llvmpipe: Unbreak Z32_FLOAT.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_init.h"
79 #include "gallivm/lp_bld_intr.h"
80 #include "gallivm/lp_bld_logic.h"
81 #include "gallivm/lp_bld_tgsi.h"
82 #include "gallivm/lp_bld_swizzle.h"
83 #include "gallivm/lp_bld_flow.h"
84 #include "gallivm/lp_bld_debug.h"
85
86 #include "lp_bld_alpha.h"
87 #include "lp_bld_blend.h"
88 #include "lp_bld_depth.h"
89 #include "lp_bld_interp.h"
90 #include "lp_context.h"
91 #include "lp_debug.h"
92 #include "lp_perf.h"
93 #include "lp_screen.h"
94 #include "lp_setup.h"
95 #include "lp_state.h"
96 #include "lp_tex_sample.h"
97 #include "lp_flush.h"
98 #include "lp_state_fs.h"
99
100
101 #include <llvm-c/Analysis.h>
102
103
104 static unsigned fs_no = 0;
105
106
107
108 /**
109 * Expand the relevent bits of mask_input to a 4-dword mask for the
110 * four pixels in a 2x2 quad. This will set the four elements of the
111 * quad mask vector to 0 or ~0.
112 *
113 * \param quad which quad of the quad group to test, in [0,3]
114 * \param mask_input bitwise mask for the whole 4x4 stamp
115 */
116 static LLVMValueRef
117 generate_quad_mask(LLVMBuilderRef builder,
118 struct lp_type fs_type,
119 unsigned quad,
120 LLVMValueRef mask_input) /* int32 */
121 {
122 struct lp_type mask_type;
123 LLVMTypeRef i32t = LLVMInt32Type();
124 LLVMValueRef bits[4];
125 LLVMValueRef mask;
126 int shift;
127
128 /*
129 * XXX: We'll need a different path for 16 x u8
130 */
131 assert(fs_type.width == 32);
132 assert(fs_type.length == 4);
133 mask_type = lp_int_type(fs_type);
134
135 /*
136 * mask_input >>= (quad * 4)
137 */
138
139 switch (quad) {
140 case 0:
141 shift = 0;
142 break;
143 case 1:
144 shift = 2;
145 break;
146 case 2:
147 shift = 8;
148 break;
149 case 3:
150 shift = 10;
151 break;
152 default:
153 assert(0);
154 shift = 0;
155 }
156
157 mask_input = LLVMBuildLShr(builder,
158 mask_input,
159 LLVMConstInt(i32t, shift, 0),
160 "");
161
162 /*
163 * mask = { mask_input & (1 << i), for i in [0,3] }
164 */
165
166 mask = lp_build_broadcast(builder, lp_build_vec_type(mask_type), mask_input);
167
168 bits[0] = LLVMConstInt(i32t, 1 << 0, 0);
169 bits[1] = LLVMConstInt(i32t, 1 << 1, 0);
170 bits[2] = LLVMConstInt(i32t, 1 << 4, 0);
171 bits[3] = LLVMConstInt(i32t, 1 << 5, 0);
172
173 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, 4), "");
174
175 /*
176 * mask = mask != 0 ? ~0 : 0
177 */
178
179 mask = lp_build_compare(builder,
180 mask_type, PIPE_FUNC_NOTEQUAL,
181 mask,
182 lp_build_const_int_vec(mask_type, 0));
183
184 return mask;
185 }
186
187
188 #define EARLY_DEPTH_TEST 0x1
189 #define LATE_DEPTH_TEST 0x2
190 #define EARLY_DEPTH_WRITE 0x4
191 #define LATE_DEPTH_WRITE 0x8
192
193 static int
194 find_output_by_semantic( const struct tgsi_shader_info *info,
195 unsigned semantic,
196 unsigned index )
197 {
198 int i;
199
200 for (i = 0; i < info->num_outputs; i++)
201 if (info->output_semantic_name[i] == semantic &&
202 info->output_semantic_index[i] == index)
203 return i;
204
205 return -1;
206 }
207
208
209 /**
210 * Generate the fragment shader, depth/stencil test, and alpha tests.
