llvmpipe: Fix crashes when there is no depth buffer bound.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - triangle edge in/out testing
35 * - scissor test
36 * - stipple (TBI)
37 * - early depth test
38 * - fragment shader
39 * - alpha test
40 * - depth/stencil test (stencil TBI)
41 * - blending
42 *
43 * This file has only the glue to assemble the fragment pipeline. The actual
44 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
45 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
46 * muster the LLVM JIT execution engine to create a function that follows an
47 * established binary interface and that can be called from C directly.
48 *
49 * A big source of complexity here is that we often want to run different
50 * stages with different precisions and data types and precisions. For example,
51 * the fragment shader needs typically to be done in floats, but the
52 * depth/stencil test and blending is better done in the type that most closely
53 * matches the depth/stencil and color buffer respectively.
54 *
55 * Since the width of a SIMD vector register stays the same regardless of the
56 * element type, different types imply different number of elements, so we must
57 * code generate more instances of the stages with larger types to be able to
58 * feed/consume the stages with smaller types.
59 *
60 * @author Jose Fonseca <jfonseca@vmware.com>
61 */
62
63 #include <limits.h>
64 #include "pipe/p_defines.h"
65 #include "util/u_inlines.h"
66 #include "util/u_memory.h"
67 #include "util/u_format.h"
68 #include "util/u_dump.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_intr.h"
79 #include "gallivm/lp_bld_logic.h"
80 #include "gallivm/lp_bld_depth.h"
81 #include "gallivm/lp_bld_interp.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_alpha.h"
84 #include "gallivm/lp_bld_blend.h"
85 #include "gallivm/lp_bld_swizzle.h"
86 #include "gallivm/lp_bld_flow.h"
87 #include "gallivm/lp_bld_debug.h"
88 #include "lp_buffer.h"
89 #include "lp_context.h"
90 #include "lp_debug.h"
91 #include "lp_perf.h"
92 #include "lp_screen.h"
93 #include "lp_setup.h"
94 #include "lp_state.h"
95 #include "lp_tex_sample.h"
96
97
98 #include <llvm-c/Analysis.h>
99
100
101 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
102 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
103
104
105 /*
106 * Derive from the quad's upper left scalar coordinates the coordinates for
107 * all other quad pixels
108 */
109 static void
110 generate_pos0(LLVMBuilderRef builder,
111 LLVMValueRef x,
112 LLVMValueRef y,
113 LLVMValueRef *x0,
114 LLVMValueRef *y0)
115 {
116 LLVMTypeRef int_elem_type = LLVMInt32Type();
117 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
118 LLVMTypeRef elem_type = LLVMFloatType();
119 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
120 LLVMValueRef x_offsets[QUAD_SIZE];
121 LLVMValueRef y_offsets[QUAD_SIZE];
122 unsigned i;
123
124 x = lp_build_broadcast(builder, int_vec_type, x);
125 y = lp_build_broadcast(builder, int_vec_type, y);
126
127 for(i = 0; i < QUAD_SIZE; ++i) {
128 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
129 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
130 }
131
132 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
133 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
134
135 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
136 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
137 }
138
139
140 /**
141 * Generate the depth /stencil test code.
142 */
143 static void
144 generate_depth_stencil(LLVMBuilderRef builder,
145 const struct lp_fragment_shader_variant_key *key,
146 struct lp_type src_type,
147 struct lp_build_mask_context *mask,
148 LLVMValueRef stencil_refs,
149 LLVMValueRef src,
150 LLVMValueRef dst_ptr)
151 {
152 const struct util_format_description *format_desc;
153 struct lp_type dst_type;
154
155 if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
156 return;
157
158 format_desc = util_format_description(key->zsbuf_format);
159 assert(format_desc);
160
161 /*
162 * Depths are expected to be between 0 and 1, even if they are stored in
163 * floats. Setting these bits here will ensure that the lp_build_conv() call
164 * below won't try to unnecessarily clamp the incoming values.
165 */
166 if(src_type.floating) {
167 src_type.sign = FALSE;
168 src_type.norm = TRUE;
169 }
170 else {
171 assert(!src_type.sign);
172 assert(src_type.norm);
173 }
174
175 /* Pick the depth type. */
176 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
177
178 /* FIXME: Cope with a depth test type with a different bit width. */
179 assert(dst_type.width == src_type.width);
180 assert(dst_type.length == src_type.length);
181
182 /* Convert fragment Z from float to integer */
183 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
184
185 dst_ptr = LLVMBuildBitCast(builder,
186 dst_ptr,
187 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
188 lp_build_depth_stencil_test(builder,
189 &key->depth,
190 key->stencil,
191 dst_type,
192 format_desc,
193 mask,
194 stencil_refs,
195 src,
196 dst_ptr);
197 }
198
199
200 /**
201 * Generate the code to do inside/outside triangle testing for the
202 * four pixels in a 2x2 quad. This will set the four elements of the
203 * quad mask vector to 0 or ~0.
