llvmpipe: Use lp_tgsi_info.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_init.h"
79 #include "gallivm/lp_bld_intr.h"
80 #include "gallivm/lp_bld_logic.h"
81 #include "gallivm/lp_bld_tgsi.h"
82 #include "gallivm/lp_bld_swizzle.h"
83 #include "gallivm/lp_bld_flow.h"
84 #include "gallivm/lp_bld_debug.h"
85
86 #include "lp_bld_alpha.h"
87 #include "lp_bld_blend.h"
88 #include "lp_bld_depth.h"
89 #include "lp_bld_interp.h"
90 #include "lp_context.h"
91 #include "lp_debug.h"
92 #include "lp_perf.h"
93 #include "lp_screen.h"
94 #include "lp_setup.h"
95 #include "lp_state.h"
96 #include "lp_tex_sample.h"
97 #include "lp_flush.h"
98 #include "lp_state_fs.h"
99
100
101 #include <llvm-c/Analysis.h>
102
103
104 static unsigned fs_no = 0;
105
106
107
108 /**
109 * Expand the relevent bits of mask_input to a 4-dword mask for the
110 * four pixels in a 2x2 quad. This will set the four elements of the
111 * quad mask vector to 0 or ~0.
112 *
113 * \param quad which quad of the quad group to test, in [0,3]
114 * \param mask_input bitwise mask for the whole 4x4 stamp
115 */
116 static LLVMValueRef
117 generate_quad_mask(LLVMBuilderRef builder,
118 struct lp_type fs_type,
119 unsigned quad,
120 LLVMValueRef mask_input) /* int32 */
121 {
122 struct lp_type mask_type;
123 LLVMTypeRef i32t = LLVMInt32Type();
124 LLVMValueRef bits[4];
125 LLVMValueRef mask;
126 int shift;
127
128 /*
129 * XXX: We'll need a different path for 16 x u8
130 */
131 assert(fs_type.width == 32);
132 assert(fs_type.length == 4);
133 mask_type = lp_int_type(fs_type);
134
135 /*
136 * mask_input >>= (quad * 4)
137 */
138
139 switch (quad) {
140 case 0:
141 shift = 0;
142 break;
143 case 1:
144 shift = 2;
145 break;
146 case 2:
147 shift = 8;
148 break;
149 case 3:
150 shift = 10;
151 break;
152 default:
153 assert(0);
154 shift = 0;
155 }
156
157 mask_input = LLVMBuildLShr(builder,
158 mask_input,
159 LLVMConstInt(i32t, shift, 0),
160 "");
161
162 /*
163 * mask = { mask_input & (1 << i), for i in [0,3] }
164 */
165
166 mask = lp_build_broadcast(builder, lp_build_vec_type(mask_type), mask_input);
167
168 bits[0] = LLVMConstInt(i32t, 1 << 0, 0);
169 bits[1] = LLVMConstInt(i32t, 1 << 1, 0);
170 bits[2] = LLVMConstInt(i32t, 1 << 4, 0);
171 bits[3] = LLVMConstInt(i32t, 1 << 5, 0);
172
173 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, 4), "");
174
175 /*
176 * mask = mask != 0 ? ~0 : 0
177 */
178
179 mask = lp_build_compare(builder,
180 mask_type, PIPE_FUNC_NOTEQUAL,
181 mask,
182 lp_build_const_int_vec(mask_type, 0));
183
184 return mask;
185 }
186
187
188 #define EARLY_DEPTH_TEST 0x1
189 #define LATE_DEPTH_TEST 0x2
190 #define EARLY_DEPTH_WRITE 0x4
191 #define LATE_DEPTH_WRITE 0x8
192
193 static int
194 find_output_by_semantic( const struct tgsi_shader_info *info,
195 unsigned semantic,
196 unsigned index )
197 {
198 int i;
199
200 for (i = 0; i < info->num_outputs; i++)
201 if (info->output_semantic_name[i] == semantic &&
202 info->output_semantic_index[i] == index)
203 return i;
204
205 return -1;
206 }
207
208
209 /**
210 * Generate the fragment shader, depth/stencil test, and alpha tests.
