llvmpipe: add plumbing for ARB_depth_clamp
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - early depth test
35 * - fragment shader
36 * - alpha test
37 * - depth/stencil test
38 * - blending
39 *
40 * This file has only the glue to assemble the fragment pipeline. The actual
41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43 * muster the LLVM JIT execution engine to create a function that follows an
44 * established binary interface and that can be called from C directly.
45 *
46 * A big source of complexity here is that we often want to run different
47 * stages with different precisions and data types and precisions. For example,
48 * the fragment shader needs typically to be done in floats, but the
49 * depth/stencil test and blending is better done in the type that most closely
50 * matches the depth/stencil and color buffer respectively.
51 *
52 * Since the width of a SIMD vector register stays the same regardless of the
53 * element type, different types imply different number of elements, so we must
54 * code generate more instances of the stages with larger types to be able to
55 * feed/consume the stages with smaller types.
56 *
57 * @author Jose Fonseca <jfonseca@vmware.com>
58 */
59
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/u_simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "os/os_time.h"
71 #include "pipe/p_shader_tokens.h"
72 #include "draw/draw_context.h"
73 #include "tgsi/tgsi_dump.h"
74 #include "tgsi/tgsi_scan.h"
75 #include "tgsi/tgsi_parse.h"
76 #include "gallivm/lp_bld_type.h"
77 #include "gallivm/lp_bld_const.h"
78 #include "gallivm/lp_bld_conv.h"
79 #include "gallivm/lp_bld_init.h"
80 #include "gallivm/lp_bld_intr.h"
81 #include "gallivm/lp_bld_logic.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_swizzle.h"
84 #include "gallivm/lp_bld_flow.h"
85 #include "gallivm/lp_bld_debug.h"
86 #include "gallivm/lp_bld_arit.h"
87 #include "gallivm/lp_bld_pack.h"
88 #include "gallivm/lp_bld_format.h"
89 #include "gallivm/lp_bld_quad.h"
90
91 #include "lp_bld_alpha.h"
92 #include "lp_bld_blend.h"
93 #include "lp_bld_depth.h"
94 #include "lp_bld_interp.h"
95 #include "lp_context.h"
96 #include "lp_debug.h"
97 #include "lp_perf.h"
98 #include "lp_setup.h"
99 #include "lp_state.h"
100 #include "lp_tex_sample.h"
101 #include "lp_flush.h"
102 #include "lp_state_fs.h"
103 #include "lp_rast.h"
104
105
106 /** Fragment shader number (for debugging) */
107 static unsigned fs_no = 0;
108
109
110 /**
111 * Expand the relevant bits of mask_input to a n*4-dword mask for the
112 * n*four pixels in n 2x2 quads. This will set the n*four elements of the
113 * quad mask vector to 0 or ~0.
114 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
115 * quad arguments with fs length 8.
116 *
117 * \param first_quad which quad(s) of the quad group to test, in [0,3]
118 * \param mask_input bitwise mask for the whole 4x4 stamp
119 */
120 static LLVMValueRef
121 generate_quad_mask(struct gallivm_state *gallivm,
122 struct lp_type fs_type,
123 unsigned first_quad,
124 LLVMValueRef mask_input) /* int32 */
125 {
126 LLVMBuilderRef builder = gallivm->builder;
127 struct lp_type mask_type;
128 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
129 LLVMValueRef bits[16];
130 LLVMValueRef mask;
131 int shift, i;
132
133 /*
134 * XXX: We'll need a different path for 16 x u8
135 */
136 assert(fs_type.width == 32);
137 assert(fs_type.length <= Elements(bits));
138 mask_type = lp_int_type(fs_type);
139
140 /*
141 * mask_input >>= (quad * 4)
142 */
143 switch (first_quad) {
144 case 0:
145 shift = 0;
146 break;
147 case 1:
148 assert(fs_type.length == 4);
149 shift = 2;
150 break;
151 case 2:
152 shift = 8;
153 break;
154 case 3:
155 assert(fs_type.length == 4);
156 shift = 10;
157 break;
158 default:
159 assert(0);
160 shift = 0;
161 }
162
163 mask_input = LLVMBuildLShr(builder,
164 mask_input,
165 LLVMConstInt(i32t, shift, 0),
166 "");
167
168 /*
169 * mask = { mask_input & (1 << i), for i in [0,3] }
170 */
171 mask = lp_build_broadcast(gallivm,
172 lp_build_vec_type(gallivm, mask_type),
173 mask_input);
174
175 for (i = 0; i < fs_type.length / 4; i++) {
176 unsigned j = 2 * (i % 2) + (i / 2) * 8;
177 bits[4*i + 0] = LLVMConstInt(i32t, 1 << (j + 0), 0);
178 bits[4*i + 1] = LLVMConstInt(i32t, 1 << (j + 1), 0);
179 bits[4*i + 2] = LLVMConstInt(i32t, 1 << (j + 4), 0);
180 bits[4*i + 3] = LLVMConstInt(i32t, 1 << (j + 5), 0);
181 }
182 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, fs_type.length), "");
183
184 /*
185 * mask = mask != 0 ? ~0 : 0
186 */
187 mask = lp_build_compare(gallivm,
188 mask_type, PIPE_FUNC_NOTEQUAL,
189 mask,
190 lp_build_const_int_vec(gallivm, mask_type, 0));
191
192 return mask;
193 }
194
195
196 #define EARLY_DEPTH_TEST 0x1
197 #define LATE_DEPTH_TEST 0x2
198 #define EARLY_DEPTH_WRITE 0x4
199 #define LATE_DEPTH_WRITE 0x8
200
201 static int
202 find_output_by_semantic( const struct tgsi_shader_info *info,
203 unsigned semantic,
204 unsigned index )
205 {
206 int i;
207
208 for (i = 0; i < info->num_outputs; i++)
209 if (info->output_semantic_name[i] == semantic &&
210 info->output_semantic_index[i] == index)
211 return i;
212
213 return -1;
214 }
215
216
217 /**
218 * Fetch the specified lp_jit_viewport structure for a given viewport_index.
219 */
220 static LLVMValueRef
221 lp_llvm_viewport(LLVMValueRef context_ptr,
222 struct gallivm_state *gallivm,
223 LLVMValueRef viewport_index)
224 {
225 LLVMBuilderRef builder = gallivm->builder;
226 LLVMValueRef ptr;
227 LLVMValueRef res;
228 struct lp_type viewport_type =
229 lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
230
231 ptr = lp_jit_context_viewports(gallivm, context_ptr);
232 ptr = LLVMBuildPointerCast(builder, ptr,
233 LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
234
235 res = lp_build_pointer_get(builder, ptr, viewport_index);
236
237 return res;
238 }
239
240
241 /**
242 * Generate the fragment shader, depth/stencil test, and alpha tests.
243 */
244 static void
245 generate_fs_loop(struct gallivm_state *gallivm,
246 struct lp_fragment_shader *shader,
247 const struct lp_fragment_shader_variant_key *key,
248 LLVMBuilderRef builder,
249 struct lp_type type,
250 LLVMValueRef context_ptr,
251 LLVMValueRef num_loop,
252 struct lp_build_interp_soa_context *interp,
253 struct lp_build_sampler_soa *sampler,
254 LLVMValueRef mask_store,
255 LLVMValueRef (*out_color)[4],
256 LLVMValueRef depth_ptr,
257 LLVMValueRef depth_stride,
258 LLVMValueRef facing,
259 LLVMValueRef thread_data_ptr)
260 {
261 const struct util_format_description *zs_format_desc = NULL;
262 const struct tgsi_token *tokens = shader->base.tokens;
263 LLVMTypeRef vec_type;
264 LLVMValueRef mask_ptr, mask_val;
265 LLVMValueRef consts_ptr;
266 LLVMValueRef z;
267 LLVMValueRef z_value, s_value;
268 LLVMValueRef z_fb, s_fb;
269 LLVMValueRef stencil_refs[2];
270 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
271 struct lp_build_for_loop_state loop_state;
272 struct lp_build_mask_context mask;
273 /*
274 * TODO: figure out if simple_shader optimization is really worthwile to
275 * keep. Disabled because it may hide some real bugs in the (depth/stencil)
276 * code since tests tend to take another codepath than real shaders.
277 */
278 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
279 shader->info.base.num_inputs < 3 &&
280 shader->info.base.num_instructions < 8) && 0;
281 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
282 util_blend_state_is_dual(&key->blend, 0);
283 unsigned attrib;
284 unsigned chan;
285 unsigned cbuf;
286 unsigned depth_mode;
287
288 struct lp_bld_tgsi_system_values system_values;
289
290 memset(&system_values, 0, sizeof(system_values));
291
292 if (key->depth.enabled ||
293 key->stencil[0].enabled) {
294
295 zs_format_desc = util_format_description(key->zsbuf_format);
296 assert(zs_format_desc);
297
298 if (!shader->info.base.writes_z) {
299 if (key->alpha.enabled || shader->info.base.uses_kill) {
300 /* With alpha test and kill, can do the depth test early
301 * and hopefully eliminate some quads. But need to do a
302 * special deferred depth write once the final mask value
303 * is known. This only works though if there's either no
304 * stencil test or the stencil value isn't written.
305 */
306 if (key->stencil[0].enabled && (key->stencil[0].writemask ||
307 (key->stencil[1].enabled &&
308 key->stencil[1].writemask)))
309 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
310 else
311 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE;
312 }
313 else
314 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
315 }
316 else {
317 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
318 }
319
320 if (!(key->depth.enabled && key->depth.writemask) &&
321 !(key->stencil[0].enabled && (key->stencil[0].writemask ||
322 (key->stencil[1].enabled &&
323 key->stencil[1].writemask))))
324 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
325 }
326 else {
327 depth_mode = 0;
328 }
329
330
331 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
332 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
333
334 vec_type = lp_build_vec_type(gallivm, type);
335
336 consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
337
338 lp_build_for_loop_begin(&loop_state, gallivm,
339 lp_build_const_int32(gallivm, 0),
340 LLVMIntULT,
341 num_loop,
342 lp_build_const_int32(gallivm, 1));
343
344 mask_ptr = LLVMBuildGEP(builder, mask_store,
345 &loop_state.counter, 1, "mask_ptr");
346 mask_val = LLVMBuildLoad(builder, mask_ptr, "");
347
348 memset(outputs, 0, sizeof outputs);
349
350 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
351 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
352 out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
353 lp_build_vec_type(gallivm,
354 type),
355 num_loop, "color");
356 }
357 }
358 if (dual_source_blend) {
359 assert(key->nr_cbufs <= 1);
360 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
361 out_color[1][chan] = lp_build_array_alloca(gallivm,
362 lp_build_vec_type(gallivm,
363 type),
364 num_loop, "color1");
365 }
366 }
367
368
369 /* 'mask' will control execution based on quad's pixel alive/killed state */
370 lp_build_mask_begin(&mask, gallivm, type, mask_val);
371
372 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
373 lp_build_mask_check(&mask);
374
375 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter);
376 z = interp->pos[2];
377
378 if (depth_mode & EARLY_DEPTH_TEST) {
379 lp_build_depth_stencil_load_swizzled(gallivm, type,
380 zs_format_desc, key->resource_1d,
381 depth_ptr, depth_stride,
382 &z_fb, &s_fb, loop_state.counter);
383 lp_build_depth_stencil_test(gallivm,
384 &key->depth,
385 key->stencil,
386 type,
387 zs_format_desc,
388 &mask,
389 stencil_refs,
390 z, z_fb, s_fb,
391 facing,
392 &z_value, &s_value,
393 !simple_shader);
394
395 if (depth_mode & EARLY_DEPTH_WRITE) {
396 lp_build_depth_stencil_write_swizzled(gallivm, type,
397 zs_format_desc, key->resource_1d,
398 NULL, NULL, NULL, loop_state.counter,
399 depth_ptr, depth_stride,
400 z_value, s_value);
401 }
402 /*
403 * Note mask check if stencil is enabled must be after ds write not after
404 * stencil test otherwise new stencil values may not get written if all
405 * fragments got killed by depth/stencil test.
