llvmpipe: maintain fragment shader state for draw module
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_init.h"
79 #include "gallivm/lp_bld_intr.h"
80 #include "gallivm/lp_bld_logic.h"
81 #include "gallivm/lp_bld_tgsi.h"
82 #include "gallivm/lp_bld_swizzle.h"
83 #include "gallivm/lp_bld_flow.h"
84 #include "gallivm/lp_bld_debug.h"
85
86 #include "lp_bld_alpha.h"
87 #include "lp_bld_blend.h"
88 #include "lp_bld_depth.h"
89 #include "lp_bld_interp.h"
90 #include "lp_context.h"
91 #include "lp_debug.h"
92 #include "lp_perf.h"
93 #include "lp_screen.h"
94 #include "lp_setup.h"
95 #include "lp_state.h"
96 #include "lp_tex_sample.h"
97 #include "lp_flush.h"
98 #include "lp_state_fs.h"
99
100
101 #include <llvm-c/Analysis.h>
102
103
104 static unsigned fs_no = 0;
105
106
107 /**
108 * Generate the depth /stencil test code.
109 */
110 static void
111 generate_depth_stencil(LLVMBuilderRef builder,
112 const struct lp_fragment_shader_variant_key *key,
113 struct lp_type src_type,
114 struct lp_build_mask_context *mask,
115 LLVMValueRef stencil_refs[2],
116 LLVMValueRef src,
117 LLVMValueRef dst_ptr,
118 LLVMValueRef facing,
119 LLVMValueRef counter)
120 {
121 const struct util_format_description *format_desc;
122 struct lp_type dst_type;
123
124 if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
125 return;
126
127 format_desc = util_format_description(key->zsbuf_format);
128 assert(format_desc);
129
130 /*
131 * Depths are expected to be between 0 and 1, even if they are stored in
132 * floats. Setting these bits here will ensure that the lp_build_conv() call
133 * below won't try to unnecessarily clamp the incoming values.
134 */
135 if(src_type.floating) {
136 src_type.sign = FALSE;
137 src_type.norm = TRUE;
138 }
139 else {
140 assert(!src_type.sign);
141 assert(src_type.norm);
142 }
143
144 /* Pick the depth type. */
145 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
146
147 /* FIXME: Cope with a depth test type with a different bit width. */
148 assert(dst_type.width == src_type.width);
149 assert(dst_type.length == src_type.length);
150
151 /* Convert fragment Z from float to integer */
152 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
153
154 dst_ptr = LLVMBuildBitCast(builder,
155 dst_ptr,
156 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
157 lp_build_depth_stencil_test(builder,
158 &key->depth,
159 key->stencil,
160 dst_type,
161 format_desc,
162 mask,
163 stencil_refs,
164 src,
165 dst_ptr,
166 facing,
167 counter);
168 }
169
170
171 /**
172 * Expand the relevent bits of mask_input to a 4-dword mask for the
173 * four pixels in a 2x2 quad. This will set the four elements of the
174 * quad mask vector to 0 or ~0.
175 *
176 * \param quad which quad of the quad group to test, in [0,3]
177 * \param mask_input bitwise mask for the whole 4x4 stamp
178 */
179 static LLVMValueRef
180 generate_quad_mask(LLVMBuilderRef builder,
181 struct lp_type fs_type,
182 unsigned quad,
183 LLVMValueRef mask_input) /* int32 */
184 {
185 struct lp_type mask_type;
186 LLVMTypeRef i32t = LLVMInt32Type();
187 LLVMValueRef bits[4];
188 LLVMValueRef mask;
189 int shift;
190
191 /*
192 * XXX: We'll need a different path for 16 x u8
193 */
194 assert(fs_type.width == 32);
195 assert(fs_type.length == 4);
196 mask_type = lp_int_type(fs_type);
197
198 /*
199 * mask_input >>= (quad * 4)
200 */
201
202 switch (quad) {
203 case 0:
204 shift = 0;
205 break;
206 case 1:
207 shift = 2;
208 break;
209 case 2:
210 shift = 8;
211 break;
212 case 3:
213 shift = 10;
214 break;
215 default:
216 assert(0);
217 shift = 0;
218 }
219
220 mask_input = LLVMBuildLShr(builder,
221 mask_input,
222 LLVMConstInt(i32t, shift, 0),
223 "");
224
225 /*
226 * mask = { mask_input & (1 << i), for i in [0,3] }
227 */
228
229 mask = lp_build_broadcast(builder, lp_build_vec_type(mask_type), mask_input);
230
231 bits[0] = LLVMConstInt(i32t, 1 << 0, 0);
232 bits[1] = LLVMConstInt(i32t, 1 << 1, 0);
233 bits[2] = LLVMConstInt(i32t, 1 << 4, 0);
234 bits[3] = LLVMConstInt(i32t, 1 << 5, 0);
235
236 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, 4), "");
237
238 /*
239 * mask = mask != 0 ? ~0 : 0
240 */
241
242 mask = lp_build_compare(builder,
243 mask_type, PIPE_FUNC_NOTEQUAL,
244 mask,
245 lp_build_const_int_vec(mask_type, 0));
246
247 return mask;
248 }
249
250
251
252 /**
253 * Generate the fragment shader, depth/stencil test, and alpha tests.
