gallivm: specialized x8z24 depthtest path
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_init.h"
79 #include "gallivm/lp_bld_intr.h"
80 #include "gallivm/lp_bld_logic.h"
81 #include "gallivm/lp_bld_tgsi.h"
82 #include "gallivm/lp_bld_swizzle.h"
83 #include "gallivm/lp_bld_flow.h"
84 #include "gallivm/lp_bld_debug.h"
85
86 #include "lp_bld_alpha.h"
87 #include "lp_bld_blend.h"
88 #include "lp_bld_depth.h"
89 #include "lp_bld_interp.h"
90 #include "lp_context.h"
91 #include "lp_debug.h"
92 #include "lp_perf.h"
93 #include "lp_screen.h"
94 #include "lp_setup.h"
95 #include "lp_state.h"
96 #include "lp_tex_sample.h"
97 #include "lp_flush.h"
98 #include "lp_state_fs.h"
99
100
101 #include <llvm-c/Analysis.h>
102
103
104 static unsigned fs_no = 0;
105
106
107 /**
108 * Generate the depth /stencil test code.
109 */
110 static void
111 generate_depth_stencil(LLVMBuilderRef builder,
112 const struct lp_fragment_shader_variant_key *key,
113 struct lp_type src_type,
114 struct lp_build_mask_context *mask,
115 LLVMValueRef stencil_refs[2],
116 LLVMValueRef src,
117 LLVMValueRef dst_ptr,
118 LLVMValueRef facing,
119 LLVMValueRef counter)
120 {
121 const struct util_format_description *format_desc;
122
123 if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
124 return;
125
126 format_desc = util_format_description(key->zsbuf_format);
127 assert(format_desc);
128
129 lp_build_depth_stencil_test(builder,
130 &key->depth,
131 key->stencil,
132 src_type,
133 format_desc,
134 mask,
135 stencil_refs,
136 src,
137 dst_ptr,
138 facing,
139 counter);
140 }
141
142
143 /**
144 * Expand the relevent bits of mask_input to a 4-dword mask for the
145 * four pixels in a 2x2 quad. This will set the four elements of the
146 * quad mask vector to 0 or ~0.
147 *
148 * \param quad which quad of the quad group to test, in [0,3]
149 * \param mask_input bitwise mask for the whole 4x4 stamp
150 */
151 static LLVMValueRef
152 generate_quad_mask(LLVMBuilderRef builder,
153 struct lp_type fs_type,
154 unsigned quad,
155 LLVMValueRef mask_input) /* int32 */
156 {
157 struct lp_type mask_type;
158 LLVMTypeRef i32t = LLVMInt32Type();
159 LLVMValueRef bits[4];
160 LLVMValueRef mask;
161 int shift;
162
163 /*
164 * XXX: We'll need a different path for 16 x u8
165 */
166 assert(fs_type.width == 32);
167 assert(fs_type.length == 4);
168 mask_type = lp_int_type(fs_type);
169
170 /*
171 * mask_input >>= (quad * 4)
172 */
173
174 switch (quad) {
175 case 0:
176 shift = 0;
177 break;
178 case 1:
179 shift = 2;
180 break;
181 case 2:
182 shift = 8;
183 break;
184 case 3:
185 shift = 10;
186 break;
187 default:
188 assert(0);
189 shift = 0;
190 }
191
192 mask_input = LLVMBuildLShr(builder,
193 mask_input,
194 LLVMConstInt(i32t, shift, 0),
195 "");
196
197 /*
198 * mask = { mask_input & (1 << i), for i in [0,3] }
199 */
200
201 mask = lp_build_broadcast(builder, lp_build_vec_type(mask_type), mask_input);
202
203 bits[0] = LLVMConstInt(i32t, 1 << 0, 0);
204 bits[1] = LLVMConstInt(i32t, 1 << 1, 0);
205 bits[2] = LLVMConstInt(i32t, 1 << 4, 0);
206 bits[3] = LLVMConstInt(i32t, 1 << 5, 0);
207
208 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, 4), "");
209
210 /*
211 * mask = mask != 0 ? ~0 : 0
212 */
213
214 mask = lp_build_compare(builder,
215 mask_type, PIPE_FUNC_NOTEQUAL,
216 mask,
217 lp_build_const_int_vec(mask_type, 0));
218
219 return mask;
220 }
221
222
223
224 /**
225 * Generate the fragment shader, depth/stencil test, and alpha tests.