211 * \param i which quad in the tile, in range [0,3]
212 * \param partial_mask if 1, do mask_input testing
213 */
214 static void
215 generate_fs(struct llvmpipe_context *lp,
216 struct lp_fragment_shader *shader,
217 const struct lp_fragment_shader_variant_key *key,
218 LLVMBuilderRef builder,
219 struct lp_type type,
220 LLVMValueRef context_ptr,
221 unsigned i,
222 struct lp_build_interp_soa_context *interp,
223 struct lp_build_sampler_soa *sampler,
224 LLVMValueRef *pmask,
225 LLVMValueRef (*color)[4],
226 LLVMValueRef depth_ptr,
227 LLVMValueRef facing,
228 unsigned partial_mask,
229 LLVMValueRef mask_input,
230 LLVMValueRef counter)
231 {
232 const struct util_format_description *zs_format_desc = NULL;
233 const struct tgsi_token *tokens = shader->base.tokens;
234 LLVMTypeRef vec_type;
235 LLVMValueRef consts_ptr;
236 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
237 LLVMValueRef z;
238 LLVMValueRef zs_value = NULL;
239 LLVMValueRef stencil_refs[2];
240 struct lp_build_mask_context mask;
241 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
242 shader->info.base.num_inputs < 3 &&
243 shader->info.base.num_instructions < 8);
244 unsigned attrib;
245 unsigned chan;
246 unsigned cbuf;
247 unsigned depth_mode;
248
249 if (key->depth.enabled ||
250 key->stencil[0].enabled ||
251 key->stencil[1].enabled) {
252
253 zs_format_desc = util_format_description(key->zsbuf_format);
254 assert(zs_format_desc);
255
256 if (!shader->info.base.writes_z) {
257 if (key->alpha.enabled || shader->info.base.uses_kill)
258 /* With alpha test and kill, can do the depth test early
259 * and hopefully eliminate some quads. But need to do a
260 * special deferred depth write once the final mask value
261 * is known.
262 */
263 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
264 else
265 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
266 }
267 else {
268 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
269 }
270
271 if (!(key->depth.enabled && key->depth.writemask) &&
272 !(key->stencil[0].enabled && key->stencil[0].writemask))
273 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
274 }
275 else {
276 depth_mode = 0;
277 }
278
279 assert(i < 4);
280
281 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
282 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
283
284 vec_type = lp_build_vec_type(type);
285
286 consts_ptr = lp_jit_context_constants(builder, context_ptr);
287
288 memset(outputs, 0, sizeof outputs);
289
290 /* Declare the color and z variables */
291 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
292 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
293 color[cbuf][chan] = lp_build_alloca(builder, vec_type, "color");
294 }
295 }
296
297 /* do triangle edge testing */
298 if (partial_mask) {
299 *pmask = generate_quad_mask(builder, type,
300 i, mask_input);
301 }
302 else {
303 *pmask = lp_build_const_int_vec(type, ~0);
304 }
305
306 /* 'mask' will control execution based on quad's pixel alive/killed state */
307 lp_build_mask_begin(&mask, builder, type, *pmask);
308
309 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
310 lp_build_mask_check(&mask);
311
312 lp_build_interp_soa_update_pos(interp, i);
313 z = interp->pos[2];
314
315 if (depth_mode & EARLY_DEPTH_TEST) {
316 lp_build_depth_stencil_test(builder,
317 &key->depth,
318 key->stencil,
319 type,
320 zs_format_desc,
321 &mask,
322 stencil_refs,
323 z,
324 depth_ptr, facing,
325 &zs_value,
326 !simple_shader);
327
328 if (depth_mode & EARLY_DEPTH_WRITE) {
329 lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value);
330 }
331 }
332
333 lp_build_interp_soa_update_inputs(interp, i);
334
335 /* Build the actual shader */
336 lp_build_tgsi_soa(builder, tokens, type, &mask,
337 consts_ptr, interp->pos, interp->inputs,
338 outputs, sampler, &shader->info.base);
339
340
341 /* Alpha test */
342 if (key->alpha.enabled) {
343 int color0 = find_output_by_semantic(&shader->info.base,
344 TGSI_SEMANTIC_COLOR,
345 0);
346
347 if (color0 != -1) {
348 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
349 LLVMValueRef alpha_ref_value;
350
351 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
352 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
353
354 lp_build_alpha_test(builder, key->alpha.func, type,
355 &mask, alpha, alpha_ref_value,
356 (depth_mode & LATE_DEPTH_TEST) != 0);
357 }
358 }
359
360 /* Late Z test */
361 if (depth_mode & LATE_DEPTH_TEST) {
362 int pos0 = find_output_by_semantic(&shader->info.base,
363 TGSI_SEMANTIC_POSITION,
364 0);
365
366 if (pos0 != -1) {
367 z = LLVMBuildLoad(builder, outputs[pos0][2], "z");
368 lp_build_name(z, "output%u.%u.%c", i, pos0, "xyzw"[chan]);
369 }
370
371 lp_build_depth_stencil_test(builder,
372 &key->depth,
373 key->stencil,
374 type,
375 zs_format_desc,
376 &mask,
377 stencil_refs,
378 z,
379 depth_ptr, facing,
380 &zs_value,
381 !simple_shader);
382 /* Late Z write */
383 if (depth_mode & LATE_DEPTH_WRITE) {
384 lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value);
385 }
386 }
387 else if ((depth_mode & EARLY_DEPTH_TEST) &&
388 (depth_mode & LATE_DEPTH_WRITE))
389 {
390 /* Need to apply a reduced mask to the depth write. Reload the
391 * depth value, update from zs_value with the new mask value and
392 * write that out.
