40c1c526224eba9e97d496b52602d2a5d20b78c2
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_from_nir.cpp
1 /*
2 * Copyright 2017 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Karol Herbst <kherbst@redhat.com>
23 */
24
25 #include "compiler/nir/nir.h"
26
27 #include "util/u_debug.h"
28
29 #include "codegen/nv50_ir.h"
30 #include "codegen/nv50_ir_from_common.h"
31 #include "codegen/nv50_ir_lowering_helper.h"
32 #include "codegen/nv50_ir_util.h"
33 #include "tgsi/tgsi_from_mesa.h"
34
35 #if __cplusplus >= 201103L
36 #include <unordered_map>
37 #else
38 #include <tr1/unordered_map>
39 #endif
40 #include <cstring>
41 #include <list>
42 #include <vector>
43
44 namespace {
45
46 #if __cplusplus >= 201103L
47 using std::hash;
48 using std::unordered_map;
49 #else
50 using std::tr1::hash;
51 using std::tr1::unordered_map;
52 #endif
53
54 using namespace nv50_ir;
55
56 int
57 type_size(const struct glsl_type *type, bool bindless)
58 {
59 return glsl_count_attribute_slots(type, false);
60 }
61
62 class Converter : public ConverterCommon
63 {
64 public:
65 Converter(Program *, nir_shader *, nv50_ir_prog_info *);
66
67 bool run();
68 private:
69 typedef std::vector<LValue*> LValues;
70 typedef unordered_map<unsigned, LValues> NirDefMap;
71 typedef unordered_map<unsigned, nir_load_const_instr*> ImmediateMap;
72 typedef unordered_map<unsigned, uint32_t> NirArrayLMemOffsets;
73 typedef unordered_map<unsigned, BasicBlock*> NirBlockMap;
74
75 CacheMode convert(enum gl_access_qualifier);
76 TexTarget convert(glsl_sampler_dim, bool isArray, bool isShadow);
77 LValues& convert(nir_alu_dest *);
78 BasicBlock* convert(nir_block *);
79 LValues& convert(nir_dest *);
80 SVSemantic convert(nir_intrinsic_op);
81 Value* convert(nir_load_const_instr*, uint8_t);
82 LValues& convert(nir_register *);
83 LValues& convert(nir_ssa_def *);
84
85 Value* getSrc(nir_alu_src *, uint8_t component = 0);
86 Value* getSrc(nir_register *, uint8_t);
87 Value* getSrc(nir_src *, uint8_t, bool indirect = false);
88 Value* getSrc(nir_ssa_def *, uint8_t);
89
90 // returned value is the constant part of the given source (either the
91 // nir_src or the selected source component of an intrinsic). Even though
92 // this is mostly an optimization to be able to skip indirects in a few
93 // cases, sometimes we require immediate values or set some fileds on
94 // instructions (e.g. tex) in order for codegen to consume those.
95 // If the found value has not a constant part, the Value gets returned
96 // through the Value parameter.
97 uint32_t getIndirect(nir_src *, uint8_t, Value *&);
98 // isScalar indicates that the addressing is scalar, vec4 addressing is
99 // assumed otherwise
100 uint32_t getIndirect(nir_intrinsic_instr *, uint8_t s, uint8_t c, Value *&,
101 bool isScalar = false);
102
103 uint32_t getSlotAddress(nir_intrinsic_instr *, uint8_t idx, uint8_t slot);
104
105 void setInterpolate(nv50_ir_varying *,
106 uint8_t,
107 bool centroid,
108 unsigned semantics);
109
110 Instruction *loadFrom(DataFile, uint8_t, DataType, Value *def, uint32_t base,
111 uint8_t c, Value *indirect0 = NULL,
112 Value *indirect1 = NULL, bool patch = false);
113 void storeTo(nir_intrinsic_instr *, DataFile, operation, DataType,
114 Value *src, uint8_t idx, uint8_t c, Value *indirect0 = NULL,
115 Value *indirect1 = NULL);
116
117 bool isFloatType(nir_alu_type);
118 bool isSignedType(nir_alu_type);
119 bool isResultFloat(nir_op);
120 bool isResultSigned(nir_op);
121
122 DataType getDType(nir_alu_instr *);
123 DataType getDType(nir_intrinsic_instr *);
124 DataType getDType(nir_intrinsic_instr *, bool isSigned);
125 DataType getDType(nir_op, uint8_t);
126
