llvmpipe: use opcodes instead of function pointers in bins
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_init.h"
79 #include "gallivm/lp_bld_intr.h"
80 #include "gallivm/lp_bld_logic.h"
81 #include "gallivm/lp_bld_tgsi.h"
82 #include "gallivm/lp_bld_swizzle.h"
83 #include "gallivm/lp_bld_flow.h"
84 #include "gallivm/lp_bld_debug.h"
85
86 #include "lp_bld_alpha.h"
87 #include "lp_bld_blend.h"
88 #include "lp_bld_depth.h"
89 #include "lp_bld_interp.h"
90 #include "lp_context.h"
91 #include "lp_debug.h"
92 #include "lp_perf.h"
93 #include "lp_screen.h"
94 #include "lp_setup.h"
95 #include "lp_state.h"
96 #include "lp_tex_sample.h"
97 #include "lp_flush.h"
98 #include "lp_state_fs.h"
99
100
101 #include <llvm-c/Analysis.h>
102
103
104 static unsigned fs_no = 0;
105
106
107 /**
108 * Generate the depth /stencil test code.
109 */
110 static void
111 generate_depth_stencil(LLVMBuilderRef builder,
112 const struct lp_fragment_shader_variant_key *key,
113 struct lp_type src_type,
114 struct lp_build_mask_context *mask,
115 LLVMValueRef stencil_refs[2],
116 LLVMValueRef src,
117 LLVMValueRef dst_ptr,
118 LLVMValueRef facing,
119 LLVMValueRef counter)
120 {
121 const struct util_format_description *format_desc;
122 struct lp_type dst_type;
123
124 if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
125 return;
126
127 format_desc = util_format_description(key->zsbuf_format);
128 assert(format_desc);
129
130 /*
131 * Depths are expected to be between 0 and 1, even if they are stored in
132 * floats. Setting these bits here will ensure that the lp_build_conv() call
133 * below won't try to unnecessarily clamp the incoming values.
134 */
135 if(src_type.floating) {
136 src_type.sign = FALSE;
137 src_type.norm = TRUE;
138 }
139 else {
140 assert(!src_type.sign);
141 assert(src_type.norm);
142 }
143
144 /* Pick the depth type. */
145 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
146
147 /* FIXME: Cope with a depth test type with a different bit width. */
148 assert(dst_type.width == src_type.width);
149 assert(dst_type.length == src_type.length);
150
151 /* Convert fragment Z from float to integer */
152 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
153
154 dst_ptr = LLVMBuildBitCast(builder,
155 dst_ptr,
156 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
157 lp_build_depth_stencil_test(builder,
158 &key->depth,
159 key->stencil,
160 dst_type,
161 format_desc,
162 mask,
163 stencil_refs,
164 src,
165 dst_ptr,
166 facing,
167 counter);
168 }
169
170
171 /**
172 * Expand the relevent bits of mask_input to a 4-dword mask for the
173 * four pixels in a 2x2 quad. This will set the four elements of the
174 * quad mask vector to 0 or ~0.
175 *
176 * \param quad which quad of the quad group to test, in [0,3]
177 * \param mask_input bitwise mask for the whole 4x4 stamp
178 */
179 static LLVMValueRef
180 generate_quad_mask(LLVMBuilderRef builder,
181 struct lp_type fs_type,
182 unsigned quad,
183 LLVMValueRef mask_input) /* int32 */
184 {
185 struct lp_type mask_type;
186 LLVMTypeRef i32t = LLVMInt32Type();
187 LLVMValueRef bits[4];
188 LLVMValueRef mask;
189
190 /*
191 * XXX: We'll need a different path for 16 x u8
192 */
193 assert(fs_type.width == 32);
194 assert(fs_type.length == 4);
195 mask_type = lp_int_type(fs_type);
196
197 /*
198 * mask_input >>= (quad * 4)
199 */
200
201 mask_input = LLVMBuildLShr(builder,
202 mask_input,
203 LLVMConstInt(i32t, quad * 4, 0),
204 "");
205
206 /*
207 * mask = { mask_input & (1 << i), for i in [0,3] }
208 */
209
210 mask = lp_build_broadcast(builder, lp_build_vec_type(mask_type), mask_input);
211
212 bits[0] = LLVMConstInt(i32t, 1 << 0, 0);
213 bits[1] = LLVMConstInt(i32t, 1 << 1, 0);
214 bits[2] = LLVMConstInt(i32t, 1 << 2, 0);
215 bits[3] = LLVMConstInt(i32t, 1 << 3, 0);
216
217 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, 4), "");
218
219 /*
220 * mask = mask != 0 ? ~0 : 0
221 */
222
223 mask = lp_build_compare(builder,
224 mask_type, PIPE_FUNC_NOTEQUAL,
225 mask,
226 lp_build_const_int_vec(mask_type, 0));
227
228 return mask;
229 }
230
231
232
233 /**
234 * Generate the fragment shader, depth/stencil test, and alpha tests.
