llvmpipe: hook up basic gs and multiple constant buffer support
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - triangle edge in/out testing
35 * - scissor test
36 * - stipple (TBI)
37 * - early depth test
38 * - fragment shader
39 * - alpha test
40 * - depth/stencil test
41 * - blending
42 *
43 * This file has only the glue to assemble the fragment pipeline. The actual
44 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
45 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
46 * muster the LLVM JIT execution engine to create a function that follows an
47 * established binary interface and that can be called from C directly.
48 *
49 * A big source of complexity here is that we often want to run different
50 * stages with different precisions and data types and precisions. For example,
51 * the fragment shader needs typically to be done in floats, but the
52 * depth/stencil test and blending is better done in the type that most closely
53 * matches the depth/stencil and color buffer respectively.
54 *
55 * Since the width of a SIMD vector register stays the same regardless of the
56 * element type, different types imply different number of elements, so we must
57 * code generate more instances of the stages with larger types to be able to
58 * feed/consume the stages with smaller types.
59 *
60 * @author Jose Fonseca <jfonseca@vmware.com>
61 */
62
63 #include <limits.h>
64 #include "pipe/p_defines.h"
65 #include "util/u_inlines.h"
66 #include "util/u_memory.h"
67 #include "util/u_pointer.h"
68 #include "util/u_format.h"
69 #include "util/u_dump.h"
70 #include "util/u_string.h"
71 #include "os/os_time.h"
72 #include "pipe/p_shader_tokens.h"
73 #include "draw/draw_context.h"
74 #include "tgsi/tgsi_dump.h"
75 #include "tgsi/tgsi_scan.h"
76 #include "tgsi/tgsi_parse.h"
77 #include "gallivm/lp_bld_type.h"
78 #include "gallivm/lp_bld_const.h"
79 #include "gallivm/lp_bld_conv.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_swizzle.h"
84 #include "gallivm/lp_bld_flow.h"
85 #include "gallivm/lp_bld_debug.h"
86
87 #include "lp_bld_alpha.h"
88 #include "lp_bld_blend.h"
89 #include "lp_bld_depth.h"
90 #include "lp_bld_interp.h"
91 #include "lp_context.h"
92 #include "lp_debug.h"
93 #include "lp_perf.h"
94 #include "lp_screen.h"
95 #include "lp_setup.h"
96 #include "lp_state.h"
97 #include "lp_tex_sample.h"
98
99
100 #include <llvm-c/Analysis.h>
101
102
103 static unsigned fs_no = 0;
104
105
106 /**
107 * Generate the depth /stencil test code.
108 */
109 static void
110 generate_depth_stencil(LLVMBuilderRef builder,
111 const struct lp_fragment_shader_variant_key *key,
112 struct lp_type src_type,
113 struct lp_build_mask_context *mask,
114 LLVMValueRef stencil_refs[2],
115 LLVMValueRef src,
116 LLVMValueRef dst_ptr,
117 LLVMValueRef facing,
118 LLVMValueRef counter)
119 {
120 const struct util_format_description *format_desc;
121 struct lp_type dst_type;
122
123 if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
124 return;
125
126 format_desc = util_format_description(key->zsbuf_format);
127 assert(format_desc);
128
129 /*
130 * Depths are expected to be between 0 and 1, even if they are stored in
131 * floats. Setting these bits here will ensure that the lp_build_conv() call
132 * below won't try to unnecessarily clamp the incoming values.
133 */
134 if(src_type.floating) {
135 src_type.sign = FALSE;
136 src_type.norm = TRUE;
137 }
138 else {
139 assert(!src_type.sign);
140 assert(src_type.norm);
141 }
142
143 /* Pick the depth type. */
144 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
145
146 /* FIXME: Cope with a depth test type with a different bit width. */
147 assert(dst_type.width == src_type.width);
148 assert(dst_type.length == src_type.length);
149
150 /* Convert fragment Z from float to integer */
151 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
152
153 dst_ptr = LLVMBuildBitCast(builder,
154 dst_ptr,
155 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
156 lp_build_depth_stencil_test(builder,
157 &key->depth,
158 key->stencil,
159 dst_type,
160 format_desc,
161 mask,
162 stencil_refs,
163 src,
164 dst_ptr,
165 facing,
166 counter);
167 }
168
169
170 /**
171 * Generate the code to do inside/outside triangle testing for the
172 * four pixels in a 2x2 quad. This will set the four elements of the
173 * quad mask vector to 0 or ~0.