211 * \param i which quad in the tile, in range [0,3]
212 * \param partial_mask if 1, do mask_input testing
213 */
214 static void
215 generate_fs(struct llvmpipe_context *lp,
216 struct lp_fragment_shader *shader,
217 const struct lp_fragment_shader_variant_key *key,
218 LLVMBuilderRef builder,
219 struct lp_type type,
220 LLVMValueRef context_ptr,
221 unsigned i,
222 struct lp_build_interp_soa_context *interp,
223 struct lp_build_sampler_soa *sampler,
224 LLVMValueRef *pmask,
225 LLVMValueRef (*color)[4],
226 LLVMValueRef depth_ptr,
227 LLVMValueRef facing,
228 unsigned partial_mask,
229 LLVMValueRef mask_input,
230 LLVMValueRef counter)
231 {
232 const struct util_format_description *zs_format_desc = NULL;
233 const struct tgsi_token *tokens = shader->base.tokens;
234 LLVMTypeRef vec_type;
235 LLVMValueRef consts_ptr;
236 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
237 LLVMValueRef z;
238 LLVMValueRef zs_value = NULL;
239 LLVMValueRef stencil_refs[2];
240 struct lp_build_mask_context mask;
241 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
242 shader->info.base.num_inputs < 3 &&
243 shader->info.base.num_instructions < 8);
244 unsigned attrib;
245 unsigned chan;
246 unsigned cbuf;
247 unsigned depth_mode;
248
249 if (key->depth.enabled ||
250 key->stencil[0].enabled ||
251 key->stencil[1].enabled) {
252
253 zs_format_desc = util_format_description(key->zsbuf_format);
254 assert(zs_format_desc);
255
256 if (!shader->info.base.writes_z) {
257 if (key->alpha.enabled || shader->info.base.uses_kill)
258 /* With alpha test and kill, can do the depth test early
259 * and hopefully eliminate some quads. But need to do a
260 * special deferred depth write once the final mask value
261 * is known.
262 */
263 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
264 else
265 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
266 }
267 else {
268 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
269 }
270
271 if (!(key->depth.enabled && key->depth.writemask) &&
272 !(key->stencil[0].enabled && key->stencil[0].writemask))
273 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
274 }
275 else {
276 depth_mode = 0;
277 }
278
279 assert(i < 4);
280
281 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
282 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
283
284 vec_type = lp_build_vec_type(type);
285
286 consts_ptr = lp_jit_context_constants(builder, context_ptr);
287
288 memset(outputs, 0, sizeof outputs);
289
290 /* Declare the color and z variables */
291 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
292 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
293 color[cbuf][chan] = lp_build_alloca(builder, vec_type, "color");
294 }
295 }
296
297 /* do triangle edge testing */
298 if (partial_mask) {
299 *pmask = generate_quad_mask(builder, type,
300 i, mask_input);
301 }
302 else {
303 *pmask = lp_build_const_int_vec(type, ~0);
304 }
305
306 /* 'mask' will control execution based on quad's pixel alive/killed state */
307 lp_build_mask_begin(&mask, builder, type, *pmask);
308
309 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
310 lp_build_mask_check(&mask);
311
312 lp_build_interp_soa_update_pos(interp, i);
313 z = interp->pos[2];
314
315 if (depth_mode & EARLY_DEPTH_TEST) {
316 lp_build_depth_stencil_test(builder,
317 &key->depth,
318 key->stencil,
319 type,
320 zs_format_desc,
321 &mask,
322 stencil_refs,
323 z,
324 depth_ptr, facing,
325 &zs_value,
326 !simple_shader);
327
328 if (depth_mode & EARLY_DEPTH_WRITE)
329 LLVMBuildStore(builder, zs_value, depth_ptr);
330 }
331
332 lp_build_interp_soa_update_inputs(interp, i);
333
334 /* Build the actual shader */
335 lp_build_tgsi_soa(builder, tokens, type, &mask,
336 consts_ptr, interp->pos, interp->inputs,
337 outputs, sampler, &shader->info.base);
338
339
340 /* Alpha test */
341 if (key->alpha.enabled) {
342 int color0 = find_output_by_semantic(&shader->info.base,
343 TGSI_SEMANTIC_COLOR,
344 0);
345
346 if (color0 != -1) {
347 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
348 LLVMValueRef alpha_ref_value;
349
350 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
351 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
352
353 lp_build_alpha_test(builder, key->alpha.func, type,
354 &mask, alpha, alpha_ref_value,
355 (depth_mode & LATE_DEPTH_TEST) != 0);
356 }
357 }
358
359 /* Late Z test */
360 if (depth_mode & LATE_DEPTH_TEST) {
361 int pos0 = find_output_by_semantic(&shader->info.base,
362 TGSI_SEMANTIC_POSITION,
363 0);
364
365 if (pos0 != -1) {
366 z = LLVMBuildLoad(builder, outputs[pos0][2], "z");
367 lp_build_name(z, "output%u.%u.%c", i, pos0, "xyzw"[chan]);
368 }
369
370 lp_build_depth_stencil_test(builder,
371 &key->depth,
372 key->stencil,
373 type,
374 zs_format_desc,
375 &mask,
376 stencil_refs,
377 z,
378 depth_ptr, facing,
379 &zs_value,
380 !simple_shader);
381 /* Late Z write */
382 if (depth_mode & LATE_DEPTH_WRITE)
383 LLVMBuildStore(builder, zs_value, depth_ptr);
384 }
385 else if ((depth_mode & EARLY_DEPTH_TEST) &&
386 (depth_mode & LATE_DEPTH_WRITE))
387 {
388 /* Need to apply a reduced mask to the depth write. Reload the
389 * depth value, update from zs_value with the new mask value and
390 * write that out.
