gallivm: Remove support for Phi generation.
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_init.h"
79 #include "gallivm/lp_bld_intr.h"
80 #include "gallivm/lp_bld_logic.h"
81 #include "gallivm/lp_bld_tgsi.h"
82 #include "gallivm/lp_bld_swizzle.h"
83 #include "gallivm/lp_bld_flow.h"
84 #include "gallivm/lp_bld_debug.h"
85
86 #include "lp_bld_alpha.h"
87 #include "lp_bld_blend.h"
88 #include "lp_bld_depth.h"
89 #include "lp_bld_interp.h"
90 #include "lp_context.h"
91 #include "lp_debug.h"
92 #include "lp_perf.h"
93 #include "lp_screen.h"
94 #include "lp_setup.h"
95 #include "lp_state.h"
96 #include "lp_tex_sample.h"
97 #include "lp_flush.h"
98 #include "lp_state_fs.h"
99
100
101 #include <llvm-c/Analysis.h>
102
103
104 static unsigned fs_no = 0;
105
106
107
108 /**
109 * Expand the relevent bits of mask_input to a 4-dword mask for the
110 * four pixels in a 2x2 quad. This will set the four elements of the
111 * quad mask vector to 0 or ~0.
112 *
113 * \param quad which quad of the quad group to test, in [0,3]
114 * \param mask_input bitwise mask for the whole 4x4 stamp
115 */
116 static LLVMValueRef
117 generate_quad_mask(LLVMBuilderRef builder,
118 struct lp_type fs_type,
119 unsigned quad,
120 LLVMValueRef mask_input) /* int32 */
121 {
122 struct lp_type mask_type;
123 LLVMTypeRef i32t = LLVMInt32Type();
124 LLVMValueRef bits[4];
125 LLVMValueRef mask;
126 int shift;
127
128 /*
129 * XXX: We'll need a different path for 16 x u8
130 */
131 assert(fs_type.width == 32);
132 assert(fs_type.length == 4);
133 mask_type = lp_int_type(fs_type);
134
135 /*
136 * mask_input >>= (quad * 4)
137 */
138
139 switch (quad) {
140 case 0:
141 shift = 0;
142 break;
143 case 1:
144 shift = 2;
145 break;
146 case 2:
147 shift = 8;
148 break;
149 case 3:
150 shift = 10;
151 break;
152 default:
153 assert(0);
154 shift = 0;
155 }
156
157 mask_input = LLVMBuildLShr(builder,
158 mask_input,
159 LLVMConstInt(i32t, shift, 0),
160 "");
161
162 /*
163 * mask = { mask_input & (1 << i), for i in [0,3] }
164 */
165
166 mask = lp_build_broadcast(builder, lp_build_vec_type(mask_type), mask_input);
167
168 bits[0] = LLVMConstInt(i32t, 1 << 0, 0);
169 bits[1] = LLVMConstInt(i32t, 1 << 1, 0);
170 bits[2] = LLVMConstInt(i32t, 1 << 4, 0);
171 bits[3] = LLVMConstInt(i32t, 1 << 5, 0);
172
173 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, 4), "");
174
175 /*
176 * mask = mask != 0 ? ~0 : 0
177 */
178
179 mask = lp_build_compare(builder,
180 mask_type, PIPE_FUNC_NOTEQUAL,
181 mask,
182 lp_build_const_int_vec(mask_type, 0));
183
184 return mask;
185 }
186
187
188 #define EARLY_DEPTH_TEST 0x1
189 #define LATE_DEPTH_TEST 0x2
190 #define EARLY_DEPTH_WRITE 0x4
191 #define LATE_DEPTH_WRITE 0x8
192
193 static int
194 find_output_by_semantic( const struct tgsi_shader_info *info,
195 unsigned semantic,
196 unsigned index )
197 {
198 int i;
199
200 for (i = 0; i < info->num_outputs; i++)
201 if (info->output_semantic_name[i] == semantic &&
202 info->output_semantic_index[i] == index)
203 return i;
204
205 return -1;
206 }
207
208
209 /**
210 * Generate the fragment shader, depth/stencil test, and alpha tests.