235 * \param i which quad in the tile, in range [0,3]
236 * \param partial_mask if 1, do mask_input testing
237 */
238 static void
239 generate_fs(struct llvmpipe_context *lp,
240 struct lp_fragment_shader *shader,
241 const struct lp_fragment_shader_variant_key *key,
242 LLVMBuilderRef builder,
243 struct lp_type type,
244 LLVMValueRef context_ptr,
245 unsigned i,
246 const struct lp_build_interp_soa_context *interp,
247 struct lp_build_sampler_soa *sampler,
248 LLVMValueRef *pmask,
249 LLVMValueRef (*color)[4],
250 LLVMValueRef depth_ptr,
251 LLVMValueRef facing,
252 unsigned partial_mask,
253 LLVMValueRef mask_input,
254 LLVMValueRef counter)
255 {
256 const struct tgsi_token *tokens = shader->base.tokens;
257 LLVMTypeRef vec_type;
258 LLVMValueRef consts_ptr;
259 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
260 LLVMValueRef z = interp->pos[2];
261 LLVMValueRef stencil_refs[2];
262 struct lp_build_flow_context *flow;
263 struct lp_build_mask_context mask;
264 boolean early_depth_stencil_test;
265 unsigned attrib;
266 unsigned chan;
267 unsigned cbuf;
268
269 assert(i < 4);
270
271 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
272 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
273
274 vec_type = lp_build_vec_type(type);
275
276 consts_ptr = lp_jit_context_constants(builder, context_ptr);
277
278 flow = lp_build_flow_create(builder);
279
280 memset(outputs, 0, sizeof outputs);
281
282 lp_build_flow_scope_begin(flow);
283
284 /* Declare the color and z variables */
285 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
286 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
287 color[cbuf][chan] = LLVMGetUndef(vec_type);
288 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
289 }
290 }
291 lp_build_flow_scope_declare(flow, &z);
292
293 /* do triangle edge testing */
294 if (partial_mask) {
295 *pmask = generate_quad_mask(builder, type,
296 i, mask_input);
297 }
298 else {
299 *pmask = lp_build_const_int_vec(type, ~0);
300 }
301
302 /* 'mask' will control execution based on quad's pixel alive/killed state */
303 lp_build_mask_begin(&mask, flow, type, *pmask);
304
305 early_depth_stencil_test =
306 (key->depth.enabled || key->stencil[0].enabled) &&
307 !key->alpha.enabled &&
308 !shader->info.uses_kill &&
309 !shader->info.writes_z;
310
311 if (early_depth_stencil_test)
312 generate_depth_stencil(builder, key,
313 type, &mask,
314 stencil_refs, z, depth_ptr, facing, counter);
315
316 lp_build_tgsi_soa(builder, tokens, type, &mask,
317 consts_ptr, interp->pos, interp->inputs,
318 outputs, sampler, &shader->info);
319
320 /* loop over fragment shader outputs/results */
321 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
322 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
323 if(outputs[attrib][chan]) {
324 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
325 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
326
327 switch (shader->info.output_semantic_name[attrib]) {
328 case TGSI_SEMANTIC_COLOR:
329 {
330 unsigned cbuf = shader->info.output_semantic_index[attrib];
331
332 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
333
334 /* Alpha test */
335 /* XXX: should the alpha reference value be passed separately? */
336 /* XXX: should only test the final assignment to alpha */
337 if(cbuf == 0 && chan == 3) {
338 LLVMValueRef alpha = out;
339 LLVMValueRef alpha_ref_value;
340 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
341 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
342 lp_build_alpha_test(builder, &key->alpha, type,
343 &mask, alpha, alpha_ref_value);
344 }
345
346 color[cbuf][chan] = out;
347 break;
348 }
349
350 case TGSI_SEMANTIC_POSITION:
351 if(chan == 2)
352 z = out;
353 break;
354 }
355 }
356 }
357 }
358
359 if (!early_depth_stencil_test)
360 generate_depth_stencil(builder, key,
361 type, &mask,
362 stencil_refs, z, depth_ptr, facing, counter);
363
364 lp_build_mask_end(&mask);
365
366 lp_build_flow_scope_end(flow);
367
368 lp_build_flow_destroy(flow);
369
370 *pmask = mask.value;
371
372 }
373
374
375 /**
376 * Generate color blending and color output.