391 */
392 lp_build_deferred_depth_write(builder,
393 type,
394 zs_format_desc,
395 &mask,
396 depth_ptr,
397 zs_value);
398 }
399
400
401 /* Color write */
402 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
403 {
404 if (shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR)
405 {
406 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
407 for(chan = 0; chan < NUM_CHANNELS; ++chan)
408 {
409 /* XXX: just initialize outputs to point at colors[] and
410 * skip this.
411 */
412 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
413 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
414 LLVMBuildStore(builder, out, color[cbuf][chan]);
415 }
416 }
417 }
418
419 if (counter)
420 lp_build_occlusion_count(builder, type,
421 lp_build_mask_value(&mask), counter);
422
423 *pmask = lp_build_mask_end(&mask);
424 }
425
426
427 /**
428 * Generate color blending and color output.
429 * \param rt the render target index (to index blend, colormask state)
430 * \param type the pixel color type
431 * \param context_ptr pointer to the runtime JIT context
432 * \param mask execution mask (active fragment/pixel mask)
433 * \param src colors from the fragment shader
434 * \param dst_ptr the destination color buffer pointer
435 */
436 static void
437 generate_blend(const struct pipe_blend_state *blend,
438 unsigned rt,
439 LLVMBuilderRef builder,
440 struct lp_type type,
441 LLVMValueRef context_ptr,
442 LLVMValueRef mask,
443 LLVMValueRef *src,
444 LLVMValueRef dst_ptr,
445 boolean do_branch)
446 {
447 struct lp_build_context bld;
448 struct lp_build_mask_context mask_ctx;
449 LLVMTypeRef vec_type;
450 LLVMValueRef const_ptr;
451 LLVMValueRef con[4];
452 LLVMValueRef dst[4];
453 LLVMValueRef res[4];
454 unsigned chan;
455
456 lp_build_context_init(&bld, builder, type);
457
458 lp_build_mask_begin(&mask_ctx, builder, type, mask);
459 if (do_branch)
460 lp_build_mask_check(&mask_ctx);
461
462 vec_type = lp_build_vec_type(type);
463
464 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
465 const_ptr = LLVMBuildBitCast(builder, const_ptr,
466 LLVMPointerType(vec_type, 0), "");
467
468 /* load constant blend color and colors from the dest color buffer */
469 for(chan = 0; chan < 4; ++chan) {
470 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
471 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
472
473 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
474
475 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
476 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
477 }
478
479 /* do blend */
480 lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
481
482 /* store results to color buffer */
483 for(chan = 0; chan < 4; ++chan) {
484 if(blend->rt[rt].colormask & (1 << chan)) {
485 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
486 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
487 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
488 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
489 }
490 }
491
492 lp_build_mask_end(&mask_ctx);
493 }
494
495
496 /**
497 * Generate the runtime callable function for the whole fragment pipeline.
498 * Note that the function which we generate operates on a block of 16
499 * pixels at at time. The block contains 2x2 quads. Each quad contains
500 * 2x2 pixels.
