and 1, even if they are stored in
165 * floats. Setting these bits here will ensure that the lp_build_conv() call
166 * below won't try to unnecessarily clamp the incoming values.
167 */
168 if(src_type.floating) {
169 src_type.sign = FALSE;
170 src_type.norm = TRUE;
171 }
172 else {
173 assert(!src_type.sign);
174 assert(src_type.norm);
175 }
176
177 /* Pick the depth type. */
178 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
179
180 /* FIXME: Cope with a depth test type with a different bit width. */
181 assert(dst_type.width == src_type.width);
182 assert(dst_type.length == src_type.length);
183
184 /* Convert fragment Z from float to integer */
185 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
186
187 dst_ptr = LLVMBuildBitCast(builder,
188 dst_ptr,
189 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
190 lp_build_depth_stencil_test(builder,
191 &key->depth,
192 key->stencil,
193 dst_type,
194 format_desc,
195 mask,
196 stencil_refs,
197 src,
198 dst_ptr,
199 facing,
200 counter);
201 }
202
203
204 /**
205 * Generate the code to do inside/outside triangle testing for the
206 * four pixels in a 2x2 quad. This will set the four elements of the
207 * quad mask vector to 0 or ~0.
208 * \param i which quad of the quad group to test, in [0,3]
209 */
210 static void
211 generate_tri_edge_mask(LLVMBuilderRef builder,
212 unsigned i,
213 LLVMValueRef *mask, /* ivec4, out */
214 LLVMValueRef c0, /* int32 */
215 LLVMValueRef c1, /* int32 */
216 LLVMValueRef c2, /* int32 */
217 LLVMValueRef step0_ptr, /* ivec4 */
218 LLVMValueRef step1_ptr, /* ivec4 */
219 LLVMValueRef step2_ptr) /* ivec4 */
220 {
221 #define OPTIMIZE_IN_OUT_TEST 0
222 #if OPTIMIZE_IN_OUT_TEST
223 struct lp_build_if_state ifctx;
224 LLVMValueRef not_draw_all;
225 #endif
226 struct lp_build_flow_context *flow;
227 struct lp_type i32_type;
228 LLVMTypeRef i32vec4_type;
229 LLVMValueRef c0_vec, c1_vec, c2_vec;
230 LLVMValueRef in_out_mask;
231
232 assert(i < 4);
233
234 /* int32 vector type */
235 memset(&i32_type, 0, sizeof i32_type);
236 i32_type.floating = FALSE; /* values are integers */
237 i32_type.sign = TRUE; /* values are signed */
238 i32_type.norm = FALSE; /* values are not normalized */
239 i32_type.width = 32; /* 32-bit int values */
240 i32_type.length = 4; /* 4 elements per vector */
241
242 i32vec4_type = lp_build_int32_vec4_type();
243
244 /*
245 * Use a conditional here to do detailed pixel in/out testing.
246 * We only have to do this if c0 != INT_MIN.
247 */
248 flow = lp_build_flow_create(builder);
249 lp_build_flow_scope_begin(flow);
250
251 {
252 #if OPTIMIZE_IN_OUT_TEST
253 /* not_draw_all = (c0 != INT_MIN) */
254 not_draw_all = LLVMBuildICmp(builder,
255 LLVMIntNE,
256 c0,
257 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
258 "");
259
260 in_out_mask = lp_build_const_int_vec(i32_type, ~0);
261
262
263 lp_build_flow_scope_declare(flow, &in_out_mask);
264
265 /* if (not_draw_all) {... */
266 lp_build_if(&ifctx, flow, builder, not_draw_all);
267 #endif
268 {
269 LLVMValueRef step0_vec, step1_vec, step2_vec;
270 LLVMValueRef m0_vec, m1_vec, m2_vec;
271 LLVMValueRef index, m;
272
273 /* c0_vec = {c0, c0, c0, c0}
274 * Note that we emit this code four times but LLVM optimizes away
275 * three instances of it.
