llvmpipe: Drop blend derived state.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include "pipe/p_defines.h"
62 #include "util/u_memory.h"
63 #include "util/u_format.h"
64 #include "util/u_debug_dump.h"
65 #include "pipe/internal/p_winsys_screen.h"
66 #include "pipe/p_shader_tokens.h"
67 #include "draw/draw_context.h"
68 #include "tgsi/tgsi_dump.h"
69 #include "tgsi/tgsi_scan.h"
70 #include "tgsi/tgsi_parse.h"
71 #include "lp_bld_type.h"
72 #include "lp_bld_conv.h"
73 #include "lp_bld_logic.h"
74 #include "lp_bld_depth.h"
75 #include "lp_bld_tgsi.h"
76 #include "lp_bld_alpha.h"
77 #include "lp_bld_blend.h"
78 #include "lp_bld_swizzle.h"
79 #include "lp_bld_flow.h"
80 #include "lp_bld_debug.h"
81 #include "lp_screen.h"
82 #include "lp_context.h"
83 #include "lp_state.h"
84 #include "lp_quad.h"
85
86
87 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
88 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
89
90
91 /**
92 * Generate the position vectors.
93 *
94 * TODO: This should be called only once per fragment pipeline, for the first
95 * quad, and the neighboring quad positions obtained by additions.
96 *
97 * Parameter x, y are the integer values with the quad upper left coordinates.
98 */
99 static void
100 generate_pos(LLVMBuilderRef builder,
101 LLVMValueRef x,
102 LLVMValueRef y,
103 LLVMValueRef a0_ptr,
104 LLVMValueRef dadx_ptr,
105 LLVMValueRef dady_ptr,
106 LLVMValueRef *pos)
107 {
108 LLVMTypeRef int_elem_type = LLVMInt32Type();
109 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
110 LLVMTypeRef elem_type = LLVMFloatType();
111 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
112 LLVMValueRef x_offsets[QUAD_SIZE];
113 LLVMValueRef y_offsets[QUAD_SIZE];
114 unsigned chan;
115 unsigned i;
116
117 /*
118 * Derive from the quad's upper left scalar coordinates the coordinates for
119 * all other quad pixels
120 */
121
122 x = lp_build_broadcast(builder, int_vec_type, x);
123 y = lp_build_broadcast(builder, int_vec_type, y);
124
125 for(i = 0; i < QUAD_SIZE; ++i) {
126 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
127 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
128 }
129
130 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
131 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
132
133 x = LLVMBuildSIToFP(builder, x, vec_type, "");
134 y = LLVMBuildSIToFP(builder, y, vec_type, "");
135
136 pos[0] = x;
137 pos[1] = y;
138
139 /*
140 * Calculate z and w from the interpolation factors.
141 */
142
143 for(chan = 2; chan < NUM_CHANNELS; ++chan) {
144 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
145 LLVMValueRef a0 = LLVMBuildLoad(builder, LLVMBuildGEP(builder, a0_ptr, &index, 1, ""), "");
146 LLVMValueRef dadx = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dadx_ptr, &index, 1, ""), "");
147 LLVMValueRef dady = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dady_ptr, &index, 1, ""), "");
148 LLVMValueRef res;
149 a0 = lp_build_broadcast(builder, vec_type, a0);
150 dadx = lp_build_broadcast(builder, vec_type, dadx);
151 dady = lp_build_broadcast(builder, vec_type, dady);
152 res = a0;
153 res = LLVMBuildAdd(builder, res, LLVMBuildMul(builder, dadx, x, ""), "");
154 res = LLVMBuildAdd(builder, res, LLVMBuildMul(builder, dady, y, ""), "");
155 pos[chan] = res;
156 }
157
158 for(chan = 0; chan < NUM_CHANNELS; ++chan)
159 lp_build_name(pos[chan], "pos.%c", "xyzw"[chan]);
160 }
161
162
163 /**
164 * Generate the depth test.