501 */
502 static void
503 generate_fragment(struct llvmpipe_context *lp,
504 struct lp_fragment_shader *shader,
505 struct lp_fragment_shader_variant *variant,
506 unsigned partial_mask)
507 {
508 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
509 const struct lp_fragment_shader_variant_key *key = &variant->key;
510 char func_name[256];
511 struct lp_type fs_type;
512 struct lp_type blend_type;
513 LLVMTypeRef fs_elem_type;
514 LLVMTypeRef fs_int_vec_type;
515 LLVMTypeRef blend_vec_type;
516 LLVMTypeRef arg_types[11];
517 LLVMTypeRef func_type;
518 LLVMValueRef context_ptr;
519 LLVMValueRef x;
520 LLVMValueRef y;
521 LLVMValueRef a0_ptr;
522 LLVMValueRef dadx_ptr;
523 LLVMValueRef dady_ptr;
524 LLVMValueRef color_ptr_ptr;
525 LLVMValueRef depth_ptr;
526 LLVMValueRef mask_input;
527 LLVMValueRef counter = NULL;
528 LLVMBasicBlockRef block;
529 LLVMBuilderRef builder;
530 struct lp_build_sampler_soa *sampler;
531 struct lp_build_interp_soa_context interp;
532 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
533 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
534 LLVMValueRef blend_mask;
535 LLVMValueRef function;
536 LLVMValueRef facing;
537 unsigned num_fs;
538 unsigned i;
539 unsigned chan;
540 unsigned cbuf;
541
542
543 /* TODO: actually pick these based on the fs and color buffer
544 * characteristics. */
545
546 memset(&fs_type, 0, sizeof fs_type);
547 fs_type.floating = TRUE; /* floating point values */
548 fs_type.sign = TRUE; /* values are signed */
549 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
550 fs_type.width = 32; /* 32-bit float */
551 fs_type.length = 4; /* 4 elements per vector */
552 num_fs = 4; /* number of quads per block */
553
554 memset(&blend_type, 0, sizeof blend_type);
555 blend_type.floating = FALSE; /* values are integers */
556 blend_type.sign = FALSE; /* values are unsigned */
557 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
558 blend_type.width = 8; /* 8-bit ubyte values */
559 blend_type.length = 16; /* 16 elements per vector */
560
561 /*
562 * Generate the function prototype. Any change here must be reflected in
563 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
564 */
565
566 fs_elem_type = lp_build_elem_type(fs_type);
567 fs_int_vec_type = lp_build_int_vec_type(fs_type);
568
569 blend_vec_type = lp_build_vec_type(blend_type);
570
571 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
572 shader->no, variant->no, partial_mask ? "partial" : "whole");
573
574 arg_types[0] = screen->context_ptr_type; /* context */
575 arg_types[1] = LLVMInt32Type(); /* x */
576 arg_types[2] = LLVMInt32Type(); /* y */
577 arg_types[3] = LLVMFloatType(); /* facing */
578 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
579 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
580 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
581 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
582 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
583 arg_types[9] = LLVMInt32Type(); /* mask_input */
584 arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
585
586 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
587
588 function = LLVMAddFunction(screen->module, func_name, func_type);
589 LLVMSetFunctionCallConv(function, LLVMCCallConv);
590
591 variant->function[partial_mask] = function;
592
593
594 /* XXX: need to propagate noalias down into color param now we are
595 * passing a pointer-to-pointer?
596 */
597 for(i = 0; i < Elements(arg_types); ++i)
598 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
599 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
600
601 context_ptr = LLVMGetParam(function, 0);
602 x = LLVMGetParam(function, 1);
603 y = LLVMGetParam(function, 2);
604 facing = LLVMGetParam(function, 3);
605 a0_ptr = LLVMGetParam(function, 4);
606 dadx_ptr = LLVMGetParam(function, 5);
607 dady_ptr = LLVMGetParam(function, 6);
608 color_ptr_ptr = LLVMGetParam(function, 7);
609 depth_ptr = LLVMGetParam(function, 8);
610 mask_input = LLVMGetParam(function, 9);
611
612 lp_build_name(context_ptr, "context");
613 lp_build_name(x, "x");
614 lp_build_name(y, "y");
615 lp_build_name(a0_ptr, "a0");
616 lp_build_name(dadx_ptr, "dadx");
617 lp_build_name(dady_ptr, "dady");
618 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
619 lp_build_name(depth_ptr, "depth");
620 lp_build_name(mask_input, "mask_input");
621
622 if (key->occlusion_count) {
623 counter = LLVMGetParam(function, 10);
624 lp_build_name(counter, "counter");
625 }
626
627 /*
628 * Function body
629 */
630
631 block = LLVMAppendBasicBlock(function, "entry");
632 builder = LLVMCreateBuilder();
633 LLVMPositionBuilderAtEnd(builder, block);
634
635 /*
636 * The shader input interpolation info is not explicitely baked in the
637 * shader key, but everything it derives from (TGSI, and flatshade) is
638 * already included in the shader key.
639 */
640 lp_build_interp_soa_init(&interp,
641 lp->num_inputs,
642 lp->inputs,
643 builder, fs_type,
644 a0_ptr, dadx_ptr, dady_ptr,
645 x, y);
646
647 /* code generated texture sampling */
648 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
649
650 /* loop over quads in the block */
651 for(i = 0; i < num_fs; ++i) {
652 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
653 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
654 LLVMValueRef depth_ptr_i;
655
656 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
657
658 generate_fs(lp, shader, key,
659 builder,
660 fs_type,
661 context_ptr,
662 i,
663 &interp,
664 sampler,
665 &fs_mask[i], /* output */
666 out_color,
667 depth_ptr_i,
668 facing,
669 partial_mask,
670 mask_input,
671 counter);
672
673 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
674 for(chan = 0; chan < NUM_CHANNELS; ++chan)
675 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
676 }
677
678 sampler->destroy(sampler);
679
680 /* Loop over color outputs / color buffers to do blending.
