llvmpipe: try to be sensible about whether to branch after mask updates
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_init.h"
79 #include "gallivm/lp_bld_intr.h"
80 #include "gallivm/lp_bld_logic.h"
81 #include "gallivm/lp_bld_tgsi.h"
82 #include "gallivm/lp_bld_swizzle.h"
83 #include "gallivm/lp_bld_flow.h"
84 #include "gallivm/lp_bld_debug.h"
85
86 #include "lp_bld_alpha.h"
87 #include "lp_bld_blend.h"
88 #include "lp_bld_depth.h"
89 #include "lp_bld_interp.h"
90 #include "lp_context.h"
91 #include "lp_debug.h"
92 #include "lp_perf.h"
93 #include "lp_screen.h"
94 #include "lp_setup.h"
95 #include "lp_state.h"
96 #include "lp_tex_sample.h"
97 #include "lp_flush.h"
98 #include "lp_state_fs.h"
99
100
101 #include <llvm-c/Analysis.h>
102
103
104 static unsigned fs_no = 0;
105
106
107 /**
108 * Generate the depth /stencil test code.
109 */
110 static void
111 generate_depth_stencil(LLVMBuilderRef builder,
112 const struct lp_fragment_shader_variant_key *key,
113 struct lp_type src_type,
114 struct lp_build_mask_context *mask,
115 LLVMValueRef stencil_refs[2],
116 LLVMValueRef src,
117 LLVMValueRef dst_ptr,
118 LLVMValueRef facing,
119 LLVMValueRef counter,
120 boolean do_branch)
121 {
122 const struct util_format_description *format_desc;
123
124 if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
125 return;
126
127 format_desc = util_format_description(key->zsbuf_format);
128 assert(format_desc);
129
130 lp_build_depth_stencil_test(builder,
131 &key->depth,
132 key->stencil,
133 src_type,
134 format_desc,
135 mask,
136 stencil_refs,
137 src,
138 dst_ptr,
139 facing,
140 counter,
141 do_branch);
142 }
143
144
145 /**
146 * Expand the relevent bits of mask_input to a 4-dword mask for the
147 * four pixels in a 2x2 quad. This will set the four elements of the
148 * quad mask vector to 0 or ~0.
149 *
150 * \param quad which quad of the quad group to test, in [0,3]
151 * \param mask_input bitwise mask for the whole 4x4 stamp
152 */
153 static LLVMValueRef
154 generate_quad_mask(LLVMBuilderRef builder,
155 struct lp_type fs_type,
156 unsigned quad,
157 LLVMValueRef mask_input) /* int32 */
158 {
159 struct lp_type mask_type;
160 LLVMTypeRef i32t = LLVMInt32Type();
161 LLVMValueRef bits[4];
162 LLVMValueRef mask;
163 int shift;
164
165 /*
166 * XXX: We'll need a different path for 16 x u8
167 */
168 assert(fs_type.width == 32);
169 assert(fs_type.length == 4);
170 mask_type = lp_int_type(fs_type);
171
172 /*
173 * mask_input >>= (quad * 4)
174 */
175
176 switch (quad) {
177 case 0:
178 shift = 0;
179 break;
180 case 1:
181 shift = 2;
182 break;
183 case 2:
184 shift = 8;
185 break;
186 case 3:
187 shift = 10;
188 break;
189 default:
190 assert(0);
191 shift = 0;
192 }
193
194 mask_input = LLVMBuildLShr(builder,
195 mask_input,
196 LLVMConstInt(i32t, shift, 0),
197 "");
198
199 /*
200 * mask = { mask_input & (1 << i), for i in [0,3] }
201 */
202
203 mask = lp_build_broadcast(builder, lp_build_vec_type(mask_type), mask_input);
204
205 bits[0] = LLVMConstInt(i32t, 1 << 0, 0);
206 bits[1] = LLVMConstInt(i32t, 1 << 1, 0);
207 bits[2] = LLVMConstInt(i32t, 1 << 4, 0);
208 bits[3] = LLVMConstInt(i32t, 1 << 5, 0);
209
210 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, 4), "");
211
212 /*
213 * mask = mask != 0 ? ~0 : 0
214 */
215
216 mask = lp_build_compare(builder,
217 mask_type, PIPE_FUNC_NOTEQUAL,
218 mask,
219 lp_build_const_int_vec(mask_type, 0));
220
221 return mask;
222 }
223
224
225
226 /**
227 * Generate the fragment shader, depth/stencil test, and alpha tests.