165 */
166 static void
167 generate_depth(struct llvmpipe_context *lp,
168 LLVMBuilderRef builder,
169 const struct pipe_depth_state *state,
170 union lp_type src_type,
171 struct lp_build_mask_context *mask,
172 LLVMValueRef src,
173 LLVMValueRef dst_ptr)
174 {
175 const struct util_format_description *format_desc;
176 union lp_type dst_type;
177
178 if(!lp->framebuffer.zsbuf)
179 return;
180
181 format_desc = util_format_description(lp->framebuffer.zsbuf->format);
182 assert(format_desc);
183
184 /* Pick the depth type. */
185 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
186
187 /* FIXME: Cope with a depth test type with a different bit width. */
188 assert(dst_type.width == src_type.width);
189 assert(dst_type.length == src_type.length);
190
191 #if 1
192 src = lp_build_clamped_float_to_unsigned_norm(builder,
193 src_type,
194 dst_type.width,
195 src);
196 #else
197 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
198 #endif
199
200 lp_build_depth_test(builder,
201 state,
202 dst_type,
203 format_desc,
204 mask,
205 src,
206 dst_ptr);
207 }
208
209
210 /**
211 * Generate the fragment shader, depth/stencil test, and alpha tests.
212 */
213 static void
214 generate_fs(struct llvmpipe_context *lp,
215 struct lp_fragment_shader *shader,
216 const struct lp_fragment_shader_variant_key *key,
217 LLVMBuilderRef builder,
218 union lp_type type,
219 unsigned i,
220 LLVMValueRef x,
221 LLVMValueRef y,
222 LLVMValueRef a0_ptr,
223 LLVMValueRef dadx_ptr,
224 LLVMValueRef dady_ptr,
225 LLVMValueRef consts_ptr,
226 LLVMValueRef *pmask,
227 LLVMValueRef *color,
228 LLVMValueRef depth_ptr,
229 LLVMValueRef samplers_ptr)
230 {
231 const struct tgsi_token *tokens = shader->base.tokens;
232 LLVMTypeRef elem_type;
233 LLVMTypeRef vec_type;
234 LLVMTypeRef int_vec_type;
235 LLVMValueRef pos[NUM_CHANNELS];
236 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
237 struct lp_build_mask_context mask;
238 boolean early_depth_test;
239 unsigned attrib;
240 unsigned chan;
241
242 elem_type = lp_build_elem_type(type);
243 vec_type = lp_build_vec_type(type);
244 int_vec_type = lp_build_int_vec_type(type);
245
246 generate_pos(builder, x, y, a0_ptr, dadx_ptr, dady_ptr, pos);
247
248 lp_build_mask_begin(&mask, builder, type, *pmask);
249
250 early_depth_test =
251 lp->depth_stencil->depth.enabled &&
252 lp->framebuffer.zsbuf &&
253 !lp->depth_stencil->alpha.enabled &&
254 !lp->fs->info.uses_kill &&
255 !lp->fs->info.writes_z;
256
257 if(early_depth_test)
258 generate_depth(lp, builder, &key->depth,
259 type, &mask,
260 pos[2], depth_ptr);
261
262 memset(outputs, 0, sizeof outputs);
263
264 lp_build_tgsi_soa(builder, tokens, type, &mask,
265 pos, a0_ptr, dadx_ptr, dady_ptr,
266 consts_ptr, outputs, samplers_ptr);
267
268 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
269 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
270 if(outputs[attrib][chan]) {
271 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
272
273 switch (shader->info.output_semantic_name[attrib]) {
274 case TGSI_SEMANTIC_COLOR:
275 {
276 unsigned cbuf = shader->info.output_semantic_index[attrib];
277
278 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
279
280 /* Alpha test */
281 /* XXX: should the alpha reference value be passed separately? */
282 if(cbuf == 0 && chan == 3)
283 lp_build_alpha_test(builder, &key->alpha, type,
284 &mask,
285 outputs[attrib][chan]);
286
287 if(cbuf == 0)
288 color[chan] = outputs[attrib][chan];
289
290 break;
291 }
292
293 case TGSI_SEMANTIC_POSITION:
294 if(chan == 2)
295 pos[2] = outputs[attrib][chan];
296 break;
297 }
298 }
299 }
300 }
301
302 if(!early_depth_test)
303 generate_depth(lp, builder, &key->depth,
304 type, &mask,
305 pos[2], depth_ptr);
306
307 lp_build_mask_end(&mask);
308
309 *pmask = mask.value;
310
311 }
312
313
314 /**
315 * Generate color blending and color output.
