Merge remote branch 'origin/master' into lp-binning
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - triangle edge in/out testing
35 * - scissor test
36 * - stipple (TBI)
37 * - early depth test
38 * - fragment shader
39 * - alpha test
40 * - depth/stencil test (stencil TBI)
41 * - blending
42 *
43 * This file has only the glue to assembly the fragment pipeline. The actual
44 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
45 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
46 * muster the LLVM JIT execution engine to create a function that follows an
47 * established binary interface and that can be called from C directly.
48 *
49 * A big source of complexity here is that we often want to run different
50 * stages with different precisions and data types and precisions. For example,
51 * the fragment shader needs typically to be done in floats, but the
52 * depth/stencil test and blending is better done in the type that most closely
53 * matches the depth/stencil and color buffer respectively.
54 *
55 * Since the width of a SIMD vector register stays the same regardless of the
56 * element type, different types imply different number of elements, so we must
57 * code generate more instances of the stages with larger types to be able to
58 * feed/consume the stages with smaller types.
59 *
60 * @author Jose Fonseca <jfonseca@vmware.com>
61 */
62
63 #include <limits.h>
64 #include "pipe/p_defines.h"
65 #include "util/u_memory.h"
66 #include "util/u_format.h"
67 #include "util/u_debug_dump.h"
68 #include "util/u_time.h"
69 #include "pipe/p_shader_tokens.h"
70 #include "draw/draw_context.h"
71 #include "tgsi/tgsi_dump.h"
72 #include "tgsi/tgsi_scan.h"
73 #include "tgsi/tgsi_parse.h"
74 #include "lp_bld_type.h"
75 #include "lp_bld_const.h"
76 #include "lp_bld_conv.h"
77 #include "lp_bld_intr.h"
78 #include "lp_bld_logic.h"
79 #include "lp_bld_depth.h"
80 #include "lp_bld_interp.h"
81 #include "lp_bld_tgsi.h"
82 #include "lp_bld_alpha.h"
83 #include "lp_bld_blend.h"
84 #include "lp_bld_swizzle.h"
85 #include "lp_bld_flow.h"
86 #include "lp_bld_debug.h"
87 #include "lp_buffer.h"
88 #include "lp_context.h"
89 #include "lp_debug.h"
90 #include "lp_perf.h"
91 #include "lp_screen.h"
92 #include "lp_setup.h"
93 #include "lp_state.h"
94 #include "lp_tex_sample.h"
95
96
97 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
98 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
99
100
101 /*
102 * Derive from the quad's upper left scalar coordinates the coordinates for
103 * all other quad pixels
104 */
105 static void
106 generate_pos0(LLVMBuilderRef builder,
107 LLVMValueRef x,
108 LLVMValueRef y,
109 LLVMValueRef *x0,
110 LLVMValueRef *y0)
111 {
112 LLVMTypeRef int_elem_type = LLVMInt32Type();
113 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
114 LLVMTypeRef elem_type = LLVMFloatType();
115 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
116 LLVMValueRef x_offsets[QUAD_SIZE];
117 LLVMValueRef y_offsets[QUAD_SIZE];
118 unsigned i;
119
120 x = lp_build_broadcast(builder, int_vec_type, x);
121 y = lp_build_broadcast(builder, int_vec_type, y);
122
123 for(i = 0; i < QUAD_SIZE; ++i) {
124 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
125 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
126 }
127
128 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
129 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
130
131 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
132 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
133 }
134
135
136 /**
137 * Generate the depth test.
138 */
139 static void
140 generate_depth(LLVMBuilderRef builder,
141 const struct lp_fragment_shader_variant_key *key,
142 struct lp_type src_type,
143 struct lp_build_mask_context *mask,
144 LLVMValueRef src,
145 LLVMValueRef dst_ptr)
146 {
147 const struct util_format_description *format_desc;
148 struct lp_type dst_type;
149
150 if(!key->depth.enabled)
151 return;
152
153 format_desc = util_format_description(key->zsbuf_format);
154 assert(format_desc);
155
156 /*
157 * Depths are expected to be between 0 and 1, even if they are stored in
158 * floats. Setting these bits here will ensure that the lp_build_conv() call
159 * below won't try to unnecessarily clamp the incoming values.