254 * \param i which quad in the tile, in range [0,3]
255 * \param partial_mask if 1, do mask_input testing
256 */
257 static void
258 generate_fs(struct llvmpipe_context *lp,
259 struct lp_fragment_shader *shader,
260 const struct lp_fragment_shader_variant_key *key,
261 LLVMBuilderRef builder,
262 struct lp_type type,
263 LLVMValueRef context_ptr,
264 unsigned i,
265 const struct lp_build_interp_soa_context *interp,
266 struct lp_build_sampler_soa *sampler,
267 LLVMValueRef *pmask,
268 LLVMValueRef (*color)[4],
269 LLVMValueRef depth_ptr,
270 LLVMValueRef facing,
271 unsigned partial_mask,
272 LLVMValueRef mask_input,
273 LLVMValueRef counter)
274 {
275 const struct tgsi_token *tokens = shader->base.tokens;
276 LLVMTypeRef vec_type;
277 LLVMValueRef consts_ptr;
278 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
279 LLVMValueRef z = interp->pos[2];
280 LLVMValueRef stencil_refs[2];
281 struct lp_build_flow_context *flow;
282 struct lp_build_mask_context mask;
283 boolean early_depth_stencil_test;
284 unsigned attrib;
285 unsigned chan;
286 unsigned cbuf;
287
288 assert(i < 4);
289
290 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
291 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
292
293 vec_type = lp_build_vec_type(type);
294
295 consts_ptr = lp_jit_context_constants(builder, context_ptr);
296
297 flow = lp_build_flow_create(builder);
298
299 memset(outputs, 0, sizeof outputs);
300
301 lp_build_flow_scope_begin(flow);
302
303 /* Declare the color and z variables */
304 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
305 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
306 color[cbuf][chan] = LLVMGetUndef(vec_type);
307 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
308 }
309 }
310 lp_build_flow_scope_declare(flow, &z);
311
312 /* do triangle edge testing */
313 if (partial_mask) {
314 *pmask = generate_quad_mask(builder, type,
315 i, mask_input);
316 }
317 else {
318 *pmask = lp_build_const_int_vec(type, ~0);
319 }
320
321 /* 'mask' will control execution based on quad's pixel alive/killed state */
322 lp_build_mask_begin(&mask, flow, type, *pmask);
323
324 early_depth_stencil_test =
325 (key->depth.enabled || key->stencil[0].enabled) &&
326 !key->alpha.enabled &&
327 !shader->info.uses_kill &&
328 !shader->info.writes_z;
329
330 if (early_depth_stencil_test)
331 generate_depth_stencil(builder, key,
332 type, &mask,
333 stencil_refs, z, depth_ptr, facing, counter);
334
335 lp_build_tgsi_soa(builder, tokens, type, &mask,
336 consts_ptr, interp->pos, interp->inputs,
337 outputs, sampler, &shader->info);
338
339 /* loop over fragment shader outputs/results */
340 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
341 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
342 if(outputs[attrib][chan]) {
343 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
344 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
345
346 switch (shader->info.output_semantic_name[attrib]) {
347 case TGSI_SEMANTIC_COLOR:
348 {
349 unsigned cbuf = shader->info.output_semantic_index[attrib];
350
351 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
352
353 /* Alpha test */
354 /* XXX: should only test the final assignment to alpha */
355 if (cbuf == 0 && chan == 3 && key->alpha.enabled) {
356 LLVMValueRef alpha = out;
357 LLVMValueRef alpha_ref_value;
358 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
359 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
360 lp_build_alpha_test(builder, key->alpha.func, type,
361 &mask, alpha, alpha_ref_value);
362 }
363
364 color[cbuf][chan] = out;
365 break;
366 }
367
368 case TGSI_SEMANTIC_POSITION:
369 if(chan == 2)
370 z = out;
371 break;
372 }
373 }
374 }
375 }
376
377 if (!early_depth_stencil_test)
378 generate_depth_stencil(builder, key,
379 type, &mask,
380 stencil_refs, z, depth_ptr, facing, counter);
381
382 lp_build_mask_end(&mask);
383
384 lp_build_flow_scope_end(flow);
385
386 lp_build_flow_destroy(flow);
387
388 *pmask = mask.value;
389
390 }
391
392
393 /**
394 * Generate color blending and color output.