393 */
394 lp_build_deferred_depth_write(builder,
395 type,
396 zs_format_desc,
397 &mask,
398 depth_ptr,
399 zs_value);
400 }
401
402
403 /* Color write */
404 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
405 {
406 if (shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR)
407 {
408 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
409 for(chan = 0; chan < NUM_CHANNELS; ++chan)
410 {
411 /* XXX: just initialize outputs to point at colors[] and
412 * skip this.
413 */
414 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
415 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
416 LLVMBuildStore(builder, out, color[cbuf][chan]);
417 }
418 }
419 }
420
421 if (counter)
422 lp_build_occlusion_count(builder, type,
423 lp_build_mask_value(&mask), counter);
424
425 *pmask = lp_build_mask_end(&mask);
426 }
427
428
429 /**
430 * Generate color blending and color output.
431 * \param rt the render target index (to index blend, colormask state)
432 * \param type the pixel color type
433 * \param context_ptr pointer to the runtime JIT context
434 * \param mask execution mask (active fragment/pixel mask)
435 * \param src colors from the fragment shader
436 * \param dst_ptr the destination color buffer pointer
437 */
438 static void
439 generate_blend(const struct pipe_blend_state *blend,
440 unsigned rt,
441 LLVMBuilderRef builder,
442 struct lp_type type,
443 LLVMValueRef context_ptr,
444 LLVMValueRef mask,
445 LLVMValueRef *src,
446 LLVMValueRef dst_ptr,
447 boolean do_branch)
448 {
449 struct lp_build_context bld;
450 struct lp_build_mask_context mask_ctx;
451 LLVMTypeRef vec_type;
452 LLVMValueRef const_ptr;
453 LLVMValueRef con[4];
454 LLVMValueRef dst[4];
455 LLVMValueRef res[4];
456 unsigned chan;
457
458 lp_build_context_init(&bld, builder, type);
459
460 lp_build_mask_begin(&mask_ctx, builder, type, mask);
461 if (do_branch)
462 lp_build_mask_check(&mask_ctx);
463
464 vec_type = lp_build_vec_type(type);
465
466 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
467 const_ptr = LLVMBuildBitCast(builder, const_ptr,
468 LLVMPointerType(vec_type, 0), "");
469
470 /* load constant blend color and colors from the dest color buffer */
471 for(chan = 0; chan < 4; ++chan) {
472 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
473 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
474
475 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
476
477 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
478 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
479 }
480
481 /* do blend */
482 lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
483
484 /* store results to color buffer */
485 for(chan = 0; chan < 4; ++chan) {
486 if(blend->rt[rt].colormask & (1 << chan)) {
487 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
488 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
489 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
490 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
491 }
492 }
493
494 lp_build_mask_end(&mask_ctx);
495 }
496
497
498 /**
499 * Generate the runtime callable function for the whole fragment pipeline.
500 * Note that the function which we generate operates on a block of 16
501 * pixels at at time. The block contains 2x2 quads. Each quad contains
502 * 2x2 pixels.