276 */
277 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
278 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
279 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
280 lp_build_name(c0_vec, "edgeconst0vec");
281 lp_build_name(c1_vec, "edgeconst1vec");
282 lp_build_name(c2_vec, "edgeconst2vec");
283
284 /* load step0vec, step1, step2 vec from memory */
285 index = LLVMConstInt(LLVMInt32Type(), i, 0);
286 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
287 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
288 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
289 lp_build_name(step0_vec, "step0vec");
290 lp_build_name(step1_vec, "step1vec");
291 lp_build_name(step2_vec, "step2vec");
292
293 /* m0_vec = step0_ptr[i] > c0_vec */
294 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
295 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
296 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
297
298 /* in_out_mask = m0_vec & m1_vec & m2_vec */
299 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
300 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
301 lp_build_name(in_out_mask, "inoutmaskvec");
302 }
303 #if OPTIMIZE_IN_OUT_TEST
304 lp_build_endif(&ifctx);
305 #endif
306
307 }
308 lp_build_flow_scope_end(flow);
309 lp_build_flow_destroy(flow);
310
311 /* This is the initial alive/dead pixel mask for a quad of four pixels.
312 * It's an int[4] vector with each word set to 0 or ~0.
313 * Words will get cleared when pixels faile the Z test, etc.
314 */
315 *mask = in_out_mask;
316 }
317
318
319 static LLVMValueRef
320 generate_scissor_test(LLVMBuilderRef builder,
321 LLVMValueRef context_ptr,
322 const struct lp_build_interp_soa_context *interp,
323 struct lp_type type)
324 {
325 LLVMTypeRef vec_type = lp_build_vec_type(type);
326 LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1];
327 LLVMValueRef xmin, ymin, xmax, ymax;
328 LLVMValueRef m0, m1, m2, m3, m;
329
330 /* xpos, ypos contain the window coords for the four pixels in the quad */
331 assert(xpos);
332 assert(ypos);
333
334 /* get the current scissor bounds, convert to vectors */
335 xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr);
336 xmin = lp_build_broadcast(builder, vec_type, xmin);
337
338 ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr);
339 ymin = lp_build_broadcast(builder, vec_type, ymin);
340
341 xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr);
342 xmax = lp_build_broadcast(builder, vec_type, xmax);
343
344 ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr);
345 ymax = lp_build_broadcast(builder, vec_type, ymax);
346
347 /* compare the fragment's position coordinates against the scissor bounds */
348 m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin);
349 m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin);
350 m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax);
351 m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax);
352
353 /* AND all the masks together */
354 m = LLVMBuildAnd(builder, m0, m1, "");
355 m = LLVMBuildAnd(builder, m, m2, "");
356 m = LLVMBuildAnd(builder, m, m3, "");
357
358 lp_build_name(m, "scissormask");
359
360 return m;
361 }
362
363
364 static LLVMValueRef
365 build_int32_vec_const(int value)
366 {
367 struct lp_type i32_type;
368
369 memset(&i32_type, 0, sizeof i32_type);
370 i32_type.floating = FALSE; /* values are integers */
371 i32_type.sign = TRUE; /* values are signed */
372 i32_type.norm = FALSE; /* values are not normalized */
373 i32_type.width = 32; /* 32-bit int values */
374 i32_type.length = 4; /* 4 elements per vector */
375 return lp_build_const_int_vec(i32_type, value);
376 }
377
378
379
380 /**
381 * Generate the fragment shader, depth/stencil test, and alpha tests.