316 */
317 static void
318 generate_blend(const struct pipe_blend_state *blend,
319 LLVMBuilderRef builder,
320 union lp_type type,
321 LLVMValueRef mask,
322 LLVMValueRef *src,
323 LLVMValueRef const_ptr,
324 LLVMValueRef dst_ptr)
325 {
326 struct lp_build_context bld;
327 LLVMTypeRef vec_type;
328 LLVMTypeRef int_vec_type;
329 LLVMValueRef con[4];
330 LLVMValueRef dst[4];
331 LLVMValueRef res[4];
332 unsigned chan;
333
334 vec_type = lp_build_vec_type(type);
335 int_vec_type = lp_build_int_vec_type(type);
336
337 lp_build_context_init(&bld, builder, type);
338
339 for(chan = 0; chan < 4; ++chan) {
340 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
341
342 if(const_ptr)
343 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
344 else
345 con[chan] = LLVMGetUndef(vec_type); /* FIXME */
346
347 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
348
349 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
350 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
351 }
352
353 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
354
355 for(chan = 0; chan < 4; ++chan) {
356 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
357 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
358 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
359 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
360 }
361 }
362
363
364 /**
365 * Generate the runtime callable function for the whole fragment pipeline.
366 */
367 static struct lp_fragment_shader_variant *
368 generate_fragment(struct llvmpipe_context *lp,
369 struct lp_fragment_shader *shader,
370 const struct lp_fragment_shader_variant_key *key)
371 {
372 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
373 struct lp_fragment_shader_variant *variant;
374 union lp_type fs_type;
375 union lp_type blend_type;
376 LLVMTypeRef fs_elem_type;
377 LLVMTypeRef fs_vec_type;
378 LLVMTypeRef fs_int_vec_type;
379 LLVMTypeRef blend_vec_type;
380 LLVMTypeRef blend_int_vec_type;
381 LLVMTypeRef arg_types[10];
382 LLVMTypeRef func_type;
383 LLVMValueRef x;
384 LLVMValueRef y;
385 LLVMValueRef a0_ptr;
386 LLVMValueRef dadx_ptr;
387 LLVMValueRef dady_ptr;
388 LLVMValueRef consts_ptr;
389 LLVMValueRef mask_ptr;
390 LLVMValueRef color_ptr;
391 LLVMValueRef depth_ptr;
392 LLVMValueRef samplers_ptr;
393 LLVMBasicBlockRef block;
394 LLVMBuilderRef builder;
395 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
396 LLVMValueRef fs_out_color[NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
397 LLVMValueRef blend_mask;
398 LLVMValueRef blend_in_color[NUM_CHANNELS];
399 LLVMValueRef fetch_texel;
400 unsigned num_fs;
401 unsigned i;
402 unsigned chan;
403
404 #ifdef DEBUG
405 tgsi_dump(shader->base.tokens, 0);
406 if(key->depth.enabled) {
407 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
408 debug_printf("depth.writemask = %u\n", key->depth.writemask);
409 debug_printf("depth.occlusion_count = %u\n", key->depth.occlusion_count);
410 }
411 if(key->alpha.enabled) {
412 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
413 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
414 }
415 if(key->blend.logicop_enable) {
416 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
417 }
418 else if(key->blend.blend_enable) {
419 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
420 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
421 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
422 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
423 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
424 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
425 }
426 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
427 #endif
428
429 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
430 if(!variant)
431 return NULL;
432
433 variant->shader = shader;
434 memcpy(&variant->key, key, sizeof *key);
435
436 /* TODO: actually pick these based on the fs and color buffer
437 * characteristics. */
438
439 fs_type.value = 0;
440 fs_type.floating = TRUE; /* floating point values */
441 fs_type.sign = TRUE; /* values are signed */
442 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
443 fs_type.width = 32; /* 32-bit float */
444 fs_type.length = 4; /* 4 element per vector */
445 num_fs = 4;
446
447 blend_type.value = 0;
448 blend_type.floating = FALSE; /* values are integers */
449 blend_type.sign = FALSE; /* values are unsigned */
450 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
451 blend_type.width = 8; /* 8-bit ubyte values */
452 blend_type.length = 16; /* 16 elements per vector */
453
454 /*
455 * Generate the function prototype. Any change here must be reflected in
456 * lp_state.h's lp_shader_fs_func function pointer type, and vice-versa.