503 */
504 static void
505 generate_fragment(struct llvmpipe_context *lp,
506 struct lp_fragment_shader *shader,
507 struct lp_fragment_shader_variant *variant,
508 unsigned partial_mask)
509 {
510 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
511 const struct lp_fragment_shader_variant_key *key = &variant->key;
512 char func_name[256];
513 struct lp_type fs_type;
514 struct lp_type blend_type;
515 LLVMTypeRef fs_elem_type;
516 LLVMTypeRef fs_int_vec_type;
517 LLVMTypeRef blend_vec_type;
518 LLVMTypeRef arg_types[11];
519 LLVMTypeRef func_type;
520 LLVMValueRef context_ptr;
521 LLVMValueRef x;
522 LLVMValueRef y;
523 LLVMValueRef a0_ptr;
524 LLVMValueRef dadx_ptr;
525 LLVMValueRef dady_ptr;
526 LLVMValueRef color_ptr_ptr;
527 LLVMValueRef depth_ptr;
528 LLVMValueRef mask_input;
529 LLVMValueRef counter = NULL;
530 LLVMBasicBlockRef block;
531 LLVMBuilderRef builder;
532 struct lp_build_sampler_soa *sampler;
533 struct lp_build_interp_soa_context interp;
534 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
535 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
536 LLVMValueRef blend_mask;
537 LLVMValueRef function;
538 LLVMValueRef facing;
539 const struct util_format_description *zs_format_desc;
540 unsigned num_fs;
541 unsigned i;
542 unsigned chan;
543 unsigned cbuf;
544
545
546 /* TODO: actually pick these based on the fs and color buffer
547 * characteristics. */
548
549 memset(&fs_type, 0, sizeof fs_type);
550 fs_type.floating = TRUE; /* floating point values */
551 fs_type.sign = TRUE; /* values are signed */
552 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
553 fs_type.width = 32; /* 32-bit float */
554 fs_type.length = 4; /* 4 elements per vector */
555 num_fs = 4; /* number of quads per block */
556
557 memset(&blend_type, 0, sizeof blend_type);
558 blend_type.floating = FALSE; /* values are integers */
559 blend_type.sign = FALSE; /* values are unsigned */
560 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
561 blend_type.width = 8; /* 8-bit ubyte values */
562 blend_type.length = 16; /* 16 elements per vector */
563
564 /*
565 * Generate the function prototype. Any change here must be reflected in
566 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
567 */
568
569 fs_elem_type = lp_build_elem_type(fs_type);
570 fs_int_vec_type = lp_build_int_vec_type(fs_type);
571
572 blend_vec_type = lp_build_vec_type(blend_type);
573
574 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
575 shader->no, variant->no, partial_mask ? "partial" : "whole");
576
577 arg_types[0] = screen->context_ptr_type; /* context */
578 arg_types[1] = LLVMInt32Type(); /* x */
579 arg_types[2] = LLVMInt32Type(); /* y */
580 arg_types[3] = LLVMFloatType(); /* facing */
581 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
582 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
583 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
584 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
585 arg_types[8] = LLVMPointerType(LLVMInt8Type(), 0); /* depth */
586 arg_types[9] = LLVMInt32Type(); /* mask_input */
587 arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
588
589 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
590
591 function = LLVMAddFunction(screen->module, func_name, func_type);
592 LLVMSetFunctionCallConv(function, LLVMCCallConv);
593
594 variant->function[partial_mask] = function;
595
596
597 /* XXX: need to propagate noalias down into color param now we are
598 * passing a pointer-to-pointer?
599 */
600 for(i = 0; i < Elements(arg_types); ++i)
601 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
602 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
603
604 context_ptr = LLVMGetParam(function, 0);
605 x = LLVMGetParam(function, 1);
606 y = LLVMGetParam(function, 2);
607 facing = LLVMGetParam(function, 3);
608 a0_ptr = LLVMGetParam(function, 4);
609 dadx_ptr = LLVMGetParam(function, 5);
610 dady_ptr = LLVMGetParam(function, 6);
611 color_ptr_ptr = LLVMGetParam(function, 7);
612 depth_ptr = LLVMGetParam(function, 8);
613 mask_input = LLVMGetParam(function, 9);
614
615 lp_build_name(context_ptr, "context");
616 lp_build_name(x, "x");
617 lp_build_name(y, "y");
618 lp_build_name(a0_ptr, "a0");
619 lp_build_name(dadx_ptr, "dadx");
620 lp_build_name(dady_ptr, "dady");
621 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
622 lp_build_name(depth_ptr, "depth");
623 lp_build_name(mask_input, "mask_input");
624
625 if (key->occlusion_count) {
626 counter = LLVMGetParam(function, 10);
627 lp_build_name(counter, "counter");
628 }
629
630 /*
631 * Function body
632 */
633
634 block = LLVMAppendBasicBlock(function, "entry");
635 builder = LLVMCreateBuilder();
636 LLVMPositionBuilderAtEnd(builder, block);
637
638 /*
639 * The shader input interpolation info is not explicitely baked in the
640 * shader key, but everything it derives from (TGSI, and flatshade) is
641 * already included in the shader key.
642 */
643 lp_build_interp_soa_init(&interp,
644 lp->num_inputs,
645 lp->inputs,
646 builder, fs_type,
647 a0_ptr, dadx_ptr, dady_ptr,
648 x, y);
649
650 /* code generated texture sampling */
651 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
652
653 /* loop over quads in the block */
654 zs_format_desc = util_format_description(key->zsbuf_format);
655
656 for(i = 0; i < num_fs; ++i) {
657 LLVMValueRef depth_offset = LLVMConstInt(LLVMInt32Type(),
658 i*fs_type.length*zs_format_desc->block.bits/8,
659 0);
660 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
661 LLVMValueRef depth_ptr_i;
662
663 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &depth_offset, 1, "");
664
665 generate_fs(lp, shader, key,
666 builder,
667 fs_type,
668 context_ptr,
669 i,
670 &interp,
671 sampler,
672 &fs_mask[i], /* output */
673 out_color,
674 depth_ptr_i,
675 facing,
676 partial_mask,
677 mask_input,
678 counter);
679
680 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
681 for(chan = 0; chan < NUM_CHANNELS; ++chan)
682 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
683 }
684
685 sampler->destroy(sampler);
686
687 /* Loop over color outputs / color buffers to do blending.