226 * \param i which quad in the tile, in range [0,3]
227 * \param partial_mask if 1, do mask_input testing
228 */
229 static void
230 generate_fs(struct llvmpipe_context *lp,
231 struct lp_fragment_shader *shader,
232 const struct lp_fragment_shader_variant_key *key,
233 LLVMBuilderRef builder,
234 struct lp_type type,
235 LLVMValueRef context_ptr,
236 unsigned i,
237 struct lp_build_interp_soa_context *interp,
238 struct lp_build_sampler_soa *sampler,
239 LLVMValueRef *pmask,
240 LLVMValueRef (*color)[4],
241 LLVMValueRef depth_ptr,
242 LLVMValueRef facing,
243 unsigned partial_mask,
244 LLVMValueRef mask_input,
245 LLVMValueRef counter)
246 {
247 const struct tgsi_token *tokens = shader->base.tokens;
248 LLVMTypeRef vec_type;
249 LLVMValueRef consts_ptr;
250 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
251 LLVMValueRef z;
252 LLVMValueRef stencil_refs[2];
253 struct lp_build_flow_context *flow;
254 struct lp_build_mask_context mask;
255 boolean early_depth_stencil_test;
256 unsigned attrib;
257 unsigned chan;
258 unsigned cbuf;
259
260 assert(i < 4);
261
262 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
263 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
264
265 vec_type = lp_build_vec_type(type);
266
267 consts_ptr = lp_jit_context_constants(builder, context_ptr);
268
269 flow = lp_build_flow_create(builder);
270
271 memset(outputs, 0, sizeof outputs);
272
273 lp_build_flow_scope_begin(flow);
274
275 /* Declare the color and z variables */
276 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
277 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
278 color[cbuf][chan] = lp_build_alloca(builder, vec_type, "color");
279 }
280 }
281
282 /* do triangle edge testing */
283 if (partial_mask) {
284 *pmask = generate_quad_mask(builder, type,
285 i, mask_input);
286 }
287 else {
288 *pmask = lp_build_const_int_vec(type, ~0);
289 }
290
291 /* 'mask' will control execution based on quad's pixel alive/killed state */
292 lp_build_mask_begin(&mask, flow, type, *pmask);
293
294 lp_build_interp_soa_update_pos(interp, i);
295
296 /* Try to avoid the 1/w for quads where mask is zero. TODO: avoid
297 * this for depth-fail quads also.
298 */
299 z = interp->pos[2];
300
301 early_depth_stencil_test =
302 (key->depth.enabled || key->stencil[0].enabled) &&
303 !key->alpha.enabled &&
304 !shader->info.uses_kill &&
305 !shader->info.writes_z;
306
307 if (early_depth_stencil_test)
308 generate_depth_stencil(builder, key,
309 type, &mask,
310 stencil_refs, z, depth_ptr, facing, counter);
311
312 lp_build_interp_soa_update_inputs(interp, i);
313
314 lp_build_tgsi_soa(builder, tokens, type, &mask,
315 consts_ptr, interp->pos, interp->inputs,
316 outputs, sampler, &shader->info);
317
318 /* loop over fragment shader outputs/results */
319 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
320 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
321 if(outputs[attrib][chan]) {
322 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
323 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
324
325 switch (shader->info.output_semantic_name[attrib]) {
326 case TGSI_SEMANTIC_COLOR:
327 {
328 unsigned cbuf = shader->info.output_semantic_index[attrib];
329
330 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
331
332 /* Alpha test */
333 /* XXX: should only test the final assignment to alpha */
334 if (cbuf == 0 && chan == 3 && key->alpha.enabled) {
335 LLVMValueRef alpha = out;
336 LLVMValueRef alpha_ref_value;
337 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
338 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
339 lp_build_alpha_test(builder, key->alpha.func, type,
340 &mask, alpha, alpha_ref_value);
341 }
342
343 LLVMBuildStore(builder, out, color[cbuf][chan]);
344 break;
345 }
346
347 case TGSI_SEMANTIC_POSITION:
348 if(chan == 2)
349 z = out;
350 break;
351 }
352 }
353 }
354 }
355
356 if (!early_depth_stencil_test)
357 generate_depth_stencil(builder, key,
358 type, &mask,
359 stencil_refs, z, depth_ptr, facing, counter);
360
361 lp_build_mask_end(&mask);
362
363 lp_build_flow_scope_end(flow);
364
365 lp_build_flow_destroy(flow);
366
367 *pmask = mask.value;
368
369 }
370
371
372 /**
373 * Generate color blending and color output.