211 * \param i which quad in the tile, in range [0,3]
212 * \param partial_mask if 1, do mask_input testing
213 */
214 static void
215 generate_fs(struct llvmpipe_context *lp,
216 struct lp_fragment_shader *shader,
217 const struct lp_fragment_shader_variant_key *key,
218 LLVMBuilderRef builder,
219 struct lp_type type,
220 LLVMValueRef context_ptr,
221 unsigned i,
222 struct lp_build_interp_soa_context *interp,
223 struct lp_build_sampler_soa *sampler,
224 LLVMValueRef *pmask,
225 LLVMValueRef (*color)[4],
226 LLVMValueRef depth_ptr,
227 LLVMValueRef facing,
228 unsigned partial_mask,
229 LLVMValueRef mask_input,
230 LLVMValueRef counter)
231 {
232 const struct util_format_description *zs_format_desc = NULL;
233 const struct tgsi_token *tokens = shader->base.tokens;
234 LLVMTypeRef vec_type;
235 LLVMValueRef consts_ptr;
236 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
237 LLVMValueRef z;
238 LLVMValueRef zs_value = NULL;
239 LLVMValueRef stencil_refs[2];
240 struct lp_build_flow_context *flow;
241 struct lp_build_mask_context mask;
242 boolean simple_shader = (shader->info.file_count[TGSI_FILE_SAMPLER] == 0 &&
243 shader->info.num_inputs < 3 &&
244 shader->info.num_instructions < 8);
245 unsigned attrib;
246 unsigned chan;
247 unsigned cbuf;
248 unsigned depth_mode;
249
250 if (key->depth.enabled ||
251 key->stencil[0].enabled ||
252 key->stencil[1].enabled) {
253
254 zs_format_desc = util_format_description(key->zsbuf_format);
255 assert(zs_format_desc);
256
257 if (!shader->info.writes_z) {
258 if (key->alpha.enabled || shader->info.uses_kill)
259 /* With alpha test and kill, can do the depth test early
260 * and hopefully eliminate some quads. But need to do a
261 * special deferred depth write once the final mask value
262 * is known.
263 */
264 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
265 else
266 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
267 }
268 else {
269 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
270 }
271
272 if (!(key->depth.enabled && key->depth.writemask) &&
273 !(key->stencil[0].enabled && key->stencil[0].writemask))
274 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
275 }
276 else {
277 depth_mode = 0;
278 }
279
280 assert(i < 4);
281
282 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
283 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
284
285 vec_type = lp_build_vec_type(type);
286
287 consts_ptr = lp_jit_context_constants(builder, context_ptr);
288
289 flow = lp_build_flow_create(builder);
290
291 memset(outputs, 0, sizeof outputs);
292
293 /* Declare the color and z variables */
294 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
295 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
296 color[cbuf][chan] = lp_build_alloca(builder, vec_type, "color");
297 }
298 }
299
300 /* do triangle edge testing */
301 if (partial_mask) {
302 *pmask = generate_quad_mask(builder, type,
303 i, mask_input);
304 }
305 else {
306 *pmask = lp_build_const_int_vec(type, ~0);
307 }
308
309 /* 'mask' will control execution based on quad's pixel alive/killed state */
310 lp_build_mask_begin(&mask, flow, type, *pmask);
311
312 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
313 lp_build_mask_check(&mask);
314
315 lp_build_interp_soa_update_pos(interp, i);
316 z = interp->pos[2];
317
318 if (depth_mode & EARLY_DEPTH_TEST) {
319 lp_build_depth_stencil_test(builder,
320 &key->depth,
321 key->stencil,
322 type,
323 zs_format_desc,
324 &mask,
325 stencil_refs,
326 z,
327 depth_ptr, facing,
328 &zs_value,
329 !simple_shader);
330
331 if (depth_mode & EARLY_DEPTH_WRITE)
332 LLVMBuildStore(builder, zs_value, depth_ptr);
333 }
334
335 lp_build_interp_soa_update_inputs(interp, i);
336
337 /* Build the actual shader */
338 lp_build_tgsi_soa(builder, tokens, type, &mask,
339 consts_ptr, interp->pos, interp->inputs,
340 outputs, sampler, &shader->info);
341
342
343 /* Alpha test */
344 if (key->alpha.enabled) {
345 int color0 = find_output_by_semantic(&shader->info,
346 TGSI_SEMANTIC_COLOR,
347 0);
348
349 if (color0 != -1) {
350 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
351 LLVMValueRef alpha_ref_value;
352
353 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
354 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
355
356 lp_build_alpha_test(builder, key->alpha.func, type,
357 &mask, alpha, alpha_ref_value,
358 (depth_mode & LATE_DEPTH_TEST) != 0);
359 }
360 }
361
362 /* Late Z test */
363 if (depth_mode & LATE_DEPTH_TEST) {
364 int pos0 = find_output_by_semantic(&shader->info,
365 TGSI_SEMANTIC_POSITION,
366 0);
367
368 if (pos0 != -1) {
369 z = LLVMBuildLoad(builder, outputs[pos0][2], "z");
370 lp_build_name(z, "output%u.%u.%c", i, pos0, "xyzw"[chan]);
371 }
372
373 lp_build_depth_stencil_test(builder,
374 &key->depth,
375 key->stencil,
376 type,
377 zs_format_desc,
378 &mask,
379 stencil_refs,
380 z,
381 depth_ptr, facing,
382 &zs_value,
383 !simple_shader);
384 /* Late Z write */
385 if (depth_mode & LATE_DEPTH_WRITE)
386 LLVMBuildStore(builder, zs_value, depth_ptr);
387 }
388 else if ((depth_mode & EARLY_DEPTH_TEST) &&
389 (depth_mode & LATE_DEPTH_WRITE))
390 {
391 /* Need to apply a reduced mask to the depth write. Reload the
392 * depth value, update from zs_value with the new mask value and
393 * write that out.