204 * \param i which quad of the quad group to test, in [0,3]
205 */
206 static void
207 generate_tri_edge_mask(LLVMBuilderRef builder,
208 unsigned i,
209 LLVMValueRef *mask, /* ivec4, out */
210 LLVMValueRef c0, /* int32 */
211 LLVMValueRef c1, /* int32 */
212 LLVMValueRef c2, /* int32 */
213 LLVMValueRef step0_ptr, /* ivec4 */
214 LLVMValueRef step1_ptr, /* ivec4 */
215 LLVMValueRef step2_ptr) /* ivec4 */
216 {
217 #define OPTIMIZE_IN_OUT_TEST 0
218 #if OPTIMIZE_IN_OUT_TEST
219 struct lp_build_if_state ifctx;
220 LLVMValueRef not_draw_all;
221 #endif
222 struct lp_build_flow_context *flow;
223 struct lp_type i32_type;
224 LLVMTypeRef i32vec4_type, mask_type;
225 LLVMValueRef c0_vec, c1_vec, c2_vec;
226 LLVMValueRef in_out_mask;
227
228 assert(i < 4);
229
230 /* int32 vector type */
231 memset(&i32_type, 0, sizeof i32_type);
232 i32_type.floating = FALSE; /* values are integers */
233 i32_type.sign = TRUE; /* values are signed */
234 i32_type.norm = FALSE; /* values are not normalized */
235 i32_type.width = 32; /* 32-bit int values */
236 i32_type.length = 4; /* 4 elements per vector */
237
238 i32vec4_type = lp_build_int32_vec4_type();
239
240 mask_type = LLVMIntType(32 * 4);
241
242 /*
243 * Use a conditional here to do detailed pixel in/out testing.
244 * We only have to do this if c0 != INT_MIN.
245 */
246 flow = lp_build_flow_create(builder);
247 lp_build_flow_scope_begin(flow);
248
249 {
250 #if OPTIMIZE_IN_OUT_TEST
251 /* not_draw_all = (c0 != INT_MIN) */
252 not_draw_all = LLVMBuildICmp(builder,
253 LLVMIntNE,
254 c0,
255 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
256 "");
257
258 in_out_mask = lp_build_const_int_vec(i32_type, ~0);
259
260
261 lp_build_flow_scope_declare(flow, &in_out_mask);
262
263 /* if (not_draw_all) {... */
264 lp_build_if(&ifctx, flow, builder, not_draw_all);
265 #endif
266 {
267 LLVMValueRef step0_vec, step1_vec, step2_vec;
268 LLVMValueRef m0_vec, m1_vec, m2_vec;
269 LLVMValueRef index, m;
270
271 /* c0_vec = {c0, c0, c0, c0}
272 * Note that we emit this code four times but LLVM optimizes away
273 * three instances of it.
274 */
275 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
276 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
277 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
278 lp_build_name(c0_vec, "edgeconst0vec");
279 lp_build_name(c1_vec, "edgeconst1vec");
280 lp_build_name(c2_vec, "edgeconst2vec");
281
282 /* load step0vec, step1, step2 vec from memory */
283 index = LLVMConstInt(LLVMInt32Type(), i, 0);
284 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
285 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
286 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
287 lp_build_name(step0_vec, "step0vec");
288 lp_build_name(step1_vec, "step1vec");
289 lp_build_name(step2_vec, "step2vec");
290
291 /* m0_vec = step0_ptr[i] > c0_vec */
292 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
293 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
294 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
295
296 /* in_out_mask = m0_vec & m1_vec & m2_vec */
297 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
298 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
299 lp_build_name(in_out_mask, "inoutmaskvec");
300 }
301 #if OPTIMIZE_IN_OUT_TEST
302 lp_build_endif(&ifctx);
303 #endif
304
305 }
306 lp_build_flow_scope_end(flow);
307 lp_build_flow_destroy(flow);
308
309 /* This is the initial alive/dead pixel mask for a quad of four pixels.
310 * It's an int[4] vector with each word set to 0 or ~0.