382 * \param i which quad in the tile, in range [0,3]
383 * \param do_tri_test if 1, do triangle edge in/out testing
384 */
385 static void
386 generate_fs(struct llvmpipe_context *lp,
387 struct lp_fragment_shader *shader,
388 const struct lp_fragment_shader_variant_key *key,
389 LLVMBuilderRef builder,
390 struct lp_type type,
391 LLVMValueRef context_ptr,
392 unsigned i,
393 const struct lp_build_interp_soa_context *interp,
394 struct lp_build_sampler_soa *sampler,
395 LLVMValueRef *pmask,
396 LLVMValueRef (*color)[4],
397 LLVMValueRef depth_ptr,
398 LLVMValueRef facing,
399 unsigned do_tri_test,
400 LLVMValueRef c0,
401 LLVMValueRef c1,
402 LLVMValueRef c2,
403 LLVMValueRef step0_ptr,
404 LLVMValueRef step1_ptr,
405 LLVMValueRef step2_ptr,
406 LLVMValueRef counter)
407 {
408 const struct tgsi_token *tokens = shader->base.tokens;
409 LLVMTypeRef vec_type;
410 LLVMValueRef consts_ptr;
411 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
412 LLVMValueRef z = interp->pos[2];
413 LLVMValueRef stencil_refs[2];
414 struct lp_build_flow_context *flow;
415 struct lp_build_mask_context mask;
416 boolean early_depth_stencil_test;
417 unsigned attrib;
418 unsigned chan;
419 unsigned cbuf;
420
421 assert(i < 4);
422
423 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
424 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
425
426 vec_type = lp_build_vec_type(type);
427
428 consts_ptr = lp_jit_context_constants(builder, context_ptr);
429
430 flow = lp_build_flow_create(builder);
431
432 memset(outputs, 0, sizeof outputs);
433
434 lp_build_flow_scope_begin(flow);
435
436 /* Declare the color and z variables */
437 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
438 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
439 color[cbuf][chan] = LLVMGetUndef(vec_type);
440 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
441 }
442 }
443 lp_build_flow_scope_declare(flow, &z);
444
445 /* do triangle edge testing */
446 if (do_tri_test) {
447 generate_tri_edge_mask(builder, i, pmask,
448 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
449 }
450 else {
451 *pmask = build_int32_vec_const(~0);
452 }
453
454 /* 'mask' will control execution based on quad's pixel alive/killed state */
455 lp_build_mask_begin(&mask, flow, type, *pmask);
456
457 if (key->scissor) {
458 LLVMValueRef smask =
459 generate_scissor_test(builder, context_ptr, interp, type);
460 lp_build_mask_update(&mask, smask);
461 }
462
463 early_depth_stencil_test =
464 (key->depth.enabled || key->stencil[0].enabled) &&
465 !key->alpha.enabled &&
466 !shader->info.uses_kill &&
467 !shader->info.writes_z;
468
469 if (early_depth_stencil_test)
470 generate_depth_stencil(builder, key,
471 type, &mask,
472 stencil_refs, z, depth_ptr, facing, counter);
473
474 lp_build_tgsi_soa(builder, tokens, type, &mask,
475 consts_ptr, interp->pos, interp->inputs,
476 outputs, sampler, &shader->info);
477
478 /* loop over fragment shader outputs/results */
479 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
480 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
481 if(outputs[attrib][chan]) {
482 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
483 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
484
485 switch (shader->info.output_semantic_name[attrib]) {
486 case TGSI_SEMANTIC_COLOR:
487 {
488 unsigned cbuf = shader->info.output_semantic_index[attrib];
489
490 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
491
492 /* Alpha test */
493 /* XXX: should the alpha reference value be passed separately? */
494 /* XXX: should only test the final assignment to alpha */
495 if(cbuf == 0 && chan == 3) {
496 LLVMValueRef alpha = out;
497 LLVMValueRef alpha_ref_value;
498 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
499 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
500 lp_build_alpha_test(builder, &key->alpha, type,
501 &mask, alpha, alpha_ref_value);
502 }
503
504 color[cbuf][chan] = out;
505 break;
506 }
507
508 case TGSI_SEMANTIC_POSITION:
509 if(chan == 2)
510 z = out;
511 break;
512 }
513 }
514 }
515 }
516
517 if (!early_depth_stencil_test)
518 generate_depth_stencil(builder, key,
519 type, &mask,
520 stencil_refs, z, depth_ptr, facing, counter);
521
522 lp_build_mask_end(&mask);
523
524 lp_build_flow_scope_end(flow);
525
526 lp_build_flow_destroy(flow);
527
528 *pmask = mask.value;
529
530 }
531
532
533 /**
534 * Generate color blending and color output.