406 */
407 if (!simple_shader && key->stencil[0].enabled)
408 lp_build_mask_check(&mask);
409 }
410
411 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter);
412
413 /* Build the actual shader */
414 lp_build_tgsi_soa(gallivm, tokens, type, &mask,
415 consts_ptr, &system_values,
416 interp->inputs,
417 outputs, sampler, &shader->info.base, NULL);
418
419 /* Alpha test */
420 if (key->alpha.enabled) {
421 int color0 = find_output_by_semantic(&shader->info.base,
422 TGSI_SEMANTIC_COLOR,
423 0);
424
425 if (color0 != -1 && outputs[color0][3]) {
426 const struct util_format_description *cbuf_format_desc;
427 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
428 LLVMValueRef alpha_ref_value;
429
430 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
431 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
432
433 cbuf_format_desc = util_format_description(key->cbuf_format[0]);
434
435 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
436 &mask, alpha, alpha_ref_value,
437 (depth_mode & LATE_DEPTH_TEST) != 0);
438 }
439 }
440
441 /* Late Z test */
442 if (depth_mode & LATE_DEPTH_TEST) {
443 int pos0 = find_output_by_semantic(&shader->info.base,
444 TGSI_SEMANTIC_POSITION,
445 0);
446
447 if (pos0 != -1 && outputs[pos0][2]) {
448 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z");
449
450 /*
451 * Clamp according to ARB_depth_clamp semantics.
452 */
453 if (key->depth_clamp) {
454 LLVMValueRef viewport, min_depth, max_depth;
455 LLVMValueRef viewport_index;
456 struct lp_build_context f32_bld;
457
458 assert(type.floating);
459 lp_build_context_init(&f32_bld, gallivm, type);
460
461 /*
462 * Assumes clamping of the viewport index will occur in setup/gs. Value
463 * is passed through the rasterization stage via lp_rast_shader_inputs.
464 *
465 * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
466 * semantics.
467 */
468 viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
469 thread_data_ptr);
470
471 /*
472 * Load the min and max depth from the lp_jit_context.viewports
473 * array of lp_jit_viewport structures.
474 */
475 viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
476
477 /* viewports[viewport_index].min_depth */
478 min_depth = LLVMBuildExtractElement(builder, viewport,
479 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH),
480 "");
481 min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
482
483 /* viewports[viewport_index].max_depth */
484 max_depth = LLVMBuildExtractElement(builder, viewport,
485 lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH),
486 "");
487 max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
488
489 /*
490 * Clamp to the min and max depth values for the given viewport.
491 */
492 z = lp_build_clamp(&f32_bld, z, min_depth, max_depth);
493 }
494 }
495
496 lp_build_depth_stencil_load_swizzled(gallivm, type,
497 zs_format_desc, key->resource_1d,
498 depth_ptr, depth_stride,
499 &z_fb, &s_fb, loop_state.counter);
500
501 lp_build_depth_stencil_test(gallivm,
502 &key->depth,
503 key->stencil,
504 type,
505 zs_format_desc,
506 &mask,
507 stencil_refs,
508 z, z_fb, s_fb,
509 facing,
510 &z_value, &s_value,
511 !simple_shader);
512 /* Late Z write */
513 if (depth_mode & LATE_DEPTH_WRITE) {
514 lp_build_depth_stencil_write_swizzled(gallivm, type,
515 zs_format_desc, key->resource_1d,
516 NULL, NULL, NULL, loop_state.counter,
517 depth_ptr, depth_stride,
518 z_value, s_value);
519 }
520 }
521 else if ((depth_mode & EARLY_DEPTH_TEST) &&
522 (depth_mode & LATE_DEPTH_WRITE))
523 {
524 /* Need to apply a reduced mask to the depth write. Reload the
525 * depth value, update from zs_value with the new mask value and
526 * write that out.
527 */
528 lp_build_depth_stencil_write_swizzled(gallivm, type,
529 zs_format_desc, key->resource_1d,
530 &mask, z_fb, s_fb, loop_state.counter,
531 depth_ptr, depth_stride,
532 z_value, s_value);
533 }
534
535
536 /* Color write */
537 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
538 {
539 unsigned cbuf = shader->info.base.output_semantic_index[attrib];
540 if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
541 ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
542 {
543 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
544 if(outputs[attrib][chan]) {
545 /* XXX: just initialize outputs to point at colors[] and
546 * skip this.
547 */
548 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
549 LLVMValueRef color_ptr;
550 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
551 &loop_state.counter, 1, "");
552 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
553 LLVMBuildStore(builder, out, color_ptr);
554 }
555 }
556 }
557 }
558
559 if (key->occlusion_count) {
560 LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
561 lp_build_name(counter, "counter");
562 lp_build_occlusion_count(gallivm, type,
563 lp_build_mask_value(&mask), counter);
564 }
565
566 mask_val = lp_build_mask_end(&mask);
567 LLVMBuildStore(builder, mask_val, mask_ptr);
568 lp_build_for_loop_end(&loop_state);
569 }
570
571
572 /**
573 * This function will reorder pixels from the fragment shader SoA to memory layout AoS
574 *
575 * Fragment Shader outputs pixels in small 2x2 blocks
576 * e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
577 *
578 * However in memory pixels are stored in rows
579 * e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
580 *
581 * @param type fragment shader type (4x or 8x float)
582 * @param num_fs number of fs_src
583 * @param is_1d whether we're outputting to a 1d resource
584 * @param dst_channels number of output channels
585 * @param fs_src output from fragment shader
586 * @param dst pointer to store result
587 * @param pad_inline is channel padding inline or at end of row
588 * @return the number of dsts
589 */
590 static int
591 generate_fs_twiddle(struct gallivm_state *gallivm,
592 struct lp_type type,
593 unsigned num_fs,
594 unsigned dst_channels,
595 LLVMValueRef fs_src[][4],
596 LLVMValueRef* dst,
597 bool pad_inline)
598 {
599 LLVMValueRef src[16];
600
601 bool swizzle_pad;
602 bool twiddle;
603 bool split;
604
605 unsigned pixels = type.length / 4;
606 unsigned reorder_group;
607 unsigned src_channels;
608 unsigned src_count;
609 unsigned i;
610
611 src_channels = dst_channels < 3 ? dst_channels : 4;
612 src_count = num_fs * src_channels;
613
614 assert(pixels == 2 || pixels == 1);
615 assert(num_fs * src_channels <= Elements(src));
616
617 /*
618 * Transpose from SoA -> AoS
619 */
620 for (i = 0; i < num_fs; ++i) {
621 lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
622 }
623
624 /*
625 * Pick transformation options
626 */
627 swizzle_pad = false;
628 twiddle = false;
629 split = false;
630 reorder_group = 0;
631
632 if (dst_channels == 1) {
633 twiddle = true;
634
635 if (pixels == 2) {
636 split = true;
637 }
638 } else if (dst_channels == 2) {
639 if (pixels == 1) {
640 reorder_group = 1;
641 }
642 } else if (dst_channels > 2) {
643 if (pixels == 1) {
644 reorder_group = 2;
645 } else {
646 twiddle = true;
647 }
648
649 if (!pad_inline && dst_channels == 3 && pixels > 1) {
650 swizzle_pad = true;
651 }
652 }
653
654 /*
655 * Split the src in half
656 */
657 if (split) {
658 for (i = num_fs; i > 0; --i) {
659 src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
660 src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
661 }
662
663 src_count *= 2;
664 type.length = 4;
665 }
666
667 /*
668 * Ensure pixels are in memory order
669 */
670 if (reorder_group) {
671 /* Twiddle pixels by reordering the array, e.g.:
672 *
673 * src_count = 8 -> 0 2 1 3 4 6 5 7
674 * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
675 */
676 const unsigned reorder_sw[] = { 0, 2, 1, 3 };
677
678 for (i = 0; i < src_count; ++i) {
679 unsigned group = i / reorder_group;
680 unsigned block = (group / 4) * 4 * reorder_group;
681 unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
682 dst[i] = src[j];
683 }
684 } else if (twiddle) {
685 /* Twiddle pixels across elements of array */
686 lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
687 } else {
688 /* Do nothing */
689 memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
690 }
691
692 /*
693 * Moves any padding between pixels to the end
694 * e.g. RGBXRGBX -> RGBRGBXX
695 */
696 if (swizzle_pad) {
697 unsigned char swizzles[16];
698 unsigned elems = pixels * dst_channels;
699
700 for (i = 0; i < type.length; ++i) {
701 if (i < elems)
702 swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
703 else
704 swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
705 }
706
707 for (i = 0; i < src_count; ++i) {
708 dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
709 }
710 }
711
712 return src_count;
713 }
714
715
716 /**
717 * Load an unswizzled block of pixels from memory
718 */
719 static void
720 load_unswizzled_block(struct gallivm_state *gallivm,
721 LLVMValueRef base_ptr,
722 LLVMValueRef stride,
723 unsigned block_width,
724 unsigned block_height,
725 LLVMValueRef* dst,
726 struct lp_type dst_type,
727 unsigned dst_count,
728 unsigned dst_alignment)
729 {
730 LLVMBuilderRef builder = gallivm->builder;
731 unsigned row_size = dst_count / block_height;
732 unsigned i;
733
734 /* Ensure block exactly fits into dst */
735 assert((block_width * block_height) % dst_count == 0);
736
737 for (i = 0; i < dst_count; ++i) {
738 unsigned x = i % row_size;
739 unsigned y = i / row_size;
740
741 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
742 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
743
744 LLVMValueRef gep[2];
745 LLVMValueRef dst_ptr;
746
747 gep[0] = lp_build_const_int32(gallivm, 0);
748 gep[1] = LLVMBuildAdd(builder, bx, by, "");
749
750 dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
751 dst_ptr = LLVMBuildBitCast(builder, dst_ptr, LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
752
753 dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
754
755 lp_set_load_alignment(dst[i], dst_alignment);
756 }
757 }
758
759
760 /**
761 * Store an unswizzled block of pixels to memory
762 */
763 static void
764 store_unswizzled_block(struct gallivm_state *gallivm,
765 LLVMValueRef base_ptr,
766 LLVMValueRef stride,
767 unsigned block_width,
768 unsigned block_height,
769 LLVMValueRef* src,
770 struct lp_type src_type,
771 unsigned src_count,
772 unsigned src_alignment)
773 {
774 LLVMBuilderRef builder = gallivm->builder;
775 unsigned row_size = src_count / block_height;
776 unsigned i;
777
778 /* Ensure src exactly fits into block */
779 assert((block_width * block_height) % src_count == 0);
780
781 for (i = 0; i < src_count; ++i) {
782 unsigned x = i % row_size;
783 unsigned y = i / row_size;
784
785 LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
786 LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
787
788 LLVMValueRef gep[2];
789 LLVMValueRef src_ptr;
790
791 gep[0] = lp_build_const_int32(gallivm, 0);
792 gep[1] = LLVMBuildAdd(builder, bx, by, "");
793
794 src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
795 src_ptr = LLVMBuildBitCast(builder, src_ptr, LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
796
797 src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
798
799 lp_set_store_alignment(src_ptr, src_alignment);
800 }
801 }
802
803
804 /**
805 * Checks if a format description is an arithmetic format
806 *
807 * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
808 */
809 static INLINE boolean
810 is_arithmetic_format(const struct util_format_description *format_desc)
811 {
812 boolean arith = false;
813 unsigned i;
814
815 for (i = 0; i < format_desc->nr_channels; ++i) {
816 arith |= format_desc->channel[i].size != format_desc->channel[0].size;
817 arith |= (format_desc->channel[i].size % 8) != 0;
818 }
819
820 return arith;
821 }
822
823
824 /**
825 * Checks if this format requires special handling due to required expansion
826 * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
827 * SoA conversion.