228 * \param i which quad in the tile, in range [0,3]
229 * \param partial_mask if 1, do mask_input testing
230 */
231 static void
232 generate_fs(struct llvmpipe_context *lp,
233 struct lp_fragment_shader *shader,
234 const struct lp_fragment_shader_variant_key *key,
235 LLVMBuilderRef builder,
236 struct lp_type type,
237 LLVMValueRef context_ptr,
238 unsigned i,
239 struct lp_build_interp_soa_context *interp,
240 struct lp_build_sampler_soa *sampler,
241 LLVMValueRef *pmask,
242 LLVMValueRef (*color)[4],
243 LLVMValueRef depth_ptr,
244 LLVMValueRef facing,
245 unsigned partial_mask,
246 LLVMValueRef mask_input,
247 LLVMValueRef counter)
248 {
249 const struct tgsi_token *tokens = shader->base.tokens;
250 LLVMTypeRef vec_type;
251 LLVMValueRef consts_ptr;
252 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
253 LLVMValueRef z;
254 LLVMValueRef stencil_refs[2];
255 struct lp_build_flow_context *flow;
256 struct lp_build_mask_context mask;
257 boolean early_depth_stencil_test;
258 boolean simple_shader = (shader->info.file_count[TGSI_FILE_SAMPLER] == 0 &&
259 shader->info.num_inputs < 3 &&
260 shader->info.num_instructions < 8);
261 unsigned attrib;
262 unsigned chan;
263 unsigned cbuf;
264
265 assert(i < 4);
266
267 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
268 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
269
270 vec_type = lp_build_vec_type(type);
271
272 consts_ptr = lp_jit_context_constants(builder, context_ptr);
273
274 flow = lp_build_flow_create(builder);
275
276 memset(outputs, 0, sizeof outputs);
277
278 lp_build_flow_scope_begin(flow);
279
280 /* Declare the color and z variables */
281 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
282 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
283 color[cbuf][chan] = lp_build_alloca(builder, vec_type, "color");
284 }
285 }
286
287 /* do triangle edge testing */
288 if (partial_mask) {
289 *pmask = generate_quad_mask(builder, type,
290 i, mask_input);
291 }
292 else {
293 *pmask = lp_build_const_int_vec(type, ~0);
294 }
295
296
297 early_depth_stencil_test =
298 (key->depth.enabled || key->stencil[0].enabled) &&
299 !key->alpha.enabled &&
300 !shader->info.uses_kill &&
301 !shader->info.writes_z;
302
303 /* 'mask' will control execution based on quad's pixel alive/killed state */
304 lp_build_mask_begin(&mask, flow, type, *pmask);
305
306 if (!early_depth_stencil_test && !simple_shader)
307 lp_build_mask_check(&mask);
308
309 lp_build_interp_soa_update_pos(interp, i);
310 z = interp->pos[2];
311
312 if (early_depth_stencil_test)
313 generate_depth_stencil(builder, key,
314 type, &mask,
315 stencil_refs,
316 z, depth_ptr,
317 facing, counter,
318 !simple_shader);
319
320 lp_build_interp_soa_update_inputs(interp, i);
321
322 lp_build_tgsi_soa(builder, tokens, type, &mask,
323 consts_ptr, interp->pos, interp->inputs,
324 outputs, sampler, &shader->info);
325
326 /* loop over fragment shader outputs/results */
327 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
328 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
329 if(outputs[attrib][chan]) {
330 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
331 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
332
333 switch (shader->info.output_semantic_name[attrib]) {
334 case TGSI_SEMANTIC_COLOR:
335 {
336 unsigned cbuf = shader->info.output_semantic_index[attrib];
337
338 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
339
340 /* Alpha test */
341 /* XXX: should only test the final assignment to alpha */
342 if (cbuf == 0 && chan == 3 && key->alpha.enabled) {
343 LLVMValueRef alpha = out;
344 LLVMValueRef alpha_ref_value;
345 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
346 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
347 lp_build_alpha_test(builder, key->alpha.func, type,
348 &mask, alpha, alpha_ref_value, FALSE);
349 }
350
351 LLVMBuildStore(builder, out, color[cbuf][chan]);
352 break;
353 }
354
355 case TGSI_SEMANTIC_POSITION:
356 if(chan == 2)
357 z = out;
358 break;
359 }
360 }
361 }
362 }
363
364 if (!early_depth_stencil_test)
365 generate_depth_stencil(builder, key,
366 type, &mask,
367 stencil_refs, z, depth_ptr,
368 facing, counter, FALSE);
369
370 lp_build_mask_end(&mask);
371
372 lp_build_flow_scope_end(flow);
373
374 lp_build_flow_destroy(flow);
375
376 *pmask = mask.value;
377
378 }
379
380
381 /**
382 * Generate color blending and color output.