535 * \param rt the render target index (to index blend, colormask state)
536 * \param type the pixel color type
537 * \param context_ptr pointer to the runtime JIT context
538 * \param mask execution mask (active fragment/pixel mask)
539 * \param src colors from the fragment shader
540 * \param dst_ptr the destination color buffer pointer
541 */
542 static void
543 generate_blend(const struct pipe_blend_state *blend,
544 unsigned rt,
545 LLVMBuilderRef builder,
546 struct lp_type type,
547 LLVMValueRef context_ptr,
548 LLVMValueRef mask,
549 LLVMValueRef *src,
550 LLVMValueRef dst_ptr)
551 {
552 struct lp_build_context bld;
553 struct lp_build_flow_context *flow;
554 struct lp_build_mask_context mask_ctx;
555 LLVMTypeRef vec_type;
556 LLVMValueRef const_ptr;
557 LLVMValueRef con[4];
558 LLVMValueRef dst[4];
559 LLVMValueRef res[4];
560 unsigned chan;
561
562 lp_build_context_init(&bld, builder, type);
563
564 flow = lp_build_flow_create(builder);
565
566 /* we'll use this mask context to skip blending if all pixels are dead */
567 lp_build_mask_begin(&mask_ctx, flow, type, mask);
568
569 vec_type = lp_build_vec_type(type);
570
571 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
572 const_ptr = LLVMBuildBitCast(builder, const_ptr,
573 LLVMPointerType(vec_type, 0), "");
574
575 /* load constant blend color and colors from the dest color buffer */
576 for(chan = 0; chan < 4; ++chan) {
577 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
578 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
579
580 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
581
582 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
583 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
584 }
585
586 /* do blend */
587 lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
588
589 /* store results to color buffer */
590 for(chan = 0; chan < 4; ++chan) {
591 if(blend->rt[rt].colormask & (1 << chan)) {
592 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
593 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
594 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
595 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
596 }
597 }
598
599 lp_build_mask_end(&mask_ctx);
600 lp_build_flow_destroy(flow);
601 }
602
603
604 /**
605 * Generate the runtime callable function for the whole fragment pipeline.
606 * Note that the function which we generate operates on a block of 16
607 * pixels at at time. The block contains 2x2 quads. Each quad contains
608 * 2x2 pixels.
609 */
610 static void
611 generate_fragment(struct llvmpipe_context *lp,
612 struct lp_fragment_shader *shader,
613 struct lp_fragment_shader_variant *variant,
614 unsigned do_tri_test)
615 {
616 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
617 const struct lp_fragment_shader_variant_key *key = &variant->key;
618 struct lp_type fs_type;
619 struct lp_type blend_type;
620 LLVMTypeRef fs_elem_type;
621 LLVMTypeRef fs_int_vec_type;
622 LLVMTypeRef blend_vec_type;
623 LLVMTypeRef arg_types[16];
624 LLVMTypeRef func_type;
625 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
626 LLVMValueRef context_ptr;
627 LLVMValueRef x;
628 LLVMValueRef y;
629 LLVMValueRef a0_ptr;
630 LLVMValueRef dadx_ptr;
631 LLVMValueRef dady_ptr;
632 LLVMValueRef color_ptr_ptr;
633 LLVMValueRef depth_ptr;
634 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr, counter = NULL;
635 LLVMBasicBlockRef block;
636 LLVMBuilderRef builder;
637 LLVMValueRef x0;
638 LLVMValueRef y0;
639 struct lp_build_sampler_soa *sampler;
640 struct lp_build_interp_soa_context interp;
641 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
642 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
643 LLVMValueRef blend_mask;
644 LLVMValueRef function;
645 LLVMValueRef facing;
646 unsigned num_fs;
647 unsigned i;
648 unsigned chan;
649 unsigned cbuf;
650
651
652 /* TODO: actually pick these based on the fs and color buffer
653 * characteristics. */
654
655 memset(&fs_type, 0, sizeof fs_type);
656 fs_type.floating = TRUE; /* floating point values */
657 fs_type.sign = TRUE; /* values are signed */
658 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
659 fs_type.width = 32; /* 32-bit float */
660 fs_type.length = 4; /* 4 elements per vector */
661 num_fs = 4; /* number of quads per block */
662
663 memset(&blend_type, 0, sizeof blend_type);
664 blend_type.floating = FALSE; /* values are integers */
665 blend_type.sign = FALSE; /* values are unsigned */
666 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
667 blend_type.width = 8; /* 8-bit ubyte values */
668 blend_type.length = 16; /* 16 elements per vector */
669
670 /*
671 * Generate the function prototype. Any change here must be reflected in
672 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
673 */
674
675 fs_elem_type = lp_build_elem_type(fs_type);
676 fs_int_vec_type = lp_build_int_vec_type(fs_type);
677
678 blend_vec_type = lp_build_vec_type(blend_type);
679
680 arg_types[0] = screen->context_ptr_type; /* context */
681 arg_types[1] = LLVMInt32Type(); /* x */
682 arg_types[2] = LLVMInt32Type(); /* y */
683 arg_types[3] = LLVMFloatType(); /* facing */
684 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
685 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
686 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
687 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
688 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
689 arg_types[9] = LLVMInt32Type(); /* c0 */
690 arg_types[10] = LLVMInt32Type(); /* c1 */
691 arg_types[11] = LLVMInt32Type(); /* c2 */
692 /* Note: the step arrays are built as int32[16] but we interpret
693 * them here as int32_vec4[4].