160 */
161 if(src_type.floating) {
162 src_type.sign = FALSE;
163 src_type.norm = TRUE;
164 }
165 else {
166 assert(!src_type.sign);
167 assert(src_type.norm);
168 }
169
170 /* Pick the depth type. */
171 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
172
173 /* FIXME: Cope with a depth test type with a different bit width. */
174 assert(dst_type.width == src_type.width);
175 assert(dst_type.length == src_type.length);
176
177 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
178
179 dst_ptr = LLVMBuildBitCast(builder,
180 dst_ptr,
181 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
182
183 lp_build_depth_test(builder,
184 &key->depth,
185 dst_type,
186 format_desc,
187 mask,
188 src,
189 dst_ptr);
190 }
191
192
193 /**
194 * Generate the code to do inside/outside triangle testing for the
195 * four pixels in a 2x2 quad. This will set the four elements of the
196 * quad mask vector to 0 or ~0.
197 * \param i which quad of the quad group to test, in [0,3]
198 */
199 static void
200 generate_tri_edge_mask(LLVMBuilderRef builder,
201 unsigned i,
202 LLVMValueRef *mask, /* ivec4, out */
203 LLVMValueRef c0, /* int32 */
204 LLVMValueRef c1, /* int32 */
205 LLVMValueRef c2, /* int32 */
206 LLVMValueRef step0_ptr, /* ivec4 */
207 LLVMValueRef step1_ptr, /* ivec4 */
208 LLVMValueRef step2_ptr) /* ivec4 */
209 {
210 #define OPTIMIZE_IN_OUT_TEST 0
211 #if OPTIMIZE_IN_OUT_TEST
212 struct lp_build_if_state ifctx;
213 LLVMValueRef not_draw_all;
214 #endif
215 struct lp_build_flow_context *flow;
216 struct lp_type i32_type;
217 LLVMTypeRef i32vec4_type, mask_type;
218 LLVMValueRef c0_vec, c1_vec, c2_vec;
219 LLVMValueRef in_out_mask;
220
221 assert(i < 4);
222
223 /* int32 vector type */
224 memset(&i32_type, 0, sizeof i32_type);
225 i32_type.floating = FALSE; /* values are integers */
226 i32_type.sign = TRUE; /* values are signed */
227 i32_type.norm = FALSE; /* values are not normalized */
228 i32_type.width = 32; /* 32-bit int values */
229 i32_type.length = 4; /* 4 elements per vector */
230
231 i32vec4_type = lp_build_int32_vec4_type();
232
233 mask_type = LLVMIntType(32 * 4);
234
235 /*
236 * Use a conditional here to do detailed pixel in/out testing.
237 * We only have to do this if c0 != INT_MIN.
238 */
239 flow = lp_build_flow_create(builder);
240 lp_build_flow_scope_begin(flow);
241
242 {
243 #if OPTIMIZE_IN_OUT_TEST
244 /* not_draw_all = (c0 != INT_MIN) */
245 not_draw_all = LLVMBuildICmp(builder,
246 LLVMIntNE,
247 c0,
248 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
249 "");
250
251 in_out_mask = lp_build_int_const_scalar(i32_type, ~0);
252
253
254 lp_build_flow_scope_declare(flow, &in_out_mask);
255
256 /* if (not_draw_all) {... */
257 lp_build_if(&ifctx, flow, builder, not_draw_all);
258 #endif
259 {
260 LLVMValueRef step0_vec, step1_vec, step2_vec;
261 LLVMValueRef m0_vec, m1_vec, m2_vec;
262 LLVMValueRef index, m;
263
264 /* c0_vec = {c0, c0, c0, c0}
265 * Note that we emit this code four times but LLVM optimizes away
266 * three instances of it.
267 */
268 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
269 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
270 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
271 lp_build_name(c0_vec, "edgeconst0vec");
272 lp_build_name(c1_vec, "edgeconst1vec");
273 lp_build_name(c2_vec, "edgeconst2vec");
274
275 /* load step0vec, step1, step2 vec from memory */
276 index = LLVMConstInt(LLVMInt32Type(), i, 0);
277 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
278 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
279 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
280 lp_build_name(step0_vec, "step0vec");
281 lp_build_name(step1_vec, "step1vec");
282 lp_build_name(step2_vec, "step2vec");
283
284 /* m0_vec = step0_ptr[i] > c0_vec */
285 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
286 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
287 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
288
289 /* in_out_mask = m0_vec & m1_vec & m2_vec */
290 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
291 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
292 lp_build_name(in_out_mask, "inoutmaskvec");
293 }
294 #if OPTIMIZE_IN_OUT_TEST
295 lp_build_endif(&ifctx);
296 #endif
297
298 }
299 lp_build_flow_scope_end(flow);
300 lp_build_flow_destroy(flow);
301
302 /* This is the initial alive/dead pixel mask for a quad of four pixels.