377 * \param rt the render target index (to index blend, colormask state)
378 * \param type the pixel color type
379 * \param context_ptr pointer to the runtime JIT context
380 * \param mask execution mask (active fragment/pixel mask)
381 * \param src colors from the fragment shader
382 * \param dst_ptr the destination color buffer pointer
383 */
384 static void
385 generate_blend(const struct pipe_blend_state *blend,
386 unsigned rt,
387 LLVMBuilderRef builder,
388 struct lp_type type,
389 LLVMValueRef context_ptr,
390 LLVMValueRef mask,
391 LLVMValueRef *src,
392 LLVMValueRef dst_ptr)
393 {
394 struct lp_build_context bld;
395 struct lp_build_flow_context *flow;
396 struct lp_build_mask_context mask_ctx;
397 LLVMTypeRef vec_type;
398 LLVMValueRef const_ptr;
399 LLVMValueRef con[4];
400 LLVMValueRef dst[4];
401 LLVMValueRef res[4];
402 unsigned chan;
403
404 lp_build_context_init(&bld, builder, type);
405
406 flow = lp_build_flow_create(builder);
407
408 /* we'll use this mask context to skip blending if all pixels are dead */
409 lp_build_mask_begin(&mask_ctx, flow, type, mask);
410
411 vec_type = lp_build_vec_type(type);
412
413 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
414 const_ptr = LLVMBuildBitCast(builder, const_ptr,
415 LLVMPointerType(vec_type, 0), "");
416
417 /* load constant blend color and colors from the dest color buffer */
418 for(chan = 0; chan < 4; ++chan) {
419 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
420 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
421
422 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
423
424 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
425 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
426 }
427
428 /* do blend */
429 lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
430
431 /* store results to color buffer */
432 for(chan = 0; chan < 4; ++chan) {
433 if(blend->rt[rt].colormask & (1 << chan)) {
434 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
435 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
436 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
437 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
438 }
439 }
440
441 lp_build_mask_end(&mask_ctx);
442 lp_build_flow_destroy(flow);
443 }
444
445
446 /**
447 * Generate the runtime callable function for the whole fragment pipeline.
448 * Note that the function which we generate operates on a block of 16
449 * pixels at at time. The block contains 2x2 quads. Each quad contains
450 * 2x2 pixels.
451 */
452 static void
453 generate_fragment(struct llvmpipe_context *lp,
454 struct lp_fragment_shader *shader,
455 struct lp_fragment_shader_variant *variant,
456 unsigned partial_mask)
457 {
458 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
459 const struct lp_fragment_shader_variant_key *key = &variant->key;
460 char func_name[256];
461 struct lp_type fs_type;
462 struct lp_type blend_type;
463 LLVMTypeRef fs_elem_type;
464 LLVMTypeRef fs_int_vec_type;
465 LLVMTypeRef blend_vec_type;
466 LLVMTypeRef arg_types[11];
467 LLVMTypeRef func_type;
468 LLVMValueRef context_ptr;
469 LLVMValueRef x;
470 LLVMValueRef y;
471 LLVMValueRef a0_ptr;
472 LLVMValueRef dadx_ptr;
473 LLVMValueRef dady_ptr;
474 LLVMValueRef color_ptr_ptr;
475 LLVMValueRef depth_ptr;
476 LLVMValueRef mask_input;
477 LLVMValueRef counter = NULL;
478 LLVMBasicBlockRef block;
479 LLVMBuilderRef builder;
480 struct lp_build_sampler_soa *sampler;
481 struct lp_build_interp_soa_context interp;
482 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
483 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
484 LLVMValueRef blend_mask;
485 LLVMValueRef function;
486 LLVMValueRef facing;
487 unsigned num_fs;
488 unsigned i;
489 unsigned chan;
490 unsigned cbuf;
491
492
493 /* TODO: actually pick these based on the fs and color buffer
494 * characteristics. */
495
496 memset(&fs_type, 0, sizeof fs_type);
497 fs_type.floating = TRUE; /* floating point values */
498 fs_type.sign = TRUE; /* values are signed */
499 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
500 fs_type.width = 32; /* 32-bit float */
501 fs_type.length = 4; /* 4 elements per vector */
502 num_fs = 4; /* number of quads per block */
503
504 memset(&blend_type, 0, sizeof blend_type);