694 */
695 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
696 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
697 arg_types[14] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
698 arg_types[15] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
699
700 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
701
702 function = LLVMAddFunction(screen->module, "shader", func_type);
703 LLVMSetFunctionCallConv(function, LLVMCCallConv);
704
705 variant->function[do_tri_test] = function;
706
707
708 /* XXX: need to propagate noalias down into color param now we are
709 * passing a pointer-to-pointer?
710 */
711 for(i = 0; i < Elements(arg_types); ++i)
712 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
713 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
714
715 context_ptr = LLVMGetParam(function, 0);
716 x = LLVMGetParam(function, 1);
717 y = LLVMGetParam(function, 2);
718 facing = LLVMGetParam(function, 3);
719 a0_ptr = LLVMGetParam(function, 4);
720 dadx_ptr = LLVMGetParam(function, 5);
721 dady_ptr = LLVMGetParam(function, 6);
722 color_ptr_ptr = LLVMGetParam(function, 7);
723 depth_ptr = LLVMGetParam(function, 8);
724 c0 = LLVMGetParam(function, 9);
725 c1 = LLVMGetParam(function, 10);
726 c2 = LLVMGetParam(function, 11);
727 step0_ptr = LLVMGetParam(function, 12);
728 step1_ptr = LLVMGetParam(function, 13);
729 step2_ptr = LLVMGetParam(function, 14);
730
731 lp_build_name(context_ptr, "context");
732 lp_build_name(x, "x");
733 lp_build_name(y, "y");
734 lp_build_name(a0_ptr, "a0");
735 lp_build_name(dadx_ptr, "dadx");
736 lp_build_name(dady_ptr, "dady");
737 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
738 lp_build_name(depth_ptr, "depth");
739 lp_build_name(c0, "c0");
740 lp_build_name(c1, "c1");
741 lp_build_name(c2, "c2");
742 lp_build_name(step0_ptr, "step0");
743 lp_build_name(step1_ptr, "step1");
744 lp_build_name(step2_ptr, "step2");
745
746 if (key->occlusion_count) {
747 counter = LLVMGetParam(function, 15);
748 lp_build_name(counter, "counter");
749 }
750
751 /*
752 * Function body
753 */
754
755 block = LLVMAppendBasicBlock(function, "entry");
756 builder = LLVMCreateBuilder();
757 LLVMPositionBuilderAtEnd(builder, block);
758
759 generate_pos0(builder, x, y, &x0, &y0);
760
761 lp_build_interp_soa_init(&interp,
762 shader->base.tokens,
763 key->flatshade,
764 builder, fs_type,
765 a0_ptr, dadx_ptr, dady_ptr,
766 x0, y0);
767
768 /* code generated texture sampling */
769 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
770
771 /* loop over quads in the block */
772 for(i = 0; i < num_fs; ++i) {
773 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
774 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
775 LLVMValueRef depth_ptr_i;
776
777 if(i != 0)
778 lp_build_interp_soa_update(&interp, i);
779
780 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
781
782 generate_fs(lp, shader, key,
783 builder,
784 fs_type,
785 context_ptr,
786 i,
787 &interp,
788 sampler,
789 &fs_mask[i], /* output */
790 out_color,
791 depth_ptr_i,
792 facing,
793 do_tri_test,
794 c0, c1, c2,
795 step0_ptr, step1_ptr, step2_ptr, counter);
796
797 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
798 for(chan = 0; chan < NUM_CHANNELS; ++chan)
799 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
800 }
801
802 sampler->destroy(sampler);
803
804 /* Loop over color outputs / color buffers to do blending.
805 */
806 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
807 LLVMValueRef color_ptr;
808 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
809 LLVMValueRef blend_in_color[NUM_CHANNELS];
810 unsigned rt;
811
812 /*
813 * Convert the fs's output color and mask to fit to the blending type.