174 * \param i which quad of the quad group to test, in [0,3]
175 */
176 static void
177 generate_tri_edge_mask(LLVMBuilderRef builder,
178 unsigned i,
179 LLVMValueRef *mask, /* ivec4, out */
180 LLVMValueRef c0, /* int32 */
181 LLVMValueRef c1, /* int32 */
182 LLVMValueRef c2, /* int32 */
183 LLVMValueRef step0_ptr, /* ivec4 */
184 LLVMValueRef step1_ptr, /* ivec4 */
185 LLVMValueRef step2_ptr) /* ivec4 */
186 {
187 #define OPTIMIZE_IN_OUT_TEST 0
188 #if OPTIMIZE_IN_OUT_TEST
189 struct lp_build_if_state ifctx;
190 LLVMValueRef not_draw_all;
191 #endif
192 struct lp_build_flow_context *flow;
193 struct lp_type i32_type;
194 LLVMTypeRef i32vec4_type;
195 LLVMValueRef c0_vec, c1_vec, c2_vec;
196 LLVMValueRef in_out_mask;
197
198 assert(i < 4);
199
200 /* int32 vector type */
201 memset(&i32_type, 0, sizeof i32_type);
202 i32_type.floating = FALSE; /* values are integers */
203 i32_type.sign = TRUE; /* values are signed */
204 i32_type.norm = FALSE; /* values are not normalized */
205 i32_type.width = 32; /* 32-bit int values */
206 i32_type.length = 4; /* 4 elements per vector */
207
208 i32vec4_type = lp_build_int32_vec4_type();
209
210 /*
211 * Use a conditional here to do detailed pixel in/out testing.
212 * We only have to do this if c0 != INT_MIN.
213 */
214 flow = lp_build_flow_create(builder);
215 lp_build_flow_scope_begin(flow);
216
217 {
218 #if OPTIMIZE_IN_OUT_TEST
219 /* not_draw_all = (c0 != INT_MIN) */
220 not_draw_all = LLVMBuildICmp(builder,
221 LLVMIntNE,
222 c0,
223 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
224 "");
225
226 in_out_mask = lp_build_const_int_vec(i32_type, ~0);
227
228
229 lp_build_flow_scope_declare(flow, &in_out_mask);
230
231 /* if (not_draw_all) {... */
232 lp_build_if(&ifctx, flow, builder, not_draw_all);
233 #endif
234 {
235 LLVMValueRef step0_vec, step1_vec, step2_vec;
236 LLVMValueRef m0_vec, m1_vec, m2_vec;
237 LLVMValueRef index, m;
238
239 /* c0_vec = {c0, c0, c0, c0}
240 * Note that we emit this code four times but LLVM optimizes away
241 * three instances of it.
242 */
243 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
244 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
245 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
246 lp_build_name(c0_vec, "edgeconst0vec");
247 lp_build_name(c1_vec, "edgeconst1vec");
248 lp_build_name(c2_vec, "edgeconst2vec");
249
250 /* load step0vec, step1, step2 vec from memory */
251 index = LLVMConstInt(LLVMInt32Type(), i, 0);
252 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
253 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
254 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
255 lp_build_name(step0_vec, "step0vec");
256 lp_build_name(step1_vec, "step1vec");
257 lp_build_name(step2_vec, "step2vec");
258
259 /* m0_vec = step0_ptr[i] > c0_vec */
260 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
261 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
262 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
263
264 /* in_out_mask = m0_vec & m1_vec & m2_vec */
265 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
266 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
267 lp_build_name(in_out_mask, "inoutmaskvec");
268 }
269 #if OPTIMIZE_IN_OUT_TEST
270 lp_build_endif(&ifctx);
271 #endif
272
273 }
274 lp_build_flow_scope_end(flow);
275 lp_build_flow_destroy(flow);
276
277 /* This is the initial alive/dead pixel mask for a quad of four pixels.
278 * It's an int[4] vector with each word set to 0 or ~0.
279 * Words will get cleared when pixels faile the Z test, etc.
280 */
281 *mask = in_out_mask;
282 }
283
284
285 static LLVMValueRef
286 generate_scissor_test(LLVMBuilderRef builder,
287 LLVMValueRef context_ptr,
288 const struct lp_build_interp_soa_context *interp,
289 struct lp_type type)
290 {
291 LLVMTypeRef vec_type = lp_build_vec_type(type);
292 LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1];
293 LLVMValueRef xmin, ymin, xmax, ymax;
294 LLVMValueRef m0, m1, m2, m3, m;
295
296 /* xpos, ypos contain the window coords for the four pixels in the quad */
297 assert(xpos);
298 assert(ypos);
299
300 /* get the current scissor bounds, convert to vectors */
301 xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr);
302 xmin = lp_build_broadcast(builder, vec_type, xmin);
303
304 ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr);
305 ymin = lp_build_broadcast(builder, vec_type, ymin);
306
307 xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr);
308 xmax = lp_build_broadcast(builder, vec_type, xmax);
309
310 ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr);
311 ymax = lp_build_broadcast(builder, vec_type, ymax);
312
313 /* compare the fragment's position coordinates against the scissor bounds */
314 m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin);
315 m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin);
316 m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax);
317 m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax);
318
319 /* AND all the masks together */
320 m = LLVMBuildAnd(builder, m0, m1, "");
321 m = LLVMBuildAnd(builder, m, m2, "");
322 m = LLVMBuildAnd(builder, m, m3, "");
323
324 lp_build_name(m, "scissormask");
325
326 return m;
327 }
328
329
330 static LLVMValueRef
331 build_int32_vec_const(int value)
332 {
333 struct lp_type i32_type;
334
335 memset(&i32_type, 0, sizeof i32_type);
336 i32_type.floating = FALSE; /* values are integers */
337 i32_type.sign = TRUE; /* values are signed */
338 i32_type.norm = FALSE; /* values are not normalized */
339 i32_type.width = 32; /* 32-bit int values */
340 i32_type.length = 4; /* 4 elements per vector */
341 return lp_build_const_int_vec(i32_type, value);
342 }
343
344
345
346 /**
347 * Generate the fragment shader, depth/stencil test, and alpha tests.