505 blend_type.floating = FALSE; /* values are integers */
506 blend_type.sign = FALSE; /* values are unsigned */
507 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
508 blend_type.width = 8; /* 8-bit ubyte values */
509 blend_type.length = 16; /* 16 elements per vector */
510
511 /*
512 * Generate the function prototype. Any change here must be reflected in
513 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
514 */
515
516 fs_elem_type = lp_build_elem_type(fs_type);
517 fs_int_vec_type = lp_build_int_vec_type(fs_type);
518
519 blend_vec_type = lp_build_vec_type(blend_type);
520
521 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
522 shader->no, variant->no, partial_mask ? "partial" : "whole");
523
524 arg_types[0] = screen->context_ptr_type; /* context */
525 arg_types[1] = LLVMInt32Type(); /* x */
526 arg_types[2] = LLVMInt32Type(); /* y */
527 arg_types[3] = LLVMFloatType(); /* facing */
528 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
529 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
530 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
531 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
532 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
533 arg_types[9] = LLVMInt32Type(); /* mask_input */
534 arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
535
536 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
537
538 function = LLVMAddFunction(screen->module, func_name, func_type);
539 LLVMSetFunctionCallConv(function, LLVMCCallConv);
540
541 variant->function[partial_mask] = function;
542
543
544 /* XXX: need to propagate noalias down into color param now we are
545 * passing a pointer-to-pointer?
546 */
547 for(i = 0; i < Elements(arg_types); ++i)
548 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
549 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
550
551 context_ptr = LLVMGetParam(function, 0);
552 x = LLVMGetParam(function, 1);
553 y = LLVMGetParam(function, 2);
554 facing = LLVMGetParam(function, 3);
555 a0_ptr = LLVMGetParam(function, 4);
556 dadx_ptr = LLVMGetParam(function, 5);
557 dady_ptr = LLVMGetParam(function, 6);
558 color_ptr_ptr = LLVMGetParam(function, 7);
559 depth_ptr = LLVMGetParam(function, 8);
560 mask_input = LLVMGetParam(function, 9);
561
562 lp_build_name(context_ptr, "context");
563 lp_build_name(x, "x");
564 lp_build_name(y, "y");
565 lp_build_name(a0_ptr, "a0");
566 lp_build_name(dadx_ptr, "dadx");
567 lp_build_name(dady_ptr, "dady");
568 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
569 lp_build_name(depth_ptr, "depth");
570 lp_build_name(mask_input, "mask_input");
571
572 if (key->occlusion_count) {
573 counter = LLVMGetParam(function, 10);
574 lp_build_name(counter, "counter");
575 }
576
577 /*
578 * Function body
579 */
580
581 block = LLVMAppendBasicBlock(function, "entry");
582 builder = LLVMCreateBuilder();
583 LLVMPositionBuilderAtEnd(builder, block);
584
585 /*
586 * The shader input interpolation info is not explicitely baked in the
587 * shader key, but everything it derives from (TGSI, and flatshade) is
588 * already included in the shader key.
589 */
590 lp_build_interp_soa_init(&interp,
591 lp->num_inputs,
592 lp->inputs,
593 builder, fs_type,
594 a0_ptr, dadx_ptr, dady_ptr,
595 x, y);
596
597 /* code generated texture sampling */
598 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
599
600 /* loop over quads in the block */
601 for(i = 0; i < num_fs; ++i) {
602 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
603 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
604 LLVMValueRef depth_ptr_i;
605
606 if(i != 0)
607 lp_build_interp_soa_update(&interp, i);
608
609 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
610
611 generate_fs(lp, shader, key,
612 builder,
613 fs_type,
614 context_ptr,
615 i,
616 &interp,
617 sampler,
618 &fs_mask[i], /* output */
619 out_color,
620 depth_ptr_i,
621 facing,
622 partial_mask,
623 mask_input,
624 counter);
625
626 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
627 for(chan = 0; chan < NUM_CHANNELS; ++chan)
628 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
629 }
630
631 sampler->destroy(sampler);
632
633 /* Loop over color outputs / color buffers to do blending.