688 */
689 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
690 LLVMValueRef color_ptr;
691 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
692 LLVMValueRef blend_in_color[NUM_CHANNELS];
693 unsigned rt;
694
695 /*
696 * Convert the fs's output color and mask to fit to the blending type.
697 */
698 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
699 LLVMValueRef fs_color_vals[LP_MAX_VECTOR_LENGTH];
700
701 for (i = 0; i < num_fs; i++) {
702 fs_color_vals[i] =
703 LLVMBuildLoad(builder, fs_out_color[cbuf][chan][i], "fs_color_vals");
704 }
705
706 lp_build_conv(builder, fs_type, blend_type,
707 fs_color_vals,
708 num_fs,
709 &blend_in_color[chan], 1);
710
711 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
712 }
713
714 if (partial_mask || !variant->opaque) {
715 lp_build_conv_mask(builder, fs_type, blend_type,
716 fs_mask, num_fs,
717 &blend_mask, 1);
718 } else {
719 blend_mask = lp_build_const_int_vec(blend_type, ~0);
720 }
721
722 color_ptr = LLVMBuildLoad(builder,
723 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
724 "");
725 lp_build_name(color_ptr, "color_ptr%d", cbuf);
726
727 /* which blend/colormask state to use */
728 rt = key->blend.independent_blend_enable ? cbuf : 0;
729
730 /*
731 * Blending.
732 */
733 {
734 /* Could the 4x4 have been killed?
735 */
736 boolean do_branch = ((key->depth.enabled || key->stencil[0].enabled) &&
737 !key->alpha.enabled &&
738 !shader->info.base.uses_kill);
739
740 generate_blend(&key->blend,
741 rt,
742 builder,
743 blend_type,
744 context_ptr,
745 blend_mask,
746 blend_in_color,
747 color_ptr,
748 do_branch);
749 }
750 }
751
752 #ifdef PIPE_ARCH_X86
753 /* Avoid corrupting the FPU stack on 32bit OSes. */
754 lp_build_intrinsic(builder, "llvm.x86.mmx.emms", LLVMVoidType(), NULL, 0);
755 #endif
756
757 LLVMBuildRetVoid(builder);
758
759 LLVMDisposeBuilder(builder);
760
761
762 /* Verify the LLVM IR. If invalid, dump and abort */
763 #ifdef DEBUG
764 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
765 if (1)
766 lp_debug_dump_value(function);
767 abort();
768 }
769 #endif
770
771 /* Apply optimizations to LLVM IR */
772 LLVMRunFunctionPassManager(screen->pass, function);
773
774 if ((gallivm_debug & GALLIVM_DEBUG_IR) || (LP_DEBUG & DEBUG_FS)) {
775 /* Print the LLVM IR to stderr */
776 lp_debug_dump_value(function);
777 debug_printf("\n");
778 }
779
780 /*
781 * Translate the LLVM IR into machine code.