457 */
458
459 fs_elem_type = lp_build_elem_type(fs_type);
460 fs_vec_type = lp_build_vec_type(fs_type);
461 fs_int_vec_type = lp_build_int_vec_type(fs_type);
462
463 blend_vec_type = lp_build_vec_type(blend_type);
464 blend_int_vec_type = lp_build_int_vec_type(blend_type);
465
466 arg_types[0] = LLVMInt32Type(); /* x */
467 arg_types[1] = LLVMInt32Type(); /* y */
468 arg_types[2] = LLVMPointerType(fs_elem_type, 0); /* a0 */
469 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* dadx */
470 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dady */
471 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* consts */
472 arg_types[6] = LLVMPointerType(fs_int_vec_type, 0); /* mask */
473 arg_types[7] = LLVMPointerType(blend_vec_type, 0); /* color */
474 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
475 arg_types[9] = LLVMPointerType(LLVMInt8Type(), 0); /* samplers */
476
477 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
478
479 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
480 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
481 for(i = 0; i < Elements(arg_types); ++i)
482 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
483 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
484
485 x = LLVMGetParam(variant->function, 0);
486 y = LLVMGetParam(variant->function, 1);
487 a0_ptr = LLVMGetParam(variant->function, 2);
488 dadx_ptr = LLVMGetParam(variant->function, 3);
489 dady_ptr = LLVMGetParam(variant->function, 4);
490 consts_ptr = LLVMGetParam(variant->function, 5);
491 mask_ptr = LLVMGetParam(variant->function, 6);
492 color_ptr = LLVMGetParam(variant->function, 7);
493 depth_ptr = LLVMGetParam(variant->function, 8);
494 samplers_ptr = LLVMGetParam(variant->function, 9);
495
496 lp_build_name(x, "x");
497 lp_build_name(y, "y");
498 lp_build_name(a0_ptr, "a0");
499 lp_build_name(dadx_ptr, "dadx");
500 lp_build_name(dady_ptr, "dady");
501 lp_build_name(consts_ptr, "consts");
502 lp_build_name(mask_ptr, "mask");
503 lp_build_name(color_ptr, "color");
504 lp_build_name(depth_ptr, "depth");
505 lp_build_name(samplers_ptr, "samplers");
506
507 /*
508 * Function body
509 */
510
511 block = LLVMAppendBasicBlock(variant->function, "entry");
512 builder = LLVMCreateBuilder();
513 LLVMPositionBuilderAtEnd(builder, block);
514
515 for(i = 0; i < num_fs; ++i) {
516 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
517 LLVMValueRef out_color[NUM_CHANNELS];
518 LLVMValueRef x_i;
519 LLVMValueRef depth_ptr_i;
520
521 /* TODO: Reuse position interpolation */
522 x_i = LLVMBuildAdd(builder, x, LLVMConstInt(LLVMInt32Type(), 2*i, 0), "");
523
524 fs_mask[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, mask_ptr, &index, 1, ""), "");
525 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
526
527 generate_fs(lp,
528 shader,
529 key,
530 builder,
531 fs_type,
532 i,
533 x_i,
534 y,
535 a0_ptr,
536 dadx_ptr,
537 dady_ptr,
538 consts_ptr,
539 &fs_mask[i],
540 out_color,
541 depth_ptr_i,
542 samplers_ptr);
543
544 for(chan = 0; chan < NUM_CHANNELS; ++chan)
545 fs_out_color[chan][i] = out_color[chan];
546 }
547
548 /*
549 * Convert the fs's output color and mask to fit to the blending type.
550 */
551
552 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
553 lp_build_conv(builder, fs_type, blend_type,
554 fs_out_color[chan], num_fs,
555 &blend_in_color[chan], 1);
556 lp_build_name(blend_in_color[chan], "color.%c", "rgba"[chan]);
557 }
558
559 lp_build_conv_mask(builder, fs_type, blend_type,
560 fs_mask, num_fs,
561 &blend_mask, 1);
562
563 /*
564 * Blending.