311 * Words will get cleared when pixels faile the Z test, etc.
312 */
313 *mask = in_out_mask;
314 }
315
316
317 static LLVMValueRef
318 generate_scissor_test(LLVMBuilderRef builder,
319 LLVMValueRef context_ptr,
320 const struct lp_build_interp_soa_context *interp,
321 struct lp_type type)
322 {
323 LLVMTypeRef vec_type = lp_build_vec_type(type);
324 LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1];
325 LLVMValueRef xmin, ymin, xmax, ymax;
326 LLVMValueRef m0, m1, m2, m3, m;
327
328 /* xpos, ypos contain the window coords for the four pixels in the quad */
329 assert(xpos);
330 assert(ypos);
331
332 /* get the current scissor bounds, convert to vectors */
333 xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr);
334 xmin = lp_build_broadcast(builder, vec_type, xmin);
335
336 ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr);
337 ymin = lp_build_broadcast(builder, vec_type, ymin);
338
339 xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr);
340 xmax = lp_build_broadcast(builder, vec_type, xmax);
341
342 ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr);
343 ymax = lp_build_broadcast(builder, vec_type, ymax);
344
345 /* compare the fragment's position coordinates against the scissor bounds */
346 m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin);
347 m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin);
348 m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax);
349 m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax);
350
351 /* AND all the masks together */
352 m = LLVMBuildAnd(builder, m0, m1, "");
353 m = LLVMBuildAnd(builder, m, m2, "");
354 m = LLVMBuildAnd(builder, m, m3, "");
355
356 lp_build_name(m, "scissormask");
357
358 return m;
359 }
360
361
362 static LLVMValueRef
363 build_int32_vec_const(int value)
364 {
365 struct lp_type i32_type;
366
367 memset(&i32_type, 0, sizeof i32_type);
368 i32_type.floating = FALSE; /* values are integers */
369 i32_type.sign = TRUE; /* values are signed */
370 i32_type.norm = FALSE; /* values are not normalized */
371 i32_type.width = 32; /* 32-bit int values */
372 i32_type.length = 4; /* 4 elements per vector */
373 return lp_build_const_int_vec(i32_type, value);
374 }
375
376
377
378 /**
379 * Generate the fragment shader, depth/stencil test, and alpha tests.
380 * \param i which quad in the tile, in range [0,3]
381 * \param do_tri_test if 1, do triangle edge in/out testing
382 */
383 static void
384 generate_fs(struct llvmpipe_context *lp,
385 struct lp_fragment_shader *shader,
386 const struct lp_fragment_shader_variant_key *key,
387 LLVMBuilderRef builder,
388 struct lp_type type,
389 LLVMValueRef context_ptr,
390 unsigned i,
391 const struct lp_build_interp_soa_context *interp,
392 struct lp_build_sampler_soa *sampler,
393 LLVMValueRef *pmask,
394 LLVMValueRef (*color)[4],
395 LLVMValueRef depth_ptr,
396 unsigned do_tri_test,
397 LLVMValueRef c0,
398 LLVMValueRef c1,
399 LLVMValueRef c2,
400 LLVMValueRef step0_ptr,
401 LLVMValueRef step1_ptr,
402 LLVMValueRef step2_ptr)
403 {
404 const struct tgsi_token *tokens = shader->base.tokens;
405 LLVMTypeRef elem_type;
406 LLVMTypeRef vec_type;
407 LLVMTypeRef int_vec_type;
408 LLVMValueRef consts_ptr;
409 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
410 LLVMValueRef z = interp->pos[2];
411 LLVMValueRef stencil_refs;
412 struct lp_build_flow_context *flow;
413 struct lp_build_mask_context mask;
414 boolean early_depth_stencil_test;
415 unsigned attrib;
416 unsigned chan;
417 unsigned cbuf;
418
419 assert(i < 4);
420
421 stencil_refs = lp_jit_context_stencil_ref_values(builder, context_ptr);
422
423 elem_type = lp_build_elem_type(type);
424 vec_type = lp_build_vec_type(type);
425 int_vec_type = lp_build_int_vec_type(type);
426
427 consts_ptr = lp_jit_context_constants(builder, context_ptr);
428
429 flow = lp_build_flow_create(builder);
430
431 memset(outputs, 0, sizeof outputs);
432
433 lp_build_flow_scope_begin(flow);
434
435 /* Declare the color and z variables */
436 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
437 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
438 color[cbuf][chan] = LLVMGetUndef(vec_type);
439 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
440 }
441 }
442 lp_build_flow_scope_declare(flow, &z);
443
444 /* do triangle edge testing */
445 if (do_tri_test) {
446 generate_tri_edge_mask(builder, i, pmask,
447 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
448 }