394 */
395 lp_build_deferred_depth_write(builder,
396 type,
397 zs_format_desc,
398 &mask,
399 depth_ptr,
400 zs_value);
401 }
402
403
404 /* Color write */
405 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib)
406 {
407 if (shader->info.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR)
408 {
409 unsigned cbuf = shader->info.output_semantic_index[attrib];
410 for(chan = 0; chan < NUM_CHANNELS; ++chan)
411 {
412 /* XXX: just initialize outputs to point at colors[] and
413 * skip this.
414 */
415 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
416 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
417 LLVMBuildStore(builder, out, color[cbuf][chan]);
418 }
419 }
420 }
421
422 if (counter)
423 lp_build_occlusion_count(builder, type,
424 lp_build_mask_value(&mask), counter);
425
426 *pmask = lp_build_mask_end(&mask);
427
428 lp_build_flow_destroy(flow);
429 }
430
431
432 /**
433 * Generate color blending and color output.
434 * \param rt the render target index (to index blend, colormask state)
435 * \param type the pixel color type
436 * \param context_ptr pointer to the runtime JIT context
437 * \param mask execution mask (active fragment/pixel mask)
438 * \param src colors from the fragment shader
439 * \param dst_ptr the destination color buffer pointer
440 */
441 static void
442 generate_blend(const struct pipe_blend_state *blend,
443 unsigned rt,
444 LLVMBuilderRef builder,
445 struct lp_type type,
446 LLVMValueRef context_ptr,
447 LLVMValueRef mask,
448 LLVMValueRef *src,
449 LLVMValueRef dst_ptr,
450 boolean do_branch)
451 {
452 struct lp_build_context bld;
453 struct lp_build_flow_context *flow;
454 struct lp_build_mask_context mask_ctx;
455 LLVMTypeRef vec_type;
456 LLVMValueRef const_ptr;
457 LLVMValueRef con[4];
458 LLVMValueRef dst[4];
459 LLVMValueRef res[4];
460 unsigned chan;
461
462 lp_build_context_init(&bld, builder, type);
463
464 flow = lp_build_flow_create(builder);
465 lp_build_mask_begin(&mask_ctx, flow, type, mask);
466 if (do_branch)
467 lp_build_mask_check(&mask_ctx);
468
469 vec_type = lp_build_vec_type(type);
470
471 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
472 const_ptr = LLVMBuildBitCast(builder, const_ptr,
473 LLVMPointerType(vec_type, 0), "");
474
475 /* load constant blend color and colors from the dest color buffer */
476 for(chan = 0; chan < 4; ++chan) {
477 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
478 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
479
480 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
481
482 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
483 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
484 }
485
486 /* do blend */
487 lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res);
488
489 /* store results to color buffer */
490 for(chan = 0; chan < 4; ++chan) {
491 if(blend->rt[rt].colormask & (1 << chan)) {
492 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
493 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
494 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
495 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
496 }
497 }
498
499 lp_build_mask_end(&mask_ctx);
500 lp_build_flow_destroy(flow);
501 }
502
503
504 /**
505 * Generate the runtime callable function for the whole fragment pipeline.
506 * Note that the function which we generate operates on a block of 16
507 * pixels at at time. The block contains 2x2 quads. Each quad contains
508 * 2x2 pixels.