395 * \param rt the render target index (to index blend, colormask state)
396 * \param type the pixel color type
397 * \param context_ptr pointer to the runtime JIT context
398 * \param mask execution mask (active fragment/pixel mask)
399 * \param src colors from the fragment shader
400 * \param dst_ptr the destination color buffer pointer
401 */
402 static void
403 generate_blend(const struct pipe_blend_state *blend,
404 unsigned rt,
405 LLVMBuilderRef builder,
406 struct lp_type type,
407 LLVMValueRef context_ptr,
408 LLVMValueRef mask,
409 LLVMValueRef *src,
410 LLVMValueRef dst_ptr)
411 {
412 struct lp_build_context bld;
413 struct lp_build_flow_context *flow;
414 struct lp_build_mask_context mask_ctx;
415 LLVMTypeRef vec_type;
416 LLVMValueRef const_ptr;
417 LLVMValueRef con[4];
418 LLVMValueRef dst[4];
419 LLVMValueRef res[4];
420 unsigned chan;
421
422 lp_build_context_init(&bld, builder, type);
423
424 flow = lp_build_flow_create(builder);
425
426 /* we'll use this mask context to skip blending if all pixels are dead */
427 lp_build_mask_begin(&mask_ctx, flow, type, mask);
428
429 vec_type = lp_build_vec_type(type);
430
431 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
432 const_ptr = LLVMBuildBitCast(builder, const_ptr,
433 LLVMPointerType(vec_type, 0), "");
434
435 /* load constant blend color and colors from the dest color buffer */
436 for(chan = 0; chan < 4; ++chan) {
437 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
438 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
439
440 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
441
442 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
443 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
444 }
445
446 /* do blend */
447 lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
448
449 /* store results to color buffer */
450 for(chan = 0; chan < 4; ++chan) {
451 if(blend->rt[rt].colormask & (1 << chan)) {
452 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
453 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
454 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
455 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
456 }
457 }
458
459 lp_build_mask_end(&mask_ctx);
460 lp_build_flow_destroy(flow);
461 }
462
463
464 /**
465 * Generate the runtime callable function for the whole fragment pipeline.
466 * Note that the function which we generate operates on a block of 16
467 * pixels at at time. The block contains 2x2 quads. Each quad contains
468 * 2x2 pixels.
469 */
470 static void
471 generate_fragment(struct llvmpipe_context *lp,
472 struct lp_fragment_shader *shader,
473 struct lp_fragment_shader_variant *variant,
474 unsigned partial_mask)
475 {
476 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
477 const struct lp_fragment_shader_variant_key *key = &variant->key;
478 char func_name[256];
479 struct lp_type fs_type;
480 struct lp_type blend_type;
481 LLVMTypeRef fs_elem_type;
482 LLVMTypeRef fs_int_vec_type;
483 LLVMTypeRef blend_vec_type;
484 LLVMTypeRef arg_types[11];
485 LLVMTypeRef func_type;
486 LLVMValueRef context_ptr;
487 LLVMValueRef x;
488 LLVMValueRef y;
489 LLVMValueRef a0_ptr;
490 LLVMValueRef dadx_ptr;
491 LLVMValueRef dady_ptr;
492 LLVMValueRef color_ptr_ptr;
493 LLVMValueRef depth_ptr;
494 LLVMValueRef mask_input;
495 LLVMValueRef counter = NULL;
496 LLVMBasicBlockRef block;
497 LLVMBuilderRef builder;
498 struct lp_build_sampler_soa *sampler;
499 struct lp_build_interp_soa_context interp;
500 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
501 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
502 LLVMValueRef blend_mask;
503 LLVMValueRef function;
504 LLVMValueRef facing;
505 unsigned num_fs;
506 unsigned i;
507 unsigned chan;
508 unsigned cbuf;
509
510
511 /* TODO: actually pick these based on the fs and color buffer
512 * characteristics. */
513
514 memset(&fs_type, 0, sizeof fs_type);
515 fs_type.floating = TRUE; /* floating point values */
516 fs_type.sign = TRUE; /* values are signed */
517 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
518 fs_type.width = 32; /* 32-bit float */
519 fs_type.length = 4; /* 4 elements per vector */
520 num_fs = 4; /* number of quads per block */
521
522 memset(&blend_type, 0, sizeof blend_type);