565 */
566
567 generate_blend(&key->blend,
568 builder,
569 blend_type,
570 blend_mask,
571 blend_in_color,
572 NULL /* FIXME: blend_const_color */,
573 color_ptr);
574
575 LLVMBuildRetVoid(builder);
576
577 LLVMDisposeBuilder(builder);
578
579 /*
580 * Translate the LLVM IR into machine code.
581 */
582
583 LLVMRunFunctionPassManager(screen->pass, variant->function);
584
585 #ifdef DEBUG
586 LLVMDumpValue(variant->function);
587 debug_printf("\n");
588 #endif
589
590 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
591 LLVMDumpValue(variant->function);
592 abort();
593 }
594
595 /* Tell where the fetch_texel function is, if the shader refers to it.
596 * TODO: this should be done elsewhere.
597 */
598 fetch_texel = LLVMGetNamedFunction(screen->module, "fetch_texel");
599 if(fetch_texel) {
600 static boolean first_time = TRUE;
601 if(first_time) {
602 LLVMAddGlobalMapping(screen->engine, fetch_texel, lp_build_tgsi_fetch_texel_soa);
603 first_time = FALSE;
604 }
605 }
606
607 variant->jit_function = (lp_shader_fs_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
608
609 #ifdef DEBUG
610 lp_disassemble(variant->jit_function);
611 #endif
612
613 variant->next = shader->variants;
614 shader->variants = variant;
615
616 return variant;
617 }
618
619
620 void *
621 llvmpipe_create_fs_state(struct pipe_context *pipe,
622 const struct pipe_shader_state *templ)
623 {
624 struct lp_fragment_shader *shader;
625
626 shader = CALLOC_STRUCT(lp_fragment_shader);
627 if (!shader)
628 return NULL;
629
630 /* get/save the summary info for this shader */
631 tgsi_scan_shader(templ->tokens, &shader->info);
632
633 /* we need to keep a local copy of the tokens */
634 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
635
636 return shader;
637 }
638
639
640 void
641 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
642 {
643 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
644
645 llvmpipe->fs = (struct lp_fragment_shader *) fs;
646
647 llvmpipe->dirty |= LP_NEW_FS;
648 }
649
650
651 void
652 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
653 {
654 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
655 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
656 struct lp_fragment_shader *shader = fs;
657 struct lp_fragment_shader_variant *variant;
658
659 assert(fs != llvmpipe->fs);
660
661 variant = shader->variants;
662 while(variant) {
663 struct lp_fragment_shader_variant *next = variant->next;
664
665 if(variant->function) {
666 if(variant->jit_function)
667 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
668 LLVMDeleteFunction(variant->function);
669 }
670
671 FREE(variant);
672
673 variant = next;
674 }
675
676 FREE((void *) shader->base.tokens);
677 FREE(shader);
678 }
679
680
681
682 void
683 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
684 uint shader, uint index,
685 const struct pipe_constant_buffer *buf)
686 {
687 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
688
689 assert(shader < PIPE_SHADER_TYPES);
690 assert(index == 0);
691
692 /* note: reference counting */
693 pipe_buffer_reference(&llvmpipe->constants[shader].buffer,
694 buf ? buf->buffer : NULL);
695
696 llvmpipe->dirty |= LP_NEW_CONSTANTS;
697 }
698
699
700 void
701 llvmpipe_update_fs(struct llvmpipe_context *lp)
702 {
703 struct lp_fragment_shader *shader = lp->fs;
704 struct lp_fragment_shader_variant_key key;
705 struct lp_fragment_shader_variant *variant;
706
707 /* We need to generate several variants of the fragment pipeline to match
708 * all the combinations of the contributing state atoms.
709 *
710 * TODO: there is actually no reason to tie this to context state -- the
711 * generated code could be cached globally in the screen.
712 */
713
714 memset(&key, 0, sizeof key);
715 memcpy(&key.depth, &lp->depth_stencil->depth, sizeof &key.depth);
716 memcpy(&key.alpha, &lp->depth_stencil->alpha, sizeof &key.alpha);
717 memcpy(&key.blend, lp->blend, sizeof &key.blend);
718
719 variant = shader->variants;
720 while(variant) {
721 if(memcmp(&variant->key, &key, sizeof key) == 0)
722 break;
723
724 variant = variant->next;
725 }
726
727 if(!variant)
728 variant = generate_fragment(lp, shader, &key);
729
730 shader->current = variant;
731 }