509 */
510 static void
511 generate_fragment(struct llvmpipe_context *lp,
512 struct lp_fragment_shader *shader,
513 struct lp_fragment_shader_variant *variant,
514 unsigned partial_mask)
515 {
516 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
517 const struct lp_fragment_shader_variant_key *key = &variant->key;
518 char func_name[256];
519 struct lp_type fs_type;
520 struct lp_type blend_type;
521 LLVMTypeRef fs_elem_type;
522 LLVMTypeRef fs_int_vec_type;
523 LLVMTypeRef blend_vec_type;
524 LLVMTypeRef arg_types[11];
525 LLVMTypeRef func_type;
526 LLVMValueRef context_ptr;
527 LLVMValueRef x;
528 LLVMValueRef y;
529 LLVMValueRef a0_ptr;
530 LLVMValueRef dadx_ptr;
531 LLVMValueRef dady_ptr;
532 LLVMValueRef color_ptr_ptr;
533 LLVMValueRef depth_ptr;
534 LLVMValueRef mask_input;
535 LLVMValueRef counter = NULL;
536 LLVMBasicBlockRef block;
537 LLVMBuilderRef builder;
538 struct lp_build_sampler_soa *sampler;
539 struct lp_build_interp_soa_context interp;
540 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
541 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
542 LLVMValueRef blend_mask;
543 LLVMValueRef function;
544 LLVMValueRef facing;
545 unsigned num_fs;
546 unsigned i;
547 unsigned chan;
548 unsigned cbuf;
549
550
551 /* TODO: actually pick these based on the fs and color buffer
552 * characteristics. */
553
554 memset(&fs_type, 0, sizeof fs_type);
555 fs_type.floating = TRUE; /* floating point values */
556 fs_type.sign = TRUE; /* values are signed */
557 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
558 fs_type.width = 32; /* 32-bit float */
559 fs_type.length = 4; /* 4 elements per vector */
560 num_fs = 4; /* number of quads per block */
561
562 memset(&blend_type, 0, sizeof blend_type);
563 blend_type.floating = FALSE; /* values are integers */
564 blend_type.sign = FALSE; /* values are unsigned */
565 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
566 blend_type.width = 8; /* 8-bit ubyte values */
567 blend_type.length = 16; /* 16 elements per vector */
568
569 /*
570 * Generate the function prototype. Any change here must be reflected in
571 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
572 */
573
574 fs_elem_type = lp_build_elem_type(fs_type);
575 fs_int_vec_type = lp_build_int_vec_type(fs_type);
576
577 blend_vec_type = lp_build_vec_type(blend_type);
578
579 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
580 shader->no, variant->no, partial_mask ? "partial" : "whole");
581
582 arg_types[0] = screen->context_ptr_type; /* context */
583 arg_types[1] = LLVMInt32Type(); /* x */
584 arg_types[2] = LLVMInt32Type(); /* y */
585 arg_types[3] = LLVMFloatType(); /* facing */
586 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
587 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
588 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
589 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
590 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
591 arg_types[9] = LLVMInt32Type(); /* mask_input */
592 arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */
593
594 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
595
596 function = LLVMAddFunction(screen->module, func_name, func_type);
597 LLVMSetFunctionCallConv(function, LLVMCCallConv);
598
599 variant->function[partial_mask] = function;
600
601
602 /* XXX: need to propagate noalias down into color param now we are
603 * passing a pointer-to-pointer?
604 */
605 for(i = 0; i < Elements(arg_types); ++i)
606 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
607 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
608
609 context_ptr = LLVMGetParam(function, 0);
610 x = LLVMGetParam(function, 1);
611 y = LLVMGetParam(function, 2);
612 facing = LLVMGetParam(function, 3);
613 a0_ptr = LLVMGetParam(function, 4);
614 dadx_ptr = LLVMGetParam(function, 5);
615 dady_ptr = LLVMGetParam(function, 6);
616 color_ptr_ptr = LLVMGetParam(function, 7);
617 depth_ptr = LLVMGetParam(function, 8);
618 mask_input = LLVMGetParam(function, 9);
619
620 lp_build_name(context_ptr, "context");
621 lp_build_name(x, "x");
622 lp_build_name(y, "y");
623 lp_build_name(a0_ptr, "a0");
624 lp_build_name(dadx_ptr, "dadx");
625 lp_build_name(dady_ptr, "dady");
626 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
627 lp_build_name(depth_ptr, "depth");
628 lp_build_name(mask_input, "mask_input");
629
630 if (key->occlusion_count) {
631 counter = LLVMGetParam(function, 10);
632 lp_build_name(counter, "counter");
633 }
634
635 /*
636 * Function body
637 */
638
639 block = LLVMAppendBasicBlock(function, "entry");
640 builder = LLVMCreateBuilder();
641 LLVMPositionBuilderAtEnd(builder, block);
642
643 /*
644 * The shader input interpolation info is not explicitely baked in the
645 * shader key, but everything it derives from (TGSI, and flatshade) is
646 * already included in the shader key.
647 */
648 lp_build_interp_soa_init(&interp,
649 lp->num_inputs,
650 lp->inputs,
651 builder, fs_type,
652 a0_ptr, dadx_ptr, dady_ptr,
653 x, y);
654
655 /* code generated texture sampling */
656 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
657
658 /* loop over quads in the block */
659 for(i = 0; i < num_fs; ++i) {
660 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
661 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
662 LLVMValueRef depth_ptr_i;
663
664 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
665
666 generate_fs(lp, shader, key,
667 builder,
668 fs_type,
669 context_ptr,
670 i,
671 &interp,
672 sampler,
673 &fs_mask[i], /* output */
674 out_color,
675 depth_ptr_i,
676 facing,
677 partial_mask,
678 mask_input,
679 counter);
680
681 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
682 for(chan = 0; chan < NUM_CHANNELS; ++chan)
683 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
684 }
685
686 sampler->destroy(sampler);
687
688 /* Loop over color outputs / color buffers to do blending.