348 * \param i which quad in the tile, in range [0,3]
349 * \param do_tri_test if 1, do triangle edge in/out testing
350 */
351 static void
352 generate_fs(struct llvmpipe_context *lp,
353 struct lp_fragment_shader *shader,
354 const struct lp_fragment_shader_variant_key *key,
355 LLVMBuilderRef builder,
356 struct lp_type type,
357 LLVMValueRef context_ptr,
358 unsigned i,
359 const struct lp_build_interp_soa_context *interp,
360 struct lp_build_sampler_soa *sampler,
361 LLVMValueRef *pmask,
362 LLVMValueRef (*color)[4],
363 LLVMValueRef depth_ptr,
364 LLVMValueRef facing,
365 unsigned do_tri_test,
366 LLVMValueRef c0,
367 LLVMValueRef c1,
368 LLVMValueRef c2,
369 LLVMValueRef step0_ptr,
370 LLVMValueRef step1_ptr,
371 LLVMValueRef step2_ptr,
372 LLVMValueRef counter)
373 {
374 const struct tgsi_token *tokens = shader->base.tokens;
375 LLVMTypeRef vec_type;
376 LLVMValueRef consts_ptr;
377 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
378 LLVMValueRef z = interp->pos[2];
379 LLVMValueRef stencil_refs[2];
380 struct lp_build_flow_context *flow;
381 struct lp_build_mask_context mask;
382 boolean early_depth_stencil_test;
383 unsigned attrib;
384 unsigned chan;
385 unsigned cbuf;
386
387 assert(i < 4);
388
389 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
390 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
391
392 vec_type = lp_build_vec_type(type);
393
394 consts_ptr = lp_jit_context_constants(builder, context_ptr);
395
396 flow = lp_build_flow_create(builder);
397
398 memset(outputs, 0, sizeof outputs);
399
400 lp_build_flow_scope_begin(flow);
401
402 /* Declare the color and z variables */
403 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
404 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
405 color[cbuf][chan] = LLVMGetUndef(vec_type);
406 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
407 }
408 }
409 lp_build_flow_scope_declare(flow, &z);
410
411 /* do triangle edge testing */
412 if (do_tri_test) {
413 generate_tri_edge_mask(builder, i, pmask,
414 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
415 }
416 else {
417 *pmask = build_int32_vec_const(~0);
418 }
419
420 /* 'mask' will control execution based on quad's pixel alive/killed state */
421 lp_build_mask_begin(&mask, flow, type, *pmask);
422
423 if (key->scissor) {
424 LLVMValueRef smask =
425 generate_scissor_test(builder, context_ptr, interp, type);
426 lp_build_mask_update(&mask, smask);
427 }
428
429 early_depth_stencil_test =
430 (key->depth.enabled || key->stencil[0].enabled) &&
431 !key->alpha.enabled &&
432 !shader->info.uses_kill &&
433 !shader->info.writes_z;
434
435 if (early_depth_stencil_test)
436 generate_depth_stencil(builder, key,
437 type, &mask,
438 stencil_refs, z, depth_ptr, facing, counter);
439
440 lp_build_tgsi_soa(builder, tokens, type, &mask,
441 consts_ptr, interp->pos, interp->inputs,
442 outputs, sampler, &shader->info);
443
444 /* loop over fragment shader outputs/results */
445 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
446 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
447 if(outputs[attrib][chan]) {
448 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
449 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
450
451 switch (shader->info.output_semantic_name[attrib]) {
452 case TGSI_SEMANTIC_COLOR:
453 {
454 unsigned cbuf = shader->info.output_semantic_index[attrib];
455
456 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
457
458 /* Alpha test */
459 /* XXX: should the alpha reference value be passed separately? */
460 /* XXX: should only test the final assignment to alpha */
461 if(cbuf == 0 && chan == 3) {
462 LLVMValueRef alpha = out;
463 LLVMValueRef alpha_ref_value;
464 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
465 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
466 lp_build_alpha_test(builder, &key->alpha, type,
467 &mask, alpha, alpha_ref_value);
468 }
469
470 color[cbuf][chan] = out;
471 break;
472 }
473
474 case TGSI_SEMANTIC_POSITION:
475 if(chan == 2)
476 z = out;
477 break;
478 }
479 }
480 }
481 }
482
483 if (!early_depth_stencil_test)
484 generate_depth_stencil(builder, key,
485 type, &mask,
486 stencil_refs, z, depth_ptr, facing, counter);
487
488 lp_build_mask_end(&mask);
489
490 lp_build_flow_scope_end(flow);
491
492 lp_build_flow_destroy(flow);
493
494 *pmask = mask.value;
495
496 }
497
498
499 /**
500 * Generate color blending and color output.