634 */
635 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
636 LLVMValueRef color_ptr;
637 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
638 LLVMValueRef blend_in_color[NUM_CHANNELS];
639 unsigned rt;
640
641 /*
642 * Convert the fs's output color and mask to fit to the blending type.
643 */
644 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
645 lp_build_conv(builder, fs_type, blend_type,
646 fs_out_color[cbuf][chan], num_fs,
647 &blend_in_color[chan], 1);
648 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
649 }
650
651 if (partial_mask || !variant->opaque) {
652 lp_build_conv_mask(builder, fs_type, blend_type,
653 fs_mask, num_fs,
654 &blend_mask, 1);
655 } else {
656 blend_mask = lp_build_const_int_vec(blend_type, ~0);
657 }
658
659 color_ptr = LLVMBuildLoad(builder,
660 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
661 "");
662 lp_build_name(color_ptr, "color_ptr%d", cbuf);
663
664 /* which blend/colormask state to use */
665 rt = key->blend.independent_blend_enable ? cbuf : 0;
666
667 /*
668 * Blending.
669 */
670 generate_blend(&key->blend,
671 rt,
672 builder,
673 blend_type,
674 context_ptr,
675 blend_mask,
676 blend_in_color,
677 color_ptr);
678 }
679
680 #ifdef PIPE_ARCH_X86
681 /* Avoid corrupting the FPU stack on 32bit OSes. */
682 lp_build_intrinsic(builder, "llvm.x86.mmx.emms", LLVMVoidType(), NULL, 0);
683 #endif
684
685 LLVMBuildRetVoid(builder);
686
687 LLVMDisposeBuilder(builder);
688
689
690 /* Verify the LLVM IR. If invalid, dump and abort */
691 #ifdef DEBUG
692 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
693 if (1)
694 lp_debug_dump_value(function);
695 abort();
696 }
697 #endif
698
699 /* Apply optimizations to LLVM IR */
700 LLVMRunFunctionPassManager(screen->pass, function);
701
702 if (gallivm_debug & GALLIVM_DEBUG_IR) {
703 /* Print the LLVM IR to stderr */
704 lp_debug_dump_value(function);
705 debug_printf("\n");
706 }
707
708 /*
709 * Translate the LLVM IR into machine code.
710 */
711 {
712 void *f = LLVMGetPointerToGlobal(screen->engine, function);
713
714 variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);
715
716 if (gallivm_debug & GALLIVM_DEBUG_ASM) {
717 lp_disassemble(f);
718 }
719 lp_func_delete_body(function);
720 }
721 }
722
723
724 static void
725 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
726 {
727 unsigned i;
728
729 debug_printf("fs variant %p:\n", (void *) key);
730
731 for (i = 0; i < key->nr_cbufs; ++i) {
732 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
733 }
734 if (key->depth.enabled) {
735 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
736 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
737 debug_printf("depth.writemask = %u\n", key->depth.writemask);
738 }
739
740 for (i = 0; i < 2; ++i) {
741 if (key->stencil[i].enabled) {
742 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
743 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
744 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
745 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
746 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
747 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
748 }
749 }
750
751 if (key->alpha.enabled) {
752 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
753 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
754 }
755
756 if (key->blend.logicop_enable) {
757 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
758 }
759 else if (key->blend.rt[0].blend_enable) {
760 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
761 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
762 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
763 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
764 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
765 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
766 }
767 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
768 for (i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
769 if (key->sampler[i].format) {
770 debug_printf("sampler[%u] = \n", i);
771 debug_printf(" .format = %s\n",
772 util_format_name(key->sampler[i].format));
773 debug_printf(" .target = %s\n",
774 util_dump_tex_target(key->sampler[i].target, TRUE));
775 debug_printf(" .pot = %u %u %u\n",
776 key->sampler[i].pot_width,
777 key->sampler[i].pot_height,
778 key->sampler[i].pot_depth);
779 debug_printf(" .wrap = %s %s %s\n",
780 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
781 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
782 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
783 debug_printf(" .min_img_filter = %s\n",
784 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
785 debug_printf(" .min_mip_filter = %s\n",
786 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
787 debug_printf(" .mag_img_filter = %s\n",
788 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
789 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
790 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
791 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
792 }
793 }
794 }
795
796
797 void
798 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
799 {
800 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
801 variant->shader->no, variant->no);
802 tgsi_dump(variant->shader->base.tokens, 0);
803 dump_fs_variant_key(&variant->key);
804 debug_printf("variant->opaque = %u\n", variant->opaque);
805 debug_printf("\n");
806 }
807
808 static struct lp_fragment_shader_variant *
809 generate_variant(struct llvmpipe_context *lp,
810 struct lp_fragment_shader *shader,
811 const struct lp_fragment_shader_variant_key *key)
812 {
813 struct lp_fragment_shader_variant *variant;
814 boolean fullcolormask;
815
816 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
817 if(!variant)
818 return NULL;
819
820 variant->shader = shader;
821 variant->list_item_global.base = variant;
822 variant->list_item_local.base = variant;
823 variant->no = shader->variants_created++;
824
825 memcpy(&variant->key, key, shader->variant_key_size);
826
827 /*
828 * Determine whether we are touching all channels in the color buffer.