303 * It's an int[4] vector with each word set to 0 or ~0.
304 * Words will get cleared when pixels faile the Z test, etc.
305 */
306 *mask = in_out_mask;
307 }
308
309
310 static LLVMValueRef
311 generate_scissor_test(LLVMBuilderRef builder,
312 LLVMValueRef context_ptr,
313 const struct lp_build_interp_soa_context *interp,
314 struct lp_type type)
315 {
316 LLVMTypeRef vec_type = lp_build_vec_type(type);
317 LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1];
318 LLVMValueRef xmin, ymin, xmax, ymax;
319 LLVMValueRef m0, m1, m2, m3, m;
320
321 /* xpos, ypos contain the window coords for the four pixels in the quad */
322 assert(xpos);
323 assert(ypos);
324
325 /* get the current scissor bounds, convert to vectors */
326 xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr);
327 xmin = lp_build_broadcast(builder, vec_type, xmin);
328
329 ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr);
330 ymin = lp_build_broadcast(builder, vec_type, ymin);
331
332 xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr);
333 xmax = lp_build_broadcast(builder, vec_type, xmax);
334
335 ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr);
336 ymax = lp_build_broadcast(builder, vec_type, ymax);
337
338 /* compare the fragment's position coordinates against the scissor bounds */
339 m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin);
340 m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin);
341 m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax);
342 m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax);
343
344 /* AND all the masks together */
345 m = LLVMBuildAnd(builder, m0, m1, "");
346 m = LLVMBuildAnd(builder, m, m2, "");
347 m = LLVMBuildAnd(builder, m, m3, "");
348
349 lp_build_name(m, "scissormask");
350
351 return m;
352 }
353
354
355 static LLVMValueRef
356 build_int32_vec_const(int value)
357 {
358 struct lp_type i32_type;
359
360 memset(&i32_type, 0, sizeof i32_type);
361 i32_type.floating = FALSE; /* values are integers */
362 i32_type.sign = TRUE; /* values are signed */
363 i32_type.norm = FALSE; /* values are not normalized */
364 i32_type.width = 32; /* 32-bit int values */
365 i32_type.length = 4; /* 4 elements per vector */
366 return lp_build_int_const_scalar(i32_type, value);
367 }
368
369
370
371 /**
372 * Generate the fragment shader, depth/stencil test, and alpha tests.
373 * \param i which quad in the tile, in range [0,3]
374 * \param do_tri_test if 1, do triangle edge in/out testing
375 */
376 static void
377 generate_fs(struct llvmpipe_context *lp,
378 struct lp_fragment_shader *shader,
379 const struct lp_fragment_shader_variant_key *key,
380 LLVMBuilderRef builder,
381 struct lp_type type,
382 LLVMValueRef context_ptr,
383 unsigned i,
384 const struct lp_build_interp_soa_context *interp,
385 struct lp_build_sampler_soa *sampler,
386 LLVMValueRef *pmask,
387 LLVMValueRef (*color)[4],
388 LLVMValueRef depth_ptr,
389 unsigned do_tri_test,
390 LLVMValueRef c0,
391 LLVMValueRef c1,
392 LLVMValueRef c2,
393 LLVMValueRef step0_ptr,
394 LLVMValueRef step1_ptr,
395 LLVMValueRef step2_ptr)
396 {
397 const struct tgsi_token *tokens = shader->base.tokens;
398 LLVMTypeRef elem_type;
399 LLVMTypeRef vec_type;
400 LLVMTypeRef int_vec_type;
401 LLVMValueRef consts_ptr;
402 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
403 LLVMValueRef z = interp->pos[2];
404 struct lp_build_flow_context *flow;
405 struct lp_build_mask_context mask;
406 boolean early_depth_test;
407 unsigned attrib;
408 unsigned chan;
409 unsigned cbuf;
410
411 assert(i < 4);
412
413 elem_type = lp_build_elem_type(type);
414 vec_type = lp_build_vec_type(type);
415 int_vec_type = lp_build_int_vec_type(type);
416
417 consts_ptr = lp_jit_context_constants(builder, context_ptr);
418
419 flow = lp_build_flow_create(builder);
420
421 memset(outputs, 0, sizeof outputs);
422
423 lp_build_flow_scope_begin(flow);
424
425 /* Declare the color and z variables */
426 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
427 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
428 color[cbuf][chan] = LLVMGetUndef(vec_type);
429 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
430 }
431 }
432 lp_build_flow_scope_declare(flow, &z);
433