501 * \param rt the render target index (to index blend, colormask state)
502 * \param type the pixel color type
503 * \param context_ptr pointer to the runtime JIT context
504 * \param mask execution mask (active fragment/pixel mask)
505 * \param src colors from the fragment shader
506 * \param dst_ptr the destination color buffer pointer
507 */
508 static void
509 generate_blend(const struct pipe_blend_state *blend,
510 unsigned rt,
511 LLVMBuilderRef builder,
512 struct lp_type type,
513 LLVMValueRef context_ptr,
514 LLVMValueRef mask,
515 LLVMValueRef *src,
516 LLVMValueRef dst_ptr)
517 {
518 struct lp_build_context bld;
519 struct lp_build_flow_context *flow;
520 struct lp_build_mask_context mask_ctx;
521 LLVMTypeRef vec_type;
522 LLVMValueRef const_ptr;
523 LLVMValueRef con[4];
524 LLVMValueRef dst[4];
525 LLVMValueRef res[4];
526 unsigned chan;
527
528 lp_build_context_init(&bld, builder, type);
529
530 flow = lp_build_flow_create(builder);
531
532 /* we'll use this mask context to skip blending if all pixels are dead */
533 lp_build_mask_begin(&mask_ctx, flow, type, mask);
534
535 vec_type = lp_build_vec_type(type);
536
537 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
538 const_ptr = LLVMBuildBitCast(builder, const_ptr,
539 LLVMPointerType(vec_type, 0), "");
540
541 /* load constant blend color and colors from the dest color buffer */
542 for(chan = 0; chan < 4; ++chan) {
543 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
544 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
545
546 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
547
548 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
549 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
550 }
551
552 /* do blend */
553 lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
554
555 /* store results to color buffer */
556 for(chan = 0; chan < 4; ++chan) {
557 if(blend->rt[rt].colormask & (1 << chan)) {
558 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
559 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
560 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
561 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
562 }
563 }
564
565 lp_build_mask_end(&mask_ctx);
566 lp_build_flow_destroy(flow);
567 }
568
569
570 /**
571 * Generate the runtime callable function for the whole fragment pipeline.
572 * Note that the function which we generate operates on a block of 16
573 * pixels at at time. The block contains 2x2 quads. Each quad contains
574 * 2x2 pixels.
575 */
576 static void
577 generate_fragment(struct llvmpipe_context *lp,
578 struct lp_fragment_shader *shader,
579 struct lp_fragment_shader_variant *variant,
580 unsigned do_tri_test)
581 {
582 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
583 const struct lp_fragment_shader_variant_key *key = &variant->key;
584 char func_name[256];
585 struct lp_type fs_type;
586 struct lp_type blend_type;
587 LLVMTypeRef fs_elem_type;
588 LLVMTypeRef fs_int_vec_type;
589 LLVMTypeRef blend_vec_type;
590 LLVMTypeRef arg_types[16];
591 LLVMTypeRef func_type;
592 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
593 LLVMValueRef context_ptr;
594 LLVMValueRef x;
595 LLVMValueRef y;
596 LLVMValueRef a0_ptr;
597 LLVMValueRef dadx_ptr;
598 LLVMValueRef dady_ptr;
599 LLVMValueRef color_ptr_ptr;
600 LLVMValueRef depth_ptr;
601 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr, counter = NULL;
602 LLVMBasicBlockRef block;
603 LLVMBuilderRef builder;
604 struct lp_build_sampler_soa *sampler;
605 struct lp_build_interp_soa_context interp;
606 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
607 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
608 LLVMValueRef blend_mask;
609 LLVMValueRef function;
610 LLVMValueRef facing;
611 unsigned num_fs;
612 unsigned i;
613 unsigned chan;
614 unsigned cbuf;
615
616
617 /* TODO: actually pick these based on the fs and color buffer
618 * characteristics. */
619
620 memset(&fs_type, 0, sizeof fs_type);
621 fs_type.floating = TRUE; /* floating point values */
622 fs_type.sign = TRUE; /* values are signed */
623 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
624 fs_type.width = 32; /* 32-bit float */
625 fs_type.length = 4; /* 4 elements per vector */
626 num_fs = 4; /* number of quads per block */
627
628 memset(&blend_type, 0, sizeof blend_type);
629 blend_type.floating = FALSE; /* values are integers */
630 blend_type.sign = FALSE; /* values are unsigned */
631 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
632 blend_type.width = 8; /* 8-bit ubyte values */
633 blend_type.length = 16; /* 16 elements per vector */
634
635 /*
636 * Generate the function prototype. Any change here must be reflected in