449 else {
450 *pmask = build_int32_vec_const(~0);
451 }
452
453 /* 'mask' will control execution based on quad's pixel alive/killed state */
454 lp_build_mask_begin(&mask, flow, type, *pmask);
455
456 if (key->scissor) {
457 LLVMValueRef smask =
458 generate_scissor_test(builder, context_ptr, interp, type);
459 lp_build_mask_update(&mask, smask);
460 }
461
462 early_depth_stencil_test =
463 (key->depth.enabled || key->stencil[0].enabled) &&
464 !key->alpha.enabled &&
465 !shader->info.uses_kill &&
466 !shader->info.writes_z;
467
468 if (early_depth_stencil_test)
469 generate_depth_stencil(builder, key,
470 type, &mask,
471 stencil_refs, z, depth_ptr);
472
473 lp_build_tgsi_soa(builder, tokens, type, &mask,
474 consts_ptr, interp->pos, interp->inputs,
475 outputs, sampler);
476
477 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
478 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
479 if(outputs[attrib][chan]) {
480 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
481 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
482
483 switch (shader->info.output_semantic_name[attrib]) {
484 case TGSI_SEMANTIC_COLOR:
485 {
486 unsigned cbuf = shader->info.output_semantic_index[attrib];
487
488 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
489
490 /* Alpha test */
491 /* XXX: should the alpha reference value be passed separately? */
492 /* XXX: should only test the final assignment to alpha */
493 if(cbuf == 0 && chan == 3) {
494 LLVMValueRef alpha = out;
495 LLVMValueRef alpha_ref_value;
496 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
497 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
498 lp_build_alpha_test(builder, &key->alpha, type,
499 &mask, alpha, alpha_ref_value);
500 }
501
502 color[cbuf][chan] = out;
503 break;
504 }
505
506 case TGSI_SEMANTIC_POSITION:
507 if(chan == 2)
508 z = out;
509 break;
510 }
511 }
512 }
513 }
514
515 if (!early_depth_stencil_test)
516 generate_depth_stencil(builder, key,
517 type, &mask,
518 stencil_refs, z, depth_ptr);
519
520 lp_build_mask_end(&mask);
521
522 lp_build_flow_scope_end(flow);
523
524 lp_build_flow_destroy(flow);
525
526 *pmask = mask.value;
527
528 }
529
530
531 /**
532 * Generate color blending and color output.
533 */
534 static void
535 generate_blend(const struct pipe_blend_state *blend,
536 LLVMBuilderRef builder,
537 struct lp_type type,
538 LLVMValueRef context_ptr,
539 LLVMValueRef mask,
540 LLVMValueRef *src,
541 LLVMValueRef dst_ptr)
542 {
543 struct lp_build_context bld;
544 struct lp_build_flow_context *flow;
545 struct lp_build_mask_context mask_ctx;
546 LLVMTypeRef vec_type;
547 LLVMTypeRef int_vec_type;
548 LLVMValueRef const_ptr;
549 LLVMValueRef con[4];
550 LLVMValueRef dst[4];
551 LLVMValueRef res[4];
552 unsigned chan;
553
554 lp_build_context_init(&bld, builder, type);
555
556 flow = lp_build_flow_create(builder);
557
558 /* we'll use this mask context to skip blending if all pixels are dead */
559 lp_build_mask_begin(&mask_ctx, flow, type, mask);
560
561 vec_type = lp_build_vec_type(type);
562 int_vec_type = lp_build_int_vec_type(type);
563
564 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
565 const_ptr = LLVMBuildBitCast(builder, const_ptr,
566 LLVMPointerType(vec_type, 0), "");
567
568 for(chan = 0; chan < 4; ++chan) {
569 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
570 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
571
572 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
573
574 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
575 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
576 }
577
578 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
579
580 for(chan = 0; chan < 4; ++chan) {
581 if(blend->rt[0].colormask & (1 << chan)) {
582 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
583 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
584 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
585 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
586 }
587 }
588
589 lp_build_mask_end(&mask_ctx);
590 lp_build_flow_destroy(flow);
591 }
592
593
594 /** casting function to avoid compiler warnings */
595 static lp_jit_frag_func
596 cast_voidptr_to_lp_jit_frag_func(void *p)
597 {
598 union {
599 void *v;
600 lp_jit_frag_func f;
601 } tmp;
602 assert(sizeof(tmp.v) == sizeof(tmp.f));
603 tmp.v = p;
604 return tmp.f;
605 }
606
607
608 /**
609 * Generate the runtime callable function for the whole fragment pipeline.