434 /* do triangle edge testing */
435 if (do_tri_test) {
436 generate_tri_edge_mask(builder, i, pmask,
437 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
438 }
439 else {
440 *pmask = build_int32_vec_const(~0);
441 }
442
443 /* 'mask' will control execution based on quad's pixel alive/killed state */
444 lp_build_mask_begin(&mask, flow, type, *pmask);
445
446 if (key->scissor) {
447 LLVMValueRef smask =
448 generate_scissor_test(builder, context_ptr, interp, type);
449 lp_build_mask_update(&mask, smask);
450 }
451
452 early_depth_test =
453 key->depth.enabled &&
454 !key->alpha.enabled &&
455 !shader->info.uses_kill &&
456 !shader->info.writes_z;
457
458 if(early_depth_test)
459 generate_depth(builder, key,
460 type, &mask,
461 z, depth_ptr);
462
463 lp_build_tgsi_soa(builder, tokens, type, &mask,
464 consts_ptr, interp->pos, interp->inputs,
465 outputs, sampler);
466
467 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
468 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
469 if(outputs[attrib][chan]) {
470 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
471
472 switch (shader->info.output_semantic_name[attrib]) {
473 case TGSI_SEMANTIC_COLOR:
474 {
475 unsigned cbuf = shader->info.output_semantic_index[attrib];
476
477 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
478
479 /* Alpha test */
480 /* XXX: should the alpha reference value be passed separately? */
481 /* XXX: should only test the final assignment to alpha */
482 if(cbuf == 0 && chan == 3) {
483 LLVMValueRef alpha = outputs[attrib][chan];
484 LLVMValueRef alpha_ref_value;
485 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
486 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
487 lp_build_alpha_test(builder, &key->alpha, type,
488 &mask, alpha, alpha_ref_value);
489 }
490
491 color[cbuf][chan] = outputs[attrib][chan];
492 break;
493 }
494
495 case TGSI_SEMANTIC_POSITION:
496 if(chan == 2)
497 z = outputs[attrib][chan];
498 break;
499 }
500 }
501 }
502 }
503
504 if(!early_depth_test)
505 generate_depth(builder, key,
506 type, &mask,
507 z, depth_ptr);
508
509 lp_build_mask_end(&mask);
510
511 lp_build_flow_scope_end(flow);
512
513 lp_build_flow_destroy(flow);
514
515 *pmask = mask.value;
516
517 }
518
519
520 /**
521 * Generate color blending and color output.
522 */
523 static void
524 generate_blend(const struct pipe_blend_state *blend,
525 LLVMBuilderRef builder,
526 struct lp_type type,
527 LLVMValueRef context_ptr,
528 LLVMValueRef mask,
529 LLVMValueRef *src,
530 LLVMValueRef dst_ptr)
531 {
532 struct lp_build_context bld;
533 struct lp_build_flow_context *flow;
534 struct lp_build_mask_context mask_ctx;
535 LLVMTypeRef vec_type;
536 LLVMTypeRef int_vec_type;
537 LLVMValueRef const_ptr;
538 LLVMValueRef con[4];
539 LLVMValueRef dst[4];
540 LLVMValueRef res[4];
541 unsigned chan;
542
543 lp_build_context_init(&bld, builder, type);
544
545 flow = lp_build_flow_create(builder);
546
547 /* we'll use this mask context to skip blending if all pixels are dead */
548 lp_build_mask_begin(&mask_ctx, flow, type, mask);
549
550 vec_type = lp_build_vec_type(type);
551 int_vec_type = lp_build_int_vec_type(type);
552
553 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
554 const_ptr = LLVMBuildBitCast(builder, const_ptr,
555 LLVMPointerType(vec_type, 0), "");
556
557 for(chan = 0; chan < 4; ++chan) {
558 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
559 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
560
561 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
562
563 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
564 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
565 }
566
567 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
568
569 for(chan = 0; chan < 4; ++chan) {
570 if(blend->rt[0].colormask & (1 << chan)) {
571 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
572 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
573 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
574 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
575 }
576 }
577
578 lp_build_mask_end(&mask_ctx);
579 lp_build_flow_destroy(flow);
580 }
581
582
583 /**
584 * Generate the runtime callable function for the whole fragment pipeline.