637 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
638 */
639
640 fs_elem_type = lp_build_elem_type(fs_type);
641 fs_int_vec_type = lp_build_int_vec_type(fs_type);
642
643 blend_vec_type = lp_build_vec_type(blend_type);
644
645 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
646 shader->no, variant->no, do_tri_test ? "edge" : "whole");
647
648 arg_types[0] = screen->context_ptr_type; /* context */
649 arg_types[1] = LLVMInt32Type(); /* x */
650 arg_types[2] = LLVMInt32Type(); /* y */
651 arg_types[3] = LLVMFloatType(); /* facing */
652 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
653 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
654 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
655 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
656 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
657 arg_types[9] = LLVMInt32Type(); /* c0 */
658 arg_types[10] = LLVMInt32Type(); /* c1 */
659 arg_types[11] = LLVMInt32Type(); /* c2 */
660 /* Note: the step arrays are built as int32[16] but we interpret
661 * them here as int32_vec4[4].
662 */
663 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
664 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
665 arg_types[14] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
666 arg_types[15] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
667
668 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
669
670 function = LLVMAddFunction(screen->module, func_name, func_type);
671 LLVMSetFunctionCallConv(function, LLVMCCallConv);
672
673 variant->function[do_tri_test] = function;
674
675
676 /* XXX: need to propagate noalias down into color param now we are
677 * passing a pointer-to-pointer?
678 */
679 for(i = 0; i < Elements(arg_types); ++i)
680 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
681 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
682
683 context_ptr = LLVMGetParam(function, 0);
684 x = LLVMGetParam(function, 1);
685 y = LLVMGetParam(function, 2);
686 facing = LLVMGetParam(function, 3);
687 a0_ptr = LLVMGetParam(function, 4);
688 dadx_ptr = LLVMGetParam(function, 5);
689 dady_ptr = LLVMGetParam(function, 6);
690 color_ptr_ptr = LLVMGetParam(function, 7);
691 depth_ptr = LLVMGetParam(function, 8);
692 c0 = LLVMGetParam(function, 9);
693 c1 = LLVMGetParam(function, 10);
694 c2 = LLVMGetParam(function, 11);
695 step0_ptr = LLVMGetParam(function, 12);
696 step1_ptr = LLVMGetParam(function, 13);
697 step2_ptr = LLVMGetParam(function, 14);
698
699 lp_build_name(context_ptr, "context");
700 lp_build_name(x, "x");
701 lp_build_name(y, "y");
702 lp_build_name(a0_ptr, "a0");
703 lp_build_name(dadx_ptr, "dadx");
704 lp_build_name(dady_ptr, "dady");
705 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
706 lp_build_name(depth_ptr, "depth");
707 lp_build_name(c0, "c0");
708 lp_build_name(c1, "c1");
709 lp_build_name(c2, "c2");
710 lp_build_name(step0_ptr, "step0");
711 lp_build_name(step1_ptr, "step1");
712 lp_build_name(step2_ptr, "step2");
713
714 if (key->occlusion_count) {
715 counter = LLVMGetParam(function, 15);
716 lp_build_name(counter, "counter");
717 }
718
719 /*
720 * Function body
721 */
722
723 block = LLVMAppendBasicBlock(function, "entry");
724 builder = LLVMCreateBuilder();
725 LLVMPositionBuilderAtEnd(builder, block);
726
727 /*
728 * The shader input interpolation info is not explicitely baked in the
729 * shader key, but everything it derives from (TGSI, and flatshade) is
730 * already included in the shader key.
731 */
732 lp_build_interp_soa_init(&interp,
733 lp->num_inputs,
734 lp->inputs,
735 builder, fs_type,
736 a0_ptr, dadx_ptr, dady_ptr,
737 x, y);
738
739 /* code generated texture sampling */
740 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
741
742 /* loop over quads in the block */
743 for(i = 0; i < num_fs; ++i) {
744 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
745 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
746 LLVMValueRef depth_ptr_i;
747
748 if(i != 0)
749 lp_build_interp_soa_update(&interp, i);
750
751 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
752
753 generate_fs(lp, shader, key,
754 builder,
755 fs_type,
756 context_ptr,
757 i,
758 &interp,
759 sampler,
760 &fs_mask[i], /* output */
761 out_color,
762 depth_ptr_i,
763 facing,
764 do_tri_test,
765 c0, c1, c2,
766 step0_ptr, step1_ptr, step2_ptr, counter);
767
768 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
769 for(chan = 0; chan < NUM_CHANNELS; ++chan)
770 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
771 }
772
773 sampler->destroy(sampler);
774
775 /* Loop over color outputs / color buffers to do blending.