681 */
682 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
683 LLVMValueRef color_ptr;
684 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
685 LLVMValueRef blend_in_color[NUM_CHANNELS];
686 unsigned rt;
687
688 /*
689 * Convert the fs's output color and mask to fit to the blending type.
690 */
691 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
692 LLVMValueRef fs_color_vals[LP_MAX_VECTOR_LENGTH];
693
694 for (i = 0; i < num_fs; i++) {
695 fs_color_vals[i] =
696 LLVMBuildLoad(builder, fs_out_color[cbuf][chan][i], "fs_color_vals");
697 }
698
699 lp_build_conv(builder, fs_type, blend_type,
700 fs_color_vals,
701 num_fs,
702 &blend_in_color[chan], 1);
703
704 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
705 }
706
707 if (partial_mask || !variant->opaque) {
708 lp_build_conv_mask(builder, fs_type, blend_type,
709 fs_mask, num_fs,
710 &blend_mask, 1);
711 } else {
712 blend_mask = lp_build_const_int_vec(blend_type, ~0);
713 }
714
715 color_ptr = LLVMBuildLoad(builder,
716 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
717 "");
718 lp_build_name(color_ptr, "color_ptr%d", cbuf);
719
720 /* which blend/colormask state to use */
721 rt = key->blend.independent_blend_enable ? cbuf : 0;
722
723 /*
724 * Blending.
725 */
726 {
727 /* Could the 4x4 have been killed?
728 */
729 boolean do_branch = ((key->depth.enabled || key->stencil[0].enabled) &&
730 !key->alpha.enabled &&
731 !shader->info.base.uses_kill);
732
733 generate_blend(&key->blend,
734 rt,
735 builder,
736 blend_type,
737 context_ptr,
738 blend_mask,
739 blend_in_color,
740 color_ptr,
741 do_branch);
742 }
743 }
744
745 #ifdef PIPE_ARCH_X86
746 /* Avoid corrupting the FPU stack on 32bit OSes. */
747 lp_build_intrinsic(builder, "llvm.x86.mmx.emms", LLVMVoidType(), NULL, 0);
748 #endif
749
750 LLVMBuildRetVoid(builder);
751
752 LLVMDisposeBuilder(builder);
753
754
755 /* Verify the LLVM IR. If invalid, dump and abort */
756 #ifdef DEBUG
757 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
758 if (1)
759 lp_debug_dump_value(function);
760 abort();
761 }
762 #endif
763
764 /* Apply optimizations to LLVM IR */
765 LLVMRunFunctionPassManager(screen->pass, function);
766
767 if ((gallivm_debug & GALLIVM_DEBUG_IR) || (LP_DEBUG & DEBUG_FS)) {
768 /* Print the LLVM IR to stderr */
769 lp_debug_dump_value(function);
770 debug_printf("\n");
771 }
772
773 /*
774 * Translate the LLVM IR into machine code.