814 */
815 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
816 lp_build_conv(builder, fs_type, blend_type,
817 fs_out_color[cbuf][chan], num_fs,
818 &blend_in_color[chan], 1);
819 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
820 }
821
822 lp_build_conv_mask(builder, fs_type, blend_type,
823 fs_mask, num_fs,
824 &blend_mask, 1);
825
826 color_ptr = LLVMBuildLoad(builder,
827 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
828 "");
829 lp_build_name(color_ptr, "color_ptr%d", cbuf);
830
831 /* which blend/colormask state to use */
832 rt = key->blend.independent_blend_enable ? cbuf : 0;
833
834 /*
835 * Blending.
836 */
837 generate_blend(&key->blend,
838 rt,
839 builder,
840 blend_type,
841 context_ptr,
842 blend_mask,
843 blend_in_color,
844 color_ptr);
845 }
846
847 LLVMBuildRetVoid(builder);
848
849 LLVMDisposeBuilder(builder);
850
851
852 /* Verify the LLVM IR. If invalid, dump and abort */
853 #ifdef DEBUG
854 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
855 if (1)
856 lp_debug_dump_value(function);
857 abort();
858 }
859 #endif
860
861 /* Apply optimizations to LLVM IR */
862 if (1)
863 LLVMRunFunctionPassManager(screen->pass, function);
864
865 if (gallivm_debug & GALLIVM_DEBUG_IR) {
866 /* Print the LLVM IR to stderr */
867 lp_debug_dump_value(function);
868 debug_printf("\n");
869 }
870
871 /*
872 * Translate the LLVM IR into machine code.
873 */
874 {
875 void *f = LLVMGetPointerToGlobal(screen->engine, function);
876
877 variant->jit_function[do_tri_test] = cast_voidptr_to_lp_jit_frag_func(f);
878
879 if (gallivm_debug & GALLIVM_DEBUG_ASM) {
880 lp_disassemble(f);
881 }
882 }
883 }
884
885
886 static struct lp_fragment_shader_variant *
887 generate_variant(struct llvmpipe_context *lp,
888 struct lp_fragment_shader *shader,
889 const struct lp_fragment_shader_variant_key *key)
890 {
891 struct lp_fragment_shader_variant *variant;
892
893 if (gallivm_debug & GALLIVM_DEBUG_IR) {
894 unsigned i;
895
896 tgsi_dump(shader->base.tokens, 0);
897 if(key->depth.enabled) {
898 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
899 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
900 debug_printf("depth.writemask = %u\n", key->depth.writemask);
901 }
902 for (i = 0; i < 2; ++i) {
903 if(key->stencil[i].enabled) {
904 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
905 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
906 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
907 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
908 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
909 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
910 }
911 }
912 if(key->alpha.enabled) {
913 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
914 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
915 }
916 if(key->blend.logicop_enable) {
917 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
918 }
919 else if(key->blend.rt[0].blend_enable) {
920 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
921 debug_printf("rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
922 debug_printf("rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
923 debug_printf("alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
924 debug_printf("alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
925 debug_printf("alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
926 }
927 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
928 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
929 if(key->sampler[i].format) {
930 debug_printf("sampler[%u] = \n", i);
931 debug_printf(" .format = %s\n",
932 util_format_name(key->sampler[i].format));
933 debug_printf(" .target = %s\n",
934 util_dump_tex_target(key->sampler[i].target, TRUE));
935 debug_printf(" .pot = %u %u %u\n",
936 key->sampler[i].pot_width,
937 key->sampler[i].pot_height,
938 key->sampler[i].pot_depth);
939 debug_printf(" .wrap = %s %s %s\n",
940 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
941 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
942 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
943 debug_printf(" .min_img_filter = %s\n",
944 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
945 debug_printf(" .min_mip_filter = %s\n",
946 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
947 debug_printf(" .mag_img_filter = %s\n",
948 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
949 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
950 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
951 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
952 }
953 }
954 }
955