585 * Note that the function which we generate operates on a block of 16
586 * pixels at at time. The block contains 2x2 quads. Each quad contains
587 * 2x2 pixels.
588 */
589 static void
590 generate_fragment(struct llvmpipe_context *lp,
591 struct lp_fragment_shader *shader,
592 struct lp_fragment_shader_variant *variant,
593 unsigned do_tri_test)
594 {
595 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
596 const struct lp_fragment_shader_variant_key *key = &variant->key;
597 struct lp_type fs_type;
598 struct lp_type blend_type;
599 LLVMTypeRef fs_elem_type;
600 LLVMTypeRef fs_vec_type;
601 LLVMTypeRef fs_int_vec_type;
602 LLVMTypeRef blend_vec_type;
603 LLVMTypeRef blend_int_vec_type;
604 LLVMTypeRef arg_types[14];
605 LLVMTypeRef func_type;
606 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
607 LLVMValueRef context_ptr;
608 LLVMValueRef x;
609 LLVMValueRef y;
610 LLVMValueRef a0_ptr;
611 LLVMValueRef dadx_ptr;
612 LLVMValueRef dady_ptr;
613 LLVMValueRef color_ptr_ptr;
614 LLVMValueRef depth_ptr;
615 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
616 LLVMBasicBlockRef block;
617 LLVMBuilderRef builder;
618 LLVMValueRef x0;
619 LLVMValueRef y0;
620 struct lp_build_sampler_soa *sampler;
621 struct lp_build_interp_soa_context interp;
622 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
623 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
624 LLVMValueRef blend_mask;
625 LLVMValueRef blend_in_color[NUM_CHANNELS];
626 LLVMValueRef function;
627 unsigned num_fs;
628 unsigned i;
629 unsigned chan;
630 unsigned cbuf;
631
632
633 /* TODO: actually pick these based on the fs and color buffer
634 * characteristics. */
635
636 memset(&fs_type, 0, sizeof fs_type);
637 fs_type.floating = TRUE; /* floating point values */
638 fs_type.sign = TRUE; /* values are signed */
639 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
640 fs_type.width = 32; /* 32-bit float */
641 fs_type.length = 4; /* 4 elements per vector */
642 num_fs = 4; /* number of quads per block */
643
644 memset(&blend_type, 0, sizeof blend_type);
645 blend_type.floating = FALSE; /* values are integers */
646 blend_type.sign = FALSE; /* values are unsigned */
647 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
648 blend_type.width = 8; /* 8-bit ubyte values */
649 blend_type.length = 16; /* 16 elements per vector */
650
651 /*
652 * Generate the function prototype. Any change here must be reflected in
653 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
654 */
655
656 fs_elem_type = lp_build_elem_type(fs_type);
657 fs_vec_type = lp_build_vec_type(fs_type);
658 fs_int_vec_type = lp_build_int_vec_type(fs_type);
659
660 blend_vec_type = lp_build_vec_type(blend_type);
661 blend_int_vec_type = lp_build_int_vec_type(blend_type);
662
663 arg_types[0] = screen->context_ptr_type; /* context */
664 arg_types[1] = LLVMInt32Type(); /* x */
665 arg_types[2] = LLVMInt32Type(); /* y */
666 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
667 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
668 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
669 arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
670 arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
671 arg_types[8] = LLVMInt32Type(); /* c0 */
672 arg_types[9] = LLVMInt32Type(); /* c1 */
673 arg_types[10] = LLVMInt32Type(); /* c2 */
674 /* Note: the step arrays are built as int32[16] but we interpret
675 * them here as int32_vec4[4].
676 */
677 arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
678 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
679 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
680
681 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
682
683 function = LLVMAddFunction(screen->module, "shader", func_type);
684 LLVMSetFunctionCallConv(function, LLVMCCallConv);
685
686 variant->function[do_tri_test] = function;
687
688
689 /* XXX: need to propagate noalias down into color param now we are
690 * passing a pointer-to-pointer?