775 */
776 {
777 void *f = LLVMGetPointerToGlobal(screen->engine, function);
778
779 variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);
780
781 if ((gallivm_debug & GALLIVM_DEBUG_ASM) || (LP_DEBUG & DEBUG_FS)) {
782 lp_disassemble(f);
783 }
784 lp_func_delete_body(function);
785 }
786 }
787
788
789 static void
790 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
791 {
792 unsigned i;
793
794 debug_printf("fs variant %p:\n", (void *) key);
795
796 if (key->flatshade) {
797 debug_printf("flatshade = 1\n");
798 }
799 for (i = 0; i < key->nr_cbufs; ++i) {
800 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
801 }
802 if (key->depth.enabled) {
803 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
804 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
805 debug_printf("depth.writemask = %u\n", key->depth.writemask);
806 }
807
808 for (i = 0; i < 2; ++i) {
809 if (key->stencil[i].enabled) {
810 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
811 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
812 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
813 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
814 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
815 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
816 }
817 }
818
819 if (key->alpha.enabled) {
820 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
821 }
822
823 if (key->occlusion_count) {
824 debug_printf("occlusion_count = 1\n");
825 }
826
827 if (key->blend.logicop_enable) {
828 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
829 }
830 else if (key->blend.rt[0].blend_enable) {
831 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
832 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
833 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
834 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
835 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
836 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
837 }
838 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
839 for (i = 0; i < key->nr_samplers; ++i) {
840 debug_printf("sampler[%u] = \n", i);
841 debug_printf(" .format = %s\n",
842 util_format_name(key->sampler[i].format));
843 debug_printf(" .target = %s\n",
844 util_dump_tex_target(key->sampler[i].target, TRUE));
845 debug_printf(" .pot = %u %u %u\n",
846 key->sampler[i].pot_width,
847 key->sampler[i].pot_height,
848 key->sampler[i].pot_depth);
849 debug_printf(" .wrap = %s %s %s\n",
850 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
851 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
852 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
853 debug_printf(" .min_img_filter = %s\n",
854 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
855 debug_printf(" .min_mip_filter = %s\n",
856 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
857 debug_printf(" .mag_img_filter = %s\n",
858 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
859 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
860 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
861 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
862 debug_printf(" .min_max_lod_equal = %u\n", key->sampler[i].min_max_lod_equal);
863 debug_printf(" .lod_bias_non_zero = %u\n", key->sampler[i].lod_bias_non_zero);
864 debug_printf(" .apply_min_lod = %u\n", key->sampler[i].apply_min_lod);
865 debug_printf(" .apply_max_lod = %u\n", key->sampler[i].apply_max_lod);
866 }
867 }
868
869
870 void
871 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
872 {
873 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
874 variant->shader->no, variant->no);
875 tgsi_dump(variant->shader->base.tokens, 0);
876 dump_fs_variant_key(&variant->key);
877 debug_printf("variant->opaque = %u\n", variant->opaque);
878 debug_printf("\n");
879 }
880
881 static struct lp_fragment_shader_variant *
882 generate_variant(struct llvmpipe_context *lp,
883 struct lp_fragment_shader *shader,
884 const struct lp_fragment_shader_variant_key *key)
885 {
886 struct lp_fragment_shader_variant *variant;
887 boolean fullcolormask;
888
889 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
890 if(!variant)
891 return NULL;
892
893 variant->shader = shader;
894 variant->list_item_global.base = variant;
895 variant->list_item_local.base = variant;
896 variant->no = shader->variants_created++;
897
898 memcpy(&variant->key, key, shader->variant_key_size);
899
900 /*
901 * Determine whether we are touching all channels in the color buffer.
902 */
903 fullcolormask = FALSE;
904 if (key->nr_cbufs == 1) {
905 const struct util_format_description *format_desc;
906 format_desc = util_format_description(key->cbuf_format[0]);
907 if ((~key->blend.rt[0].colormask &
908 util_format_colormask(format_desc)) == 0) {
909 fullcolormask = TRUE;
910 }
911 }
912
913 variant->opaque =
914 !key->blend.logicop_enable &&
915 !key->blend.rt[0].blend_enable &&
916 fullcolormask &&
917 !key->stencil[0].enabled &&
918 !key->alpha.enabled &&
919 !key->depth.enabled &&
920 !shader->info.base.uses_kill
921 ? TRUE : FALSE;
922
923
924 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
925 lp_debug_fs_variant(variant);
926 }
927
928 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
929
930 if (variant->opaque) {
931 /* Specialized shader, which doesn't need to read the color buffer. */
932 generate_fragment(lp, shader, variant, RAST_WHOLE);
933 } else {
934 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
935 }
936
937 return variant;
938 }
939
940
941 static void *
942 llvmpipe_create_fs_state(struct pipe_context *pipe,