956 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
957 if(!variant)
958 return NULL;
959
960 memcpy(&variant->key, key, sizeof *key);
961
962 generate_fragment(lp, shader, variant, RAST_WHOLE);
963 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
964
965 /* TODO: most of these can be relaxed, in particular the colormask */
966 variant->opaque =
967 !key->blend.logicop_enable &&
968 !key->blend.rt[0].blend_enable &&
969 key->blend.rt[0].colormask == 0xf &&
970 !key->stencil[0].enabled &&
971 !key->alpha.enabled &&
972 !key->depth.enabled &&
973 !key->scissor &&
974 !shader->info.uses_kill
975 ? TRUE : FALSE;
976
977 /* insert new variant into linked list */
978 variant->next = shader->variants;
979 shader->variants = variant;
980
981 return variant;
982 }
983
984
985 static void *
986 llvmpipe_create_fs_state(struct pipe_context *pipe,
987 const struct pipe_shader_state *templ)
988 {
989 struct lp_fragment_shader *shader;
990
991 shader = CALLOC_STRUCT(lp_fragment_shader);
992 if (!shader)
993 return NULL;
994
995 /* get/save the summary info for this shader */
996 tgsi_scan_shader(templ->tokens, &shader->info);
997
998 /* we need to keep a local copy of the tokens */
999 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
1000
1001 if (gallivm_debug & GALLIVM_DEBUG_TGSI) {
1002 debug_printf("llvmpipe: Create fragment shader %p:\n", (void *) shader);
1003 tgsi_dump(templ->tokens, 0);
1004 }
1005
1006 return shader;
1007 }
1008
1009
1010 static void
1011 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
1012 {
1013 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1014
1015 if (llvmpipe->fs == fs)
1016 return;
1017
1018 draw_flush(llvmpipe->draw);
1019
1020 llvmpipe->fs = fs;
1021
1022 llvmpipe->dirty |= LP_NEW_FS;
1023 }
1024
1025
1026 static void
1027 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1028 {
1029 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1030 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
1031 struct lp_fragment_shader *shader = fs;
1032 struct lp_fragment_shader_variant *variant;
1033
1034 assert(fs != llvmpipe->fs);
1035 (void) llvmpipe;
1036
1037 /*
1038 * XXX: we need to flush the context until we have some sort of reference
1039 * counting in fragment shaders as they may still be binned
1040 */
1041 draw_flush(llvmpipe->draw);
1042 lp_setup_flush(llvmpipe->setup, 0);
1043
1044 variant = shader->variants;
1045 while(variant) {
1046 struct lp_fragment_shader_variant *next = variant->next;
1047 unsigned i;
1048
1049 for (i = 0; i < Elements(variant->function); i++) {
1050 if (variant->function[i]) {
1051 if (variant->jit_function[i])
1052 LLVMFreeMachineCodeForFunction(screen->engine,
1053 variant->function[i]);
1054 LLVMDeleteFunction(variant->function[i]);
1055 }
1056 }
1057
1058 FREE(variant);
1059
1060 variant = next;
1061 }
1062
1063 FREE((void *) shader->base.tokens);
1064 FREE(shader);
1065 }
1066
1067
1068
1069 static void
1070 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1071 uint shader, uint index,
1072 struct pipe_resource *constants)
1073 {
1074 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1075 unsigned size = constants ? constants->width0 : 0;
1076 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1077
1078 assert(shader < PIPE_SHADER_TYPES);
1079 assert(index == 0);
1080
1081 if(llvmpipe->constants[shader] == constants)
1082 return;
1083
1084 draw_flush(llvmpipe->draw);
1085
1086 /* note: reference counting */
1087 pipe_resource_reference(&llvmpipe->constants[shader], constants);
1088
1089 if(shader == PIPE_SHADER_VERTEX) {
1090 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX, 0,
1091 data, size);
1092 }
1093
1094 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1095 }
1096
1097
1098 /**
1099 * Return the blend factor equivalent to a destination alpha of one.
1100 */
1101 static INLINE unsigned
1102 force_dst_alpha_one(unsigned factor, boolean alpha)
1103 {
1104 switch(factor) {
1105 case PIPE_BLENDFACTOR_DST_ALPHA:
1106 return PIPE_BLENDFACTOR_ONE;
1107 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1108 return PIPE_BLENDFACTOR_ZERO;
1109 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1110 return PIPE_BLENDFACTOR_ZERO;
1111 }
1112
1113 if (alpha) {
1114 switch(factor) {
1115 case PIPE_BLENDFACTOR_DST_COLOR:
1116 return PIPE_BLENDFACTOR_ONE;
1117 case PIPE_BLENDFACTOR_INV_DST_COLOR:
1118 return PIPE_BLENDFACTOR_ZERO;
1119 }
1120 }
1121
1122 return factor;
1123 }
1124
1125
1126 /**
1127 * We need to generate several variants of the fragment pipeline to match
1128 * all the combinations of the contributing state atoms.