523 blend_type.floating = FALSE; /* values are integers */
524 blend_type.sign = FALSE; /* values are unsigned */
525 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
526 blend_type.width = 8; /* 8-bit ubyte values */
527 blend_type.length = 16; /* 16 elements per vector */
528
529 /*
530 * Generate the function prototype. Any change here must be reflected in
531 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
532 */
533
534 fs_elem_type = lp_build_elem_type(fs_type);
535 fs_int_vec_type = lp_build_int_vec_type(fs_type);
536
537 blend_vec_type = lp_build_vec_type(blend_type);
538
539 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
540 shader->no, variant->no, partial_mask ? "partial" : "whole");
541
542 arg_types[0] = screen->context_ptr_type; /* context */
543 arg_types[1] = LLVMInt32Type(); /* x */
544 arg_types[2] = LLVMInt32Type(); /* y */
545 arg_types[3] = LLVMFloatType(); /* facing */
546 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
547 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
548 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
549 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
550 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
551 arg_types[9] = LLVMInt32Type(); /* mask_input */
552 arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
553
554 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
555
556 function = LLVMAddFunction(screen->module, func_name, func_type);
557 LLVMSetFunctionCallConv(function, LLVMCCallConv);
558
559 variant->function[partial_mask] = function;
560
561
562 /* XXX: need to propagate noalias down into color param now we are
563 * passing a pointer-to-pointer?
564 */
565 for(i = 0; i < Elements(arg_types); ++i)
566 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
567 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
568
569 context_ptr = LLVMGetParam(function, 0);
570 x = LLVMGetParam(function, 1);
571 y = LLVMGetParam(function, 2);
572 facing = LLVMGetParam(function, 3);
573 a0_ptr = LLVMGetParam(function, 4);
574 dadx_ptr = LLVMGetParam(function, 5);
575 dady_ptr = LLVMGetParam(function, 6);
576 color_ptr_ptr = LLVMGetParam(function, 7);
577 depth_ptr = LLVMGetParam(function, 8);
578 mask_input = LLVMGetParam(function, 9);
579
580 lp_build_name(context_ptr, "context");
581 lp_build_name(x, "x");
582 lp_build_name(y, "y");
583 lp_build_name(a0_ptr, "a0");
584 lp_build_name(dadx_ptr, "dadx");
585 lp_build_name(dady_ptr, "dady");
586 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
587 lp_build_name(depth_ptr, "depth");
588 lp_build_name(mask_input, "mask_input");
589
590 if (key->occlusion_count) {
591 counter = LLVMGetParam(function, 10);
592 lp_build_name(counter, "counter");
593 }
594
595 /*
596 * Function body
597 */
598
599 block = LLVMAppendBasicBlock(function, "entry");
600 builder = LLVMCreateBuilder();
601 LLVMPositionBuilderAtEnd(builder, block);
602
603 /*
604 * The shader input interpolation info is not explicitely baked in the
605 * shader key, but everything it derives from (TGSI, and flatshade) is
606 * already included in the shader key.
607 */
608 lp_build_interp_soa_init(&interp,
609 lp->num_inputs,
610 lp->inputs,
611 builder, fs_type,
612 a0_ptr, dadx_ptr, dady_ptr,
613 x, y);
614
615 /* code generated texture sampling */
616 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
617
618 /* loop over quads in the block */
619 for(i = 0; i < num_fs; ++i) {
620 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
621 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
622 LLVMValueRef depth_ptr_i;
623
624 if(i != 0)
625 lp_build_interp_soa_update(&interp, i);
626
627 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
628
629 generate_fs(lp, shader, key,
630 builder,
631 fs_type,
632 context_ptr,
633 i,
634 &interp,
635 sampler,
636 &fs_mask[i], /* output */
637 out_color,
638 depth_ptr_i,
639 facing,
640 partial_mask,
641 mask_input,
642 counter);
643
644 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
645 for(chan = 0; chan < NUM_CHANNELS; ++chan)
646 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
647 }
648
649 sampler->destroy(sampler);
650
651 /* Loop over color outputs / color buffers to do blending.