691 */
692 for(i = 0; i < Elements(arg_types); ++i)
693 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
694 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
695
696 context_ptr = LLVMGetParam(function, 0);
697 x = LLVMGetParam(function, 1);
698 y = LLVMGetParam(function, 2);
699 a0_ptr = LLVMGetParam(function, 3);
700 dadx_ptr = LLVMGetParam(function, 4);
701 dady_ptr = LLVMGetParam(function, 5);
702 color_ptr_ptr = LLVMGetParam(function, 6);
703 depth_ptr = LLVMGetParam(function, 7);
704 c0 = LLVMGetParam(function, 8);
705 c1 = LLVMGetParam(function, 9);
706 c2 = LLVMGetParam(function, 10);
707 step0_ptr = LLVMGetParam(function, 11);
708 step1_ptr = LLVMGetParam(function, 12);
709 step2_ptr = LLVMGetParam(function, 13);
710
711 lp_build_name(context_ptr, "context");
712 lp_build_name(x, "x");
713 lp_build_name(y, "y");
714 lp_build_name(a0_ptr, "a0");
715 lp_build_name(dadx_ptr, "dadx");
716 lp_build_name(dady_ptr, "dady");
717 lp_build_name(color_ptr_ptr, "color_ptr");
718 lp_build_name(depth_ptr, "depth");
719 lp_build_name(c0, "c0");
720 lp_build_name(c1, "c1");
721 lp_build_name(c2, "c2");
722 lp_build_name(step0_ptr, "step0");
723 lp_build_name(step1_ptr, "step1");
724 lp_build_name(step2_ptr, "step2");
725
726 /*
727 * Function body
728 */
729
730 block = LLVMAppendBasicBlock(function, "entry");
731 builder = LLVMCreateBuilder();
732 LLVMPositionBuilderAtEnd(builder, block);
733
734 generate_pos0(builder, x, y, &x0, &y0);
735
736 lp_build_interp_soa_init(&interp,
737 shader->base.tokens,
738 key->flatshade,
739 builder, fs_type,
740 a0_ptr, dadx_ptr, dady_ptr,
741 x0, y0);
742
743 /* code generated texture sampling */
744 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
745
746 /* loop over quads in the block */
747 for(i = 0; i < num_fs; ++i) {
748 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
749 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
750 LLVMValueRef depth_ptr_i;
751 int cbuf;
752
753 if(i != 0)
754 lp_build_interp_soa_update(&interp, i);
755
756 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
757
758 generate_fs(lp, shader, key,
759 builder,
760 fs_type,
761 context_ptr,
762 i,
763 &interp,
764 sampler,
765 &fs_mask[i], /* output */
766 out_color,
767 depth_ptr_i,
768 do_tri_test,
769 c0, c1, c2,
770 step0_ptr, step1_ptr, step2_ptr);
771
772 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
773 for(chan = 0; chan < NUM_CHANNELS; ++chan)
774 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
775 }
776
777 sampler->destroy(sampler);
778
779 /* Loop over color outputs / color buffers to do blending.
780 */
781 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
782 LLVMValueRef color_ptr;
783 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
784
785 /*
786 * Convert the fs's output color and mask to fit to the blending type.
787 */
788 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
789 lp_build_conv(builder, fs_type, blend_type,
790 fs_out_color[cbuf][chan], num_fs,
791 &blend_in_color[chan], 1);
792 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
793 }
794
795 lp_build_conv_mask(builder, fs_type, blend_type,
796 fs_mask, num_fs,
797 &blend_mask, 1);
798
799 color_ptr = LLVMBuildLoad(builder,
800 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
801 "");
802 lp_build_name(color_ptr, "color_ptr%d", cbuf);
803
804 /*
805 * Blending.
806 */
807 generate_blend(&key->blend,
808 builder,
809 blend_type,
810 context_ptr,
811 blend_mask,
812 blend_in_color,
813 color_ptr);
814 }
815
816 LLVMBuildRetVoid(builder);
817
818 LLVMDisposeBuilder(builder);
819
820
821 /* Verify the LLVM IR. If invalid, dump and abort */
822 #ifdef DEBUG
823 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
824 if (1)
825 LLVMDumpValue(function);
826 abort();
827 }
828 #endif
829
830 /* Apply optimizations to LLVM IR */
831 if (1)
832 LLVMRunFunctionPassManager(screen->pass, function);
833
834 if (LP_DEBUG & DEBUG_JIT) {
835 /* Print the LLVM IR to stderr */
836 LLVMDumpValue(function);
837 debug_printf("\n");
838 }
839
840 /*
841 * Translate the LLVM IR into machine code.