782 */
783 {
784 void *f = LLVMGetPointerToGlobal(screen->engine, function);
785
786 variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);
787
788 if ((gallivm_debug & GALLIVM_DEBUG_ASM) || (LP_DEBUG & DEBUG_FS)) {
789 lp_disassemble(f);
790 }
791 lp_func_delete_body(function);
792 }
793 }
794
795
796 static void
797 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
798 {
799 unsigned i;
800
801 debug_printf("fs variant %p:\n", (void *) key);
802
803 if (key->flatshade) {
804 debug_printf("flatshade = 1\n");
805 }
806 for (i = 0; i < key->nr_cbufs; ++i) {
807 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
808 }
809 if (key->depth.enabled) {
810 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
811 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
812 debug_printf("depth.writemask = %u\n", key->depth.writemask);
813 }
814
815 for (i = 0; i < 2; ++i) {
816 if (key->stencil[i].enabled) {
817 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
818 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
819 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
820 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
821 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
822 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
823 }
824 }
825
826 if (key->alpha.enabled) {
827 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
828 }
829
830 if (key->occlusion_count) {
831 debug_printf("occlusion_count = 1\n");
832 }
833
834 if (key->blend.logicop_enable) {
835 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
836 }
837 else if (key->blend.rt[0].blend_enable) {
838 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
839 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
840 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
841 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
842 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
843 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
844 }
845 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
846 for (i = 0; i < key->nr_samplers; ++i) {
847 debug_printf("sampler[%u] = \n", i);
848 debug_printf(" .format = %s\n",
849 util_format_name(key->sampler[i].format));
850 debug_printf(" .target = %s\n",
851 util_dump_tex_target(key->sampler[i].target, TRUE));
852 debug_printf(" .pot = %u %u %u\n",
853 key->sampler[i].pot_width,
854 key->sampler[i].pot_height,
855 key->sampler[i].pot_depth);
856 debug_printf(" .wrap = %s %s %s\n",
857 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
858 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
859 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
860 debug_printf(" .min_img_filter = %s\n",
861 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
862 debug_printf(" .min_mip_filter = %s\n",
863 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
864 debug_printf(" .mag_img_filter = %s\n",
865 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
866 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
867 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
868 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
869 debug_printf(" .min_max_lod_equal = %u\n", key->sampler[i].min_max_lod_equal);
870 debug_printf(" .lod_bias_non_zero = %u\n", key->sampler[i].lod_bias_non_zero);
871 debug_printf(" .apply_min_lod = %u\n", key->sampler[i].apply_min_lod);
872 debug_printf(" .apply_max_lod = %u\n", key->sampler[i].apply_max_lod);
873 }
874 }
875
876
877 void
878 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
879 {
880 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
881 variant->shader->no, variant->no);
882 tgsi_dump(variant->shader->base.tokens, 0);
883 dump_fs_variant_key(&variant->key);
884 debug_printf("variant->opaque = %u\n", variant->opaque);
885 debug_printf("\n");
886 }
887
888 static struct lp_fragment_shader_variant *
889 generate_variant(struct llvmpipe_context *lp,
890 struct lp_fragment_shader *shader,
891 const struct lp_fragment_shader_variant_key *key)
892 {
893 struct lp_fragment_shader_variant *variant;
894 boolean fullcolormask;
895
896 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
897 if(!variant)
898 return NULL;
899
900 variant->shader = shader;
901 variant->list_item_global.base = variant;
902 variant->list_item_local.base = variant;
903 variant->no = shader->variants_created++;
904
905 memcpy(&variant->key, key, shader->variant_key_size);
906
907 /*
908 * Determine whether we are touching all channels in the color buffer.
909 */
910 fullcolormask = FALSE;
911 if (key->nr_cbufs == 1) {
912 const struct util_format_description *format_desc;
913 format_desc = util_format_description(key->cbuf_format[0]);
914 if ((~key->blend.rt[0].colormask &
915 util_format_colormask(format_desc)) == 0) {
916 fullcolormask = TRUE;
917 }
918 }
919
920 variant->opaque =
921 !key->blend.logicop_enable &&
922 !key->blend.rt[0].blend_enable &&
923 fullcolormask &&
924 !key->stencil[0].enabled &&
925 !key->alpha.enabled &&
926 !key->depth.enabled &&
927 !shader->info.base.uses_kill
928 ? TRUE : FALSE;
929
930
931 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
932 lp_debug_fs_variant(variant);
933 }
934
935 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
936
937 if (variant->opaque) {
938 /* Specialized shader, which doesn't need to read the color buffer. */
939 generate_fragment(lp, shader, variant, RAST_WHOLE);
940 } else {
941 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
942 }
943
944 return variant;
945 }
946
947
948 static void *
949 llvmpipe_create_fs_state(struct pipe_context *pipe,