689 */
690 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
691 LLVMValueRef color_ptr;
692 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
693 LLVMValueRef blend_in_color[NUM_CHANNELS];
694 unsigned rt;
695
696 /*
697 * Convert the fs's output color and mask to fit to the blending type.
698 */
699 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
700 LLVMValueRef fs_color_vals[LP_MAX_VECTOR_LENGTH];
701
702 for (i = 0; i < num_fs; i++) {
703 fs_color_vals[i] =
704 LLVMBuildLoad(builder, fs_out_color[cbuf][chan][i], "fs_color_vals");
705 }
706
707 lp_build_conv(builder, fs_type, blend_type,
708 fs_color_vals,
709 num_fs,
710 &blend_in_color[chan], 1);
711
712 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
713 }
714
715 if (partial_mask || !variant->opaque) {
716 lp_build_conv_mask(builder, fs_type, blend_type,
717 fs_mask, num_fs,
718 &blend_mask, 1);
719 } else {
720 blend_mask = lp_build_const_int_vec(blend_type, ~0);
721 }
722
723 color_ptr = LLVMBuildLoad(builder,
724 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
725 "");
726 lp_build_name(color_ptr, "color_ptr%d", cbuf);
727
728 /* which blend/colormask state to use */
729 rt = key->blend.independent_blend_enable ? cbuf : 0;
730
731 /*
732 * Blending.
733 */
734 {
735 /* Could the 4x4 have been killed?
736 */
737 boolean do_branch = ((key->depth.enabled || key->stencil[0].enabled) &&
738 !key->alpha.enabled &&
739 !shader->info.uses_kill);
740
741 generate_blend(&key->blend,
742 rt,
743 builder,
744 blend_type,
745 context_ptr,
746 blend_mask,
747 blend_in_color,
748 color_ptr,
749 do_branch);
750 }
751 }
752
753 #ifdef PIPE_ARCH_X86
754 /* Avoid corrupting the FPU stack on 32bit OSes. */
755 lp_build_intrinsic(builder, "llvm.x86.mmx.emms", LLVMVoidType(), NULL, 0);
756 #endif
757
758 LLVMBuildRetVoid(builder);
759
760 LLVMDisposeBuilder(builder);
761
762
763 /* Verify the LLVM IR. If invalid, dump and abort */
764 #ifdef DEBUG
765 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
766 if (1)
767 lp_debug_dump_value(function);
768 abort();
769 }
770 #endif
771
772 /* Apply optimizations to LLVM IR */
773 LLVMRunFunctionPassManager(screen->pass, function);
774
775 if ((gallivm_debug & GALLIVM_DEBUG_IR) || (LP_DEBUG & DEBUG_FS)) {
776 /* Print the LLVM IR to stderr */
777 lp_debug_dump_value(function);
778 debug_printf("\n");
779 }
780
781 /*
782 * Translate the LLVM IR into machine code.
783 */
784 {
785 void *f = LLVMGetPointerToGlobal(screen->engine, function);
786
787 variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);
788
789 if ((gallivm_debug & GALLIVM_DEBUG_ASM) || (LP_DEBUG & DEBUG_FS)) {
790 lp_disassemble(f);
791 }
792 lp_func_delete_body(function);
793 }
794 }
795
796
797 static void
798 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
799 {
800 unsigned i;
801
802 debug_printf("fs variant %p:\n", (void *) key);
803
804 if (key->flatshade) {
805 debug_printf("flatshade = 1\n");
806 }
807 for (i = 0; i < key->nr_cbufs; ++i) {
808 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
809 }
810 if (key->depth.enabled) {
811 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
812 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
813 debug_printf("depth.writemask = %u\n", key->depth.writemask);
814 }
815
816 for (i = 0; i < 2; ++i) {
817 if (key->stencil[i].enabled) {
818 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
819 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
820 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
821 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
822 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
823 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
824 }
825 }
826
827 if (key->alpha.enabled) {
828 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
829 }
830
831 if (key->occlusion_count) {
832 debug_printf("occlusion_count = 1\n");
833 }
834
835 if (key->blend.logicop_enable) {
836 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
837 }
838 else if (key->blend.rt[0].blend_enable) {
839 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
840 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
841 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
842 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
843 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
844 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
845 }
846 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
847 for (i = 0; i < key->nr_samplers; ++i) {
848 debug_printf("sampler[%u] = \n", i);
849 debug_printf(" .format = %s\n",