383 * \param rt the render target index (to index blend, colormask state)
384 * \param type the pixel color type
385 * \param context_ptr pointer to the runtime JIT context
386 * \param mask execution mask (active fragment/pixel mask)
387 * \param src colors from the fragment shader
388 * \param dst_ptr the destination color buffer pointer
389 */
390 static void
391 generate_blend(const struct pipe_blend_state *blend,
392 unsigned rt,
393 LLVMBuilderRef builder,
394 struct lp_type type,
395 LLVMValueRef context_ptr,
396 LLVMValueRef mask,
397 LLVMValueRef *src,
398 LLVMValueRef dst_ptr,
399 boolean do_branch)
400 {
401 struct lp_build_context bld;
402 struct lp_build_flow_context *flow;
403 struct lp_build_mask_context mask_ctx;
404 LLVMTypeRef vec_type;
405 LLVMValueRef const_ptr;
406 LLVMValueRef con[4];
407 LLVMValueRef dst[4];
408 LLVMValueRef res[4];
409 unsigned chan;
410
411 lp_build_context_init(&bld, builder, type);
412
413 flow = lp_build_flow_create(builder);
414 lp_build_mask_begin(&mask_ctx, flow, type, mask);
415 if (do_branch)
416 lp_build_mask_check(&mask_ctx);
417
418 vec_type = lp_build_vec_type(type);
419
420 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
421 const_ptr = LLVMBuildBitCast(builder, const_ptr,
422 LLVMPointerType(vec_type, 0), "");
423
424 /* load constant blend color and colors from the dest color buffer */
425 for(chan = 0; chan < 4; ++chan) {
426 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
427 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
428
429 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
430
431 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
432 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
433 }
434
435 /* do blend */
436 lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
437
438 /* store results to color buffer */
439 for(chan = 0; chan < 4; ++chan) {
440 if(blend->rt[rt].colormask & (1 << chan)) {
441 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
442 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
443 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
444 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
445 }
446 }
447
448 lp_build_mask_end(&mask_ctx);
449 lp_build_flow_destroy(flow);
450 }
451
452
453 /**
454 * Generate the runtime callable function for the whole fragment pipeline.
455 * Note that the function which we generate operates on a block of 16
456 * pixels at at time. The block contains 2x2 quads. Each quad contains
457 * 2x2 pixels.
458 */
459 static void
460 generate_fragment(struct llvmpipe_context *lp,
461 struct lp_fragment_shader *shader,
462 struct lp_fragment_shader_variant *variant,
463 unsigned partial_mask)
464 {
465 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
466 const struct lp_fragment_shader_variant_key *key = &variant->key;
467 char func_name[256];
468 struct lp_type fs_type;
469 struct lp_type blend_type;
470 LLVMTypeRef fs_elem_type;
471 LLVMTypeRef fs_int_vec_type;
472 LLVMTypeRef blend_vec_type;
473 LLVMTypeRef arg_types[11];
474 LLVMTypeRef func_type;
475 LLVMValueRef context_ptr;
476 LLVMValueRef x;
477 LLVMValueRef y;
478 LLVMValueRef a0_ptr;
479 LLVMValueRef dadx_ptr;
480 LLVMValueRef dady_ptr;
481 LLVMValueRef color_ptr_ptr;
482 LLVMValueRef depth_ptr;
483 LLVMValueRef mask_input;
484 LLVMValueRef counter = NULL;
485 LLVMBasicBlockRef block;
486 LLVMBuilderRef builder;
487 struct lp_build_sampler_soa *sampler;
488 struct lp_build_interp_soa_context interp;
489 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
490 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
491 LLVMValueRef blend_mask;
492 LLVMValueRef function;
493 LLVMValueRef facing;
494 unsigned num_fs;
495 unsigned i;
496 unsigned chan;
497 unsigned cbuf;
498
499
500 /* TODO: actually pick these based on the fs and color buffer
501 * characteristics. */
502
503 memset(&fs_type, 0, sizeof fs_type);
504 fs_type.floating = TRUE; /* floating point values */
505 fs_type.sign = TRUE; /* values are signed */
506 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
507 fs_type.width = 32; /* 32-bit float */
508 fs_type.length = 4; /* 4 elements per vector */
509 num_fs = 4; /* number of quads per block */
510
511 memset(&blend_type, 0, sizeof blend_type);
512 blend_type.floating = FALSE; /* values are integers */
513 blend_type.sign = FALSE; /* values are unsigned */