950 const struct pipe_shader_state *templ)
951 {
952 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
953 struct lp_fragment_shader *shader;
954 int nr_samplers;
955
956 shader = CALLOC_STRUCT(lp_fragment_shader);
957 if (!shader)
958 return NULL;
959
960 shader->no = fs_no++;
961 make_empty_list(&shader->variants);
962
963 /* get/save the summary info for this shader */
964 lp_build_tgsi_info(templ->tokens, &shader->info);
965
966 /* we need to keep a local copy of the tokens */
967 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
968
969 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
970 if (shader->draw_data == NULL) {
971 FREE((void *) shader->base.tokens);
972 FREE(shader);
973 return NULL;
974 }
975
976 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
977
978 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
979 sampler[nr_samplers]);
980
981 if (LP_DEBUG & DEBUG_TGSI) {
982 unsigned attrib;
983 debug_printf("llvmpipe: Create fragment shader #%u %p:\n", shader->no, (void *) shader);
984 tgsi_dump(templ->tokens, 0);
985 debug_printf("usage masks:\n");
986 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
987 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
988 debug_printf(" IN[%u].%s%s%s%s\n",
989 attrib,
990 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
991 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
992 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
993 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
994 }
995 debug_printf("\n");
996 }
997
998 return shader;
999 }
1000
1001
1002 static void
1003 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
1004 {
1005 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1006
1007 if (llvmpipe->fs == fs)
1008 return;
1009
1010 draw_flush(llvmpipe->draw);
1011
1012 draw_bind_fragment_shader(llvmpipe->draw,
1013 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
1014
1015 llvmpipe->fs = fs;
1016
1017 llvmpipe->dirty |= LP_NEW_FS;
1018 }
1019
1020 static void
1021 remove_shader_variant(struct llvmpipe_context *lp,
1022 struct lp_fragment_shader_variant *variant)
1023 {
1024 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
1025 unsigned i;
1026
1027 if (gallivm_debug & GALLIVM_DEBUG_IR) {
1028 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached #%u v total cached #%u\n",
1029 variant->shader->no, variant->no, variant->shader->variants_created,
1030 variant->shader->variants_cached, lp->nr_fs_variants);
1031 }
1032 for (i = 0; i < Elements(variant->function); i++) {
1033 if (variant->function[i]) {
1034 if (variant->jit_function[i])
1035 LLVMFreeMachineCodeForFunction(screen->engine,
1036 variant->function[i]);
1037 LLVMDeleteFunction(variant->function[i]);
1038 }
1039 }
1040 remove_from_list(&variant->list_item_local);
1041 variant->shader->variants_cached--;
1042 remove_from_list(&variant->list_item_global);
1043 lp->nr_fs_variants--;
1044 FREE(variant);
1045 }
1046
1047 static void
1048 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1049 {
1050 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1051 struct lp_fragment_shader *shader = fs;
1052 struct lp_fs_variant_list_item *li;
1053
1054 assert(fs != llvmpipe->fs);
1055 (void) llvmpipe;
1056
1057 /*
1058 * XXX: we need to flush the context until we have some sort of reference
1059 * counting in fragment shaders as they may still be binned
1060 * Flushing alone might not sufficient we need to wait on it too.
1061 */
1062
1063 llvmpipe_finish(pipe, __FUNCTION__);
1064
1065 li = first_elem(&shader->variants);
1066 while(!at_end(&shader->variants, li)) {
1067 struct lp_fs_variant_list_item *next = next_elem(li);
1068 remove_shader_variant(llvmpipe, li->base);
1069 li = next;
1070 }
1071
1072 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
1073
1074 assert(shader->variants_cached == 0);
1075 FREE((void *) shader->base.tokens);
1076 FREE(shader);
1077 }
1078
1079
1080
1081 static void
1082 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1083 uint shader, uint index,
1084 struct pipe_resource *constants)
1085 {
1086 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1087 unsigned size = constants ? constants->width0 : 0;
1088 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1089
1090 assert(shader < PIPE_SHADER_TYPES);
1091 assert(index < PIPE_MAX_CONSTANT_BUFFERS);
1092
1093 if(llvmpipe->constants[shader][index] == constants)
1094 return;
1095
1096 draw_flush(llvmpipe->draw);
1097
1098 /* note: reference counting */
1099 pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
1100
1101 if(shader == PIPE_SHADER_VERTEX ||
1102 shader == PIPE_SHADER_GEOMETRY) {
1103 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
1104 index, data, size);
1105 }
1106
1107 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1108 }
1109
1110
1111 /**
1112 * Return the blend factor equivalent to a destination alpha of one.
1113 */
1114 static INLINE unsigned
1115 force_dst_alpha_one(unsigned factor)
1116 {
1117 switch(factor) {
1118 case PIPE_BLENDFACTOR_DST_ALPHA:
1119 return PIPE_BLENDFACTOR_ONE;
1120 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1121 return PIPE_BLENDFACTOR_ZERO;
1122 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1123 return PIPE_BLENDFACTOR_ZERO;
1124 }
1125
1126 return factor;
1127 }
1128
1129
1130 /**
1131 * We need to generate several variants of the fragment pipeline to match
1132 * all the combinations of the contributing state atoms.
1133 *
1134 * TODO: there is actually no reason to tie this to context state -- the
1135 * generated code could be cached globally in the screen.