829 */
830 fullcolormask = FALSE;
831 if (key->nr_cbufs == 1) {
832 const struct util_format_description *format_desc;
833 format_desc = util_format_description(key->cbuf_format[0]);
834 if ((~key->blend.rt[0].colormask &
835 util_format_colormask(format_desc)) == 0) {
836 fullcolormask = TRUE;
837 }
838 }
839
840 variant->opaque =
841 !key->blend.logicop_enable &&
842 !key->blend.rt[0].blend_enable &&
843 fullcolormask &&
844 !key->stencil[0].enabled &&
845 !key->alpha.enabled &&
846 !key->depth.enabled &&
847 !shader->info.uses_kill
848 ? TRUE : FALSE;
849
850
851 if (gallivm_debug & GALLIVM_DEBUG_IR) {
852 lp_debug_fs_variant(variant);
853 }
854
855 generate_fragment(lp, shader, variant, RAST_WHOLE);
856 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
857
858 return variant;
859 }
860
861
862 static void *
863 llvmpipe_create_fs_state(struct pipe_context *pipe,
864 const struct pipe_shader_state *templ)
865 {
866 struct lp_fragment_shader *shader;
867 int nr_samplers;
868
869 shader = CALLOC_STRUCT(lp_fragment_shader);
870 if (!shader)
871 return NULL;
872
873 shader->no = fs_no++;
874 make_empty_list(&shader->variants);
875
876 /* get/save the summary info for this shader */
877 tgsi_scan_shader(templ->tokens, &shader->info);
878
879 /* we need to keep a local copy of the tokens */
880 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
881
882 nr_samplers = shader->info.file_max[TGSI_FILE_SAMPLER] + 1;
883
884 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
885 sampler[nr_samplers]);
886
887 if (LP_DEBUG & DEBUG_TGSI) {
888 unsigned attrib;
889 debug_printf("llvmpipe: Create fragment shader #%u %p:\n", shader->no, (void *) shader);
890 tgsi_dump(templ->tokens, 0);
891 debug_printf("usage masks:\n");
892 for (attrib = 0; attrib < shader->info.num_inputs; ++attrib) {
893 unsigned usage_mask = shader->info.input_usage_mask[attrib];
894 debug_printf(" IN[%u].%s%s%s%s\n",
895 attrib,
896 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
897 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
898 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
899 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
900 }
901 debug_printf("\n");
902 }
903
904 /* Keep a copy of the tokens in shader->base.tokens */
905 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
906
907 return shader;
908 }
909
910
911 static void
912 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
913 {
914 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
915
916 if (llvmpipe->fs == fs)
917 return;
918
919 draw_flush(llvmpipe->draw);
920
921 llvmpipe->fs = fs;
922
923 llvmpipe->dirty |= LP_NEW_FS;
924 }
925
926 static void
927 remove_shader_variant(struct llvmpipe_context *lp,
928 struct lp_fragment_shader_variant *variant)
929 {
930 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
931 unsigned i;
932
933 if (gallivm_debug & GALLIVM_DEBUG_IR) {
934 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached #%u v total cached #%u\n",
935 variant->shader->no, variant->no, variant->shader->variants_created,
936 variant->shader->variants_cached, lp->nr_fs_variants);
937 }
938 for (i = 0; i < Elements(variant->function); i++) {
939 if (variant->function[i]) {
940 if (variant->jit_function[i])
941 LLVMFreeMachineCodeForFunction(screen->engine,
942 variant->function[i]);
943 LLVMDeleteFunction(variant->function[i]);
944 }
945 }
946 remove_from_list(&variant->list_item_local);
947 variant->shader->variants_cached--;
948 remove_from_list(&variant->list_item_global);
949 lp->nr_fs_variants--;
950 FREE(variant);
951 }
952
953 static void
954 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
955 {
956 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
957 struct lp_fragment_shader *shader = fs;
958 struct lp_fs_variant_list_item *li;
959
960 assert(fs != llvmpipe->fs);
961 (void) llvmpipe;
962
963 /*
964 * XXX: we need to flush the context until we have some sort of reference
965 * counting in fragment shaders as they may still be binned
966 * Flushing alone might not sufficient we need to wait on it too.