828 */
829 static INLINE boolean
830 format_expands_to_float_soa(const struct util_format_description *format_desc)
831 {
832 if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
833 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
834 return true;
835 }
836 return false;
837 }
838
839
840 /**
841 * Retrieves the type representing the memory layout for a format
842 *
843 * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
844 */
845 static INLINE void
846 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
847 struct lp_type* type)
848 {
849 unsigned i;
850 unsigned chan;
851
852 if (format_expands_to_float_soa(format_desc)) {
853 /* just make this a 32bit uint */
854 type->floating = false;
855 type->fixed = false;
856 type->sign = false;
857 type->norm = false;
858 type->width = 32;
859 type->length = 1;
860 return;
861 }
862
863 for (i = 0; i < 4; i++)
864 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
865 break;
866 chan = i;
867
868 memset(type, 0, sizeof(struct lp_type));
869 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
870 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
871 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
872 type->norm = format_desc->channel[chan].normalized;
873
874 if (is_arithmetic_format(format_desc)) {
875 type->width = 0;
876 type->length = 1;
877
878 for (i = 0; i < format_desc->nr_channels; ++i) {
879 type->width += format_desc->channel[i].size;
880 }
881 } else {
882 type->width = format_desc->channel[chan].size;
883 type->length = format_desc->nr_channels;
884 }
885 }
886
887
888 /**
889 * Retrieves the type for a format which is usable in the blending code.
890 *
891 * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
892 */
893 static INLINE void
894 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
895 struct lp_type* type)
896 {
897 unsigned i;
898 unsigned chan;
899
900 if (format_expands_to_float_soa(format_desc)) {
901 /* always use ordinary floats for blending */
902 type->floating = true;
903 type->fixed = false;
904 type->sign = true;
905 type->norm = false;
906 type->width = 32;
907 type->length = 4;
908 return;
909 }
910
911 for (i = 0; i < 4; i++)
912 if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
913 break;
914 chan = i;
915
916 memset(type, 0, sizeof(struct lp_type));
917 type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
918 type->fixed = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
919 type->sign = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
920 type->norm = format_desc->channel[chan].normalized;
921 type->width = format_desc->channel[chan].size;
922 type->length = format_desc->nr_channels;
923
924 for (i = 1; i < format_desc->nr_channels; ++i) {
925 if (format_desc->channel[i].size > type->width)
926 type->width = format_desc->channel[i].size;
927 }
928
929 if (type->floating) {
930 type->width = 32;
931 } else {
932 if (type->width <= 8) {
933 type->width = 8;
934 } else if (type->width <= 16) {
935 type->width = 16;
936 } else {
937 type->width = 32;
938 }
939 }
940
941 if (is_arithmetic_format(format_desc) && type->length == 3) {
942 type->length = 4;
943 }
944 }
945
946
947 /**
948 * Scale a normalized value from src_bits to dst_bits.
949 *
950 * The exact calculation is
951 *
952 * dst = iround(src * dst_mask / src_mask)
953 *
954 * or with integer rounding
955 *
956 * dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
957 *
958 * where
959 *
960 * src_mask = (1 << src_bits) - 1
961 * dst_mask = (1 << dst_bits) - 1
962 *
963 * but we try to avoid division and multiplication through shifts.
964 */
965 static INLINE LLVMValueRef
966 scale_bits(struct gallivm_state *gallivm,
967 int src_bits,
968 int dst_bits,
969 LLVMValueRef src,
970 struct lp_type src_type)
971 {
972 LLVMBuilderRef builder = gallivm->builder;
973 LLVMValueRef result = src;
974
975 if (dst_bits < src_bits) {
976 int delta_bits = src_bits - dst_bits;
977
978 if (delta_bits <= dst_bits) {
979 /*
980 * Approximate the rescaling with a single shift.
981 *
982 * This gives the wrong rounding.
983 */
984
985 result = LLVMBuildLShr(builder,
986 src,
987 lp_build_const_int_vec(gallivm, src_type, delta_bits),
988 "");
989
990 } else {
991 /*
992 * Try more accurate rescaling.
993 */
994
995 /*
996 * Drop the least significant bits to make space for the multiplication.
997 *
998 * XXX: A better approach would be to use a wider integer type as intermediate. But
999 * this is enough to convert alpha from 16bits -> 2 when rendering to
1000 * PIPE_FORMAT_R10G10B10A2_UNORM.
1001 */
1002 result = LLVMBuildLShr(builder,
1003 src,
1004 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1005 "");
1006
1007
1008 result = LLVMBuildMul(builder,
1009 result,
1010 lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1011 "");
1012
1013 /*
1014 * Add a rounding term before the division.
1015 *
1016 * TODO: Handle signed integers too.
1017 */
1018 if (!src_type.sign) {
1019 result = LLVMBuildAdd(builder,
1020 result,
1021 lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1022 "");
1023 }
1024
1025 /*
1026 * Approximate the division by src_mask with a src_bits shift.
1027 *
1028 * Given the src has already been shifted by dst_bits, all we need
1029 * to do is to shift by the difference.
1030 */
1031
1032 result = LLVMBuildLShr(builder,
1033 result,
1034 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1035 "");
1036 }
1037
1038 } else if (dst_bits > src_bits) {
1039 /* Scale up bits */
1040 int db = dst_bits - src_bits;
1041
1042 /* Shift left by difference in bits */
1043 result = LLVMBuildShl(builder,
1044 src,
1045 lp_build_const_int_vec(gallivm, src_type, db),
1046 "");
1047
1048 if (db < src_bits) {
1049 /* Enough bits in src to fill the remainder */
1050 LLVMValueRef lower = LLVMBuildLShr(builder,
1051 src,
1052 lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1053 "");
1054
1055 result = LLVMBuildOr(builder, result, lower, "");
1056 } else if (db > src_bits) {
1057 /* Need to repeatedly copy src bits to fill remainder in dst */
1058 unsigned n;
1059
1060 for (n = src_bits; n < dst_bits; n *= 2) {
1061 LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1062
1063 result = LLVMBuildOr(builder,
1064 result,
1065 LLVMBuildLShr(builder, result, shuv, ""),
1066 "");
1067 }
1068 }
1069 }
1070
1071 return result;
1072 }
1073
1074
1075 /**
1076 * Convert from memory format to blending format
1077 *
1078 * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1079 */
1080 static void
1081 convert_to_blend_type(struct gallivm_state *gallivm,
1082 unsigned block_size,
1083 const struct util_format_description *src_fmt,
1084 struct lp_type src_type,
1085 struct lp_type dst_type,
1086 LLVMValueRef* src, // and dst
1087 unsigned num_srcs)
1088 {
1089 LLVMValueRef *dst = src;
1090 LLVMBuilderRef builder = gallivm->builder;
1091 struct lp_type blend_type;
1092 struct lp_type mem_type;
1093 unsigned i, j, k;
1094 unsigned pixels = block_size / num_srcs;
1095 bool is_arith;
1096
1097 /*
1098 * full custom path for packed floats and srgb formats - none of the later
1099 * functions would do anything useful, and given the lp_type representation they
1100 * can't be fixed. Should really have some SoA blend path for these kind of
1101 * formats rather than hacking them in here.
1102 */
1103 if (format_expands_to_float_soa(src_fmt)) {
1104 LLVMValueRef tmpsrc[4];
1105 /*
1106 * This is pretty suboptimal for this case blending in SoA would be much
1107 * better, since conversion gets us SoA values so need to convert back.
1108 */
1109 assert(src_type.width == 32);
1110 assert(dst_type.floating);
1111 assert(dst_type.width == 32);
1112 assert(dst_type.length % 4 == 0);
1113 assert(num_srcs % 4 == 0);
1114
1115 for (i = 0; i < 4; i++) {
1116 tmpsrc[i] = src[i];
1117 }
1118 for (i = 0; i < num_srcs / 4; i++) {
1119 LLVMValueRef tmpsoa[4];
1120 LLVMValueRef tmps = tmpsrc[i];
1121 if (dst_type.length == 8) {
1122 LLVMValueRef shuffles[8];
1123 unsigned j;
1124 /* fetch was 4 values but need 8-wide output values */
1125 tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1126 /*
1127 * for 8-wide aos transpose would give us wrong order not matching
1128 * incoming converted fs values and mask. ARGH.
1129 */
1130 for (j = 0; j < 4; j++) {
1131 shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1132 shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1133 }
1134 tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1135 LLVMConstVector(shuffles, 8), "");
1136 }
1137 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1138 lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1139 }
1140 else {
1141 lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1142 }
1143 lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1144 }
1145 return;
1146 }
1147
1148 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1149 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1150
1151 /* Is the format arithmetic */
1152 is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1153 is_arith &= !(mem_type.width == 16 && mem_type.floating);
1154
1155 /* Pad if necessary */
1156 if (!is_arith && src_type.length < dst_type.length) {
1157 for (i = 0; i < num_srcs; ++i) {
1158 dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1159 }
1160
1161 src_type.length = dst_type.length;
1162 }
1163
1164 /* Special case for half-floats */
1165 if (mem_type.width == 16 && mem_type.floating) {
1166 assert(blend_type.width == 32 && blend_type.floating);
1167 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1168 is_arith = false;
1169 }
1170
1171 if (!is_arith) {
1172 return;
1173 }
1174
1175 src_type.width = blend_type.width * blend_type.length;
1176 blend_type.length *= pixels;
1177 src_type.length *= pixels / (src_type.length / mem_type.length);
1178
1179 for (i = 0; i < num_srcs; ++i) {
1180 LLVMValueRef chans[4];
1181 LLVMValueRef res = NULL;
1182
1183 dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1184
1185 for (j = 0; j < src_fmt->nr_channels; ++j) {
1186 unsigned mask = 0;
1187 unsigned sa = src_fmt->channel[j].shift;
1188 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1189 unsigned from_lsb = j;
1190 #else
1191 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1192 #endif
1193
1194 for (k = 0; k < src_fmt->channel[j].size; ++k) {
1195 mask |= 1 << k;
1196 }
1197
1198 /* Extract bits from source */
1199 chans[j] = LLVMBuildLShr(builder,
1200 dst[i],
1201 lp_build_const_int_vec(gallivm, src_type, sa),
1202 "");
1203
1204 chans[j] = LLVMBuildAnd(builder,
1205 chans[j],
1206 lp_build_const_int_vec(gallivm, src_type, mask),
1207 "");
1208
1209 /* Scale bits */
1210 if (src_type.norm) {
1211 chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1212 blend_type.width, chans[j], src_type);
1213 }
1214
1215 /* Insert bits into correct position */
1216 chans[j] = LLVMBuildShl(builder,
1217 chans[j],
1218 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1219 "");
1220
1221 if (j == 0) {
1222 res = chans[j];
1223 } else {
1224 res = LLVMBuildOr(builder, res, chans[j], "");
1225 }
1226 }
1227
1228 dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
1229 }
1230 }
1231
1232
1233 /**
1234 * Convert from blending format to memory format
1235 *
1236 * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
1237 */
1238 static void
1239 convert_from_blend_type(struct gallivm_state *gallivm,
1240 unsigned block_size,
1241 const struct util_format_description *src_fmt,
1242 struct lp_type src_type,
1243 struct lp_type dst_type,
1244 LLVMValueRef* src, // and dst
1245 unsigned num_srcs)
1246 {
1247 LLVMValueRef* dst = src;
1248 unsigned i, j, k;
1249 struct lp_type mem_type;
1250 struct lp_type blend_type;
1251 LLVMBuilderRef builder = gallivm->builder;
1252 unsigned pixels = block_size / num_srcs;
1253 bool is_arith;
1254
1255 /*
1256 * full custom path for packed floats and srgb formats - none of the later
1257 * functions would do anything useful, and given the lp_type representation they
1258 * can't be fixed. Should really have some SoA blend path for these kind of
1259 * formats rather than hacking them in here.
1260 */
1261 if (format_expands_to_float_soa(src_fmt)) {
1262 /*
1263 * This is pretty suboptimal for this case blending in SoA would be much
1264 * better - we need to transpose the AoS values back to SoA values for
1265 * conversion/packing.