1136 */
1137 static void
1138 make_variant_key(struct llvmpipe_context *lp,
1139 struct lp_fragment_shader *shader,
1140 struct lp_fragment_shader_variant_key *key)
1141 {
1142 unsigned i;
1143
1144 memset(key, 0, shader->variant_key_size);
1145
1146 if (lp->framebuffer.zsbuf) {
1147 if (lp->depth_stencil->depth.enabled) {
1148 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1149 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1150 }
1151 if (lp->depth_stencil->stencil[0].enabled) {
1152 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1153 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1154 }
1155 }
1156
1157 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1158 if(key->alpha.enabled)
1159 key->alpha.func = lp->depth_stencil->alpha.func;
1160 /* alpha.ref_value is passed in jit_context */
1161
1162 key->flatshade = lp->rasterizer->flatshade;
1163 if (lp->active_query_count) {
1164 key->occlusion_count = TRUE;
1165 }
1166
1167 if (lp->framebuffer.nr_cbufs) {
1168 memcpy(&key->blend, lp->blend, sizeof key->blend);
1169 }
1170
1171 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1172 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1173 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
1174 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1175 const struct util_format_description *format_desc;
1176
1177 key->cbuf_format[i] = format;
1178
1179 format_desc = util_format_description(format);
1180 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1181 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1182
1183 blend_rt->colormask = lp->blend->rt[i].colormask;
1184
1185 /*
1186 * Mask out color channels not present in the color buffer.
1187 */
1188 blend_rt->colormask &= util_format_colormask(format_desc);
1189
1190 /*
1191 * Our swizzled render tiles always have an alpha channel, but the linear
1192 * render target format often does not, so force here the dst alpha to be
1193 * one.
1194 *
1195 * This is not a mere optimization. Wrong results will be produced if the
1196 * dst alpha is used, the dst format does not have alpha, and the previous
1197 * rendering was not flushed from the swizzled to linear buffer. For
1198 * example, NonPowTwo DCT.
1199 *
1200 * TODO: This should be generalized to all channels for better
1201 * performance, but only alpha causes correctness issues.
1202 *
1203 * Also, force rgb/alpha func/factors match, to make AoS blending easier.
1204 */
1205 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1206 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor);
1207 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor);
1208 blend_rt->alpha_func = blend_rt->rgb_func;
1209 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
1210 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
1211 }
1212 }
1213
1214 /* This value will be the same for all the variants of a given shader:
1215 */
1216 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
1217
1218 for(i = 0; i < key->nr_samplers; ++i) {
1219 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
1220 lp_sampler_static_state(&key->sampler[i],
1221 lp->fragment_sampler_views[i],
1222 lp->sampler[i]);
1223 }
1224 }
1225 }
1226
1227 /**
1228 * Update fragment state. This is called just prior to drawing
1229 * something when some fragment-related state has changed.
1230 */
1231 void
1232 llvmpipe_update_fs(struct llvmpipe_context *lp)
1233 {
1234 struct lp_fragment_shader *shader = lp->fs;
1235 struct lp_fragment_shader_variant_key key;
1236 struct lp_fragment_shader_variant *variant = NULL;
1237 struct lp_fs_variant_list_item *li;
1238
1239 make_variant_key(lp, shader, &key);
1240
1241 li = first_elem(&shader->variants);
1242 while(!at_end(&shader->variants, li)) {
1243 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
1244 variant = li->base;
1245 break;
1246 }
1247 li = next_elem(li);
1248 }
1249
1250 if (variant) {
1251 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1252 }
1253 else {
1254 int64_t t0, t1;
1255 int64_t dt;
1256 unsigned i;
1257 if (lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS) {
1258 struct pipe_context *pipe = &lp->pipe;
1259
1260 /*
1261 * XXX: we need to flush the context until we have some sort of reference
1262 * counting in fragment shaders as they may still be binned
1263 * Flushing alone might not be sufficient we need to wait on it too.
1264 */
1265 llvmpipe_finish(pipe, __FUNCTION__);
1266
1267 for (i = 0; i < LP_MAX_SHADER_VARIANTS / 4; i++) {
1268 struct lp_fs_variant_list_item *item = last_elem(&lp->fs_variants_list);
1269 remove_shader_variant(lp, item->base);
1270 }
1271 }
1272 t0 = os_time_get();
1273
1274 variant = generate_variant(lp, shader, &key);
1275
1276 t1 = os_time_get();
1277 dt = t1 - t0;
1278 LP_COUNT_ADD(llvm_compile_time, dt);
1279 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1280
1281 if (variant) {
1282 insert_at_head(&shader->variants, &variant->list_item_local);
1283 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1284 lp->nr_fs_variants++;
1285 shader->variants_cached++;
1286 }
1287 }
1288
1289 lp_setup_set_fs_variant(lp->setup, variant);
1290 }
1291
1292
1293
1294 void
1295 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1296 {
1297 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1298 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1299 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1300
1301 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1302 }