776 */
777 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
778 LLVMValueRef color_ptr;
779 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
780 LLVMValueRef blend_in_color[NUM_CHANNELS];
781 unsigned rt;
782
783 /*
784 * Convert the fs's output color and mask to fit to the blending type.
785 */
786 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
787 lp_build_conv(builder, fs_type, blend_type,
788 fs_out_color[cbuf][chan], num_fs,
789 &blend_in_color[chan], 1);
790 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
791 }
792
793 lp_build_conv_mask(builder, fs_type, blend_type,
794 fs_mask, num_fs,
795 &blend_mask, 1);
796
797 color_ptr = LLVMBuildLoad(builder,
798 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
799 "");
800 lp_build_name(color_ptr, "color_ptr%d", cbuf);
801
802 /* which blend/colormask state to use */
803 rt = key->blend.independent_blend_enable ? cbuf : 0;
804
805 /*
806 * Blending.
807 */
808 generate_blend(&key->blend,
809 rt,
810 builder,
811 blend_type,
812 context_ptr,
813 blend_mask,
814 blend_in_color,
815 color_ptr);
816 }
817
818 LLVMBuildRetVoid(builder);
819
820 LLVMDisposeBuilder(builder);
821
822
823 /* Verify the LLVM IR. If invalid, dump and abort */
824 #ifdef DEBUG
825 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
826 if (1)
827 lp_debug_dump_value(function);
828 abort();
829 }
830 #endif
831
832 /* Apply optimizations to LLVM IR */
833 if (1)
834 LLVMRunFunctionPassManager(screen->pass, function);
835
836 if (gallivm_debug & GALLIVM_DEBUG_IR) {
837 /* Print the LLVM IR to stderr */
838 lp_debug_dump_value(function);
839 debug_printf("\n");
840 }
841
842 /*
843 * Translate the LLVM IR into machine code.
844 */
845 {
846 void *f = LLVMGetPointerToGlobal(screen->engine, function);
847
848 variant->jit_function[do_tri_test] = (lp_jit_frag_func)pointer_to_func(f);
849
850 if (gallivm_debug & GALLIVM_DEBUG_ASM) {
851 lp_disassemble(f);
852 }
853 }
854 }
855
856
857 static void
858 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
859 {
860 unsigned i;
861
862 debug_printf("fs variant %p:\n", (void *) key);
863
864 if (key->depth.enabled) {
865 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
866 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
867 debug_printf("depth.writemask = %u\n", key->depth.writemask);
868 }
869
870 for (i = 0; i < 2; ++i) {
871 if (key->stencil[i].enabled) {
872 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
873 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
874 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
875 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
876 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
877 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
878 }
879 }
880
881 if (key->alpha.enabled) {
882 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
883 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
884 }
885
886 if (key->blend.logicop_enable) {
887 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
888 }
889 else if (key->blend.rt[0].blend_enable) {
890 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
891 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
892 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
893 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
894 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
895 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
896 }
897 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
898 for (i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
899 if (key->sampler[i].format) {
900 debug_printf("sampler[%u] = \n", i);
901 debug_printf(" .format = %s\n",
902 util_format_name(key->sampler[i].format));
903 debug_printf(" .target = %s\n",
904 util_dump_tex_target(key->sampler[i].target, TRUE));
905 debug_printf(" .pot = %u %u %u\n",
906 key->sampler[i].pot_width,
907 key->sampler[i].pot_height,
908 key->sampler[i].pot_depth);
909 debug_printf(" .wrap = %s %s %s\n",
910 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
911 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
912 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
913 debug_printf(" .min_img_filter = %s\n",
914 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
915 debug_printf(" .min_mip_filter = %s\n",
916 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
917 debug_printf(" .mag_img_filter = %s\n",
918 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
919 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
920 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
921 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
922 }
923 }
924 }
925
926
927
928 static struct lp_fragment_shader_variant *
929 generate_variant(struct llvmpipe_context *lp,
930 struct lp_fragment_shader *shader,