1266 */
1267 assert(src_type.floating);
1268 assert(src_type.width == 32);
1269 assert(src_type.length % 4 == 0);
1270 assert(dst_type.width == 32);
1271
1272 for (i = 0; i < num_srcs / 4; i++) {
1273 LLVMValueRef tmpsoa[4], tmpdst;
1274 lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
1275 /* really really need SoA here */
1276
1277 if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1278 tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
1279 }
1280 else {
1281 tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
1282 src_type, tmpsoa);
1283 }
1284
1285 if (src_type.length == 8) {
1286 LLVMValueRef tmpaos, shuffles[8];
1287 unsigned j;
1288 /*
1289 * for 8-wide aos transpose has given us wrong order not matching
1290 * output order. HMPF. Also need to split the output values manually.
1291 */
1292 for (j = 0; j < 4; j++) {
1293 shuffles[j * 2] = lp_build_const_int32(gallivm, j);
1294 shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
1295 }
1296 tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
1297 LLVMConstVector(shuffles, 8), "");
1298 src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
1299 src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
1300 }
1301 else {
1302 src[i] = tmpdst;
1303 }
1304 }
1305 return;
1306 }
1307
1308 lp_mem_type_from_format_desc(src_fmt, &mem_type);
1309 lp_blend_type_from_format_desc(src_fmt, &blend_type);
1310
1311 is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
1312
1313 /* Special case for half-floats */
1314 if (mem_type.width == 16 && mem_type.floating) {
1315 int length = dst_type.length;
1316 assert(blend_type.width == 32 && blend_type.floating);
1317
1318 dst_type.length = src_type.length;
1319
1320 lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1321
1322 dst_type.length = length;
1323 is_arith = false;
1324 }
1325
1326 /* Remove any padding */
1327 if (!is_arith && (src_type.length % mem_type.length)) {
1328 src_type.length -= (src_type.length % mem_type.length);
1329
1330 for (i = 0; i < num_srcs; ++i) {
1331 dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
1332 }
1333 }
1334
1335 /* No bit arithmetic to do */
1336 if (!is_arith) {
1337 return;
1338 }
1339
1340 src_type.length = pixels;
1341 src_type.width = blend_type.length * blend_type.width;
1342 dst_type.length = pixels;
1343
1344 for (i = 0; i < num_srcs; ++i) {
1345 LLVMValueRef chans[4];
1346 LLVMValueRef res = NULL;
1347
1348 dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1349
1350 for (j = 0; j < src_fmt->nr_channels; ++j) {
1351 unsigned mask = 0;
1352 unsigned sa = src_fmt->channel[j].shift;
1353 #ifdef PIPE_ARCH_LITTLE_ENDIAN
1354 unsigned from_lsb = j;
1355 #else
1356 unsigned from_lsb = src_fmt->nr_channels - j - 1;
1357 #endif
1358
1359 assert(blend_type.width > src_fmt->channel[j].size);
1360
1361 for (k = 0; k < blend_type.width; ++k) {
1362 mask |= 1 << k;
1363 }
1364
1365 /* Extract bits */
1366 chans[j] = LLVMBuildLShr(builder,
1367 dst[i],
1368 lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1369 "");
1370
1371 chans[j] = LLVMBuildAnd(builder,
1372 chans[j],
1373 lp_build_const_int_vec(gallivm, src_type, mask),
1374 "");
1375
1376 /* Scale down bits */
1377 if (src_type.norm) {
1378 chans[j] = scale_bits(gallivm, blend_type.width,
1379 src_fmt->channel[j].size, chans[j], src_type);
1380 }
1381
1382 /* Insert bits */
1383 chans[j] = LLVMBuildShl(builder,
1384 chans[j],
1385 lp_build_const_int_vec(gallivm, src_type, sa),
1386 "");
1387
1388 sa += src_fmt->channel[j].size;
1389
1390 if (j == 0) {
1391 res = chans[j];
1392 } else {
1393 res = LLVMBuildOr(builder, res, chans[j], "");
1394 }
1395 }
1396
1397 assert (dst_type.width != 24);
1398
1399 dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
1400 }
1401 }
1402
1403
1404 /**
1405 * Convert alpha to same blend type as src
1406 */
1407 static void
1408 convert_alpha(struct gallivm_state *gallivm,
1409 struct lp_type row_type,
1410 struct lp_type alpha_type,
1411 const unsigned block_size,
1412 const unsigned block_height,
1413 const unsigned src_count,
1414 const unsigned dst_channels,
1415 const bool pad_inline,
1416 LLVMValueRef* src_alpha)
1417 {
1418 LLVMBuilderRef builder = gallivm->builder;
1419 unsigned i, j;
1420 unsigned length = row_type.length;
1421 row_type.length = alpha_type.length;
1422
1423 /* Twiddle the alpha to match pixels */
1424 lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
1425
1426 /*
1427 * TODO this should use single lp_build_conv call for
1428 * src_count == 1 && dst_channels == 1 case (dropping the concat below)
1429 */
1430 for (i = 0; i < block_height; ++i) {
1431 lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
1432 }
1433
1434 alpha_type = row_type;
1435 row_type.length = length;
1436
1437 /* If only one channel we can only need the single alpha value per pixel */
1438 if (src_count == 1 && dst_channels == 1) {
1439
1440 lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
1441 } else {
1442 /* If there are more srcs than rows then we need to split alpha up */
1443 if (src_count > block_height) {
1444 for (i = src_count; i > 0; --i) {
1445 unsigned pixels = block_size / src_count;
1446 unsigned idx = i - 1;
1447
1448 src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
1449 (idx * pixels) % 4, pixels);
1450 }
1451 }
1452
1453 /* If there is a src for each pixel broadcast the alpha across whole row */
1454 if (src_count == block_size) {
1455 for (i = 0; i < src_count; ++i) {
1456 src_alpha[i] = lp_build_broadcast(gallivm, lp_build_vec_type(gallivm, row_type), src_alpha[i]);
1457 }
1458 } else {
1459 unsigned pixels = block_size / src_count;
1460 unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
1461 unsigned alpha_span = 1;
1462 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
1463
1464 /* Check if we need 2 src_alphas for our shuffles */
1465 if (pixels > alpha_type.length) {
1466 alpha_span = 2;
1467 }
1468
1469 /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
1470 for (j = 0; j < row_type.length; ++j) {
1471 if (j < pixels * channels) {
1472 shuffles[j] = lp_build_const_int32(gallivm, j / channels);
1473 } else {
1474 shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
1475 }
1476 }
1477
1478 for (i = 0; i < src_count; ++i) {
1479 unsigned idx1 = i, idx2 = i;
1480
1481 if (alpha_span > 1){
1482 idx1 *= alpha_span;
1483 idx2 = idx1 + 1;
1484 }
1485
1486 src_alpha[i] = LLVMBuildShuffleVector(builder,
1487 src_alpha[idx1],
1488 src_alpha[idx2],
1489 LLVMConstVector(shuffles, row_type.length),
1490 "");
1491 }
1492 }
1493 }
1494 }
1495
1496
1497 /**
1498 * Generates the blend function for unswizzled colour buffers
1499 * Also generates the read & write from colour buffer
1500 */
1501 static void
1502 generate_unswizzled_blend(struct gallivm_state *gallivm,
1503 unsigned rt,
1504 struct lp_fragment_shader_variant *variant,
1505 enum pipe_format out_format,
1506 unsigned int num_fs,
1507 struct lp_type fs_type,
1508 LLVMValueRef* fs_mask,
1509 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
1510 LLVMValueRef context_ptr,
1511 LLVMValueRef color_ptr,
1512 LLVMValueRef stride,
1513 unsigned partial_mask,
1514 boolean do_branch)
1515 {
1516 const unsigned alpha_channel = 3;
1517 const unsigned block_width = LP_RASTER_BLOCK_SIZE;
1518 const unsigned block_height = LP_RASTER_BLOCK_SIZE;
1519 const unsigned block_size = block_width * block_height;
1520 const unsigned lp_integer_vector_width = 128;
1521
1522 LLVMBuilderRef builder = gallivm->builder;
1523 LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
1524 LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
1525 LLVMValueRef src_alpha[4 * 4];
1526 LLVMValueRef src1_alpha[4 * 4];
1527 LLVMValueRef src_mask[4 * 4];
1528 LLVMValueRef src[4 * 4];
1529 LLVMValueRef src1[4 * 4];
1530 LLVMValueRef dst[4 * 4];
1531 LLVMValueRef blend_color;
1532 LLVMValueRef blend_alpha;
1533 LLVMValueRef i32_zero;
1534 LLVMValueRef check_mask;
1535 LLVMValueRef undef_src_val;
1536
1537 struct lp_build_mask_context mask_ctx;
1538 struct lp_type mask_type;
1539 struct lp_type blend_type;
1540 struct lp_type row_type;
1541 struct lp_type dst_type;
1542
1543 unsigned char swizzle[TGSI_NUM_CHANNELS];
1544 unsigned vector_width;
1545 unsigned src_channels = TGSI_NUM_CHANNELS;
1546 unsigned dst_channels;
1547 unsigned dst_count;
1548 unsigned src_count;
1549 unsigned i, j;
1550
1551 const struct util_format_description* out_format_desc = util_format_description(out_format);
1552
1553 unsigned dst_alignment;
1554
1555 bool pad_inline = is_arithmetic_format(out_format_desc);
1556 bool has_alpha = false;
1557 const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
1558 util_blend_state_is_dual(&variant->key.blend, 0);
1559
1560 const boolean is_1d = variant->key.resource_1d;
1561 unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
1562 LLVMValueRef fpstate = 0;
1563
1564 /* Get type from output format */
1565 lp_blend_type_from_format_desc(out_format_desc, &row_type);
1566 lp_mem_type_from_format_desc(out_format_desc, &dst_type);
1567
1568 /*
1569 * Technically this code should go into lp_build_smallfloat_to_float
1570 * and lp_build_float_to_smallfloat but due to the
1571 * http://llvm.org/bugs/show_bug.cgi?id=6393
1572 * llvm reorders the mxcsr intrinsics in a way that breaks the code.
1573 * So the ordering is important here and there shouldn't be any
1574 * llvm ir instrunctions in this function before
1575 * this, otherwise half-float format conversions won't work
1576 * (again due to llvm bug #6393).
1577 */
1578 if (dst_type.floating && dst_type.width != 32) {
1579 /* We need to make sure that denorms are ok for half float
1580 conversions */
1581 fpstate = lp_build_fpstate_get(gallivm);
1582 lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
1583 }
1584
1585 mask_type = lp_int32_vec4_type();
1586 mask_type.length = fs_type.length;
1587
1588 for (i = num_fs; i < num_fullblock_fs; i++) {
1589 fs_mask[i] = lp_build_zero(gallivm, mask_type);
1590 }
1591
1592 /* Do not bother executing code when mask is empty.. */
1593 if (do_branch) {
1594 check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
1595
1596 for (i = 0; i < num_fullblock_fs; ++i) {
1597 check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
1598 }
1599
1600 lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
1601 lp_build_mask_check(&mask_ctx);
1602 }
1603
1604 partial_mask |= !variant->opaque;
1605 i32_zero = lp_build_const_int32(gallivm, 0);
1606
1607 #if HAVE_LLVM < 0x0302
1608 /*
1609 * undef triggers a crash in LLVMBuildTrunc in convert_from_blend_type in some
1610 * cases (seen with r10g10b10a2, 128bit wide vectors) (only used for 1d case).
1611 */
1612 undef_src_val = lp_build_zero(gallivm, fs_type);
1613 #else
1614 undef_src_val = lp_build_undef(gallivm, fs_type);
1615 #endif
1616
1617 row_type.length = fs_type.length;
1618 vector_width = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
1619
1620 /* Compute correct swizzle and count channels */
1621 memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
1622 dst_channels = 0;
1623
1624 for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
1625 /* Ensure channel is used */
1626 if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
1627 continue;
1628 }
1629
1630 /* Ensure not already written to (happens in case with GL_ALPHA) */
1631 if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
1632 continue;
1633 }
1634
1635 /* Ensure we havn't already found all channels */
1636 if (dst_channels >= out_format_desc->nr_channels) {
1637 continue;
1638 }
1639
1640 swizzle[out_format_desc->swizzle[i]] = i;
1641 ++dst_channels;
1642
1643 if (i == alpha_channel) {
1644 has_alpha = true;
1645 }
1646 }
1647
1648 if (format_expands_to_float_soa(out_format_desc)) {
1649 /*
1650 * the code above can't work for layout_other
1651 * for srgb it would sort of work but we short-circuit swizzles, etc.