842 */
843 variant->jit_function[do_tri_test] = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, function);
844
845 if (LP_DEBUG & DEBUG_ASM)
846 lp_disassemble(variant->jit_function[do_tri_test]);
847 }
848
849
850 static struct lp_fragment_shader_variant *
851 generate_variant(struct llvmpipe_context *lp,
852 struct lp_fragment_shader *shader,
853 const struct lp_fragment_shader_variant_key *key)
854 {
855 struct lp_fragment_shader_variant *variant;
856
857 if (LP_DEBUG & DEBUG_JIT) {
858 unsigned i;
859
860 tgsi_dump(shader->base.tokens, 0);
861 if(key->depth.enabled) {
862 debug_printf("depth.format = %s\n", pf_name(key->zsbuf_format));
863 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
864 debug_printf("depth.writemask = %u\n", key->depth.writemask);
865 }
866 if(key->alpha.enabled) {
867 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
868 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
869 }
870 if(key->blend.logicop_enable) {
871 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
872 }
873 else if(key->blend.rt[0].blend_enable) {
874 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
875 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
876 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
877 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
878 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
879 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
880 }
881 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
882 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
883 if(key->sampler[i].format) {
884 debug_printf("sampler[%u] = \n", i);
885 debug_printf(" .format = %s\n",
886 pf_name(key->sampler[i].format));
887 debug_printf(" .target = %s\n",
888 debug_dump_tex_target(key->sampler[i].target, TRUE));
889 debug_printf(" .pot = %u %u %u\n",
890 key->sampler[i].pot_width,
891 key->sampler[i].pot_height,
892 key->sampler[i].pot_depth);
893 debug_printf(" .wrap = %s %s %s\n",
894 debug_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
895 debug_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
896 debug_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
897 debug_printf(" .min_img_filter = %s\n",
898 debug_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
899 debug_printf(" .min_mip_filter = %s\n",
900 debug_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
901 debug_printf(" .mag_img_filter = %s\n",
902 debug_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
903 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
904 debug_printf(" .compare_func = %s\n", debug_dump_func(key->sampler[i].compare_func, TRUE));
905 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
906 debug_printf(" .prefilter = %u\n", key->sampler[i].prefilter);
907 }
908 }
909 }
910
911 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
912 if(!variant)
913 return NULL;
914
915 variant->shader = shader;
916 memcpy(&variant->key, key, sizeof *key);
917
918 generate_fragment(lp, shader, variant, 0);
919 generate_fragment(lp, shader, variant, 1);
920
921 /* insert new variant into linked list */
922 variant->next = shader->variants;
923 shader->variants = variant;
924
925 return variant;
926 }
927
928
929 void *
930 llvmpipe_create_fs_state(struct pipe_context *pipe,
931 const struct pipe_shader_state *templ)
932 {
933 struct lp_fragment_shader *shader;
934
935 shader = CALLOC_STRUCT(lp_fragment_shader);
936 if (!shader)
937 return NULL;
938
939 /* get/save the summary info for this shader */
940 tgsi_scan_shader(templ->tokens, &shader->info);
941
942 /* we need to keep a local copy of the tokens */
943 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
944
945 return shader;
946 }
947
948
949 void
950 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
951 {
952 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
953
954 if (llvmpipe->fs == fs)
955 return;
956
957 draw_flush(llvmpipe->draw);
958
959 llvmpipe->fs = fs;
960
961 llvmpipe->dirty |= LP_NEW_FS;
962 }
963
964
965 void
966 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
967 {
968 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
969 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
970 struct lp_fragment_shader *shader = fs;
971 struct lp_fragment_shader_variant *variant;
972
973 assert(fs != llvmpipe->fs);
974 (void) llvmpipe;
975
976 variant = shader->variants;
977 while(variant) {
978 struct lp_fragment_shader_variant *next = variant->next;
979 unsigned i;
980
981 for (i = 0; i < Elements(variant->function); i++) {
982 if (variant->function[i]) {
983 if (variant->jit_function[i])
984 LLVMFreeMachineCodeForFunction(screen->engine,
985 variant->function[i]);
986 LLVMDeleteFunction(variant->function[i]);
987 }
988 }
989
990 FREE(variant);
991
992 variant = next;
993 }
994
995 FREE((void *) shader->base.tokens);
996 FREE(shader);
997 }
998
999
1000
1001 void
1002 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1003 uint shader, uint index,
1004 struct pipe_buffer *constants)
1005 {
1006 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1007 unsigned size = constants ? constants->size : 0;
1008 const void *data = constants ? llvmpipe_buffer(constants)->data : NULL;
1009
1010 assert(shader < PIPE_SHADER_TYPES);
1011 assert(index == 0);
1012
1013 if(llvmpipe->constants[shader] == constants)
1014 return;
1015
1016 draw_flush(llvmpipe->draw);
1017
1018 /* note: reference counting */
1019 pipe_buffer_reference(&llvmpipe->constants[shader], constants);
1020
1021 if(shader == PIPE_SHADER_VERTEX) {
1022 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX, 0,
1023 data, size);
1024 }
1025
1026 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1027 }
1028
1029
1030 /**
1031 * We need to generate several variants of the fragment pipeline to match
1032 * all the combinations of the contributing state atoms.