850 util_format_name(key->sampler[i].format));
851 debug_printf(" .target = %s\n",
852 util_dump_tex_target(key->sampler[i].target, TRUE));
853 debug_printf(" .pot = %u %u %u\n",
854 key->sampler[i].pot_width,
855 key->sampler[i].pot_height,
856 key->sampler[i].pot_depth);
857 debug_printf(" .wrap = %s %s %s\n",
858 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
859 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
860 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
861 debug_printf(" .min_img_filter = %s\n",
862 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
863 debug_printf(" .min_mip_filter = %s\n",
864 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
865 debug_printf(" .mag_img_filter = %s\n",
866 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
867 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
868 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
869 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
870 debug_printf(" .min_max_lod_equal = %u\n", key->sampler[i].min_max_lod_equal);
871 debug_printf(" .lod_bias_non_zero = %u\n", key->sampler[i].lod_bias_non_zero);
872 debug_printf(" .apply_min_lod = %u\n", key->sampler[i].apply_min_lod);
873 debug_printf(" .apply_max_lod = %u\n", key->sampler[i].apply_max_lod);
874 }
875 }
876
877
878 void
879 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
880 {
881 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
882 variant->shader->no, variant->no);
883 tgsi_dump(variant->shader->base.tokens, 0);
884 dump_fs_variant_key(&variant->key);
885 debug_printf("variant->opaque = %u\n", variant->opaque);
886 debug_printf("\n");
887 }
888
889 static struct lp_fragment_shader_variant *
890 generate_variant(struct llvmpipe_context *lp,
891 struct lp_fragment_shader *shader,
892 const struct lp_fragment_shader_variant_key *key)
893 {
894 struct lp_fragment_shader_variant *variant;
895 boolean fullcolormask;
896
897 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
898 if(!variant)
899 return NULL;
900
901 variant->shader = shader;
902 variant->list_item_global.base = variant;
903 variant->list_item_local.base = variant;
904 variant->no = shader->variants_created++;
905
906 memcpy(&variant->key, key, shader->variant_key_size);
907
908 /*
909 * Determine whether we are touching all channels in the color buffer.
910 */
911 fullcolormask = FALSE;
912 if (key->nr_cbufs == 1) {
913 const struct util_format_description *format_desc;
914 format_desc = util_format_description(key->cbuf_format[0]);
915 if ((~key->blend.rt[0].colormask &
916 util_format_colormask(format_desc)) == 0) {
917 fullcolormask = TRUE;
918 }
919 }
920
921 variant->opaque =
922 !key->blend.logicop_enable &&
923 !key->blend.rt[0].blend_enable &&
924 fullcolormask &&
925 !key->stencil[0].enabled &&
926 !key->alpha.enabled &&
927 !key->depth.enabled &&
928 !shader->info.uses_kill
929 ? TRUE : FALSE;
930
931
932 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
933 lp_debug_fs_variant(variant);
934 }
935
936 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
937
938 if (variant->opaque) {
939 /* Specialized shader, which doesn't need to read the color buffer. */
940 generate_fragment(lp, shader, variant, RAST_WHOLE);
941 } else {
942 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
943 }
944
945 return variant;
946 }
947
948
949 static void *
950 llvmpipe_create_fs_state(struct pipe_context *pipe,
951 const struct pipe_shader_state *templ)
952 {
953 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
954 struct lp_fragment_shader *shader;
955 int nr_samplers;
956
957 shader = CALLOC_STRUCT(lp_fragment_shader);
958 if (!shader)
959 return NULL;
960
961 shader->no = fs_no++;
962 make_empty_list(&shader->variants);
963
964 /* get/save the summary info for this shader */
965 tgsi_scan_shader(templ->tokens, &shader->info);
966
967 /* we need to keep a local copy of the tokens */
968 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
969
970 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
971 if (shader->draw_data == NULL) {
972 FREE((void *) shader->base.tokens);
973 FREE(shader);
974 return NULL;
975 }
976
977 nr_samplers = shader->info.file_max[TGSI_FILE_SAMPLER] + 1;
978
979 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
980 sampler[nr_samplers]);
981
982 if (LP_DEBUG & DEBUG_TGSI) {
983 unsigned attrib;
984 debug_printf("llvmpipe: Create fragment shader #%u %p:\n", shader->no, (void *) shader);
985 tgsi_dump(templ->tokens, 0);
986 debug_printf("usage masks:\n");