1652 * as that is done as part of unpack / pack.
1653 */
1654 dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
1655 has_alpha = true;
1656 swizzle[0] = 0;
1657 swizzle[1] = 1;
1658 swizzle[2] = 2;
1659 swizzle[3] = 3;
1660 pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
1661 }
1662
1663 /* If 3 channels then pad to include alpha for 4 element transpose */
1664 if (dst_channels == 3 && !has_alpha) {
1665 for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
1666 if (swizzle[i] > TGSI_NUM_CHANNELS)
1667 swizzle[i] = 3;
1668 }
1669 if (out_format_desc->nr_channels == 4) {
1670 dst_channels = 4;
1671 }
1672 }
1673
1674 /*
1675 * Load shader output
1676 */
1677 for (i = 0; i < num_fullblock_fs; ++i) {
1678 /* Always load alpha for use in blending */
1679 LLVMValueRef alpha;
1680 if (i < num_fs) {
1681 alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
1682 }
1683 else {
1684 alpha = undef_src_val;
1685 }
1686
1687 /* Load each channel */
1688 for (j = 0; j < dst_channels; ++j) {
1689 assert(swizzle[j] < 4);
1690 if (i < num_fs) {
1691 fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
1692 }
1693 else {
1694 fs_src[i][j] = undef_src_val;
1695 }
1696 }
1697
1698 /* If 3 channels then pad to include alpha for 4 element transpose */
1699 /*
1700 * XXX If we include that here maybe could actually use it instead of
1701 * separate alpha for blending?
1702 */
1703 if (dst_channels == 3 && !has_alpha) {
1704 fs_src[i][3] = alpha;
1705 }
1706
1707 /* We split the row_mask and row_alpha as we want 128bit interleave */
1708 if (fs_type.length == 8) {
1709 src_mask[i*2 + 0] = lp_build_extract_range(gallivm, fs_mask[i], 0, src_channels);
1710 src_mask[i*2 + 1] = lp_build_extract_range(gallivm, fs_mask[i], src_channels, src_channels);
1711
1712 src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1713 src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha, src_channels, src_channels);
1714 } else {
1715 src_mask[i] = fs_mask[i];
1716 src_alpha[i] = alpha;
1717 }
1718 }
1719 if (dual_source_blend) {
1720 /* same as above except different src/dst, skip masks and comments... */
1721 for (i = 0; i < num_fullblock_fs; ++i) {
1722 LLVMValueRef alpha;
1723 if (i < num_fs) {
1724 alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
1725 }
1726 else {
1727 alpha = undef_src_val;
1728 }
1729
1730 for (j = 0; j < dst_channels; ++j) {
1731 assert(swizzle[j] < 4);
1732 if (i < num_fs) {
1733 fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
1734 }
1735 else {
1736 fs_src1[i][j] = undef_src_val;
1737 }
1738 }
1739 if (dst_channels == 3 && !has_alpha) {
1740 fs_src1[i][3] = alpha;
1741 }
1742 if (fs_type.length == 8) {
1743 src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
1744 src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha, src_channels, src_channels);
1745 } else {
1746 src1_alpha[i] = alpha;
1747 }
1748 }
1749 }
1750
1751 if (util_format_is_pure_integer(out_format)) {
1752 /*
1753 * In this case fs_type was really ints or uints disguised as floats,
1754 * fix that up now.
1755 */
1756 fs_type.floating = 0;
1757 fs_type.sign = dst_type.sign;
1758 for (i = 0; i < num_fullblock_fs; ++i) {
1759 for (j = 0; j < dst_channels; ++j) {
1760 fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
1761 lp_build_vec_type(gallivm, fs_type), "");
1762 }
1763 if (dst_channels == 3 && !has_alpha) {
1764 fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
1765 lp_build_vec_type(gallivm, fs_type), "");
1766 }
1767 }
1768 }
1769
1770 /*
1771 * Pixel twiddle from fragment shader order to memory order
1772 */
1773 src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
1774 dst_channels, fs_src, src, pad_inline);
1775 if (dual_source_blend) {
1776 generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
1777 fs_src1, src1, pad_inline);
1778 }
1779
1780 src_channels = dst_channels < 3 ? dst_channels : 4;
1781 if (src_count != num_fullblock_fs * src_channels) {
1782 unsigned ds = src_count / (num_fullblock_fs * src_channels);
1783 row_type.length /= ds;
1784 fs_type.length = row_type.length;
1785 }
1786
1787 blend_type = row_type;
1788 mask_type.length = 4;
1789
1790 /* Convert src to row_type */
1791 if (dual_source_blend) {
1792 struct lp_type old_row_type = row_type;
1793 lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
1794 src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
1795 }
1796 else {
1797 src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
1798 }
1799
1800 /* If the rows are not an SSE vector, combine them to become SSE size! */
1801 if ((row_type.width * row_type.length) % 128) {
1802 unsigned bits = row_type.width * row_type.length;
1803 unsigned combined;
1804
1805 assert(src_count >= (vector_width / bits));
1806
1807 dst_count = src_count / (vector_width / bits);
1808
1809 combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
1810 if (dual_source_blend) {
1811 lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
1812 }
1813
1814 row_type.length *= combined;
1815 src_count /= combined;
1816
1817 bits = row_type.width * row_type.length;
1818 assert(bits == 128 || bits == 256);
1819 }
1820
1821
1822 /*
1823 * Blend Colour conversion
1824 */
1825 blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
1826 blend_color = LLVMBuildPointerCast(builder, blend_color, LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
1827 blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color, &i32_zero, 1, ""), "");
1828
1829 /* Convert */
1830 lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
1831
1832 if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
1833 /*
1834 * since blending is done with floats, there was no conversion.
1835 * However, the rules according to fixed point renderbuffers still
1836 * apply, that is we must clamp inputs to 0.0/1.0.
1837 * (This would apply to separate alpha conversion too but we currently
1838 * force has_alpha to be true.)
1839 * TODO: should skip this with "fake" blend, since post-blend conversion
1840 * will clamp anyway.
1841 * TODO: could also skip this if fragment color clamping is enabled. We
1842 * don't support it natively so it gets baked into the shader however, so
1843 * can't really tell here.
1844 */
1845 struct lp_build_context f32_bld;
1846 assert(row_type.floating);
1847 lp_build_context_init(&f32_bld, gallivm, row_type);
1848 for (i = 0; i < src_count; i++) {
1849 src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
1850 }
1851 if (dual_source_blend) {
1852 for (i = 0; i < src_count; i++) {
1853 src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
1854 }
1855 }
1856 /* probably can't be different than row_type but better safe than sorry... */
1857 lp_build_context_init(&f32_bld, gallivm, blend_type);
1858 blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
1859 }
1860
1861 /* Extract alpha */
1862 blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
1863
1864 /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
1865 pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
1866 if (pad_inline) {
1867 /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
1868 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
1869 } else {
1870 /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
1871 blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
1872 }
1873
1874 /*
1875 * Mask conversion
1876 */
1877 lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
1878
1879 if (src_count < block_height) {
1880 lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
1881 } else if (src_count > block_height) {
1882 for (i = src_count; i > 0; --i) {
1883 unsigned pixels = block_size / src_count;
1884 unsigned idx = i - 1;
1885
1886 src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
1887 (idx * pixels) % 4, pixels);
1888 }
1889 }
1890
1891 assert(mask_type.width == 32);
1892
1893 for (i = 0; i < src_count; ++i) {
1894 unsigned pixels = block_size / src_count;
1895 unsigned pixel_width = row_type.width * dst_channels;
1896
1897 if (pixel_width == 24) {
1898 mask_type.width = 8;
1899 mask_type.length = vector_width / mask_type.width;
1900 } else {
1901 mask_type.length = pixels;
1902 mask_type.width = row_type.width * dst_channels;
1903
1904 src_mask[i] = LLVMBuildIntCast(builder, src_mask[i], lp_build_int_vec_type(gallivm, mask_type), "");
1905
1906 mask_type.length *= dst_channels;
1907 mask_type.width /= dst_channels;
1908 }
1909
1910 src_mask[i] = LLVMBuildBitCast(builder, src_mask[i], lp_build_int_vec_type(gallivm, mask_type), "");
1911 src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
1912 }
1913
1914 /*
1915 * Alpha conversion
1916 */
1917 if (!has_alpha) {
1918 struct lp_type alpha_type = fs_type;
1919 alpha_type.length = 4;
1920 convert_alpha(gallivm, row_type, alpha_type,
1921 block_size, block_height,
1922 src_count, dst_channels,
1923 pad_inline, src_alpha);
1924 if (dual_source_blend) {
1925 convert_alpha(gallivm, row_type, alpha_type,
1926 block_size, block_height,
1927 src_count, dst_channels,
1928 pad_inline, src1_alpha);
1929 }
1930 }
1931
1932
1933 /*
1934 * Load dst from memory
1935 */
1936 if (src_count < block_height) {
1937 dst_count = block_height;
1938 } else {
1939 dst_count = src_count;
1940 }
1941
1942 dst_type.length *= block_size / dst_count;
1943
1944 if (format_expands_to_float_soa(out_format_desc)) {
1945 /*
1946 * we need multiple values at once for the conversion, so can as well
1947 * load them vectorized here too instead of concatenating later.
1948 * (Still need concatenation later for 8-wide vectors).
1949 */
1950 dst_count = block_height;
1951 dst_type.length = block_width;
1952 }
1953
1954 /*
1955 * Compute the alignment of the destination pointer in bytes
1956 * We fetch 1-4 pixels, if the format has pot alignment then those fetches
1957 * are always aligned by MIN2(16, fetch_width) except for buffers (not
1958 * 1d tex but can't distinguish here) so need to stick with per-pixel
1959 * alignment in this case.
1960 */
1961 if (is_1d) {
1962 dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
1963 }
1964 else {
1965 dst_alignment = dst_type.length * dst_type.width / 8;
1966 }
1967 /* Force power-of-two alignment by extracting only the least-significant-bit */
1968 dst_alignment = 1 << (ffs(dst_alignment) - 1);
1969 /*
1970 * Resource base and stride pointers are aligned to 16 bytes, so that's
1971 * the maximum alignment we can guarantee
1972 */
1973 dst_alignment = MIN2(16, dst_alignment);
1974
1975 if (is_1d) {
1976 load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
1977 dst, dst_type, dst_count / 4, dst_alignment);
1978 for (i = dst_count / 4; i < dst_count; i++) {
1979 dst[i] = lp_build_undef(gallivm, dst_type);
1980 }
1981
1982 }
1983 else {
1984 load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
1985 dst, dst_type, dst_count, dst_alignment);
1986 }
1987
1988
1989 /*
1990 * Convert from dst/output format to src/blending format.
1991 *
1992 * This is necessary as we can only read 1 row from memory at a time,
1993 * so the minimum dst_count will ever be at this point is 4.
1994 *
1995 * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
1996 * this will take the 4 dsts and combine them into 1 src so we can perform blending
1997 * on all 16 pixels in that single vector at once.
1998 */
1999 if (dst_count > src_count) {
2000 lp_build_concat_n(gallivm, dst_type, dst, 4, dst, src_count);
2001 }
2002
2003 /*
2004 * Blending
2005 */
2006 /* XXX this is broken for RGB8 formats -
2007 * they get expanded from 12 to 16 elements (to include alpha)
2008 * by convert_to_blend_type then reduced to 15 instead of 12
2009 * by convert_from_blend_type (a simple fix though breaks A8...).
2010 * R16G16B16 also crashes differently however something going wrong
2011 * inside llvm handling npot vector sizes seemingly.
2012 * It seems some cleanup could be done here (like skipping conversion/blend
2013 * when not needed).
2014 */
2015 convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type, row_type, dst, src_count);
2016
2017 /*
2018 * FIXME: Really should get logic ops / masks out of generic blend / row
2019 * format. Logic ops will definitely not work on the blend float format
2020 * used for SRGB here and I think OpenGL expects this to work as expected
2021 * (that is incoming values converted to srgb then logic op applied).