374 * \param rt the render target index (to index blend, colormask state)
375 * \param type the pixel color type
376 * \param context_ptr pointer to the runtime JIT context
377 * \param mask execution mask (active fragment/pixel mask)
378 * \param src colors from the fragment shader
379 * \param dst_ptr the destination color buffer pointer
380 */
381 static void
382 generate_blend(const struct pipe_blend_state *blend,
383 unsigned rt,
384 LLVMBuilderRef builder,
385 struct lp_type type,
386 LLVMValueRef context_ptr,
387 LLVMValueRef mask,
388 LLVMValueRef *src,
389 LLVMValueRef dst_ptr)
390 {
391 struct lp_build_context bld;
392 struct lp_build_flow_context *flow;
393 struct lp_build_mask_context mask_ctx;
394 LLVMTypeRef vec_type;
395 LLVMValueRef const_ptr;
396 LLVMValueRef con[4];
397 LLVMValueRef dst[4];
398 LLVMValueRef res[4];
399 unsigned chan;
400
401 lp_build_context_init(&bld, builder, type);
402
403 flow = lp_build_flow_create(builder);
404
405 /* we'll use this mask context to skip blending if all pixels are dead */
406 lp_build_mask_begin(&mask_ctx, flow, type, mask);
407
408 vec_type = lp_build_vec_type(type);
409
410 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
411 const_ptr = LLVMBuildBitCast(builder, const_ptr,
412 LLVMPointerType(vec_type, 0), "");
413
414 /* load constant blend color and colors from the dest color buffer */
415 for(chan = 0; chan < 4; ++chan) {
416 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
417 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
418
419 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
420
421 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
422 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
423 }
424
425 /* do blend */
426 lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
427
428 /* store results to color buffer */
429 for(chan = 0; chan < 4; ++chan) {
430 if(blend->rt[rt].colormask & (1 << chan)) {
431 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
432 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
433 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
434 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
435 }
436 }
437
438 lp_build_mask_end(&mask_ctx);
439 lp_build_flow_destroy(flow);
440 }
441
442
443 /**
444 * Generate the runtime callable function for the whole fragment pipeline.
445 * Note that the function which we generate operates on a block of 16
446 * pixels at at time. The block contains 2x2 quads. Each quad contains
447 * 2x2 pixels.
448 */
449 static void
450 generate_fragment(struct llvmpipe_context *lp,
451 struct lp_fragment_shader *shader,
452 struct lp_fragment_shader_variant *variant,
453 unsigned partial_mask)
454 {
455 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
456 const struct lp_fragment_shader_variant_key *key = &variant->key;
457 char func_name[256];
458 struct lp_type fs_type;
459 struct lp_type blend_type;
460 LLVMTypeRef fs_elem_type;
461 LLVMTypeRef fs_int_vec_type;
462 LLVMTypeRef blend_vec_type;
463 LLVMTypeRef arg_types[11];
464 LLVMTypeRef func_type;
465 LLVMValueRef context_ptr;
466 LLVMValueRef x;
467 LLVMValueRef y;
468 LLVMValueRef a0_ptr;
469 LLVMValueRef dadx_ptr;
470 LLVMValueRef dady_ptr;
471 LLVMValueRef color_ptr_ptr;
472 LLVMValueRef depth_ptr;
473 LLVMValueRef mask_input;
474 LLVMValueRef counter = NULL;
475 LLVMBasicBlockRef block;
476 LLVMBuilderRef builder;
477 struct lp_build_sampler_soa *sampler;
478 struct lp_build_interp_soa_context interp;
479 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
480 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
481 LLVMValueRef blend_mask;
482 LLVMValueRef function;
483 LLVMValueRef facing;
484 unsigned num_fs;
485 unsigned i;
486 unsigned chan;
487 unsigned cbuf;
488
489
490 /* TODO: actually pick these based on the fs and color buffer
491 * characteristics. */
492
493 memset(&fs_type, 0, sizeof fs_type);
494 fs_type.floating = TRUE; /* floating point values */
495 fs_type.sign = TRUE; /* values are signed */
496 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
497 fs_type.width = 32; /* 32-bit float */
498 fs_type.length = 4; /* 4 elements per vector */
499 num_fs = 4; /* number of quads per block */
500
501 memset(&blend_type, 0, sizeof blend_type);
502 blend_type.floating = FALSE; /* values are integers */
503 blend_type.sign = FALSE; /* values are unsigned */