931 const struct lp_fragment_shader_variant_key *key)
932 {
933 struct lp_fragment_shader_variant *variant;
934
935 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
936 if(!variant)
937 return NULL;
938
939 variant->no = shader->variant_no++;
940
941 memcpy(&variant->key, key, sizeof *key);
942
943 if (gallivm_debug & GALLIVM_DEBUG_IR) {
944 debug_printf("llvmpipe: Creating fragment shader #%u variant #%u:\n",
945 shader->no, variant->no);
946 tgsi_dump(shader->base.tokens, 0);
947 dump_fs_variant_key(key);
948 }
949
950 generate_fragment(lp, shader, variant, RAST_WHOLE);
951 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
952
953 /* TODO: most of these can be relaxed, in particular the colormask */
954 variant->opaque =
955 !key->blend.logicop_enable &&
956 !key->blend.rt[0].blend_enable &&
957 key->blend.rt[0].colormask == 0xf &&
958 !key->stencil[0].enabled &&
959 !key->alpha.enabled &&
960 !key->depth.enabled &&
961 !key->scissor &&
962 !shader->info.uses_kill
963 ? TRUE : FALSE;
964
965 /* insert new variant into linked list */
966 variant->next = shader->variants;
967 shader->variants = variant;
968
969 return variant;
970 }
971
972
973 static void *
974 llvmpipe_create_fs_state(struct pipe_context *pipe,
975 const struct pipe_shader_state *templ)
976 {
977 struct lp_fragment_shader *shader;
978
979 shader = CALLOC_STRUCT(lp_fragment_shader);
980 if (!shader)
981 return NULL;
982
983 shader->no = fs_no++;
984
985 /* get/save the summary info for this shader */
986 tgsi_scan_shader(templ->tokens, &shader->info);
987
988 /* we need to keep a local copy of the tokens */
989 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
990
991 if (LP_DEBUG & DEBUG_TGSI) {
992 unsigned attrib;
993 debug_printf("llvmpipe: Create fragment shader #%u %p:\n", shader->no, (void *) shader);
994 tgsi_dump(templ->tokens, 0);
995 debug_printf("usage masks:\n");
996 for (attrib = 0; attrib < shader->info.num_inputs; ++attrib) {
997 unsigned usage_mask = shader->info.input_usage_mask[attrib];
998 debug_printf(" IN[%u].%s%s%s%s\n",
999 attrib,
1000 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
1001 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
1002 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
1003 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
1004 }
1005 debug_printf("\n");
1006 }
1007
1008 return shader;
1009 }
1010
1011
1012 static void
1013 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
1014 {
1015 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1016
1017 if (llvmpipe->fs == fs)
1018 return;
1019
1020 draw_flush(llvmpipe->draw);
1021
1022 llvmpipe->fs = fs;
1023
1024 llvmpipe->dirty |= LP_NEW_FS;
1025 }
1026
1027
1028 static void
1029 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1030 {
1031 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1032 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
1033 struct lp_fragment_shader *shader = fs;
1034 struct lp_fragment_shader_variant *variant;
1035
1036 assert(fs != llvmpipe->fs);
1037 (void) llvmpipe;
1038
1039 /*
1040 * XXX: we need to flush the context until we have some sort of reference
1041 * counting in fragment shaders as they may still be binned
1042 */
1043 draw_flush(llvmpipe->draw);
1044 lp_setup_flush(llvmpipe->setup, 0);
1045
1046 variant = shader->variants;
1047 while(variant) {
1048 struct lp_fragment_shader_variant *next = variant->next;
1049 unsigned i;
1050
1051 for (i = 0; i < Elements(variant->function); i++) {
1052 if (variant->function[i]) {
1053 if (variant->jit_function[i])
1054 LLVMFreeMachineCodeForFunction(screen->engine,
1055 variant->function[i]);
1056 LLVMDeleteFunction(variant->function[i]);
1057 }
1058 }
1059
1060 FREE(variant);
1061
1062 variant = next;
1063 }
1064
1065 FREE((void *) shader->base.tokens);
1066 FREE(shader);
1067 }
1068
1069
1070
1071 static void
1072 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1073 uint shader, uint index,
1074 struct pipe_resource *constants)
1075 {
1076 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1077 unsigned size = constants ? constants->width0 : 0;
1078 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1079
1080 assert(shader < PIPE_SHADER_TYPES);
1081 assert(index < PIPE_MAX_CONSTANT_BUFFERS);
1082
1083 if(llvmpipe->constants[shader][index] == constants)
1084 return;
1085
1086 draw_flush(llvmpipe->draw);
1087
1088 /* note: reference counting */
1089 pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
1090
1091 if(shader == PIPE_SHADER_VERTEX) {
1092 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX, index,
1093 data, size);
1094 }
1095
1096 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1097 }
1098
1099
1100 /**
1101 * Return the blend factor equivalent to a destination alpha of one.