987 for (attrib = 0; attrib < shader->info.num_inputs; ++attrib) {
988 unsigned usage_mask = shader->info.input_usage_mask[attrib];
989 debug_printf(" IN[%u].%s%s%s%s\n",
990 attrib,
991 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
992 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
993 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
994 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
995 }
996 debug_printf("\n");
997 }
998
999 return shader;
1000 }
1001
1002
1003 static void
1004 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
1005 {
1006 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1007
1008 if (llvmpipe->fs == fs)
1009 return;
1010
1011 draw_flush(llvmpipe->draw);
1012
1013 draw_bind_fragment_shader(llvmpipe->draw,
1014 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
1015
1016 llvmpipe->fs = fs;
1017
1018 llvmpipe->dirty |= LP_NEW_FS;
1019 }
1020
1021 static void
1022 remove_shader_variant(struct llvmpipe_context *lp,
1023 struct lp_fragment_shader_variant *variant)
1024 {
1025 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
1026 unsigned i;
1027
1028 if (gallivm_debug & GALLIVM_DEBUG_IR) {
1029 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached #%u v total cached #%u\n",
1030 variant->shader->no, variant->no, variant->shader->variants_created,
1031 variant->shader->variants_cached, lp->nr_fs_variants);
1032 }
1033 for (i = 0; i < Elements(variant->function); i++) {
1034 if (variant->function[i]) {
1035 if (variant->jit_function[i])
1036 LLVMFreeMachineCodeForFunction(screen->engine,
1037 variant->function[i]);
1038 LLVMDeleteFunction(variant->function[i]);
1039 }
1040 }
1041 remove_from_list(&variant->list_item_local);
1042 variant->shader->variants_cached--;
1043 remove_from_list(&variant->list_item_global);
1044 lp->nr_fs_variants--;
1045 FREE(variant);
1046 }
1047
1048 static void
1049 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1050 {
1051 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1052 struct lp_fragment_shader *shader = fs;
1053 struct lp_fs_variant_list_item *li;
1054
1055 assert(fs != llvmpipe->fs);
1056 (void) llvmpipe;
1057
1058 /*
1059 * XXX: we need to flush the context until we have some sort of reference
1060 * counting in fragment shaders as they may still be binned
1061 * Flushing alone might not sufficient we need to wait on it too.
1062 */
1063
1064 llvmpipe_finish(pipe, __FUNCTION__);
1065
1066 li = first_elem(&shader->variants);
1067 while(!at_end(&shader->variants, li)) {
1068 struct lp_fs_variant_list_item *next = next_elem(li);
1069 remove_shader_variant(llvmpipe, li->base);
1070 li = next;
1071 }
1072
1073 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
1074
1075 assert(shader->variants_cached == 0);
1076 FREE((void *) shader->base.tokens);
1077 FREE(shader);
1078 }
1079
1080
1081
1082 static void
1083 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1084 uint shader, uint index,
1085 struct pipe_resource *constants)
1086 {
1087 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1088 unsigned size = constants ? constants->width0 : 0;
1089 const void *data = constants ? llvmpipe_resource_data(constants) : NULL;
1090
1091 assert(shader < PIPE_SHADER_TYPES);
1092 assert(index < PIPE_MAX_CONSTANT_BUFFERS);
1093
1094 if(llvmpipe->constants[shader][index] == constants)
1095 return;
1096
1097 draw_flush(llvmpipe->draw);
1098
1099 /* note: reference counting */
1100 pipe_resource_reference(&llvmpipe->constants[shader][index], constants);
1101
1102 if(shader == PIPE_SHADER_VERTEX ||
1103 shader == PIPE_SHADER_GEOMETRY) {
1104 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
1105 index, data, size);
1106 }
1107
1108 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1109 }
1110
1111
1112 /**
1113 * Return the blend factor equivalent to a destination alpha of one.
1114 */
1115 static INLINE unsigned
1116 force_dst_alpha_one(unsigned factor)
1117 {
1118 switch(factor) {
1119 case PIPE_BLENDFACTOR_DST_ALPHA:
1120 return PIPE_BLENDFACTOR_ONE;
1121 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
1122 return PIPE_BLENDFACTOR_ZERO;
1123 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
1124 return PIPE_BLENDFACTOR_ZERO;
1125 }
1126
1127 return factor;
1128 }
1129
1130
1131 /**
1132 * We need to generate several variants of the fragment pipeline to match
1133 * all the combinations of the contributing state atoms.
1134 *
1135 * TODO: there is actually no reason to tie this to context state -- the
1136 * generated code could be cached globally in the screen.