504 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
505 blend_type.width = 8; /* 8-bit ubyte values */
506 blend_type.length = 16; /* 16 elements per vector */
507
508 /*
509 * Generate the function prototype. Any change here must be reflected in
510 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
511 */
512
513 fs_elem_type = lp_build_elem_type(fs_type);
514 fs_int_vec_type = lp_build_int_vec_type(fs_type);
515
516 blend_vec_type = lp_build_vec_type(blend_type);
517
518 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
519 shader->no, variant->no, partial_mask ? "partial" : "whole");
520
521 arg_types[0] = screen->context_ptr_type; /* context */
522 arg_types[1] = LLVMInt32Type(); /* x */
523 arg_types[2] = LLVMInt32Type(); /* y */
524 arg_types[3] = LLVMFloatType(); /* facing */
525 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
526 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
527 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
528 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
529 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
530 arg_types[9] = LLVMInt32Type(); /* mask_input */
531 arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
532
533 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
534
535 function = LLVMAddFunction(screen->module, func_name, func_type);
536 LLVMSetFunctionCallConv(function, LLVMCCallConv);
537
538 variant->function[partial_mask] = function;
539
540
541 /* XXX: need to propagate noalias down into color param now we are
542 * passing a pointer-to-pointer?
543 */
544 for(i = 0; i < Elements(arg_types); ++i)
545 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
546 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
547
548 context_ptr = LLVMGetParam(function, 0);
549 x = LLVMGetParam(function, 1);
550 y = LLVMGetParam(function, 2);
551 facing = LLVMGetParam(function, 3);
552 a0_ptr = LLVMGetParam(function, 4);
553 dadx_ptr = LLVMGetParam(function, 5);
554 dady_ptr = LLVMGetParam(function, 6);
555 color_ptr_ptr = LLVMGetParam(function, 7);
556 depth_ptr = LLVMGetParam(function, 8);
557 mask_input = LLVMGetParam(function, 9);
558
559 lp_build_name(context_ptr, "context");
560 lp_build_name(x, "x");
561 lp_build_name(y, "y");
562 lp_build_name(a0_ptr, "a0");
563 lp_build_name(dadx_ptr, "dadx");
564 lp_build_name(dady_ptr, "dady");
565 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
566 lp_build_name(depth_ptr, "depth");
567 lp_build_name(mask_input, "mask_input");
568
569 if (key->occlusion_count) {
570 counter = LLVMGetParam(function, 10);
571 lp_build_name(counter, "counter");
572 }
573
574 /*
575 * Function body
576 */
577
578 block = LLVMAppendBasicBlock(function, "entry");
579 builder = LLVMCreateBuilder();
580 LLVMPositionBuilderAtEnd(builder, block);
581
582 /*
583 * The shader input interpolation info is not explicitely baked in the
584 * shader key, but everything it derives from (TGSI, and flatshade) is
585 * already included in the shader key.
586 */
587 lp_build_interp_soa_init(&interp,
588 lp->num_inputs,
589 lp->inputs,
590 builder, fs_type,
591 a0_ptr, dadx_ptr, dady_ptr,
592 x, y);
593
594 /* code generated texture sampling */
595 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
596
597 /* loop over quads in the block */
598 for(i = 0; i < num_fs; ++i) {
599 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
600 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
601 LLVMValueRef depth_ptr_i;
602
603 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
604
605 generate_fs(lp, shader, key,
606 builder,
607 fs_type,
608 context_ptr,
609 i,
610 &interp,
611 sampler,
612 &fs_mask[i], /* output */
613 out_color,
614 depth_ptr_i,
615 facing,
616 partial_mask,
617 mask_input,
618 counter);
619
620 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
621 for(chan = 0; chan < NUM_CHANNELS; ++chan)
622 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
623 }
624
625 sampler->destroy(sampler);
626
627 /* Loop over color outputs / color buffers to do blending.
628 */
629 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
630 LLVMValueRef color_ptr;
631 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
632 LLVMValueRef blend_in_color[NUM_CHANNELS];
633 unsigned rt;
634
635 /*
636 * Convert the fs's output color and mask to fit to the blending type.