652 */
653 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
654 LLVMValueRef color_ptr;
655 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
656 LLVMValueRef blend_in_color[NUM_CHANNELS];
657 unsigned rt;
658
659 /*
660 * Convert the fs's output color and mask to fit to the blending type.
661 */
662 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
663 lp_build_conv(builder, fs_type, blend_type,
664 fs_out_color[cbuf][chan], num_fs,
665 &blend_in_color[chan], 1);
666 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
667 }
668
669 if (partial_mask || !variant->opaque) {
670 lp_build_conv_mask(builder, fs_type, blend_type,
671 fs_mask, num_fs,
672 &blend_mask, 1);
673 } else {
674 blend_mask = lp_build_const_int_vec(blend_type, ~0);
675 }
676
677 color_ptr = LLVMBuildLoad(builder,
678 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
679 "");
680 lp_build_name(color_ptr, "color_ptr%d", cbuf);
681
682 /* which blend/colormask state to use */
683 rt = key->blend.independent_blend_enable ? cbuf : 0;
684
685 /*
686 * Blending.
687 */
688 generate_blend(&key->blend,
689 rt,
690 builder,
691 blend_type,
692 context_ptr,
693 blend_mask,
694 blend_in_color,
695 color_ptr);
696 }
697
698 #ifdef PIPE_ARCH_X86
699 /* Avoid corrupting the FPU stack on 32bit OSes. */
700 lp_build_intrinsic(builder, "llvm.x86.mmx.emms", LLVMVoidType(), NULL, 0);
701 #endif
702
703 LLVMBuildRetVoid(builder);
704
705 LLVMDisposeBuilder(builder);
706
707
708 /* Verify the LLVM IR. If invalid, dump and abort */
709 #ifdef DEBUG
710 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
711 if (1)
712 lp_debug_dump_value(function);
713 abort();
714 }
715 #endif
716
717 /* Apply optimizations to LLVM IR */
718 LLVMRunFunctionPassManager(screen->pass, function);
719
720 if (gallivm_debug & GALLIVM_DEBUG_IR) {
721 /* Print the LLVM IR to stderr */
722 lp_debug_dump_value(function);
723 debug_printf("\n");
724 }
725
726 /*
727 * Translate the LLVM IR into machine code.
728 */
729 {
730 void *f = LLVMGetPointerToGlobal(screen->engine, function);
731
732 variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);
733
734 if (gallivm_debug & GALLIVM_DEBUG_ASM) {
735 lp_disassemble(f);
736 }
737 lp_func_delete_body(function);
738 }
739 }
740
741
742 static void
743 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
744 {
745 unsigned i;
746
747 debug_printf("fs variant %p:\n", (void *) key);
748
749 for (i = 0; i < key->nr_cbufs; ++i) {
750 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
751 }
752 if (key->depth.enabled) {
753 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
754 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
755 debug_printf("depth.writemask = %u\n", key->depth.writemask);
756 }
757
758 for (i = 0; i < 2; ++i) {
759 if (key->stencil[i].enabled) {
760 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
761 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
762 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
763 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
764 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
765 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
766 }
767 }
768
769 if (key->alpha.enabled) {
770 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
771 }
772
773 if (key->blend.logicop_enable) {
774 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
775 }
776 else if (key->blend.rt[0].blend_enable) {
777 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
778 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
779 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
780 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
781 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
782 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
783 }
784 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
785 for (i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
786 if (key->sampler[i].format) {
787 debug_printf("sampler[%u] = \n", i);
788 debug_printf(" .format = %s\n",
789 util_format_name(key->sampler[i].format));
790 debug_printf(" .target = %s\n",
791 util_dump_tex_target(key->sampler[i].target, TRUE));
792 debug_printf(" .pot = %u %u %u\n",
793 key->sampler[i].pot_width,
794 key->sampler[i].pot_height,
795 key->sampler[i].pot_depth);
796 debug_printf(" .wrap = %s %s %s\n",
797 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
798 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
799 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
800 debug_printf(" .min_img_filter = %s\n",
801 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
802 debug_printf(" .min_mip_filter = %s\n",
803 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
804 debug_printf(" .mag_img_filter = %s\n",
805 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
806 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
807 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
808 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
809 }
810 }
811 }
812
813
814 void
815 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
816 {
817 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
818 variant->shader->no, variant->no);
819 tgsi_dump(variant->shader->base.tokens, 0);
820 dump_fs_variant_key(&variant->key);
821 debug_printf("variant->opaque = %u\n", variant->opaque);
822 debug_printf("\n");
823 }
824
825 static struct lp_fragment_shader_variant *
826 generate_variant(struct llvmpipe_context *lp,
827 struct lp_fragment_shader *shader,
828 const struct lp_fragment_shader_variant_key *key)
829 {
830 struct lp_fragment_shader_variant *variant;
831 boolean fullcolormask;
832
833 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
834 if(!variant)
835 return NULL;
836
837 variant->shader = shader;
838 variant->list_item_global.base = variant;
839 variant->list_item_local.base = variant;
840 variant->no = shader->variants_created++;
841
842 memcpy(&variant->key, key, shader->variant_key_size);
843
844 /*
845 * Determine whether we are touching all channels in the color buffer.