514 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
515 blend_type.width = 8; /* 8-bit ubyte values */
516 blend_type.length = 16; /* 16 elements per vector */
517
518 /*
519 * Generate the function prototype. Any change here must be reflected in
520 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
521 */
522
523 fs_elem_type = lp_build_elem_type(fs_type);
524 fs_int_vec_type = lp_build_int_vec_type(fs_type);
525
526 blend_vec_type = lp_build_vec_type(blend_type);
527
528 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
529 shader->no, variant->no, partial_mask ? "partial" : "whole");
530
531 arg_types[0] = screen->context_ptr_type; /* context */
532 arg_types[1] = LLVMInt32Type(); /* x */
533 arg_types[2] = LLVMInt32Type(); /* y */
534 arg_types[3] = LLVMFloatType(); /* facing */
535 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
536 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
537 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
538 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
539 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
540 arg_types[9] = LLVMInt32Type(); /* mask_input */
541 arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
542
543 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
544
545 function = LLVMAddFunction(screen->module, func_name, func_type);
546 LLVMSetFunctionCallConv(function, LLVMCCallConv);
547
548 variant->function[partial_mask] = function;
549
550
551 /* XXX: need to propagate noalias down into color param now we are
552 * passing a pointer-to-pointer?
553 */
554 for(i = 0; i < Elements(arg_types); ++i)
555 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
556 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
557
558 context_ptr = LLVMGetParam(function, 0);
559 x = LLVMGetParam(function, 1);
560 y = LLVMGetParam(function, 2);
561 facing = LLVMGetParam(function, 3);
562 a0_ptr = LLVMGetParam(function, 4);
563 dadx_ptr = LLVMGetParam(function, 5);
564 dady_ptr = LLVMGetParam(function, 6);
565 color_ptr_ptr = LLVMGetParam(function, 7);
566 depth_ptr = LLVMGetParam(function, 8);
567 mask_input = LLVMGetParam(function, 9);
568
569 lp_build_name(context_ptr, "context");
570 lp_build_name(x, "x");
571 lp_build_name(y, "y");
572 lp_build_name(a0_ptr, "a0");
573 lp_build_name(dadx_ptr, "dadx");
574 lp_build_name(dady_ptr, "dady");
575 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
576 lp_build_name(depth_ptr, "depth");
577 lp_build_name(mask_input, "mask_input");
578
579 if (key->occlusion_count) {
580 counter = LLVMGetParam(function, 10);
581 lp_build_name(counter, "counter");
582 }
583
584 /*
585 * Function body
586 */
587
588 block = LLVMAppendBasicBlock(function, "entry");
589 builder = LLVMCreateBuilder();
590 LLVMPositionBuilderAtEnd(builder, block);
591
592 /*
593 * The shader input interpolation info is not explicitely baked in the
594 * shader key, but everything it derives from (TGSI, and flatshade) is
595 * already included in the shader key.
596 */
597 lp_build_interp_soa_init(&interp,
598 lp->num_inputs,
599 lp->inputs,
600 builder, fs_type,
601 a0_ptr, dadx_ptr, dady_ptr,
602 x, y);
603
604 /* code generated texture sampling */
605 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
606
607 /* loop over quads in the block */
608 for(i = 0; i < num_fs; ++i) {
609 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
610 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
611 LLVMValueRef depth_ptr_i;
612
613 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
614
615 generate_fs(lp, shader, key,
616 builder,
617 fs_type,
618 context_ptr,
619 i,
620 &interp,
621 sampler,
622 &fs_mask[i], /* output */
623 out_color,
624 depth_ptr_i,
625 facing,
626 partial_mask,
627 mask_input,
628 counter);
629
630 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
631 for(chan = 0; chan < NUM_CHANNELS; ++chan)
632 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
633 }
634
635 sampler->destroy(sampler);
636
637 /* Loop over color outputs / color buffers to do blending.
638 */
639 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
640 LLVMValueRef color_ptr;
641 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
642 LLVMValueRef blend_in_color[NUM_CHANNELS];
643 unsigned rt;
644
645 /*
646 * Convert the fs's output color and mask to fit to the blending type.