610 * Note that the function which we generate operates on a block of 16
611 * pixels at at time. The block contains 2x2 quads. Each quad contains
612 * 2x2 pixels.
613 */
614 static void
615 generate_fragment(struct llvmpipe_context *lp,
616 struct lp_fragment_shader *shader,
617 struct lp_fragment_shader_variant *variant,
618 unsigned do_tri_test)
619 {
620 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
621 const struct lp_fragment_shader_variant_key *key = &variant->key;
622 struct lp_type fs_type;
623 struct lp_type blend_type;
624 LLVMTypeRef fs_elem_type;
625 LLVMTypeRef fs_vec_type;
626 LLVMTypeRef fs_int_vec_type;
627 LLVMTypeRef blend_vec_type;
628 LLVMTypeRef blend_int_vec_type;
629 LLVMTypeRef arg_types[14];
630 LLVMTypeRef func_type;
631 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
632 LLVMValueRef context_ptr;
633 LLVMValueRef x;
634 LLVMValueRef y;
635 LLVMValueRef a0_ptr;
636 LLVMValueRef dadx_ptr;
637 LLVMValueRef dady_ptr;
638 LLVMValueRef color_ptr_ptr;
639 LLVMValueRef depth_ptr;
640 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
641 LLVMBasicBlockRef block;
642 LLVMBuilderRef builder;
643 LLVMValueRef x0;
644 LLVMValueRef y0;
645 struct lp_build_sampler_soa *sampler;
646 struct lp_build_interp_soa_context interp;
647 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
648 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
649 LLVMValueRef blend_mask;
650 LLVMValueRef blend_in_color[NUM_CHANNELS];
651 LLVMValueRef function;
652 unsigned num_fs;
653 unsigned i;
654 unsigned chan;
655 unsigned cbuf;
656
657
658 /* TODO: actually pick these based on the fs and color buffer
659 * characteristics. */
660
661 memset(&fs_type, 0, sizeof fs_type);
662 fs_type.floating = TRUE; /* floating point values */
663 fs_type.sign = TRUE; /* values are signed */
664 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
665 fs_type.width = 32; /* 32-bit float */
666 fs_type.length = 4; /* 4 elements per vector */
667 num_fs = 4; /* number of quads per block */
668
669 memset(&blend_type, 0, sizeof blend_type);
670 blend_type.floating = FALSE; /* values are integers */
671 blend_type.sign = FALSE; /* values are unsigned */
672 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
673 blend_type.width = 8; /* 8-bit ubyte values */
674 blend_type.length = 16; /* 16 elements per vector */
675
676 /*
677 * Generate the function prototype. Any change here must be reflected in
678 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
679 */
680
681 fs_elem_type = lp_build_elem_type(fs_type);
682 fs_vec_type = lp_build_vec_type(fs_type);
683 fs_int_vec_type = lp_build_int_vec_type(fs_type);
684
685 blend_vec_type = lp_build_vec_type(blend_type);
686 blend_int_vec_type = lp_build_int_vec_type(blend_type);
687
688 arg_types[0] = screen->context_ptr_type; /* context */
689 arg_types[1] = LLVMInt32Type(); /* x */
690 arg_types[2] = LLVMInt32Type(); /* y */
691 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
692 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
693 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
694 arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
695 arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
696 arg_types[8] = LLVMInt32Type(); /* c0 */
697 arg_types[9] = LLVMInt32Type(); /* c1 */
698 arg_types[10] = LLVMInt32Type(); /* c2 */
699 /* Note: the step arrays are built as int32[16] but we interpret
700 * them here as int32_vec4[4].
701 */
702 arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
703 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
704 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
705
706 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
707
708 function = LLVMAddFunction(screen->module, "shader", func_type);
709 LLVMSetFunctionCallConv(function, LLVMCCallConv);
710
711 variant->function[do_tri_test] = function;
712
713
714 /* XXX: need to propagate noalias down into color param now we are
715 * passing a pointer-to-pointer?