846 */
847 fullcolormask = FALSE;
848 if (key->nr_cbufs == 1) {
849 const struct util_format_description *format_desc;
850 format_desc = util_format_description(key->cbuf_format[0]);
851 if ((~key->blend.rt[0].colormask &
852 util_format_colormask(format_desc)) == 0) {
853 fullcolormask = TRUE;
854 }
855 }
856
857 variant->opaque =
858 !key->blend.logicop_enable &&
859 !key->blend.rt[0].blend_enable &&
860 fullcolormask &&
861 !key->stencil[0].enabled &&
862 !key->alpha.enabled &&
863 !key->depth.enabled &&
864 !shader->info.uses_kill
865 ? TRUE : FALSE;
866
867
868 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
869 lp_debug_fs_variant(variant);
870 }
871
872 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
873
874 if (variant->opaque) {
875 /* Specialized shader, which doesn't need to read the color buffer. */
876 generate_fragment(lp, shader, variant, RAST_WHOLE);
877 } else {
878 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
879 }
880
881 return variant;
882 }
883
884
885 static void *
886 llvmpipe_create_fs_state(struct pipe_context *pipe,
887 const struct pipe_shader_state *templ)
888 {
889 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
890 struct lp_fragment_shader *shader;
891 int nr_samplers;
892
893 shader = CALLOC_STRUCT(lp_fragment_shader);
894 if (!shader)
895 return NULL;
896
897 shader->no = fs_no++;
898 make_empty_list(&shader->variants);
899
900 /* get/save the summary info for this shader */
901 tgsi_scan_shader(templ->tokens, &shader->info);
902
903 /* we need to keep a local copy of the tokens */
904 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
905
906 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
907 if (shader->draw_data == NULL) {
908 FREE((void *) shader->base.tokens);
909 return NULL;
910 }
911
912 nr_samplers = shader->info.file_max[TGSI_FILE_SAMPLER] + 1;
913
914 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
915 sampler[nr_samplers]);
916
917 if (LP_DEBUG & DEBUG_TGSI) {
918 unsigned attrib;
919 debug_printf("llvmpipe: Create fragment shader #%u %p:\n", shader->no, (void *) shader);
920 tgsi_dump(templ->tokens, 0);
921 debug_printf("usage masks:\n");
922 for (attrib = 0; attrib < shader->info.num_inputs; ++attrib) {
923 unsigned usage_mask = shader->info.input_usage_mask[attrib];
924 debug_printf(" IN[%u].%s%s%s%s\n",
925 attrib,
926 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
927 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
928 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
929 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
930 }
931 debug_printf("\n");
932 }
933
934 return shader;
935 }
936
937
938 static void
939 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
940 {
941 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
942
943 if (llvmpipe->fs == fs)
944 return;
945
946 draw_flush(llvmpipe->draw);
947
948 draw_bind_fragment_shader(llvmpipe->draw,
949 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
950
951 llvmpipe->fs = fs;
952
953 llvmpipe->dirty |= LP_NEW_FS;
954 }
955
956 static void
957 remove_shader_variant(struct llvmpipe_context *lp,
958 struct lp_fragment_shader_variant *variant)
959 {
960 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
961 unsigned i;
962
963 if (gallivm_debug & GALLIVM_DEBUG_IR) {
964 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached #%u v total cached #%u\n",
965 variant->shader->no, variant->no, variant->shader->variants_created,
966 variant->shader->variants_cached, lp->nr_fs_variants);
967 }
968 for (i = 0; i < Elements(variant->function); i++) {
969 if (variant->function[i]) {
970 if (variant->jit_function[i])
971 LLVMFreeMachineCodeForFunction(screen->engine,
972 variant->function[i]);
973 LLVMDeleteFunction(variant->function[i]);
974 }
975 }
976 remove_from_list(&variant->list_item_local);
977 variant->shader->variants_cached--;
978 remove_from_list(&variant->list_item_global);
979 lp->nr_fs_variants--;
980 FREE(variant);
981 }
982
983 static void
984 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
985 {
986 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
987 struct lp_fragment_shader *shader = fs;
988 struct lp_fs_variant_list_item *li;
989
990 assert(fs != llvmpipe->fs);
991 (void) llvmpipe;
992
993 /*
994 * XXX: we need to flush the context until we have some sort of reference
995 * counting in fragment shaders as they may still be binned
996 * Flushing alone might not sufficient we need to wait on it too.