647 */
648 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
649 LLVMValueRef fs_color_vals[LP_MAX_VECTOR_LENGTH];
650
651 for (i = 0; i < num_fs; i++) {
652 fs_color_vals[i] =
653 LLVMBuildLoad(builder, fs_out_color[cbuf][chan][i], "fs_color_vals");
654 }
655
656 lp_build_conv(builder, fs_type, blend_type,
657 fs_color_vals,
658 num_fs,
659 &blend_in_color[chan], 1);
660
661 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
662 }
663
664 if (partial_mask || !variant->opaque) {
665 lp_build_conv_mask(builder, fs_type, blend_type,
666 fs_mask, num_fs,
667 &blend_mask, 1);
668 } else {
669 blend_mask = lp_build_const_int_vec(blend_type, ~0);
670 }
671
672 color_ptr = LLVMBuildLoad(builder,
673 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
674 "");
675 lp_build_name(color_ptr, "color_ptr%d", cbuf);
676
677 /* which blend/colormask state to use */
678 rt = key->blend.independent_blend_enable ? cbuf : 0;
679
680 /*
681 * Blending.
682 */
683 {
684 /* Could the 4x4 have been killed?
685 */
686 boolean do_branch = ((key->depth.enabled || key->stencil[0].enabled) &&
687 !key->alpha.enabled &&
688 !shader->info.uses_kill);
689
690 generate_blend(&key->blend,
691 rt,
692 builder,
693 blend_type,
694 context_ptr,
695 blend_mask,
696 blend_in_color,
697 color_ptr,
698 do_branch);
699 }
700 }
701
702 #ifdef PIPE_ARCH_X86
703 /* Avoid corrupting the FPU stack on 32bit OSes. */
704 lp_build_intrinsic(builder, "llvm.x86.mmx.emms", LLVMVoidType(), NULL, 0);
705 #endif
706
707 LLVMBuildRetVoid(builder);
708
709 LLVMDisposeBuilder(builder);
710
711
712 /* Verify the LLVM IR. If invalid, dump and abort */
713 #ifdef DEBUG
714 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
715 if (1)
716 lp_debug_dump_value(function);
717 abort();
718 }
719 #endif
720
721 /* Apply optimizations to LLVM IR */
722 LLVMRunFunctionPassManager(screen->pass, function);
723
724 if ((gallivm_debug & GALLIVM_DEBUG_IR) || (LP_DEBUG & DEBUG_FS)) {
725 /* Print the LLVM IR to stderr */
726 lp_debug_dump_value(function);
727 debug_printf("\n");
728 }
729
730 /*
731 * Translate the LLVM IR into machine code.
732 */
733 {
734 void *f = LLVMGetPointerToGlobal(screen->engine, function);
735
736 variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);
737
738 if ((gallivm_debug & GALLIVM_DEBUG_ASM) || (LP_DEBUG & DEBUG_FS)) {
739 lp_disassemble(f);
740 }
741 lp_func_delete_body(function);
742 }
743 }
744
745
746 static void
747 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
748 {
749 unsigned i;
750
751 debug_printf("fs variant %p:\n", (void *) key);
752
753 if (key->flatshade) {
754 debug_printf("flatshade = 1\n");
755 }
756 for (i = 0; i < key->nr_cbufs; ++i) {
757 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
758 }
759 if (key->depth.enabled) {
760 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
761 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
762 debug_printf("depth.writemask = %u\n", key->depth.writemask);
763 }
764
765 for (i = 0; i < 2; ++i) {
766 if (key->stencil[i].enabled) {
767 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
768 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
769 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
770 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
771 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
772 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
773 }
774 }
775
776 if (key->alpha.enabled) {
777 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
778 }
779
780 if (key->occlusion_count) {
781 debug_printf("occlusion_count = 1\n");
782 }
783
784 if (key->blend.logicop_enable) {
785 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
786 }
787 else if (key->blend.rt[0].blend_enable) {
788 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
789 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
790 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
791 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
792 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
793 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
794 }
795 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
796 for (i = 0; i < key->nr_samplers; ++i) {
797 debug_printf("sampler[%u] = \n", i);
798 debug_printf(" .format = %s\n",
799 util_format_name(key->sampler[i].format));
800 debug_printf(" .target = %s\n",
801 util_dump_tex_target(key->sampler[i].target, TRUE));