1137 */
1138 static void
1139 make_variant_key(struct llvmpipe_context *lp,
1140 struct lp_fragment_shader *shader,
1141 struct lp_fragment_shader_variant_key *key)
1142 {
1143 unsigned i;
1144
1145 memset(key, 0, shader->variant_key_size);
1146
1147 if (lp->framebuffer.zsbuf) {
1148 if (lp->depth_stencil->depth.enabled) {
1149 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1150 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1151 }
1152 if (lp->depth_stencil->stencil[0].enabled) {
1153 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1154 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1155 }
1156 }
1157
1158 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1159 if(key->alpha.enabled)
1160 key->alpha.func = lp->depth_stencil->alpha.func;
1161 /* alpha.ref_value is passed in jit_context */
1162
1163 key->flatshade = lp->rasterizer->flatshade;
1164 if (lp->active_query_count) {
1165 key->occlusion_count = TRUE;
1166 }
1167
1168 if (lp->framebuffer.nr_cbufs) {
1169 memcpy(&key->blend, lp->blend, sizeof key->blend);
1170 }
1171
1172 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1173 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1174 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
1175 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
1176 const struct util_format_description *format_desc;
1177
1178 key->cbuf_format[i] = format;
1179
1180 format_desc = util_format_description(format);
1181 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
1182 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
1183
1184 blend_rt->colormask = lp->blend->rt[i].colormask;
1185
1186 /*
1187 * Mask out color channels not present in the color buffer.
1188 */
1189 blend_rt->colormask &= util_format_colormask(format_desc);
1190
1191 /*
1192 * Our swizzled render tiles always have an alpha channel, but the linear
1193 * render target format often does not, so force here the dst alpha to be
1194 * one.
1195 *
1196 * This is not a mere optimization. Wrong results will be produced if the
1197 * dst alpha is used, the dst format does not have alpha, and the previous
1198 * rendering was not flushed from the swizzled to linear buffer. For
1199 * example, NonPowTwo DCT.
1200 *
1201 * TODO: This should be generalized to all channels for better
1202 * performance, but only alpha causes correctness issues.
1203 *
1204 * Also, force rgb/alpha func/factors match, to make AoS blending easier.
1205 */
1206 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) {
1207 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor);
1208 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor);
1209 blend_rt->alpha_func = blend_rt->rgb_func;
1210 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
1211 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
1212 }
1213 }
1214
1215 /* This value will be the same for all the variants of a given shader:
1216 */
1217 key->nr_samplers = shader->info.file_max[TGSI_FILE_SAMPLER] + 1;
1218
1219 for(i = 0; i < key->nr_samplers; ++i) {
1220 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
1221 lp_sampler_static_state(&key->sampler[i],
1222 lp->fragment_sampler_views[i],
1223 lp->sampler[i]);
1224 }
1225 }
1226 }
1227
1228 /**
1229 * Update fragment state. This is called just prior to drawing
1230 * something when some fragment-related state has changed.
1231 */
1232 void
1233 llvmpipe_update_fs(struct llvmpipe_context *lp)
1234 {
1235 struct lp_fragment_shader *shader = lp->fs;
1236 struct lp_fragment_shader_variant_key key;
1237 struct lp_fragment_shader_variant *variant = NULL;
1238 struct lp_fs_variant_list_item *li;
1239
1240 make_variant_key(lp, shader, &key);
1241
1242 li = first_elem(&shader->variants);
1243 while(!at_end(&shader->variants, li)) {
1244 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
1245 variant = li->base;
1246 break;
1247 }
1248 li = next_elem(li);
1249 }
1250
1251 if (variant) {
1252 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
1253 }
1254 else {
1255 int64_t t0, t1;
1256 int64_t dt;
1257 unsigned i;
1258 if (lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS) {
1259 struct pipe_context *pipe = &lp->pipe;
1260
1261 /*
1262 * XXX: we need to flush the context until we have some sort of reference
1263 * counting in fragment shaders as they may still be binned
1264 * Flushing alone might not be sufficient we need to wait on it too.
1265 */
1266 llvmpipe_finish(pipe, __FUNCTION__);
1267
1268 for (i = 0; i < LP_MAX_SHADER_VARIANTS / 4; i++) {
1269 struct lp_fs_variant_list_item *item = last_elem(&lp->fs_variants_list);
1270 remove_shader_variant(lp, item->base);
1271 }
1272 }
1273 t0 = os_time_get();
1274
1275 variant = generate_variant(lp, shader, &key);
1276
1277 t1 = os_time_get();
1278 dt = t1 - t0;
1279 LP_COUNT_ADD(llvm_compile_time, dt);
1280 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1281
1282 if (variant) {
1283 insert_at_head(&shader->variants, &variant->list_item_local);
1284 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
1285 lp->nr_fs_variants++;
1286 shader->variants_cached++;
1287 }
1288 }
1289
1290 lp_setup_set_fs_variant(lp->setup, variant);
1291 }
1292
1293
1294
1295 void
1296 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
1297 {
1298 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
1299 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
1300 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
1301
1302 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
1303 }