1129 *
1130 * TODO: there is actually no reason to tie this to context state -- the
1131 * generated code could be cached globally in the screen.
1132 */
1133 static void
1134 make_variant_key(struct llvmpipe_context *lp,
1135 struct lp_fragment_shader *shader,
1136 struct lp_fragment_shader_variant_key *key)
1137 {
1138 unsigned i;
1139
1140 memset(key, 0, sizeof *key);
1141
1142 if (lp->framebuffer.zsbuf) {
1143 if (lp->depth_stencil->depth.enabled) {
1144 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1145 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1146 }
1147 if (lp->depth_stencil->stencil[0].enabled) {
1148 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1149 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1150 }
1151 }
1152
1153 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1154 if(key->alpha.enabled)
1155 key->alpha.func = lp->depth_stencil->alpha.func;
1156 /* alpha.ref_value is passed in jit_context */
1157
1158 key->flatshade = lp->rasterizer->flatshade;
1159 key->scissor = lp->rasterizer->scissor;
1160 if (lp->active_query_count) {
1161 key->occlusion_count = TRUE;
1162 }
1163
1164 if (lp->framebuffer.nr_cbufs) {
1165 memcpy(&key->blend, lp->blend, sizeof key->blend);
1166 }
1167
1168 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1169 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1170 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1171 const struct util_format_description *format_desc;
1172 unsigned chan;
1173
1174 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1175 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1176 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1177
1178 blend_rt->colormask = lp->blend->rt[i].colormask;
1179
1180 /* mask out color channels not present in the color buffer.
1181 * Should be simple to incorporate per-cbuf writemasks:
1182 */
1183 for(chan = 0; chan < 4; ++chan) {
1184 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1185
1186 if(swizzle > UTIL_FORMAT_SWIZZLE_W)
1187 blend_rt->colormask &= ~(1 << chan);
1188 }
1189
1190 /*
1191 * Our swizzled render tiles always have an alpha channel, but the linear
1192 * render target format often does not, so force here the dst alpha to be
1193 * one.
1194 *
1195 * This is not a mere optimization. Wrong results will be produced if the
1196 * dst alpha is used, the dst format does not have alpha, and the previous
1197 * rendering was not flushed from the swizzled to linear buffer. For
1198 * example, NonPowTwo DCT.
1199 *
1200 * TODO: This should be generalized to all channels for better
1201 * performance, but only alpha causes correctness issues.
1202 */
1203 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1204 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor, FALSE);
1205 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor, FALSE);
1206 blend_rt->alpha_src_factor = force_dst_alpha_one(blend_rt->alpha_src_factor, TRUE);
1207 blend_rt->alpha_dst_factor = force_dst_alpha_one(blend_rt->alpha_dst_factor, TRUE);
1208 }
1209 }
1210
1211 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1212 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1213 lp_sampler_static_state(&key->sampler[i], lp->fragment_sampler_views[i], lp->sampler[i]);
1214 }
1215
1216
1217 /**
1218 * Update fragment state. This is called just prior to drawing
1219 * something when some fragment-related state has changed.
1220 */
1221 void
1222 llvmpipe_update_fs(struct llvmpipe_context *lp)
1223 {
1224 struct lp_fragment_shader *shader = lp->fs;
1225 struct lp_fragment_shader_variant_key key;
1226 struct lp_fragment_shader_variant *variant;
1227
1228 make_variant_key(lp, shader, &key);
1229
1230 variant = shader->variants;
1231 while(variant) {
1232 if(memcmp(&variant->key, &key, sizeof key) == 0)
1233 break;
1234
1235 variant = variant->next;
1236 }
1237
1238 if (!variant) {
1239 int64_t t0, t1;
1240 int64_t dt;
1241 t0 = os_time_get();
1242
1243 variant = generate_variant(lp, shader, &key);
1244
1245 t1 = os_time_get();
1246 dt = t1 - t0;
1247 LP_COUNT_ADD(llvm_compile_time, dt);
1248 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1249 }
1250
1251 lp_setup_set_fs_functions(lp->setup,
1252 variant->jit_function[RAST_WHOLE],
1253 variant->jit_function[RAST_EDGE_TEST],
1254 variant->opaque);
1255 }
1256
1257
1258
1259 void
1260 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1261 {
1262 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1263 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1264 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1265
1266 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1267 }