943 const struct pipe_shader_state *templ)
944 {
945 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
946 struct lp_fragment_shader *shader;
947 int nr_samplers;
948
949 shader = CALLOC_STRUCT(lp_fragment_shader);
950 if (!shader)
951 return NULL;
952
953 shader->no = fs_no++;
954 make_empty_list(&shader->variants);
955
956 /* get/save the summary info for this shader */
957 lp_build_tgsi_info(templ->tokens, &shader->info);
958
959 /* we need to keep a local copy of the tokens */
960 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
961
962 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
963 if (shader->draw_data == NULL) {
964 FREE((void *) shader->base.tokens);
965 FREE(shader);
966 return NULL;
967 }
968
969 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
970
971 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
972 sampler[nr_samplers]);
973
974 if (LP_DEBUG & DEBUG_TGSI) {
975 unsigned attrib;
976 debug_printf("llvmpipe: Create fragment shader #%u %p:\n", shader->no, (void *) shader);
977 tgsi_dump(templ->tokens, 0);
978 debug_printf("usage masks:\n");
979 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
980 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
981 debug_printf(" IN[%u].%s%s%s%s\n",
982 attrib,
983 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
984 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
985 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
986 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
987 }
988 debug_printf("\n");
989 }
990
991 return shader;
992 }
993
994
995 static void
996 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
997 {
998 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
999
1000 if (llvmpipe->fs == fs)
1001 return;
1002
1003 draw_flush(llvmpipe->draw);
1004
1005 draw_bind_fragment_shader(llvmpipe->draw,
1006 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
1007
1008 llvmpipe->fs = fs;
1009
1010 llvmpipe->dirty |= LP_NEW_FS;
1011 }
1012
1013 static void
1014 remove_shader_variant(struct llvmpipe_context *lp,
1015 struct lp_fragment_shader_variant *variant)
1016 {
1017 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
1018 unsigned i;
1019
1020 if (gallivm_debug & GALLIVM_DEBUG_IR) {
1021 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached #%u v total cached #%u\n",
1022 variant->shader->no, variant->no, variant->shader->variants_created,
1023 variant->shader->variants_cached, lp->nr_fs_variants);
1024 }
1025 for (i = 0; i < Elements(variant->function); i++) {
1026 if (variant->function[i]) {
1027 if (variant->jit_function[i])
1028 LLVMFreeMachineCodeForFunction(screen->engine,
1029 variant->function[i]);
1030 LLVMDeleteFunction(variant->function[i]);
1031 }
1032 }
1033 remove_from_list(&variant->list_item_local);
1034 variant->shader->variants_cached--;
1035 remove_from_list(&variant->list_item_global);
1036 lp->nr_fs_variants--;
1037 FREE(variant);
1038 }
1039
1040 static void
1041 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1042 {
1043 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1044 struct lp_fragment_shader *shader = fs;
1045 struct lp_fs_variant_list_item *li;
1046
1047 assert(fs != llvmpipe->fs);
1048 (void) llvmpipe;
1049
1050 /*
1051 * XXX: we need to flush the context until we have some sort of reference
1052 * counting in fragment shaders as they may still be binned
1053 * Flushing alone might not sufficient we need to wait on it too.
1054 */
1055
1056 llvmpipe_finish(pipe, __FUNCTION__);
1057
1058 li = first_elem(&shader->variants);
1059 while(!at_end(&shader->variants, li)) {
1060 struct lp_fs_variant_list_item *next = next_elem(li);
1061 remove_shader_variant(llvmpipe, li->base);
1062 li = next;
1063 }
1064
1065 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
1066
1067 assert(shader->variants_cached == 0);
1068 FREE((void *) shader->base.tokens);
1069 FREE(shader);
1070 }
1071
1072
1073
1074 static void
1075 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1076 uint shader, uint index,
1077 struct pipe_resource *constants)
1078 {
1079 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1080 unsigned size = constants ? constants->width0 : 0;
1081 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1082
1083 assert(shader < PIPE_SHADER_TYPES);
1084 assert(index < PIPE_MAX_CONSTANT_BUFFERS);
1085
1086 if(llvmpipe->constants[shader][index] == constants)
1087 return;
1088
1089 draw_flush(llvmpipe->draw);
1090
1091 /* note: reference counting */
1092 pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
1093
1094 if(shader == PIPE_SHADER_VERTEX ||
1095 shader == PIPE_SHADER_GEOMETRY) {
1096 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
1097 index, data, size);
1098 }
1099
1100 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1101 }
1102
1103
1104 /**
1105 * Return the blend factor equivalent to a destination alpha of one.
1106 */
1107 static INLINE unsigned
1108 force_dst_alpha_one(unsigned factor)
1109 {
1110 switch(factor) {
1111 case PIPE_BLENDFACTOR_DST_ALPHA:
1112 return PIPE_BLENDFACTOR_ONE;
1113 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1114 return PIPE_BLENDFACTOR_ZERO;
1115 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1116 return PIPE_BLENDFACTOR_ZERO;
1117 }
1118
1119 return factor;
1120 }
1121
1122
1123 /**
1124 * We need to generate several variants of the fragment pipeline to match
1125 * all the combinations of the contributing state atoms.
1126 *
1127 * TODO: there is actually no reason to tie this to context state -- the
1128 * generated code could be cached globally in the screen.