997 */
998
999 llvmpipe_finish(pipe, __FUNCTION__);
1000
1001 li = first_elem(&shader->variants);
1002 while(!at_end(&shader->variants, li)) {
1003 struct lp_fs_variant_list_item *next = next_elem(li);
1004 remove_shader_variant(llvmpipe, li->base);
1005 li = next;
1006 }
1007
1008 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
1009
1010 assert(shader->variants_cached == 0);
1011 FREE((void *) shader->base.tokens);
1012 FREE(shader);
1013 }
1014
1015
1016
1017 static void
1018 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1019 uint shader, uint index,
1020 struct pipe_resource *constants)
1021 {
1022 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1023 unsigned size = constants ? constants->width0 : 0;
1024 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1025
1026 assert(shader < PIPE_SHADER_TYPES);
1027 assert(index < PIPE_MAX_CONSTANT_BUFFERS);
1028
1029 if(llvmpipe->constants[shader][index] == constants)
1030 return;
1031
1032 draw_flush(llvmpipe->draw);
1033
1034 /* note: reference counting */
1035 pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
1036
1037 if(shader == PIPE_SHADER_VERTEX ||
1038 shader == PIPE_SHADER_GEOMETRY) {
1039 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
1040 index, data, size);
1041 }
1042
1043 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1044 }
1045
1046
1047 /**
1048 * Return the blend factor equivalent to a destination alpha of one.
1049 */
1050 static INLINE unsigned
1051 force_dst_alpha_one(unsigned factor, boolean alpha)
1052 {
1053 switch(factor) {
1054 case PIPE_BLENDFACTOR_DST_ALPHA:
1055 return PIPE_BLENDFACTOR_ONE;
1056 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1057 return PIPE_BLENDFACTOR_ZERO;
1058 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1059 return PIPE_BLENDFACTOR_ZERO;
1060 }
1061
1062 if (alpha) {
1063 switch(factor) {
1064 case PIPE_BLENDFACTOR_DST_COLOR:
1065 return PIPE_BLENDFACTOR_ONE;
1066 case PIPE_BLENDFACTOR_INV_DST_COLOR:
1067 return PIPE_BLENDFACTOR_ZERO;
1068 }
1069 }
1070
1071 return factor;
1072 }
1073
1074
1075 /**
1076 * We need to generate several variants of the fragment pipeline to match
1077 * all the combinations of the contributing state atoms.
1078 *
1079 * TODO: there is actually no reason to tie this to context state -- the
1080 * generated code could be cached globally in the screen.
1081 */
1082 static void
1083 make_variant_key(struct llvmpipe_context *lp,
1084 struct lp_fragment_shader *shader,
1085 struct lp_fragment_shader_variant_key *key)
1086 {
1087 unsigned i;
1088
1089 memset(key, 0, shader->variant_key_size);
1090
1091 if (lp->framebuffer.zsbuf) {
1092 if (lp->depth_stencil->depth.enabled) {
1093 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1094 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1095 }
1096 if (lp->depth_stencil->stencil[0].enabled) {
1097 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1098 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1099 }
1100 }
1101
1102 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1103 if(key->alpha.enabled)
1104 key->alpha.func = lp->depth_stencil->alpha.func;
1105 /* alpha.ref_value is passed in jit_context */
1106
1107 key->flatshade = lp->rasterizer->flatshade;
1108 if (lp->active_query_count) {
1109 key->occlusion_count = TRUE;
1110 }
1111
1112 if (lp->framebuffer.nr_cbufs) {
1113 memcpy(&key->blend, lp->blend, sizeof key->blend);
1114 }
1115
1116 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1117 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1118 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
1119 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1120 const struct util_format_description *format_desc;
1121
1122 key->cbuf_format[i] = format;
1123
1124 format_desc = util_format_description(format);
1125 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1126 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1127
1128 blend_rt->colormask = lp->blend->rt[i].colormask;
1129
1130 /*
1131 * Mask out color channels not present in the color buffer.