967 */
968
969 llvmpipe_finish(pipe, __FUNCTION__);
970
971 li = first_elem(&shader->variants);
972 while(!at_end(&shader->variants, li)) {
973 struct lp_fs_variant_list_item *next = next_elem(li);
974 remove_shader_variant(llvmpipe, li->base);
975 li = next;
976 }
977
978 assert(shader->variants_cached == 0);
979 FREE((void *) shader->base.tokens);
980 FREE(shader);
981 }
982
983
984
985 static void
986 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
987 uint shader, uint index,
988 struct pipe_resource *constants)
989 {
990 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
991 unsigned size = constants ? constants->width0 : 0;
992 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
993
994 assert(shader < PIPE_SHADER_TYPES);
995 assert(index < PIPE_MAX_CONSTANT_BUFFERS);
996
997 if(llvmpipe->constants[shader][index] == constants)
998 return;
999
1000 draw_flush(llvmpipe->draw);
1001
1002 /* note: reference counting */
1003 pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
1004
1005 if(shader == PIPE_SHADER_VERTEX ||
1006 shader == PIPE_SHADER_GEOMETRY) {
1007 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
1008 index, data, size);
1009 }
1010
1011 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1012 }
1013
1014
1015 /**
1016 * Return the blend factor equivalent to a destination alpha of one.
1017 */
1018 static INLINE unsigned
1019 force_dst_alpha_one(unsigned factor, boolean alpha)
1020 {
1021 switch(factor) {
1022 case PIPE_BLENDFACTOR_DST_ALPHA:
1023 return PIPE_BLENDFACTOR_ONE;
1024 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1025 return PIPE_BLENDFACTOR_ZERO;
1026 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1027 return PIPE_BLENDFACTOR_ZERO;
1028 }
1029
1030 if (alpha) {
1031 switch(factor) {
1032 case PIPE_BLENDFACTOR_DST_COLOR:
1033 return PIPE_BLENDFACTOR_ONE;
1034 case PIPE_BLENDFACTOR_INV_DST_COLOR:
1035 return PIPE_BLENDFACTOR_ZERO;
1036 }
1037 }
1038
1039 return factor;
1040 }
1041
1042
1043 /**
1044 * We need to generate several variants of the fragment pipeline to match
1045 * all the combinations of the contributing state atoms.
1046 *
1047 * TODO: there is actually no reason to tie this to context state -- the
1048 * generated code could be cached globally in the screen.
1049 */
1050 static void
1051 make_variant_key(struct llvmpipe_context *lp,
1052 struct lp_fragment_shader *shader,
1053 struct lp_fragment_shader_variant_key *key)
1054 {
1055 unsigned i;
1056
1057 memset(key, 0, shader->variant_key_size);
1058
1059 if (lp->framebuffer.zsbuf) {
1060 if (lp->depth_stencil->depth.enabled) {
1061 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1062 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1063 }
1064 if (lp->depth_stencil->stencil[0].enabled) {
1065 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1066 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1067 }
1068 }
1069
1070 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1071 if(key->alpha.enabled)
1072 key->alpha.func = lp->depth_stencil->alpha.func;
1073 /* alpha.ref_value is passed in jit_context */
1074
1075 key->flatshade = lp->rasterizer->flatshade;
1076 if (lp->active_query_count) {
1077 key->occlusion_count = TRUE;
1078 }
1079
1080 if (lp->framebuffer.nr_cbufs) {
1081 memcpy(&key->blend, lp->blend, sizeof key->blend);
1082 }
1083
1084 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1085 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1086 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
1087 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1088 const struct util_format_description *format_desc;
1089
1090 key->cbuf_format[i] = format;
1091
1092 format_desc = util_format_description(format);
1093 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1094 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1095
1096 blend_rt->colormask = lp->blend->rt[i].colormask;
1097
1098 /*
1099 * Mask out color channels not present in the color buffer.