716 */
717 for(i = 0; i < Elements(arg_types); ++i)
718 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
719 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
720
721 context_ptr = LLVMGetParam(function, 0);
722 x = LLVMGetParam(function, 1);
723 y = LLVMGetParam(function, 2);
724 a0_ptr = LLVMGetParam(function, 3);
725 dadx_ptr = LLVMGetParam(function, 4);
726 dady_ptr = LLVMGetParam(function, 5);
727 color_ptr_ptr = LLVMGetParam(function, 6);
728 depth_ptr = LLVMGetParam(function, 7);
729 c0 = LLVMGetParam(function, 8);
730 c1 = LLVMGetParam(function, 9);
731 c2 = LLVMGetParam(function, 10);
732 step0_ptr = LLVMGetParam(function, 11);
733 step1_ptr = LLVMGetParam(function, 12);
734 step2_ptr = LLVMGetParam(function, 13);
735
736 lp_build_name(context_ptr, "context");
737 lp_build_name(x, "x");
738 lp_build_name(y, "y");
739 lp_build_name(a0_ptr, "a0");
740 lp_build_name(dadx_ptr, "dadx");
741 lp_build_name(dady_ptr, "dady");
742 lp_build_name(color_ptr_ptr, "color_ptr");
743 lp_build_name(depth_ptr, "depth");
744 lp_build_name(c0, "c0");
745 lp_build_name(c1, "c1");
746 lp_build_name(c2, "c2");
747 lp_build_name(step0_ptr, "step0");
748 lp_build_name(step1_ptr, "step1");
749 lp_build_name(step2_ptr, "step2");
750
751 /*
752 * Function body
753 */
754
755 block = LLVMAppendBasicBlock(function, "entry");
756 builder = LLVMCreateBuilder();
757 LLVMPositionBuilderAtEnd(builder, block);
758
759 generate_pos0(builder, x, y, &x0, &y0);
760
761 lp_build_interp_soa_init(&interp,
762 shader->base.tokens,
763 key->flatshade,
764 builder, fs_type,
765 a0_ptr, dadx_ptr, dady_ptr,
766 x0, y0);
767
768 /* code generated texture sampling */
769 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
770
771 /* loop over quads in the block */
772 for(i = 0; i < num_fs; ++i) {
773 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
774 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
775 LLVMValueRef depth_ptr_i;
776 int cbuf;
777
778 if(i != 0)
779 lp_build_interp_soa_update(&interp, i);
780
781 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
782
783 generate_fs(lp, shader, key,
784 builder,
785 fs_type,
786 context_ptr,
787 i,
788 &interp,
789 sampler,
790 &fs_mask[i], /* output */
791 out_color,
792 depth_ptr_i,
793 do_tri_test,
794 c0, c1, c2,
795 step0_ptr, step1_ptr, step2_ptr);
796
797 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
798 for(chan = 0; chan < NUM_CHANNELS; ++chan)
799 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
800 }
801
802 sampler->destroy(sampler);
803
804 /* Loop over color outputs / color buffers to do blending.
805 */
806 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
807 LLVMValueRef color_ptr;
808 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
809
810 /*
811 * Convert the fs's output color and mask to fit to the blending type.
812 */
813 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
814 lp_build_conv(builder, fs_type, blend_type,
815 fs_out_color[cbuf][chan], num_fs,
816 &blend_in_color[chan], 1);
817 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
818 }
819
820 lp_build_conv_mask(builder, fs_type, blend_type,
821 fs_mask, num_fs,
822 &blend_mask, 1);
823
824 color_ptr = LLVMBuildLoad(builder,
825 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
826 "");
827 lp_build_name(color_ptr, "color_ptr%d", cbuf);
828
829 /*
830 * Blending.
831 */
832 generate_blend(&key->blend,
833 builder,
834 blend_type,
835 context_ptr,
836 blend_mask,
837 blend_in_color,
838 color_ptr);
839 }
840
841 LLVMBuildRetVoid(builder);
842
843 LLVMDisposeBuilder(builder);
844
845
846 /* Verify the LLVM IR. If invalid, dump and abort */
847 #ifdef DEBUG
848 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
849 if (1)
850 LLVMDumpValue(function);
851 abort();
852 }
853 #endif
854
855 /* Apply optimizations to LLVM IR */
856 if (1)
857 LLVMRunFunctionPassManager(screen->pass, function);
858
859 if (LP_DEBUG & DEBUG_JIT) {
860 /* Print the LLVM IR to stderr */
861 LLVMDumpValue(function);
862 debug_printf("\n");
863 }
864
865 /*
866 * Translate the LLVM IR into machine code.