1033 *
1034 * TODO: there is actually no reason to tie this to context state -- the
1035 * generated code could be cached globally in the screen.
1036 */
1037 static void
1038 make_variant_key(struct llvmpipe_context *lp,
1039 struct lp_fragment_shader *shader,
1040 struct lp_fragment_shader_variant_key *key)
1041 {
1042 unsigned i;
1043
1044 memset(key, 0, sizeof *key);
1045
1046 if(lp->framebuffer.zsbuf &&
1047 lp->depth_stencil->depth.enabled) {
1048 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1049 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1050 }
1051
1052 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1053 if(key->alpha.enabled)
1054 key->alpha.func = lp->depth_stencil->alpha.func;
1055 /* alpha.ref_value is passed in jit_context */
1056
1057 key->flatshade = lp->rasterizer->flatshade;
1058 key->scissor = lp->rasterizer->scissor;
1059
1060 if (lp->framebuffer.nr_cbufs) {
1061 memcpy(&key->blend, lp->blend, sizeof key->blend);
1062 }
1063
1064 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1065 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1066 const struct util_format_description *format_desc;
1067 unsigned chan;
1068
1069 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1070 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
1071 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
1072
1073 /* mask out color channels not present in the color buffer.
1074 * Should be simple to incorporate per-cbuf writemasks:
1075 */
1076 for(chan = 0; chan < 4; ++chan) {
1077 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1078
1079 if(swizzle <= UTIL_FORMAT_SWIZZLE_W)
1080 key->blend.rt[0].colormask |= (1 << chan);
1081 }
1082 }
1083
1084 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1085 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1086 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
1087 }
1088
1089
1090 /**
1091 * Update fragment state. This is called just prior to drawing
1092 * something when some fragment-related state has changed.
1093 */
1094 void
1095 llvmpipe_update_fs(struct llvmpipe_context *lp)
1096 {
1097 struct lp_fragment_shader *shader = lp->fs;
1098 struct lp_fragment_shader_variant_key key;
1099 struct lp_fragment_shader_variant *variant;
1100 boolean opaque;
1101
1102 make_variant_key(lp, shader, &key);
1103
1104 variant = shader->variants;
1105 while(variant) {
1106 if(memcmp(&variant->key, &key, sizeof key) == 0)
1107 break;
1108
1109 variant = variant->next;
1110 }
1111
1112 if (!variant) {
1113 struct util_time t0, t1;
1114 int64_t dt;
1115 util_time_get(&t0);
1116
1117 variant = generate_variant(lp, shader, &key);
1118
1119 util_time_get(&t1);
1120 dt = util_time_diff(&t0, &t1);
1121 LP_COUNT_ADD(llvm_compile_time, dt);
1122 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1123 }
1124
1125 shader->current = variant;
1126
1127 /* TODO: put this in the variant */
1128 /* TODO: most of these can be relaxed, in particular the colormask */
1129 opaque = !key.blend.logicop_enable &&
1130 !key.blend.rt[0].blend_enable &&
1131 key.blend.rt[0].colormask == 0xf &&
1132 !key.alpha.enabled &&
1133 !key.depth.enabled &&
1134 !key.scissor &&
1135 !shader->info.uses_kill
1136 ? TRUE : FALSE;
1137
1138 lp_setup_set_fs_functions(lp->setup,
1139 shader->current->jit_function[0],
1140 shader->current->jit_function[1],
1141 opaque);
1142 }