637 */
638 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
639 LLVMValueRef fs_color_vals[LP_MAX_VECTOR_LENGTH];
640
641 for (i = 0; i < num_fs; i++) {
642 fs_color_vals[i] =
643 LLVMBuildLoad(builder, fs_out_color[cbuf][chan][i], "fs_color_vals");
644 }
645
646 lp_build_conv(builder, fs_type, blend_type,
647 fs_color_vals,
648 num_fs,
649 &blend_in_color[chan], 1);
650
651 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
652 }
653
654 if (partial_mask || !variant->opaque) {
655 lp_build_conv_mask(builder, fs_type, blend_type,
656 fs_mask, num_fs,
657 &blend_mask, 1);
658 } else {
659 blend_mask = lp_build_const_int_vec(blend_type, ~0);
660 }
661
662 color_ptr = LLVMBuildLoad(builder,
663 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
664 "");
665 lp_build_name(color_ptr, "color_ptr%d", cbuf);
666
667 /* which blend/colormask state to use */
668 rt = key->blend.independent_blend_enable ? cbuf : 0;
669
670 /*
671 * Blending.
672 */
673 generate_blend(&key->blend,
674 rt,
675 builder,
676 blend_type,
677 context_ptr,
678 blend_mask,
679 blend_in_color,
680 color_ptr);
681 }
682
683 #ifdef PIPE_ARCH_X86
684 /* Avoid corrupting the FPU stack on 32bit OSes. */
685 lp_build_intrinsic(builder, "llvm.x86.mmx.emms", LLVMVoidType(), NULL, 0);
686 #endif
687
688 LLVMBuildRetVoid(builder);
689
690 LLVMDisposeBuilder(builder);
691
692
693 /* Verify the LLVM IR. If invalid, dump and abort */
694 #ifdef DEBUG
695 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
696 if (1)
697 lp_debug_dump_value(function);
698 abort();
699 }
700 #endif
701
702 /* Apply optimizations to LLVM IR */
703 LLVMRunFunctionPassManager(screen->pass, function);
704
705 if ((gallivm_debug & GALLIVM_DEBUG_IR) || (LP_DEBUG & DEBUG_FS)) {
706 /* Print the LLVM IR to stderr */
707 lp_debug_dump_value(function);
708 debug_printf("\n");
709 }
710
711 /*
712 * Translate the LLVM IR into machine code.
713 */
714 {
715 void *f = LLVMGetPointerToGlobal(screen->engine, function);
716
717 variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);
718
719 if ((gallivm_debug & GALLIVM_DEBUG_ASM) || (LP_DEBUG & DEBUG_FS)) {
720 lp_disassemble(f);
721 }
722 lp_func_delete_body(function);
723 }
724 }
725
726
727 static void
728 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
729 {
730 unsigned i;
731
732 debug_printf("fs variant %p:\n", (void *) key);
733
734 if (key->flatshade) {
735 debug_printf("flatshade = 1\n");
736 }
737 for (i = 0; i < key->nr_cbufs; ++i) {
738 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
739 }
740 if (key->depth.enabled) {
741 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
742 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
743 debug_printf("depth.writemask = %u\n", key->depth.writemask);
744 }
745
746 for (i = 0; i < 2; ++i) {
747 if (key->stencil[i].enabled) {
748 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
749 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
750 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
751 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
752 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
753 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
754 }
755 }
756
757 if (key->alpha.enabled) {
758 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
759 }
760
761 if (key->occlusion_count) {
762 debug_printf("occlusion_count = 1\n");
763 }
764
765 if (key->blend.logicop_enable) {
766 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
767 }
768 else if (key->blend.rt[0].blend_enable) {
769 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
770 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
771 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
772 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
773 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
774 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
775 }
776 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
777 for (i = 0; i < key->nr_samplers; ++i) {
778 debug_printf("sampler[%u] = \n", i);
779 debug_printf(" .format = %s\n",
780 util_format_name(key->sampler[i].format));
781 debug_printf(" .target = %s\n",
782 util_dump_tex_target(key->sampler[i].target, TRUE));
783 debug_printf(" .pot = %u %u %u\n",
784 key->sampler[i].pot_width,
785 key->sampler[i].pot_height,
786 key->sampler[i].pot_depth);