867 */
868 {
869 void *f = LLVMGetPointerToGlobal(screen->engine, function);
870
871 variant->jit_function[do_tri_test] = cast_voidptr_to_lp_jit_frag_func(f);
872
873 if (LP_DEBUG & DEBUG_ASM)
874 lp_disassemble(f);
875 }
876 }
877
878
879 static struct lp_fragment_shader_variant *
880 generate_variant(struct llvmpipe_context *lp,
881 struct lp_fragment_shader *shader,
882 const struct lp_fragment_shader_variant_key *key)
883 {
884 struct lp_fragment_shader_variant *variant;
885
886 if (LP_DEBUG & DEBUG_JIT) {
887 unsigned i;
888
889 tgsi_dump(shader->base.tokens, 0);
890 if(key->depth.enabled) {
891 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
892 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
893 debug_printf("depth.writemask = %u\n", key->depth.writemask);
894 }
895 if(key->alpha.enabled) {
896 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
897 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
898 }
899 if(key->blend.logicop_enable) {
900 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
901 }
902 else if(key->blend.rt[0].blend_enable) {
903 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
904 debug_printf("rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
905 debug_printf("rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
906 debug_printf("alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
907 debug_printf("alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
908 debug_printf("alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
909 }
910 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
911 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
912 if(key->sampler[i].format) {
913 debug_printf("sampler[%u] = \n", i);
914 debug_printf(" .format = %s\n",
915 util_format_name(key->sampler[i].format));
916 debug_printf(" .target = %s\n",
917 util_dump_tex_target(key->sampler[i].target, TRUE));
918 debug_printf(" .pot = %u %u %u\n",
919 key->sampler[i].pot_width,
920 key->sampler[i].pot_height,
921 key->sampler[i].pot_depth);
922 debug_printf(" .wrap = %s %s %s\n",
923 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
924 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
925 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
926 debug_printf(" .min_img_filter = %s\n",
927 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
928 debug_printf(" .min_mip_filter = %s\n",
929 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
930 debug_printf(" .mag_img_filter = %s\n",
931 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
932 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
933 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
934 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
935 }
936 }
937 }
938
939 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
940 if(!variant)
941 return NULL;
942
943 variant->shader = shader;
944 memcpy(&variant->key, key, sizeof *key);
945
946 generate_fragment(lp, shader, variant, 0);
947 generate_fragment(lp, shader, variant, 1);
948
949 /* insert new variant into linked list */
950 variant->next = shader->variants;
951 shader->variants = variant;
952
953 return variant;
954 }
955
956
957 void *
958 llvmpipe_create_fs_state(struct pipe_context *pipe,
959 const struct pipe_shader_state *templ)
960 {
961 struct lp_fragment_shader *shader;
962
963 shader = CALLOC_STRUCT(lp_fragment_shader);
964 if (!shader)
965 return NULL;
966
967 /* get/save the summary info for this shader */
968 tgsi_scan_shader(templ->tokens, &shader->info);
969
970 /* we need to keep a local copy of the tokens */
971 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
972
973 return shader;
974 }
975
976
977 void
978 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
979 {
980 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
981
982 if (llvmpipe->fs == fs)
983 return;
984
985 draw_flush(llvmpipe->draw);
986
987 llvmpipe->fs = fs;
988
989 llvmpipe->dirty |= LP_NEW_FS;
990 }
991
992
993 void
994 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
995 {
996 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
997 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
998 struct lp_fragment_shader *shader = fs;
999 struct lp_fragment_shader_variant *variant;
1000
1001 assert(fs != llvmpipe->fs);
1002 (void) llvmpipe;
1003
1004 /*
1005 * XXX: we need to flush the context until we have some sort of reference
1006 * counting in fragment shaders as they may still be binned
1007 */
1008 draw_flush(llvmpipe->draw);
1009 lp_setup_flush(llvmpipe->setup, 0);
1010
1011 variant = shader->variants;
1012 while(variant) {
1013 struct lp_fragment_shader_variant *next = variant->next;
1014 unsigned i;
1015
1016 for (i = 0; i < Elements(variant->function); i++) {
1017 if (variant->function[i]) {
1018 if (variant->jit_function[i])
1019 LLVMFreeMachineCodeForFunction(screen->engine,
1020 variant->function[i]);
1021 LLVMDeleteFunction(variant->function[i]);
1022 }
1023 }
1024
1025 FREE(variant);
1026
1027 variant = next;
1028 }
1029
1030 FREE((void *) shader->base.tokens);
1031 FREE(shader);
1032 }
1033
1034
1035
1036 void
1037 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1038 uint shader, uint index,
1039 struct pipe_buffer *constants)
1040 {
1041 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1042 unsigned size = constants ? constants->size : 0;
1043 const void *data = constants ? llvmpipe_buffer(constants)->data : NULL;
1044
1045 assert(shader < PIPE_SHADER_TYPES);
1046 assert(index == 0);
1047
1048 if(llvmpipe->constants[shader] == constants)
1049 return;
1050
1051 draw_flush(llvmpipe->draw);
1052
1053 /* note: reference counting */
1054 pipe_buffer_reference(&llvmpipe->constants[shader], constants);
1055
1056 if(shader == PIPE_SHADER_VERTEX) {
1057 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX, 0,
1058 data, size);
1059 }
1060
1061 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1062 }
1063
1064
1065 /**
1066 * We need to generate several variants of the fragment pipeline to match
1067 * all the combinations of the contributing state atoms.