2022 */
2023 for (i = 0; i < src_count; ++i) {
2024 dst[i] = lp_build_blend_aos(gallivm,
2025 &variant->key.blend,
2026 out_format,
2027 row_type,
2028 rt,
2029 src[i],
2030 has_alpha ? NULL : src_alpha[i],
2031 src1[i],
2032 has_alpha ? NULL : src1_alpha[i],
2033 dst[i],
2034 partial_mask ? src_mask[i] : NULL,
2035 blend_color,
2036 has_alpha ? NULL : blend_alpha,
2037 swizzle,
2038 pad_inline ? 4 : dst_channels);
2039 }
2040
2041 convert_from_blend_type(gallivm, block_size, out_format_desc, row_type, dst_type, dst, src_count);
2042
2043 /* Split the blend rows back to memory rows */
2044 if (dst_count > src_count) {
2045 row_type.length = dst_type.length * (dst_count / src_count);
2046
2047 if (src_count == 1) {
2048 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2049 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2050
2051 row_type.length /= 2;
2052 src_count *= 2;
2053 }
2054
2055 dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2056 dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2057 dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2058 dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2059
2060 row_type.length /= 2;
2061 src_count *= 2;
2062 }
2063
2064 /*
2065 * Store blend result to memory
2066 */
2067 if (is_1d) {
2068 store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2069 dst, dst_type, dst_count / 4, dst_alignment);
2070 }
2071 else {
2072 store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2073 dst, dst_type, dst_count, dst_alignment);
2074 }
2075
2076 if (dst_type.floating && dst_type.width != 32) {
2077 lp_build_fpstate_set(gallivm, fpstate);
2078 }
2079
2080 if (do_branch) {
2081 lp_build_mask_end(&mask_ctx);
2082 }
2083 }
2084
2085
2086 /**
2087 * Generate the runtime callable function for the whole fragment pipeline.
2088 * Note that the function which we generate operates on a block of 16
2089 * pixels at at time. The block contains 2x2 quads. Each quad contains
2090 * 2x2 pixels.
2091 */
2092 static void
2093 generate_fragment(struct llvmpipe_context *lp,
2094 struct lp_fragment_shader *shader,
2095 struct lp_fragment_shader_variant *variant,
2096 unsigned partial_mask)
2097 {
2098 struct gallivm_state *gallivm = variant->gallivm;
2099 const struct lp_fragment_shader_variant_key *key = &variant->key;
2100 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2101 char func_name[256];
2102 struct lp_type fs_type;
2103 struct lp_type blend_type;
2104 LLVMTypeRef fs_elem_type;
2105 LLVMTypeRef blend_vec_type;
2106 LLVMTypeRef arg_types[13];
2107 LLVMTypeRef func_type;
2108 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
2109 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
2110 LLVMValueRef context_ptr;
2111 LLVMValueRef x;
2112 LLVMValueRef y;
2113 LLVMValueRef a0_ptr;
2114 LLVMValueRef dadx_ptr;
2115 LLVMValueRef dady_ptr;
2116 LLVMValueRef color_ptr_ptr;
2117 LLVMValueRef stride_ptr;
2118 LLVMValueRef depth_ptr;
2119 LLVMValueRef depth_stride;
2120 LLVMValueRef mask_input;
2121 LLVMValueRef thread_data_ptr;
2122 LLVMBasicBlockRef block;
2123 LLVMBuilderRef builder;
2124 struct lp_build_sampler_soa *sampler;
2125 struct lp_build_interp_soa_context interp;
2126 LLVMValueRef fs_mask[16 / 4];
2127 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
2128 LLVMValueRef function;
2129 LLVMValueRef facing;
2130 unsigned num_fs;
2131 unsigned i;
2132 unsigned chan;
2133 unsigned cbuf;
2134 boolean cbuf0_write_all;
2135 const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
2136 util_blend_state_is_dual(&key->blend, 0);
2137
2138 assert(lp_native_vector_width / 32 >= 4);
2139
2140 /* Adjust color input interpolation according to flatshade state:
2141 */
2142 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
2143 for (i = 0; i < shader->info.base.num_inputs; i++) {
2144 if (inputs[i].interp == LP_INTERP_COLOR) {
2145 if (key->flatshade)
2146 inputs[i].interp = LP_INTERP_CONSTANT;
2147 else
2148 inputs[i].interp = LP_INTERP_PERSPECTIVE;
2149 }
2150 }
2151
2152 /* check if writes to cbuf[0] are to be copied to all cbufs */
2153 cbuf0_write_all = FALSE;
2154 for (i = 0;i < shader->info.base.num_properties; i++) {
2155 if (shader->info.base.properties[i].name ==
2156 TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS) {
2157 cbuf0_write_all = TRUE;
2158 break;
2159 }
2160 }
2161
2162 /* TODO: actually pick these based on the fs and color buffer
2163 * characteristics. */
2164
2165 memset(&fs_type, 0, sizeof fs_type);
2166 fs_type.floating = TRUE; /* floating point values */
2167 fs_type.sign = TRUE; /* values are signed */
2168 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
2169 fs_type.width = 32; /* 32-bit float */
2170 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
2171
2172 memset(&blend_type, 0, sizeof blend_type);
2173 blend_type.floating = FALSE; /* values are integers */
2174 blend_type.sign = FALSE; /* values are unsigned */
2175 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
2176 blend_type.width = 8; /* 8-bit ubyte values */
2177 blend_type.length = 16; /* 16 elements per vector */
2178
2179 /*
2180 * Generate the function prototype. Any change here must be reflected in
2181 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
2182 */
2183
2184 fs_elem_type = lp_build_elem_type(gallivm, fs_type);
2185
2186 blend_vec_type = lp_build_vec_type(gallivm, blend_type);
2187
2188 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s",
2189 shader->no, variant->no, partial_mask ? "partial" : "whole");
2190
2191 arg_types[0] = variant->jit_context_ptr_type; /* context */
2192 arg_types[1] = int32_type; /* x */
2193 arg_types[2] = int32_type; /* y */
2194 arg_types[3] = int32_type; /* facing */
2195 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
2196 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
2197 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
2198 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
2199 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */
2200 arg_types[9] = int32_type; /* mask_input */
2201 arg_types[10] = variant->jit_thread_data_ptr_type; /* per thread data */
2202 arg_types[11] = LLVMPointerType(int32_type, 0); /* stride */
2203 arg_types[12] = int32_type; /* depth_stride */
2204
2205 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
2206 arg_types, Elements(arg_types), 0);
2207
2208 function = LLVMAddFunction(gallivm->module, func_name, func_type);
2209 LLVMSetFunctionCallConv(function, LLVMCCallConv);
2210
2211 variant->function[partial_mask] = function;
2212
2213 /* XXX: need to propagate noalias down into color param now we are
2214 * passing a pointer-to-pointer?
2215 */
2216 for(i = 0; i < Elements(arg_types); ++i)
2217 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
2218 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
2219
2220 context_ptr = LLVMGetParam(function, 0);
2221 x = LLVMGetParam(function, 1);
2222 y = LLVMGetParam(function, 2);
2223 facing = LLVMGetParam(function, 3);
2224 a0_ptr = LLVMGetParam(function, 4);
2225 dadx_ptr = LLVMGetParam(function, 5);
2226 dady_ptr = LLVMGetParam(function, 6);
2227 color_ptr_ptr = LLVMGetParam(function, 7);
2228 depth_ptr = LLVMGetParam(function, 8);
2229 mask_input = LLVMGetParam(function, 9);
2230 thread_data_ptr = LLVMGetParam(function, 10);
2231 stride_ptr = LLVMGetParam(function, 11);
2232 depth_stride = LLVMGetParam(function, 12);
2233
2234 lp_build_name(context_ptr, "context");
2235 lp_build_name(x, "x");
2236 lp_build_name(y, "y");
2237 lp_build_name(a0_ptr, "a0");
2238 lp_build_name(dadx_ptr, "dadx");
2239 lp_build_name(dady_ptr, "dady");
2240 lp_build_name(color_ptr_ptr, "color_ptr_ptr");
2241 lp_build_name(depth_ptr, "depth");
2242 lp_build_name(thread_data_ptr, "thread_data");
2243 lp_build_name(mask_input, "mask_input");
2244 lp_build_name(stride_ptr, "stride_ptr");
2245 lp_build_name(depth_stride, "depth_stride");
2246
2247 /*
2248 * Function body
2249 */
2250
2251 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
2252 builder = gallivm->builder;
2253 assert(builder);
2254 LLVMPositionBuilderAtEnd(builder, block);
2255
2256 /* code generated texture sampling */
2257 sampler = lp_llvm_sampler_soa_create(key->state, context_ptr);
2258
2259 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
2260 /* for 1d resources only run "upper half" of stamp */
2261 if (key->resource_1d)
2262 num_fs /= 2;
2263
2264 {
2265 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
2266 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
2267 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
2268 num_loop, "mask_store");
2269 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
2270
2271 /*
2272 * The shader input interpolation info is not explicitely baked in the
2273 * shader key, but everything it derives from (TGSI, and flatshade) is
2274 * already included in the shader key.
2275 */
2276 lp_build_interp_soa_init(&interp,
2277 gallivm,
2278 shader->info.base.num_inputs,
2279 inputs,
2280 shader->info.base.pixel_center_integer,
2281 builder, fs_type,
2282 a0_ptr, dadx_ptr, dady_ptr,
2283 x, y);
2284
2285 for (i = 0; i < num_fs; i++) {
2286 LLVMValueRef mask;
2287 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2288 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
2289 &indexi, 1, "mask_ptr");
2290
2291 if (partial_mask) {
2292 mask = generate_quad_mask(gallivm, fs_type,
2293 i*fs_type.length/4, mask_input);
2294 }
2295 else {
2296 mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
2297 }
2298 LLVMBuildStore(builder, mask, mask_ptr);
2299 }
2300
2301 generate_fs_loop(gallivm,
2302 shader, key,
2303 builder,
2304 fs_type,
2305 context_ptr,
2306 num_loop,
2307 &interp,
2308 sampler,
2309 mask_store, /* output */
2310 color_store,
2311 depth_ptr,
2312 depth_stride,
2313 facing,
2314 thread_data_ptr);
2315
2316 for (i = 0; i < num_fs; i++) {
2317 LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
2318 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store,
2319 &indexi, 1, "");
2320 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask");
2321 /* This is fucked up need to reorganize things */
2322 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2323 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2324 ptr = LLVMBuildGEP(builder,
2325 color_store[cbuf * !cbuf0_write_all][chan],
2326 &indexi, 1, "");
2327 fs_out_color[cbuf][chan][i] = ptr;
2328 }
2329 }
2330 if (dual_source_blend) {
2331 /* only support one dual source blend target hence always use output 1 */
2332 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
2333 ptr = LLVMBuildGEP(builder,
2334 color_store[1][chan],
2335 &indexi, 1, "");
2336 fs_out_color[1][chan][i] = ptr;
2337 }
2338 }
2339 }
2340 }
2341
2342 sampler->destroy(sampler);
2343
2344 /* Loop over color outputs / color buffers to do blending.