787 debug_printf(" .wrap = %s %s %s\n",
788 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
789 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
790 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
791 debug_printf(" .min_img_filter = %s\n",
792 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
793 debug_printf(" .min_mip_filter = %s\n",
794 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
795 debug_printf(" .mag_img_filter = %s\n",
796 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
797 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
798 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
799 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
800 debug_printf(" .min_max_lod_equal = %u\n", key->sampler[i].min_max_lod_equal);
801 debug_printf(" .lod_bias_non_zero = %u\n", key->sampler[i].lod_bias_non_zero);
802 debug_printf(" .apply_min_lod = %u\n", key->sampler[i].apply_min_lod);
803 debug_printf(" .apply_max_lod = %u\n", key->sampler[i].apply_max_lod);
804 }
805 }
806
807
808 void
809 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
810 {
811 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
812 variant->shader->no, variant->no);
813 tgsi_dump(variant->shader->base.tokens, 0);
814 dump_fs_variant_key(&variant->key);
815 debug_printf("variant->opaque = %u\n", variant->opaque);
816 debug_printf("\n");
817 }
818
819 static struct lp_fragment_shader_variant *
820 generate_variant(struct llvmpipe_context *lp,
821 struct lp_fragment_shader *shader,
822 const struct lp_fragment_shader_variant_key *key)
823 {
824 struct lp_fragment_shader_variant *variant;
825 boolean fullcolormask;
826
827 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
828 if(!variant)
829 return NULL;
830
831 variant->shader = shader;
832 variant->list_item_global.base = variant;
833 variant->list_item_local.base = variant;
834 variant->no = shader->variants_created++;
835
836 memcpy(&variant->key, key, shader->variant_key_size);
837
838 /*
839 * Determine whether we are touching all channels in the color buffer.
840 */
841 fullcolormask = FALSE;
842 if (key->nr_cbufs == 1) {
843 const struct util_format_description *format_desc;
844 format_desc = util_format_description(key->cbuf_format[0]);
845 if ((~key->blend.rt[0].colormask &
846 util_format_colormask(format_desc)) == 0) {
847 fullcolormask = TRUE;
848 }
849 }
850
851 variant->opaque =
852 !key->blend.logicop_enable &&
853 !key->blend.rt[0].blend_enable &&
854 fullcolormask &&
855 !key->stencil[0].enabled &&
856 !key->alpha.enabled &&
857 !key->depth.enabled &&
858 !shader->info.uses_kill
859 ? TRUE : FALSE;
860
861
862 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
863 lp_debug_fs_variant(variant);
864 }
865
866 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
867
868 if (variant->opaque) {
869 /* Specialized shader, which doesn't need to read the color buffer. */
870 generate_fragment(lp, shader, variant, RAST_WHOLE);
871 } else {
872 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
873 }
874
875 return variant;
876 }
877
878
879 static void *
880 llvmpipe_create_fs_state(struct pipe_context *pipe,
881 const struct pipe_shader_state *templ)
882 {
883 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
884 struct lp_fragment_shader *shader;
885 int nr_samplers;
886
887 shader = CALLOC_STRUCT(lp_fragment_shader);
888 if (!shader)
889 return NULL;
890
891 shader->no = fs_no++;
892 make_empty_list(&shader->variants);
893
894 /* get/save the summary info for this shader */
895 tgsi_scan_shader(templ->tokens, &shader->info);
896
897 /* we need to keep a local copy of the tokens */
898 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
899
900 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
901 if (shader->draw_data == NULL) {
902 FREE((void *) shader->base.tokens);
903 FREE(shader);
904 return NULL;
905 }
906
907 nr_samplers = shader->info.file_max[TGSI_FILE_SAMPLER] + 1;
908
909 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
910 sampler[nr_samplers]);
911
912 if (LP_DEBUG & DEBUG_TGSI) {
913 unsigned attrib;
914 debug_printf("llvmpipe: Create fragment shader #%u %p:\n", shader->no, (void *) shader);
915 tgsi_dump(templ->tokens, 0);
916 debug_printf("usage masks:\n");
917 for (attrib = 0; attrib < shader->info.num_inputs; ++attrib) {
918 unsigned usage_mask = shader->info.input_usage_mask[attrib];