1132 */
1133 blend_rt->colormask &= util_format_colormask(format_desc);
1134
1135 /*
1136 * Our swizzled render tiles always have an alpha channel, but the linear
1137 * render target format often does not, so force here the dst alpha to be
1138 * one.
1139 *
1140 * This is not a mere optimization. Wrong results will be produced if the
1141 * dst alpha is used, the dst format does not have alpha, and the previous
1142 * rendering was not flushed from the swizzled to linear buffer. For
1143 * example, NonPowTwo DCT.
1144 *
1145 * TODO: This should be generalized to all channels for better
1146 * performance, but only alpha causes correctness issues.
1147 */
1148 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1149 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor, FALSE);
1150 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor, FALSE);
1151 blend_rt->alpha_src_factor = force_dst_alpha_one(blend_rt->alpha_src_factor, TRUE);
1152 blend_rt->alpha_dst_factor = force_dst_alpha_one(blend_rt->alpha_dst_factor, TRUE);
1153 }
1154 }
1155
1156 /* This value will be the same for all the variants of a given shader:
1157 */
1158 key->nr_samplers = shader->info.file_max[TGSI_FILE_SAMPLER] + 1;
1159
1160 for(i = 0; i < key->nr_samplers; ++i) {
1161 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
1162 lp_sampler_static_state(&key->sampler[i],
1163 lp->fragment_sampler_views[i],
1164 lp->sampler[i]);
1165 }
1166 }
1167 }
1168
1169 /**
1170 * Update fragment state. This is called just prior to drawing
1171 * something when some fragment-related state has changed.
1172 */
1173 void
1174 llvmpipe_update_fs(struct llvmpipe_context *lp)
1175 {
1176 struct lp_fragment_shader *shader = lp->fs;
1177 struct lp_fragment_shader_variant_key key;
1178 struct lp_fragment_shader_variant *variant = NULL;
1179 struct lp_fs_variant_list_item *li;
1180
1181 make_variant_key(lp, shader, &key);
1182
1183 li = first_elem(&shader->variants);
1184 while(!at_end(&shader->variants, li)) {
1185 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
1186 variant = li->base;
1187 break;
1188 }
1189 li = next_elem(li);
1190 }
1191
1192 if (variant) {
1193 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1194 }
1195 else {
1196 int64_t t0, t1;
1197 int64_t dt;
1198 unsigned i;
1199 if (lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS) {
1200 struct pipe_context *pipe = &lp->pipe;
1201
1202 /*
1203 * XXX: we need to flush the context until we have some sort of reference
1204 * counting in fragment shaders as they may still be binned
1205 * Flushing alone might not be sufficient we need to wait on it too.
1206 */
1207 llvmpipe_finish(pipe, __FUNCTION__);
1208
1209 for (i = 0; i < LP_MAX_SHADER_VARIANTS / 4; i++) {
1210 struct lp_fs_variant_list_item *item = last_elem(&lp->fs_variants_list);
1211 remove_shader_variant(lp, item->base);
1212 }
1213 }
1214 t0 = os_time_get();
1215
1216 variant = generate_variant(lp, shader, &key);
1217
1218 t1 = os_time_get();
1219 dt = t1 - t0;
1220 LP_COUNT_ADD(llvm_compile_time, dt);
1221 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1222
1223 if (variant) {
1224 insert_at_head(&shader->variants, &variant->list_item_local);
1225 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1226 lp->nr_fs_variants++;
1227 shader->variants_cached++;
1228 }
1229 }
1230
1231 lp_setup_set_fs_variant(lp->setup, variant);
1232 }
1233
1234
1235
1236 void
1237 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1238 {
1239 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1240 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1241 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1242
1243 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1244 }