802 debug_printf(" .pot = %u %u %u\n",
803 key->sampler[i].pot_width,
804 key->sampler[i].pot_height,
805 key->sampler[i].pot_depth);
806 debug_printf(" .wrap = %s %s %s\n",
807 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
808 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
809 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
810 debug_printf(" .min_img_filter = %s\n",
811 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
812 debug_printf(" .min_mip_filter = %s\n",
813 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
814 debug_printf(" .mag_img_filter = %s\n",
815 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
816 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
817 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
818 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
819 debug_printf(" .min_max_lod_equal = %u\n", key->sampler[i].min_max_lod_equal);
820 debug_printf(" .lod_bias_non_zero = %u\n", key->sampler[i].lod_bias_non_zero);
821 debug_printf(" .apply_min_lod = %u\n", key->sampler[i].apply_min_lod);
822 debug_printf(" .apply_max_lod = %u\n", key->sampler[i].apply_max_lod);
823 }
824 }
825
826
827 void
828 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
829 {
830 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
831 variant->shader->no, variant->no);
832 tgsi_dump(variant->shader->base.tokens, 0);
833 dump_fs_variant_key(&variant->key);
834 debug_printf("variant->opaque = %u\n", variant->opaque);
835 debug_printf("\n");
836 }
837
838 static struct lp_fragment_shader_variant *
839 generate_variant(struct llvmpipe_context *lp,
840 struct lp_fragment_shader *shader,
841 const struct lp_fragment_shader_variant_key *key)
842 {
843 struct lp_fragment_shader_variant *variant;
844 boolean fullcolormask;
845
846 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
847 if(!variant)
848 return NULL;
849
850 variant->shader = shader;
851 variant->list_item_global.base = variant;
852 variant->list_item_local.base = variant;
853 variant->no = shader->variants_created++;
854
855 memcpy(&variant->key, key, shader->variant_key_size);
856
857 /*
858 * Determine whether we are touching all channels in the color buffer.
859 */
860 fullcolormask = FALSE;
861 if (key->nr_cbufs == 1) {
862 const struct util_format_description *format_desc;
863 format_desc = util_format_description(key->cbuf_format[0]);
864 if ((~key->blend.rt[0].colormask &
865 util_format_colormask(format_desc)) == 0) {
866 fullcolormask = TRUE;
867 }
868 }
869
870 variant->opaque =
871 !key->blend.logicop_enable &&
872 !key->blend.rt[0].blend_enable &&
873 fullcolormask &&
874 !key->stencil[0].enabled &&
875 !key->alpha.enabled &&
876 !key->depth.enabled &&
877 !shader->info.uses_kill
878 ? TRUE : FALSE;
879
880
881 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
882 lp_debug_fs_variant(variant);
883 }
884
885 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
886
887 if (variant->opaque) {
888 /* Specialized shader, which doesn't need to read the color buffer. */
889 generate_fragment(lp, shader, variant, RAST_WHOLE);
890 } else {
891 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
892 }
893
894 return variant;
895 }
896
897
898 static void *
899 llvmpipe_create_fs_state(struct pipe_context *pipe,
900 const struct pipe_shader_state *templ)
901 {
902 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
903 struct lp_fragment_shader *shader;
904 int nr_samplers;
905
906 shader = CALLOC_STRUCT(lp_fragment_shader);
907 if (!shader)
908 return NULL;
909
910 shader->no = fs_no++;
911 make_empty_list(&shader->variants);
912
913 /* get/save the summary info for this shader */
914 tgsi_scan_shader(templ->tokens, &shader->info);
915
916 /* we need to keep a local copy of the tokens */
917 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
918
919 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
920 if (shader->draw_data == NULL) {
921 FREE((void *) shader->base.tokens);
922 FREE(shader);
923 return NULL;
924 }
925
926 nr_samplers = shader->info.file_max[TGSI_FILE_SAMPLER] + 1;
927
928 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
929 sampler[nr_samplers]);
930
931 if (LP_DEBUG & DEBUG_TGSI) {
932 unsigned attrib;
933 debug_printf("llvmpipe: Create fragment shader #%u %p:\n", shader->no, (void *) shader);
934 tgsi_dump(templ->tokens, 0);
935 debug_printf("usage masks:\n");
936 for (attrib = 0; attrib < shader->info.num_inputs; ++attrib) {