919 debug_printf(" IN[%u].%s%s%s%s\n",
920 attrib,
921 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
922 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
923 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
924 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
925 }
926 debug_printf("\n");
927 }
928
929 return shader;
930 }
931
932
933 static void
934 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
935 {
936 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
937
938 if (llvmpipe->fs == fs)
939 return;
940
941 draw_flush(llvmpipe->draw);
942
943 draw_bind_fragment_shader(llvmpipe->draw,
944 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
945
946 llvmpipe->fs = fs;
947
948 llvmpipe->dirty |= LP_NEW_FS;
949 }
950
951 static void
952 remove_shader_variant(struct llvmpipe_context *lp,
953 struct lp_fragment_shader_variant *variant)
954 {
955 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
956 unsigned i;
957
958 if (gallivm_debug & GALLIVM_DEBUG_IR) {
959 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached #%u v total cached #%u\n",
960 variant->shader->no, variant->no, variant->shader->variants_created,
961 variant->shader->variants_cached, lp->nr_fs_variants);
962 }
963 for (i = 0; i < Elements(variant->function); i++) {
964 if (variant->function[i]) {
965 if (variant->jit_function[i])
966 LLVMFreeMachineCodeForFunction(screen->engine,
967 variant->function[i]);
968 LLVMDeleteFunction(variant->function[i]);
969 }
970 }
971 remove_from_list(&variant->list_item_local);
972 variant->shader->variants_cached--;
973 remove_from_list(&variant->list_item_global);
974 lp->nr_fs_variants--;
975 FREE(variant);
976 }
977
978 static void
979 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
980 {
981 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
982 struct lp_fragment_shader *shader = fs;
983 struct lp_fs_variant_list_item *li;
984
985 assert(fs != llvmpipe->fs);
986 (void) llvmpipe;
987
988 /*
989 * XXX: we need to flush the context until we have some sort of reference
990 * counting in fragment shaders as they may still be binned
991 * Flushing alone might not sufficient we need to wait on it too.
992 */
993
994 llvmpipe_finish(pipe, __FUNCTION__);
995
996 li = first_elem(&shader->variants);
997 while(!at_end(&shader->variants, li)) {
998 struct lp_fs_variant_list_item *next = next_elem(li);
999 remove_shader_variant(llvmpipe, li->base);
1000 li = next;
1001 }
1002
1003 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
1004
1005 assert(shader->variants_cached == 0);
1006 FREE((void *) shader->base.tokens);
1007 FREE(shader);
1008 }
1009
1010
1011
1012 static void
1013 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1014 uint shader, uint index,
1015 struct pipe_resource *constants)
1016 {
1017 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1018 unsigned size = constants ? constants->width0 : 0;
1019 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1020
1021 assert(shader < PIPE_SHADER_TYPES);
1022 assert(index < PIPE_MAX_CONSTANT_BUFFERS);
1023
1024 if(llvmpipe->constants[shader][index] == constants)
1025 return;
1026
1027 draw_flush(llvmpipe->draw);
1028
1029 /* note: reference counting */
1030 pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
1031
1032 if(shader == PIPE_SHADER_VERTEX ||
1033 shader == PIPE_SHADER_GEOMETRY) {
1034 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
1035 index, data, size);
1036 }
1037
1038 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1039 }
1040
1041
1042 /**
1043 * Return the blend factor equivalent to a destination alpha of one.
1044 */
1045 static INLINE unsigned
1046 force_dst_alpha_one(unsigned factor)
1047 {
1048 switch(factor) {
1049 case PIPE_BLENDFACTOR_DST_ALPHA:
1050 return PIPE_BLENDFACTOR_ONE;
1051 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1052 return PIPE_BLENDFACTOR_ZERO;
1053 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1054 return PIPE_BLENDFACTOR_ZERO;
1055 }
1056
1057 return factor;
1058 }
1059
1060
1061 /**
1062 * We need to generate several variants of the fragment pipeline to match
1063 * all the combinations of the contributing state atoms.
1064 *
1065 * TODO: there is actually no reason to tie this to context state -- the
1066 * generated code could be cached globally in the screen.