1068 *
1069 * TODO: there is actually no reason to tie this to context state -- the
1070 * generated code could be cached globally in the screen.
1071 */
1072 static void
1073 make_variant_key(struct llvmpipe_context *lp,
1074 struct lp_fragment_shader *shader,
1075 struct lp_fragment_shader_variant_key *key)
1076 {
1077 unsigned i;
1078
1079 memset(key, 0, sizeof *key);
1080
1081 if (lp->framebuffer.zsbuf) {
1082 if (lp->depth_stencil->depth.enabled) {
1083 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1084 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1085 }
1086 if (lp->depth_stencil->stencil[0].enabled) {
1087 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1088 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1089 }
1090 }
1091
1092 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1093 if(key->alpha.enabled)
1094 key->alpha.func = lp->depth_stencil->alpha.func;
1095 /* alpha.ref_value is passed in jit_context */
1096
1097 key->flatshade = lp->rasterizer->flatshade;
1098 key->scissor = lp->rasterizer->scissor;
1099
1100 if (lp->framebuffer.nr_cbufs) {
1101 memcpy(&key->blend, lp->blend, sizeof key->blend);
1102 }
1103
1104 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1105 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1106 const struct util_format_description *format_desc;
1107 unsigned chan;
1108
1109 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1110 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
1111 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
1112
1113 /* mask out color channels not present in the color buffer.
1114 * Should be simple to incorporate per-cbuf writemasks:
1115 */
1116 for(chan = 0; chan < 4; ++chan) {
1117 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1118
1119 if(swizzle <= UTIL_FORMAT_SWIZZLE_W)
1120 key->blend.rt[0].colormask |= (1 << chan);
1121 }
1122 }
1123
1124 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1125 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1126 lp_sampler_static_state(&key->sampler[i], lp->fragment_sampler_views[i]->texture, lp->sampler[i]);
1127 }
1128
1129
1130 /**
1131 * Update fragment state. This is called just prior to drawing
1132 * something when some fragment-related state has changed.
1133 */
1134 void
1135 llvmpipe_update_fs(struct llvmpipe_context *lp)
1136 {
1137 struct lp_fragment_shader *shader = lp->fs;
1138 struct lp_fragment_shader_variant_key key;
1139 struct lp_fragment_shader_variant *variant;
1140 boolean opaque;
1141
1142 make_variant_key(lp, shader, &key);
1143
1144 variant = shader->variants;
1145 while(variant) {
1146 if(memcmp(&variant->key, &key, sizeof key) == 0)
1147 break;
1148
1149 variant = variant->next;
1150 }
1151
1152 if (!variant) {
1153 int64_t t0, t1;
1154 int64_t dt;
1155 t0 = os_time_get();
1156
1157 variant = generate_variant(lp, shader, &key);
1158
1159 t1 = os_time_get();
1160 dt = t1 - t0;
1161 LP_COUNT_ADD(llvm_compile_time, dt);
1162 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1163 }
1164
1165 shader->current = variant;
1166
1167 /* TODO: put this in the variant */
1168 /* TODO: most of these can be relaxed, in particular the colormask */
1169 opaque = !key.blend.logicop_enable &&
1170 !key.blend.rt[0].blend_enable &&
1171 key.blend.rt[0].colormask == 0xf &&
1172 !key.alpha.enabled &&
1173 !key.depth.enabled &&
1174 !key.scissor &&
1175 !shader->info.uses_kill
1176 ? TRUE : FALSE;
1177
1178 lp_setup_set_fs_functions(lp->setup,
1179 shader->current->jit_function[0],
1180 shader->current->jit_function[1],
1181 opaque);
1182 }