937 unsigned usage_mask = shader->info.input_usage_mask[attrib];
938 debug_printf(" IN[%u].%s%s%s%s\n",
939 attrib,
940 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
941 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
942 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
943 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
944 }
945 debug_printf("\n");
946 }
947
948 return shader;
949 }
950
951
952 static void
953 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
954 {
955 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
956
957 if (llvmpipe->fs == fs)
958 return;
959
960 draw_flush(llvmpipe->draw);
961
962 draw_bind_fragment_shader(llvmpipe->draw,
963 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
964
965 llvmpipe->fs = fs;
966
967 llvmpipe->dirty |= LP_NEW_FS;
968 }
969
970 static void
971 remove_shader_variant(struct llvmpipe_context *lp,
972 struct lp_fragment_shader_variant *variant)
973 {
974 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
975 unsigned i;
976
977 if (gallivm_debug & GALLIVM_DEBUG_IR) {
978 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached #%u v total cached #%u\n",
979 variant->shader->no, variant->no, variant->shader->variants_created,
980 variant->shader->variants_cached, lp->nr_fs_variants);
981 }
982 for (i = 0; i < Elements(variant->function); i++) {
983 if (variant->function[i]) {
984 if (variant->jit_function[i])
985 LLVMFreeMachineCodeForFunction(screen->engine,
986 variant->function[i]);
987 LLVMDeleteFunction(variant->function[i]);
988 }
989 }
990 remove_from_list(&variant->list_item_local);
991 variant->shader->variants_cached--;
992 remove_from_list(&variant->list_item_global);
993 lp->nr_fs_variants--;
994 FREE(variant);
995 }
996
997 static void
998 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
999 {
1000 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1001 struct lp_fragment_shader *shader = fs;
1002 struct lp_fs_variant_list_item *li;
1003
1004 assert(fs != llvmpipe->fs);
1005 (void) llvmpipe;
1006
1007 /*
1008 * XXX: we need to flush the context until we have some sort of reference
1009 * counting in fragment shaders as they may still be binned
1010 * Flushing alone might not sufficient we need to wait on it too.
1011 */
1012
1013 llvmpipe_finish(pipe, __FUNCTION__);
1014
1015 li = first_elem(&shader->variants);
1016 while(!at_end(&shader->variants, li)) {
1017 struct lp_fs_variant_list_item *next = next_elem(li);
1018 remove_shader_variant(llvmpipe, li->base);
1019 li = next;
1020 }
1021
1022 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
1023
1024 assert(shader->variants_cached == 0);
1025 FREE((void *) shader->base.tokens);
1026 FREE(shader);
1027 }
1028
1029
1030
1031 static void
1032 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1033 uint shader, uint index,
1034 struct pipe_resource *constants)
1035 {
1036 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1037 unsigned size = constants ? constants->width0 : 0;
1038 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1039
1040 assert(shader < PIPE_SHADER_TYPES);
1041 assert(index < PIPE_MAX_CONSTANT_BUFFERS);
1042
1043 if(llvmpipe->constants[shader][index] == constants)
1044 return;
1045
1046 draw_flush(llvmpipe->draw);
1047
1048 /* note: reference counting */
1049 pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
1050
1051 if(shader == PIPE_SHADER_VERTEX ||
1052 shader == PIPE_SHADER_GEOMETRY) {
1053 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
1054 index, data, size);
1055 }
1056
1057 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1058 }
1059
1060
1061 /**
1062 * Return the blend factor equivalent to a destination alpha of one.
1063 */
1064 static INLINE unsigned
1065 force_dst_alpha_one(unsigned factor)
1066 {
1067 switch(factor) {
1068 case PIPE_BLENDFACTOR_DST_ALPHA:
1069 return PIPE_BLENDFACTOR_ONE;
1070 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1071 return PIPE_BLENDFACTOR_ZERO;
1072 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1073 return PIPE_BLENDFACTOR_ZERO;
1074 }
1075
1076 return factor;
1077 }
1078
1079
1080 /**
1081 * We need to generate several variants of the fragment pipeline to match
1082 * all the combinations of the contributing state atoms.
1083 *
1084 * TODO: there is actually no reason to tie this to context state -- the
1085 * generated code could be cached globally in the screen.