2345 */
2346 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
2347 LLVMValueRef color_ptr;
2348 LLVMValueRef stride;
2349 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
2350
2351 boolean do_branch = ((key->depth.enabled
2352 || key->stencil[0].enabled
2353 || key->alpha.enabled)
2354 && !shader->info.base.uses_kill);
2355
2356 color_ptr = LLVMBuildLoad(builder,
2357 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
2358 "");
2359
2360 lp_build_name(color_ptr, "color_ptr%d", cbuf);
2361
2362 stride = LLVMBuildLoad(builder,
2363 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
2364 "");
2365
2366 generate_unswizzled_blend(gallivm, cbuf, variant, key->cbuf_format[cbuf],
2367 num_fs, fs_type, fs_mask, fs_out_color,
2368 context_ptr, color_ptr, stride, partial_mask, do_branch);
2369 }
2370
2371 LLVMBuildRetVoid(builder);
2372
2373 gallivm_verify_function(gallivm, function);
2374
2375 variant->nr_instrs += lp_build_count_instructions(function);
2376 }
2377
2378
2379 static void
2380 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key)
2381 {
2382 unsigned i;
2383
2384 debug_printf("fs variant %p:\n", (void *) key);
2385
2386 if (key->flatshade) {
2387 debug_printf("flatshade = 1\n");
2388 }
2389 for (i = 0; i < key->nr_cbufs; ++i) {
2390 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
2391 }
2392 if (key->depth.enabled) {
2393 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
2394 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
2395 debug_printf("depth.writemask = %u\n", key->depth.writemask);
2396 }
2397
2398 for (i = 0; i < 2; ++i) {
2399 if (key->stencil[i].enabled) {
2400 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE));
2401 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE));
2402 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE));
2403 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE));
2404 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
2405 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
2406 }
2407 }
2408
2409 if (key->alpha.enabled) {
2410 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
2411 }
2412
2413 if (key->occlusion_count) {
2414 debug_printf("occlusion_count = 1\n");
2415 }
2416
2417 if (key->blend.logicop_enable) {
2418 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE));
2419 }
2420 else if (key->blend.rt[0].blend_enable) {
2421 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
2422 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
2423 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
2424 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
2425 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
2426 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
2427 }
2428 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
2429 for (i = 0; i < key->nr_samplers; ++i) {
2430 const struct lp_static_sampler_state *sampler = &key->state[i].sampler_state;
2431 debug_printf("sampler[%u] = \n", i);
2432 debug_printf(" .wrap = %s %s %s\n",
2433 util_dump_tex_wrap(sampler->wrap_s, TRUE),
2434 util_dump_tex_wrap(sampler->wrap_t, TRUE),
2435 util_dump_tex_wrap(sampler->wrap_r, TRUE));
2436 debug_printf(" .min_img_filter = %s\n",
2437 util_dump_tex_filter(sampler->min_img_filter, TRUE));
2438 debug_printf(" .min_mip_filter = %s\n",
2439 util_dump_tex_mipfilter(sampler->min_mip_filter, TRUE));
2440 debug_printf(" .mag_img_filter = %s\n",
2441 util_dump_tex_filter(sampler->mag_img_filter, TRUE));
2442 if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
2443 debug_printf(" .compare_func = %s\n", util_dump_func(sampler->compare_func, TRUE));
2444 debug_printf(" .normalized_coords = %u\n", sampler->normalized_coords);
2445 debug_printf(" .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
2446 debug_printf(" .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
2447 debug_printf(" .apply_min_lod = %u\n", sampler->apply_min_lod);
2448 debug_printf(" .apply_max_lod = %u\n", sampler->apply_max_lod);
2449 }
2450 for (i = 0; i < key->nr_sampler_views; ++i) {
2451 const struct lp_static_texture_state *texture = &key->state[i].texture_state;
2452 debug_printf("texture[%u] = \n", i);
2453 debug_printf(" .format = %s\n",
2454 util_format_name(texture->format));
2455 debug_printf(" .target = %s\n",
2456 util_dump_tex_target(texture->target, TRUE));
2457 debug_printf(" .level_zero_only = %u\n",
2458 texture->level_zero_only);
2459 debug_printf(" .pot = %u %u %u\n",
2460 texture->pot_width,
2461 texture->pot_height,
2462 texture->pot_depth);
2463 }
2464 }
2465
2466
2467 void
2468 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant)
2469 {
2470 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
2471 variant->shader->no, variant->no);
2472 tgsi_dump(variant->shader->base.tokens, 0);
2473 dump_fs_variant_key(&variant->key);
2474 debug_printf("variant->opaque = %u\n", variant->opaque);
2475 debug_printf("\n");
2476 }
2477
2478
2479 /**
2480 * Generate a new fragment shader variant from the shader code and
2481 * other state indicated by the key.
2482 */
2483 static struct lp_fragment_shader_variant *
2484 generate_variant(struct llvmpipe_context *lp,
2485 struct lp_fragment_shader *shader,
2486 const struct lp_fragment_shader_variant_key *key)
2487 {
2488 struct lp_fragment_shader_variant *variant;
2489 const struct util_format_description *cbuf0_format_desc;
2490 boolean fullcolormask;
2491
2492 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
2493 if(!variant)
2494 return NULL;
2495
2496 variant->gallivm = gallivm_create();
2497 if (!variant->gallivm) {
2498 FREE(variant);
2499 return NULL;
2500 }
2501
2502 variant->shader = shader;
2503 variant->list_item_global.base = variant;
2504 variant->list_item_local.base = variant;
2505 variant->no = shader->variants_created++;
2506
2507 memcpy(&variant->key, key, shader->variant_key_size);
2508
2509 /*
2510 * Determine whether we are touching all channels in the color buffer.
2511 */
2512 fullcolormask = FALSE;
2513 if (key->nr_cbufs == 1) {
2514 cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
2515 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
2516 }
2517
2518 variant->opaque =
2519 !key->blend.logicop_enable &&
2520 !key->blend.rt[0].blend_enable &&
2521 fullcolormask &&
2522 !key->stencil[0].enabled &&
2523 !key->alpha.enabled &&
2524 !key->depth.enabled &&
2525 !shader->info.base.uses_kill
2526 ? TRUE : FALSE;
2527
2528 if ((shader->info.base.num_tokens <= 1) &&
2529 !key->depth.enabled && !key->stencil[0].enabled) {
2530 variant->ps_inv_multiplier = 0;
2531 } else {
2532 variant->ps_inv_multiplier = 1;
2533 }
2534
2535 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
2536 lp_debug_fs_variant(variant);
2537 }
2538
2539 lp_jit_init_types(variant);
2540
2541 if (variant->jit_function[RAST_EDGE_TEST] == NULL)
2542 generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
2543
2544 if (variant->jit_function[RAST_WHOLE] == NULL) {
2545 if (variant->opaque) {
2546 /* Specialized shader, which doesn't need to read the color buffer. */
2547 generate_fragment(lp, shader, variant, RAST_WHOLE);
2548 }
2549 }
2550
2551 /*
2552 * Compile everything
2553 */
2554
2555 gallivm_compile_module(variant->gallivm);
2556
2557 if (variant->function[RAST_EDGE_TEST]) {
2558 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
2559 gallivm_jit_function(variant->gallivm,
2560 variant->function[RAST_EDGE_TEST]);
2561 }
2562
2563 if (variant->function[RAST_WHOLE]) {
2564 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
2565 gallivm_jit_function(variant->gallivm,
2566 variant->function[RAST_WHOLE]);
2567 } else if (!variant->jit_function[RAST_WHOLE]) {
2568 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
2569 }
2570
2571 return variant;
2572 }
2573
2574
2575 static void *
2576 llvmpipe_create_fs_state(struct pipe_context *pipe,
2577 const struct pipe_shader_state *templ)
2578 {
2579 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2580 struct lp_fragment_shader *shader;
2581 int nr_samplers;
2582 int nr_sampler_views;
2583 int i;
2584
2585 shader = CALLOC_STRUCT(lp_fragment_shader);
2586 if (!shader)
2587 return NULL;
2588
2589 shader->no = fs_no++;
2590 make_empty_list(&shader->variants);
2591
2592 /* get/save the summary info for this shader */
2593 lp_build_tgsi_info(templ->tokens, &shader->info);
2594
2595 /* we need to keep a local copy of the tokens */
2596 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
2597
2598 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
2599 if (shader->draw_data == NULL) {
2600 FREE((void *) shader->base.tokens);
2601 FREE(shader);
2602 return NULL;
2603 }
2604
2605 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2606 nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2607
2608 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key,
2609 state[MAX2(nr_samplers, nr_sampler_views)]);
2610
2611 for (i = 0; i < shader->info.base.num_inputs; i++) {
2612 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
2613 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i];
2614
2615 switch (shader->info.base.input_interpolate[i]) {
2616 case TGSI_INTERPOLATE_CONSTANT:
2617 shader->inputs[i].interp = LP_INTERP_CONSTANT;
2618 break;
2619 case TGSI_INTERPOLATE_LINEAR:
2620 shader->inputs[i].interp = LP_INTERP_LINEAR;
2621 break;
2622 case TGSI_INTERPOLATE_PERSPECTIVE:
2623 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
2624 break;
2625 case TGSI_INTERPOLATE_COLOR:
2626 shader->inputs[i].interp = LP_INTERP_COLOR;
2627 break;
2628 default:
2629 assert(0);
2630 break;
2631 }
2632
2633 switch (shader->info.base.input_semantic_name[i]) {
2634 case TGSI_SEMANTIC_FACE:
2635 shader->inputs[i].interp = LP_INTERP_FACING;
2636 break;
2637 case TGSI_SEMANTIC_POSITION:
2638 /* Position was already emitted above
2639 */
2640 shader->inputs[i].interp = LP_INTERP_POSITION;
2641 shader->inputs[i].src_index = 0;
2642 continue;
2643 }
2644
2645 shader->inputs[i].src_index = i+1;
2646 }
2647
2648 if (LP_DEBUG & DEBUG_TGSI) {
2649 unsigned attrib;
2650 debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
2651 shader->no, (void *) shader);
2652 tgsi_dump(templ->tokens, 0);
2653 debug_printf("usage masks:\n");
2654 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
2655 unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
2656 debug_printf(" IN[%u].%s%s%s%s\n",
2657 attrib,
2658 usage_mask & TGSI_WRITEMASK_X ? "x" : "",
2659 usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
2660 usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
2661 usage_mask & TGSI_WRITEMASK_W ? "w" : "");
2662 }
2663 debug_printf("\n");
2664 }
2665
2666 return shader;
2667 }
2668
2669
2670 static void
2671 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
2672 {
2673 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2674
2675 if (llvmpipe->fs == fs)
2676 return;
2677
2678 llvmpipe->fs = (struct lp_fragment_shader *) fs;
2679
2680 draw_bind_fragment_shader(llvmpipe->draw,
2681 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL));
2682
2683 llvmpipe->dirty |= LP_NEW_FS;
2684 }
2685
2686
2687 /**
2688 * Remove shader variant from two lists: the shader's variant list
2689 * and the context's variant list.
2690 */
2691 void
2692 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
2693 struct lp_fragment_shader_variant *variant)
2694 {
2695 unsigned i;
2696
2697 if (gallivm_debug & GALLIVM_DEBUG_IR) {
2698 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached"
2699 " #%u v total cached #%u\n",
2700 variant->shader->no,
2701 variant->no,
2702 variant->shader->variants_created,
2703 variant->shader->variants_cached,
2704 lp->nr_fs_variants);
2705 }
2706
2707 /* free all the variant's JIT'd functions */
2708 for (i = 0; i < Elements(variant->function); i++) {
2709 if (variant->function[i]) {
2710 gallivm_free_function(variant->gallivm,
2711 variant->function[i],
2712 variant->jit_function[i]);
2713 }
2714 }
2715
2716 gallivm_destroy(variant->gallivm);
2717
2718 /* remove from shader's list */
2719 remove_from_list(&variant->list_item_local);
2720 variant->shader->variants_cached--;
2721
2722 /* remove from context's list */
2723 remove_from_list(&variant->list_item_global);
2724 lp->nr_fs_variants--;
2725 lp->nr_fs_instrs -= variant->nr_instrs;
2726
2727 FREE(variant);
2728 }
2729
2730
2731 static void
2732 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
2733 {
2734 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2735 struct lp_fragment_shader *shader = fs;
2736 struct lp_fs_variant_list_item *li;
2737
2738 assert(fs != llvmpipe->fs);
2739
2740 /*
2741 * XXX: we need to flush the context until we have some sort of reference
2742 * counting in fragment shaders as they may still be binned
2743 * Flushing alone might not sufficient we need to wait on it too.