1102 */
1103 static INLINE unsigned
1104 force_dst_alpha_one(unsigned factor, boolean alpha)
1105 {
1106 switch(factor) {
1107 case PIPE_BLENDFACTOR_DST_ALPHA:
1108 return PIPE_BLENDFACTOR_ONE;
1109 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1110 return PIPE_BLENDFACTOR_ZERO;
1111 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1112 return PIPE_BLENDFACTOR_ZERO;
1113 }
1114
1115 if (alpha) {
1116 switch(factor) {
1117 case PIPE_BLENDFACTOR_DST_COLOR:
1118 return PIPE_BLENDFACTOR_ONE;
1119 case PIPE_BLENDFACTOR_INV_DST_COLOR:
1120 return PIPE_BLENDFACTOR_ZERO;
1121 }
1122 }
1123
1124 return factor;
1125 }
1126
1127
1128 /**
1129 * We need to generate several variants of the fragment pipeline to match
1130 * all the combinations of the contributing state atoms.
1131 *
1132 * TODO: there is actually no reason to tie this to context state -- the
1133 * generated code could be cached globally in the screen.
1134 */
1135 static void
1136 make_variant_key(struct llvmpipe_context *lp,
1137 struct lp_fragment_shader *shader,
1138 struct lp_fragment_shader_variant_key *key)
1139 {
1140 unsigned i;
1141
1142 memset(key, 0, sizeof *key);
1143
1144 if (lp->framebuffer.zsbuf) {
1145 if (lp->depth_stencil->depth.enabled) {
1146 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1147 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1148 }
1149 if (lp->depth_stencil->stencil[0].enabled) {
1150 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1151 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1152 }
1153 }
1154
1155 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1156 if(key->alpha.enabled)
1157 key->alpha.func = lp->depth_stencil->alpha.func;
1158 /* alpha.ref_value is passed in jit_context */
1159
1160 key->flatshade = lp->rasterizer->flatshade;
1161 key->scissor = lp->rasterizer->scissor;
1162 if (lp->active_query_count) {
1163 key->occlusion_count = TRUE;
1164 }
1165
1166 if (lp->framebuffer.nr_cbufs) {
1167 memcpy(&key->blend, lp->blend, sizeof key->blend);
1168 }
1169
1170 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1171 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1172 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1173 const struct util_format_description *format_desc;
1174 unsigned chan;
1175
1176 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1177 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1178 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1179
1180 blend_rt->colormask = lp->blend->rt[i].colormask;
1181
1182 /* mask out color channels not present in the color buffer.
1183 * Should be simple to incorporate per-cbuf writemasks:
1184 */
1185 for(chan = 0; chan < 4; ++chan) {
1186 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1187
1188 if(swizzle > UTIL_FORMAT_SWIZZLE_W)
1189 blend_rt->colormask &= ~(1 << chan);
1190 }
1191
1192 /*
1193 * Our swizzled render tiles always have an alpha channel, but the linear
1194 * render target format often does not, so force here the dst alpha to be
1195 * one.
1196 *
1197 * This is not a mere optimization. Wrong results will be produced if the
1198 * dst alpha is used, the dst format does not have alpha, and the previous
1199 * rendering was not flushed from the swizzled to linear buffer. For
1200 * example, NonPowTwo DCT.
1201 *
1202 * TODO: This should be generalized to all channels for better
1203 * performance, but only alpha causes correctness issues.
1204 */
1205 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1206 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor, FALSE);
1207 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor, FALSE);
1208 blend_rt->alpha_src_factor = force_dst_alpha_one(blend_rt->alpha_src_factor, TRUE);
1209 blend_rt->alpha_dst_factor = force_dst_alpha_one(blend_rt->alpha_dst_factor, TRUE);
1210 }
1211 }
1212
1213 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1214 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1215 lp_sampler_static_state(&key->sampler[i], lp->fragment_sampler_views[i], lp->sampler[i]);
1216 }
1217
1218
1219 /**
1220 * Update fragment state. This is called just prior to drawing
1221 * something when some fragment-related state has changed.
1222 */
1223 void
1224 llvmpipe_update_fs(struct llvmpipe_context *lp)
1225 {
1226 struct lp_fragment_shader *shader = lp->fs;
1227 struct lp_fragment_shader_variant_key key;
1228 struct lp_fragment_shader_variant *variant;
1229
1230 make_variant_key(lp, shader, &key);
1231
1232 variant = shader->variants;
1233 while(variant) {
1234 if(memcmp(&variant->key, &key, sizeof key) == 0)
1235 break;
1236
1237 variant = variant->next;
1238 }
1239
1240 if (!variant) {
1241 int64_t t0, t1;
1242 int64_t dt;
1243 t0 = os_time_get();
1244
1245 variant = generate_variant(lp, shader, &key);
1246
1247 t1 = os_time_get();
1248 dt = t1 - t0;
1249 LP_COUNT_ADD(llvm_compile_time, dt);
1250 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1251 }
1252
1253 lp_setup_set_fs_variant(lp->setup, variant);
1254 }
1255
1256
1257
1258 void
1259 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1260 {
1261 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1262 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1263 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1264
1265 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1266 }