1067 */
1068 static void
1069 make_variant_key(struct llvmpipe_context *lp,
1070 struct lp_fragment_shader *shader,
1071 struct lp_fragment_shader_variant_key *key)
1072 {
1073 unsigned i;
1074
1075 memset(key, 0, shader->variant_key_size);
1076
1077 if (lp->framebuffer.zsbuf) {
1078 if (lp->depth_stencil->depth.enabled) {
1079 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1080 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1081 }
1082 if (lp->depth_stencil->stencil[0].enabled) {
1083 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1084 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1085 }
1086 }
1087
1088 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1089 if(key->alpha.enabled)
1090 key->alpha.func = lp->depth_stencil->alpha.func;
1091 /* alpha.ref_value is passed in jit_context */
1092
1093 key->flatshade = lp->rasterizer->flatshade;
1094 if (lp->active_query_count) {
1095 key->occlusion_count = TRUE;
1096 }
1097
1098 if (lp->framebuffer.nr_cbufs) {
1099 memcpy(&key->blend, lp->blend, sizeof key->blend);
1100 }
1101
1102 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1103 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1104 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
1105 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1106 const struct util_format_description *format_desc;
1107
1108 key->cbuf_format[i] = format;
1109
1110 format_desc = util_format_description(format);
1111 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1112 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1113
1114 blend_rt->colormask = lp->blend->rt[i].colormask;
1115
1116 /*
1117 * Mask out color channels not present in the color buffer.
1118 */
1119 blend_rt->colormask &= util_format_colormask(format_desc);
1120
1121 /*
1122 * Our swizzled render tiles always have an alpha channel, but the linear
1123 * render target format often does not, so force here the dst alpha to be
1124 * one.
1125 *
1126 * This is not a mere optimization. Wrong results will be produced if the
1127 * dst alpha is used, the dst format does not have alpha, and the previous
1128 * rendering was not flushed from the swizzled to linear buffer. For
1129 * example, NonPowTwo DCT.
1130 *
1131 * TODO: This should be generalized to all channels for better
1132 * performance, but only alpha causes correctness issues.
1133 *
1134 * Also, force rgb/alpha func/factors match, to make AoS blending easier.
1135 */
1136 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1137 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor);
1138 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor);
1139 blend_rt->alpha_func = blend_rt->rgb_func;
1140 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
1141 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
1142 }
1143 }
1144
1145 /* This value will be the same for all the variants of a given shader:
1146 */
1147 key->nr_samplers = shader->info.file_max[TGSI_FILE_SAMPLER] + 1;
1148
1149 for(i = 0; i < key->nr_samplers; ++i) {
1150 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
1151 lp_sampler_static_state(&key->sampler[i],
1152 lp->fragment_sampler_views[i],
1153 lp->sampler[i]);
1154 }
1155 }
1156 }
1157
1158 /**
1159 * Update fragment state. This is called just prior to drawing
1160 * something when some fragment-related state has changed.
1161 */
1162 void
1163 llvmpipe_update_fs(struct llvmpipe_context *lp)
1164 {
1165 struct lp_fragment_shader *shader = lp->fs;
1166 struct lp_fragment_shader_variant_key key;
1167 struct lp_fragment_shader_variant *variant = NULL;
1168 struct lp_fs_variant_list_item *li;
1169
1170 make_variant_key(lp, shader, &key);
1171
1172 li = first_elem(&shader->variants);
1173 while(!at_end(&shader->variants, li)) {
1174 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
1175 variant = li->base;
1176 break;
1177 }
1178 li = next_elem(li);
1179 }
1180
1181 if (variant) {
1182 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1183 }
1184 else {
1185 int64_t t0, t1;
1186 int64_t dt;
1187 unsigned i;
1188 if (lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS) {
1189 struct pipe_context *pipe = &lp->pipe;
1190
1191 /*
1192 * XXX: we need to flush the context until we have some sort of reference
1193 * counting in fragment shaders as they may still be binned
1194 * Flushing alone might not be sufficient we need to wait on it too.
1195 */
1196 llvmpipe_finish(pipe, __FUNCTION__);
1197
1198 for (i = 0; i < LP_MAX_SHADER_VARIANTS / 4; i++) {
1199 struct lp_fs_variant_list_item *item = last_elem(&lp->fs_variants_list);
1200 remove_shader_variant(lp, item->base);
1201 }
1202 }
1203 t0 = os_time_get();
1204
1205 variant = generate_variant(lp, shader, &key);
1206
1207 t1 = os_time_get();
1208 dt = t1 - t0;
1209 LP_COUNT_ADD(llvm_compile_time, dt);
1210 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1211
1212 if (variant) {
1213 insert_at_head(&shader->variants, &variant->list_item_local);
1214 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1215 lp->nr_fs_variants++;
1216 shader->variants_cached++;
1217 }
1218 }
1219
1220 lp_setup_set_fs_variant(lp->setup, variant);
1221 }
1222
1223
1224
1225 void
1226 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1227 {
1228 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1229 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1230 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1231
1232 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1233 }