1086 */
1087 static void
1088 make_variant_key(struct llvmpipe_context *lp,
1089 struct lp_fragment_shader *shader,
1090 struct lp_fragment_shader_variant_key *key)
1091 {
1092 unsigned i;
1093
1094 memset(key, 0, shader->variant_key_size);
1095
1096 if (lp->framebuffer.zsbuf) {
1097 if (lp->depth_stencil->depth.enabled) {
1098 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1099 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1100 }
1101 if (lp->depth_stencil->stencil[0].enabled) {
1102 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1103 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1104 }
1105 }
1106
1107 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1108 if(key->alpha.enabled)
1109 key->alpha.func = lp->depth_stencil->alpha.func;
1110 /* alpha.ref_value is passed in jit_context */
1111
1112 key->flatshade = lp->rasterizer->flatshade;
1113 if (lp->active_query_count) {
1114 key->occlusion_count = TRUE;
1115 }
1116
1117 if (lp->framebuffer.nr_cbufs) {
1118 memcpy(&key->blend, lp->blend, sizeof key->blend);
1119 }
1120
1121 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1122 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1123 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
1124 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1125 const struct util_format_description *format_desc;
1126
1127 key->cbuf_format[i] = format;
1128
1129 format_desc = util_format_description(format);
1130 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1131 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1132
1133 blend_rt->colormask = lp->blend->rt[i].colormask;
1134
1135 /*
1136 * Mask out color channels not present in the color buffer.
1137 */
1138 blend_rt->colormask &= util_format_colormask(format_desc);
1139
1140 /*
1141 * Our swizzled render tiles always have an alpha channel, but the linear
1142 * render target format often does not, so force here the dst alpha to be
1143 * one.
1144 *
1145 * This is not a mere optimization. Wrong results will be produced if the
1146 * dst alpha is used, the dst format does not have alpha, and the previous
1147 * rendering was not flushed from the swizzled to linear buffer. For
1148 * example, NonPowTwo DCT.
1149 *
1150 * TODO: This should be generalized to all channels for better
1151 * performance, but only alpha causes correctness issues.
1152 *
1153 * Also, force rgb/alpha func/factors match, to make AoS blending easier.
1154 */
1155 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1156 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor);
1157 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor);
1158 blend_rt->alpha_func = blend_rt->rgb_func;
1159 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
1160 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
1161 }
1162 }
1163
1164 /* This value will be the same for all the variants of a given shader:
1165 */
1166 key->nr_samplers = shader->info.file_max[TGSI_FILE_SAMPLER] + 1;
1167
1168 for(i = 0; i < key->nr_samplers; ++i) {
1169 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
1170 lp_sampler_static_state(&key->sampler[i],
1171 lp->fragment_sampler_views[i],
1172 lp->sampler[i]);
1173 }
1174 }
1175 }
1176
1177 /**
1178 * Update fragment state. This is called just prior to drawing
1179 * something when some fragment-related state has changed.
1180 */
1181 void
1182 llvmpipe_update_fs(struct llvmpipe_context *lp)
1183 {
1184 struct lp_fragment_shader *shader = lp->fs;
1185 struct lp_fragment_shader_variant_key key;
1186 struct lp_fragment_shader_variant *variant = NULL;
1187 struct lp_fs_variant_list_item *li;
1188
1189 make_variant_key(lp, shader, &key);
1190
1191 li = first_elem(&shader->variants);
1192 while(!at_end(&shader->variants, li)) {
1193 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
1194 variant = li->base;
1195 break;
1196 }
1197 li = next_elem(li);
1198 }
1199
1200 if (variant) {
1201 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1202 }
1203 else {
1204 int64_t t0, t1;
1205 int64_t dt;
1206 unsigned i;
1207 if (lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS) {
1208 struct pipe_context *pipe = &lp->pipe;
1209
1210 /*
1211 * XXX: we need to flush the context until we have some sort of reference
1212 * counting in fragment shaders as they may still be binned
1213 * Flushing alone might not be sufficient we need to wait on it too.
1214 */
1215 llvmpipe_finish(pipe, __FUNCTION__);
1216
1217 for (i = 0; i < LP_MAX_SHADER_VARIANTS / 4; i++) {
1218 struct lp_fs_variant_list_item *item = last_elem(&lp->fs_variants_list);
1219 remove_shader_variant(lp, item->base);
1220 }
1221 }
1222 t0 = os_time_get();
1223
1224 variant = generate_variant(lp, shader, &key);
1225
1226 t1 = os_time_get();
1227 dt = t1 - t0;
1228 LP_COUNT_ADD(llvm_compile_time, dt);
1229 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1230
1231 if (variant) {
1232 insert_at_head(&shader->variants, &variant->list_item_local);
1233 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1234 lp->nr_fs_variants++;
1235 shader->variants_cached++;
1236 }
1237 }
1238
1239 lp_setup_set_fs_variant(lp->setup, variant);
1240 }
1241
1242
1243
1244 void
1245 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1246 {
1247 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1248 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1249 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1250
1251 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1252 }