1100 */
1101 blend_rt->colormask &= util_format_colormask(format_desc);
1102
1103 /*
1104 * Our swizzled render tiles always have an alpha channel, but the linear
1105 * render target format often does not, so force here the dst alpha to be
1106 * one.
1107 *
1108 * This is not a mere optimization. Wrong results will be produced if the
1109 * dst alpha is used, the dst format does not have alpha, and the previous
1110 * rendering was not flushed from the swizzled to linear buffer. For
1111 * example, NonPowTwo DCT.
1112 *
1113 * TODO: This should be generalized to all channels for better
1114 * performance, but only alpha causes correctness issues.
1115 */
1116 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1117 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor, FALSE);
1118 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor, FALSE);
1119 blend_rt->alpha_src_factor = force_dst_alpha_one(blend_rt->alpha_src_factor, TRUE);
1120 blend_rt->alpha_dst_factor = force_dst_alpha_one(blend_rt->alpha_dst_factor, TRUE);
1121 }
1122 }
1123
1124 /* This value will be the same for all the variants of a given shader:
1125 */
1126 key->nr_samplers = shader->info.file_max[TGSI_FILE_SAMPLER] + 1;
1127
1128 for(i = 0; i < key->nr_samplers; ++i) {
1129 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
1130 lp_sampler_static_state(&key->sampler[i],
1131 lp->fragment_sampler_views[i],
1132 lp->sampler[i]);
1133 }
1134 }
1135 }
1136
1137 /**
1138 * Update fragment state. This is called just prior to drawing
1139 * something when some fragment-related state has changed.
1140 */
1141 void
1142 llvmpipe_update_fs(struct llvmpipe_context *lp)
1143 {
1144 struct lp_fragment_shader *shader = lp->fs;
1145 struct lp_fragment_shader_variant_key key;
1146 struct lp_fragment_shader_variant *variant = NULL;
1147 struct lp_fs_variant_list_item *li;
1148
1149 make_variant_key(lp, shader, &key);
1150
1151 li = first_elem(&shader->variants);
1152 while(!at_end(&shader->variants, li)) {
1153 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
1154 variant = li->base;
1155 break;
1156 }
1157 li = next_elem(li);
1158 }
1159
1160 if (variant) {
1161 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1162 }
1163 else {
1164 int64_t t0, t1;
1165 int64_t dt;
1166 unsigned i;
1167 if (lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS) {
1168 struct pipe_context *pipe = &lp->pipe;
1169
1170 /*
1171 * XXX: we need to flush the context until we have some sort of reference
1172 * counting in fragment shaders as they may still be binned
1173 * Flushing alone might not be sufficient we need to wait on it too.
1174 */
1175 llvmpipe_finish(pipe, __FUNCTION__);
1176
1177 for (i = 0; i < LP_MAX_SHADER_VARIANTS / 4; i++) {
1178 struct lp_fs_variant_list_item *item = last_elem(&lp->fs_variants_list);
1179 remove_shader_variant(lp, item->base);
1180 }
1181 }
1182 t0 = os_time_get();
1183
1184 variant = generate_variant(lp, shader, &key);
1185
1186 t1 = os_time_get();
1187 dt = t1 - t0;
1188 LP_COUNT_ADD(llvm_compile_time, dt);
1189 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1190
1191 if (variant) {
1192 insert_at_head(&shader->variants, &variant->list_item_local);
1193 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1194 lp->nr_fs_variants++;
1195 shader->variants_cached++;
1196 }
1197 }
1198
1199 lp_setup_set_fs_variant(lp->setup, variant);
1200 }
1201
1202
1203
1204 void
1205 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1206 {
1207 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1208 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1209 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1210
1211 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1212 }