2744 */
2745 llvmpipe_finish(pipe, __FUNCTION__);
2746
2747 /* Delete all the variants */
2748 li = first_elem(&shader->variants);
2749 while(!at_end(&shader->variants, li)) {
2750 struct lp_fs_variant_list_item *next = next_elem(li);
2751 llvmpipe_remove_shader_variant(llvmpipe, li->base);
2752 li = next;
2753 }
2754
2755 /* Delete draw module's data */
2756 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
2757
2758 assert(shader->variants_cached == 0);
2759 FREE((void *) shader->base.tokens);
2760 FREE(shader);
2761 }
2762
2763
2764
2765 static void
2766 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
2767 uint shader, uint index,
2768 struct pipe_constant_buffer *cb)
2769 {
2770 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
2771 struct pipe_resource *constants = cb ? cb->buffer : NULL;
2772
2773 assert(shader < PIPE_SHADER_TYPES);
2774 assert(index < Elements(llvmpipe->constants[shader]));
2775
2776 /* note: reference counting */
2777 util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb);
2778
2779 if (shader == PIPE_SHADER_VERTEX ||
2780 shader == PIPE_SHADER_GEOMETRY) {
2781 /* Pass the constants to the 'draw' module */
2782 const unsigned size = cb ? cb->buffer_size : 0;
2783 const ubyte *data;
2784
2785 if (constants) {
2786 data = (ubyte *) llvmpipe_resource_data(constants);
2787 }
2788 else if (cb && cb->user_buffer) {
2789 data = (ubyte *) cb->user_buffer;
2790 }
2791 else {
2792 data = NULL;
2793 }
2794
2795 if (data)
2796 data += cb->buffer_offset;
2797
2798 draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
2799 index, data, size);
2800 }
2801
2802 llvmpipe->dirty |= LP_NEW_CONSTANTS;
2803
2804 if (cb && cb->user_buffer) {
2805 pipe_resource_reference(&constants, NULL);
2806 }
2807 }
2808
2809
2810 /**
2811 * Return the blend factor equivalent to a destination alpha of one.
2812 */
2813 static INLINE unsigned
2814 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
2815 {
2816 switch(factor) {
2817 case PIPE_BLENDFACTOR_DST_ALPHA:
2818 return PIPE_BLENDFACTOR_ONE;
2819 case PIPE_BLENDFACTOR_INV_DST_ALPHA:
2820 return PIPE_BLENDFACTOR_ZERO;
2821 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
2822 if (clamped_zero)
2823 return PIPE_BLENDFACTOR_ZERO;
2824 else
2825 return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
2826 }
2827
2828 return factor;
2829 }
2830
2831
2832 /**
2833 * We need to generate several variants of the fragment pipeline to match
2834 * all the combinations of the contributing state atoms.
2835 *
2836 * TODO: there is actually no reason to tie this to context state -- the
2837 * generated code could be cached globally in the screen.
2838 */
2839 static void
2840 make_variant_key(struct llvmpipe_context *lp,
2841 struct lp_fragment_shader *shader,
2842 struct lp_fragment_shader_variant_key *key)
2843 {
2844 unsigned i;
2845
2846 memset(key, 0, shader->variant_key_size);
2847
2848 if (lp->framebuffer.zsbuf) {
2849 enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
2850 const struct util_format_description *zsbuf_desc =
2851 util_format_description(zsbuf_format);
2852
2853 if (lp->depth_stencil->depth.enabled &&
2854 util_format_has_depth(zsbuf_desc)) {
2855 key->zsbuf_format = zsbuf_format;
2856 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
2857 }
2858 if (lp->depth_stencil->stencil[0].enabled &&
2859 util_format_has_stencil(zsbuf_desc)) {
2860 key->zsbuf_format = zsbuf_format;
2861 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
2862 }
2863 if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
2864 key->resource_1d = TRUE;
2865 }
2866 }
2867
2868 /*
2869 * Propagate the depth clamp setting from the rasterizer state.
2870 * depth_clip == 0 implies depth clamping is enabled.
2871 *
2872 * When clip_halfz is enabled, then always clamp the depth values.
2873 */
2874 if (lp->rasterizer->clip_halfz) {
2875 key->depth_clamp = 1;
2876 } else {
2877 key->depth_clamp = (lp->rasterizer->depth_clip == 0) ? 1 : 0;
2878 }
2879
2880 /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
2881 if (!lp->framebuffer.nr_cbufs ||
2882 !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
2883 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
2884 }
2885 if(key->alpha.enabled)
2886 key->alpha.func = lp->depth_stencil->alpha.func;
2887 /* alpha.ref_value is passed in jit_context */
2888
2889 key->flatshade = lp->rasterizer->flatshade;
2890 if (lp->active_occlusion_queries) {
2891 key->occlusion_count = TRUE;
2892 }
2893
2894 if (lp->framebuffer.nr_cbufs) {
2895 memcpy(&key->blend, lp->blend, sizeof key->blend);
2896 }
2897
2898 key->nr_cbufs = lp->framebuffer.nr_cbufs;
2899
2900 if (!key->blend.independent_blend_enable) {
2901 /* we always need independent blend otherwise the fixups below won't work */
2902 for (i = 1; i < key->nr_cbufs; i++) {
2903 memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
2904 }
2905 key->blend.independent_blend_enable = 1;
2906 }
2907
2908 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
2909 enum pipe_format format = lp->framebuffer.cbufs[i]->format;
2910 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
2911 const struct util_format_description *format_desc;
2912
2913 key->cbuf_format[i] = format;
2914
2915 /*
2916 * Figure out if this is a 1d resource. Note that OpenGL allows crazy
2917 * mixing of 2d textures with height 1 and 1d textures, so make sure
2918 * we pick 1d if any cbuf or zsbuf is 1d.
2919 */
2920 if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[0]->texture)) {
2921 key->resource_1d = TRUE;
2922 }
2923
2924 format_desc = util_format_description(format);
2925 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
2926 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
2927
2928 /*
2929 * Mask out color channels not present in the color buffer.
2930 */
2931 blend_rt->colormask &= util_format_colormask(format_desc);
2932
2933 /*
2934 * Disable blend for integer formats.
2935 */
2936 if (util_format_is_pure_integer(format)) {
2937 blend_rt->blend_enable = 0;
2938 }
2939
2940 /*
2941 * Our swizzled render tiles always have an alpha channel, but the linear
2942 * render target format often does not, so force here the dst alpha to be
2943 * one.
2944 *
2945 * This is not a mere optimization. Wrong results will be produced if the
2946 * dst alpha is used, the dst format does not have alpha, and the previous
2947 * rendering was not flushed from the swizzled to linear buffer. For
2948 * example, NonPowTwo DCT.
2949 *
2950 * TODO: This should be generalized to all channels for better
2951 * performance, but only alpha causes correctness issues.
2952 *
2953 * Also, force rgb/alpha func/factors match, to make AoS blending easier.
2954 */
2955 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W ||
2956 format_desc->swizzle[3] == format_desc->swizzle[0]) {
2957 /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
2958 boolean clamped_zero = !util_format_is_float(format) &&
2959 !util_format_is_snorm(format);
2960 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor,
2961 clamped_zero);
2962 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor,
2963 clamped_zero);
2964 blend_rt->alpha_func = blend_rt->rgb_func;
2965 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
2966 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
2967 }
2968 }
2969
2970 /* This value will be the same for all the variants of a given shader:
2971 */
2972 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
2973
2974 for(i = 0; i < key->nr_samplers; ++i) {
2975 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
2976 lp_sampler_static_sampler_state(&key->state[i].sampler_state,
2977 lp->samplers[PIPE_SHADER_FRAGMENT][i]);
2978 }
2979 }
2980
2981 /*
2982 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
2983 * are dx10-style? Can't really have mixed opcodes, at least not
2984 * if we want to skip the holes here (without rescanning tgsi).
2985 */
2986 if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
2987 key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
2988 for(i = 0; i < key->nr_sampler_views; ++i) {
2989 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1 << i)) {
2990 lp_sampler_static_texture_state(&key->state[i].texture_state,
2991 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
2992 }
2993 }
2994 }
2995 else {
2996 key->nr_sampler_views = key->nr_samplers;
2997 for(i = 0; i < key->nr_sampler_views; ++i) {
2998 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
2999 lp_sampler_static_texture_state(&key->state[i].texture_state,
3000 lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
3001 }
3002 }
3003 }
3004 }
3005
3006
3007
3008 /**
3009 * Update fragment shader state. This is called just prior to drawing
3010 * something when some fragment-related state has changed.
3011 */
3012 void
3013 llvmpipe_update_fs(struct llvmpipe_context *lp)
3014 {
3015 struct lp_fragment_shader *shader = lp->fs;
3016 struct lp_fragment_shader_variant_key key;
3017 struct lp_fragment_shader_variant *variant = NULL;
3018 struct lp_fs_variant_list_item *li;
3019
3020 make_variant_key(lp, shader, &key);
3021
3022 /* Search the variants for one which matches the key */
3023 li = first_elem(&shader->variants);
3024 while(!at_end(&shader->variants, li)) {
3025 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) {
3026 variant = li->base;
3027 break;
3028 }
3029 li = next_elem(li);
3030 }
3031
3032 if (variant) {
3033 /* Move this variant to the head of the list to implement LRU
3034 * deletion of shader's when we have too many.
3035 */
3036 move_to_head(&lp->fs_variants_list, &variant->list_item_global);
3037 }
3038 else {
3039 /* variant not found, create it now */
3040 int64_t t0, t1, dt;
3041 unsigned i;
3042 unsigned variants_to_cull;
3043
3044 if (0) {
3045 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
3046 lp->nr_fs_variants,
3047 lp->nr_fs_instrs,
3048 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
3049 }
3050
3051 /* First, check if we've exceeded the max number of shader variants.
3052 * If so, free 25% of them (the least recently used ones).
3053 */
3054 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 4 : 0;
3055
3056 if (variants_to_cull ||
3057 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
3058 struct pipe_context *pipe = &lp->pipe;
3059
3060 /*
3061 * XXX: we need to flush the context until we have some sort of
3062 * reference counting in fragment shaders as they may still be binned
3063 * Flushing alone might not be sufficient we need to wait on it too.
3064 */
3065 llvmpipe_finish(pipe, __FUNCTION__);
3066
3067 /*
3068 * We need to re-check lp->nr_fs_variants because an arbitrarliy large
3069 * number of shader variants (potentially all of them) could be
3070 * pending for destruction on flush.
3071 */
3072
3073 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
3074 struct lp_fs_variant_list_item *item;
3075 if (is_empty_list(&lp->fs_variants_list)) {
3076 break;
3077 }
3078 item = last_elem(&lp->fs_variants_list);
3079 assert(item);
3080 assert(item->base);
3081 llvmpipe_remove_shader_variant(lp, item->base);
3082 }
3083 }
3084
3085 /*
3086 * Generate the new variant.
3087 */
3088 t0 = os_time_get();
3089 variant = generate_variant(lp, shader, &key);
3090 t1 = os_time_get();
3091 dt = t1 - t0;
3092 LP_COUNT_ADD(llvm_compile_time, dt);
3093 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
3094
3095 llvmpipe_variant_count++;
3096
3097 /* Put the new variant into the list */
3098 if (variant) {
3099 insert_at_head(&shader->variants, &variant->list_item_local);
3100 insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
3101 lp->nr_fs_variants++;
3102 lp->nr_fs_instrs += variant->nr_instrs;
3103 shader->variants_cached++;
3104 }
3105 }
3106
3107 /* Bind this variant */
3108 lp_setup_set_fs_variant(lp->setup, variant);
3109 }
3110
3111
3112
3113
3114
3115 void
3116 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
3117 {
3118 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
3119 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state;
3120 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
3121
3122 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
3123 }
3124
3125 /*
3126 * Rasterization is disabled if there is no pixel shader and
3127 * both depth and stencil testing are disabled:
3128 * http://msdn.microsoft.com/en-us/library/windows/desktop/bb205125
3129 */
3130 boolean
3131 llvmpipe_rasterization_disabled(struct llvmpipe_context *lp)
3132 {
3133 boolean null_fs = !lp->fs || lp->fs->info.base.num_tokens <= 1;
3134
3135 return (null_fs &&
3136 !lp->depth_stencil->depth.enabled &&
3137 !lp->depth_stencil->stencil[0].enabled);
3138 }