1129 */
1130 static void
1131 make_variant_key(struct llvmpipe_context *lp,
1132 struct lp_fragment_shader *shader,
1133 struct lp_fragment_shader_variant_key *key)
1134 {
1135 unsigned i;
1136
1137 memset(key, 0, shader->variant_key_size);
1138
1139 if (lp->framebuffer.zsbuf) {
1140 if (lp->depth_stencil->depth.enabled) {
1141 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1142 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1143 }
1144 if (lp->depth_stencil->stencil[0].enabled) {
1145 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1146 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1147 }
1148 }
1149
1150 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1151 if(key->alpha.enabled)
1152 key->alpha.func = lp->depth_stencil->alpha.func;
1153 /* alpha.ref_value is passed in jit_context */
1154
1155 key->flatshade = lp->rasterizer->flatshade;
1156 if (lp->active_query_count) {
1157 key->occlusion_count = TRUE;
1158 }
1159
1160 if (lp->framebuffer.nr_cbufs) {
1161 memcpy(&key->blend, lp->blend, sizeof key->blend);
1162 }
1163
1164 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1165 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1166 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
1167 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1168 const struct util_format_description *format_desc;
1169
1170 key->cbuf_format[i] = format;
1171
1172 format_desc = util_format_description(format);
1173 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1174 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1175
1176 blend_rt->colormask = lp->blend->rt[i].colormask;
1177
1178 /*
1179 * Mask out color channels not present in the color buffer.
1180 */
1181 blend_rt->colormask &= util_format_colormask(format_desc);
1182
1183 /*
1184 * Our swizzled render tiles always have an alpha channel, but the linear
1185 * render target format often does not, so force here the dst alpha to be
1186 * one.
1187 *
1188 * This is not a mere optimization. Wrong results will be produced if the
1189 * dst alpha is used, the dst format does not have alpha, and the previous
1190 * rendering was not flushed from the swizzled to linear buffer. For
1191 * example, NonPowTwo DCT.
1192 *
1193 * TODO: This should be generalized to all channels for better
1194 * performance, but only alpha causes correctness issues.
1195 *
1196 * Also, force rgb/alpha func/factors match, to make AoS blending easier.
1197 */
1198 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1199 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor);
1200 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor);
1201 blend_rt->alpha_func = blend_rt->rgb_func;
1202 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
1203 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
1204 }
1205 }
1206
1207 /* This value will be the same for all the variants of a given shader:
1208 */
1209 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
1210
1211 for(i = 0; i < key->nr_samplers; ++i) {
1212 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
1213 lp_sampler_static_state(&key->sampler[i],
1214 lp->fragment_sampler_views[i],
1215 lp->sampler[i]);
1216 }
1217 }
1218 }
1219
1220 /**
1221 * Update fragment state. This is called just prior to drawing
1222 * something when some fragment-related state has changed.
1223 */
1224 void
1225 llvmpipe_update_fs(struct llvmpipe_context *lp)
1226 {
1227 struct lp_fragment_shader *shader = lp->fs;
1228 struct lp_fragment_shader_variant_key key;
1229 struct lp_fragment_shader_variant *variant = NULL;
1230 struct lp_fs_variant_list_item *li;
1231
1232 make_variant_key(lp, shader, &key);
1233
1234 li = first_elem(&shader->variants);
1235 while(!at_end(&shader->variants, li)) {
1236 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
1237 variant = li->base;
1238 break;
1239 }
1240 li = next_elem(li);
1241 }
1242
1243 if (variant) {
1244 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1245 }
1246 else {
1247 int64_t t0, t1;
1248 int64_t dt;
1249 unsigned i;
1250 if (lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS) {
1251 struct pipe_context *pipe = &lp->pipe;
1252
1253 /*
1254 * XXX: we need to flush the context until we have some sort of reference
1255 * counting in fragment shaders as they may still be binned
1256 * Flushing alone might not be sufficient we need to wait on it too.
1257 */
1258 llvmpipe_finish(pipe, __FUNCTION__);
1259
1260 for (i = 0; i < LP_MAX_SHADER_VARIANTS / 4; i++) {
1261 struct lp_fs_variant_list_item *item = last_elem(&lp->fs_variants_list);
1262 remove_shader_variant(lp, item->base);
1263 }
1264 }
1265 t0 = os_time_get();
1266
1267 variant = generate_variant(lp, shader, &key);
1268
1269 t1 = os_time_get();
1270 dt = t1 - t0;
1271 LP_COUNT_ADD(llvm_compile_time, dt);
1272 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1273
1274 if (variant) {
1275 insert_at_head(&shader->variants, &variant->list_item_local);
1276 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1277 lp->nr_fs_variants++;
1278 shader->variants_cached++;
1279 }
1280 }
1281
1282 lp_setup_set_fs_variant(lp->setup, variant);
1283 }
1284
1285
1286
1287 void
1288 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1289 {
1290 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1291 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1292 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1293
1294 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1295 }