127 std::vector<DataType> getSTypes(nir_alu_instr *);
128 DataType getSType(nir_src &, bool isFloat, bool isSigned);
129
130 operation getOperation(nir_intrinsic_op);
131 operation getOperation(nir_op);
132 operation getOperation(nir_texop);
133 operation preOperationNeeded(nir_op);
134
135 int getSubOp(nir_intrinsic_op);
136 int getSubOp(nir_op);
137
138 CondCode getCondCode(nir_op);
139
140 bool assignSlots();
141 bool parseNIR();
142
143 bool visit(nir_alu_instr *);
144 bool visit(nir_block *);
145 bool visit(nir_cf_node *);
146 bool visit(nir_function *);
147 bool visit(nir_if *);
148 bool visit(nir_instr *);
149 bool visit(nir_intrinsic_instr *);
150 bool visit(nir_jump_instr *);
151 bool visit(nir_load_const_instr*);
152 bool visit(nir_loop *);
153 bool visit(nir_ssa_undef_instr *);
154 bool visit(nir_tex_instr *);
155
156 // tex stuff
157 Value* applyProjection(Value *src, Value *proj);
158 unsigned int getNIRArgCount(TexInstruction::Target&);
159
160 nir_shader *nir;
161
162 NirDefMap ssaDefs;
163 NirDefMap regDefs;
164 ImmediateMap immediates;
165 NirArrayLMemOffsets regToLmemOffset;
166 NirBlockMap blocks;
167 unsigned int curLoopDepth;
168
169 BasicBlock *exit;
170 Value *zero;
171 Instruction *immInsertPos;
172
173 int clipVertexOutput;
174
175 union {
176 struct {
177 Value *position;
178 } fp;
179 };
180 };
181
182 Converter::Converter(Program *prog, nir_shader *nir, nv50_ir_prog_info *info)
183 : ConverterCommon(prog, info),
184 nir(nir),
185 curLoopDepth(0),
186 clipVertexOutput(-1)
187 {
188 zero = mkImm((uint32_t)0);
189 }
190
191 BasicBlock *
192 Converter::convert(nir_block *block)
193 {
194 NirBlockMap::iterator it = blocks.find(block->index);
195 if (it != blocks.end())
196 return it->second;
197
198 BasicBlock *bb = new BasicBlock(func);
199 blocks[block->index] = bb;
200 return bb;
201 }
202
203 bool
204 Converter::isFloatType(nir_alu_type type)
205 {
206 return nir_alu_type_get_base_type(type) == nir_type_float;
207 }
208
209 bool
210 Converter::isSignedType(nir_alu_type type)
211 {
212 return nir_alu_type_get_base_type(type) == nir_type_int;
213 }
214
215 bool
216 Converter::isResultFloat(nir_op op)
217 {
218 const nir_op_info &info = nir_op_infos[op];
219 if (info.output_type != nir_type_invalid)
220 return isFloatType(info.output_type);
221
222 ERROR("isResultFloat not implemented for %s\n", nir_op_infos[op].name);
223 assert(false);
224 return true;
225 }
226
227 bool
228 Converter::isResultSigned(nir_op op)
229 {
230 switch (op) {
231 // there is no umul and we get wrong results if we treat all muls as signed
232 case nir_op_imul:
233 case nir_op_inot:
234 return false;
235 default:
236 const nir_op_info &info = nir_op_infos[op];
237 if (info.output_type != nir_type_invalid)
238 return isSignedType(info.output_type);
239 ERROR("isResultSigned not implemented for %s\n", nir_op_infos[op].name);
240 assert(false);
241 return true;
242 }
243 }
244
245 DataType
246 Converter::getDType(nir_alu_instr *insn)
247 {
248 if (insn->dest.dest.is_ssa)
249 return getDType(insn->op, insn->dest.dest.ssa.bit_size);
250 else
251 return getDType(insn->op, insn->dest.dest.reg.reg->bit_size);
252 }
253
254 DataType
255 Converter::getDType(nir_intrinsic_instr *insn)
256 {
257 bool isSigned;
258 switch (insn->intrinsic) {
259 case nir_intrinsic_shared_atomic_imax:
260 case nir_intrinsic_shared_atomic_imin:
261 case nir_intrinsic_ssbo_atomic_imax:
262 case nir_intrinsic_ssbo_atomic_imin:
263 isSigned = true;
264 break;
265 default:
266 isSigned = false;
267 break;
268 }
269
270 return getDType(insn, isSigned);
271 }
272
273 DataType
274 Converter::getDType(nir_intrinsic_instr *insn, bool isSigned)
275 {
276 if (insn->dest.is_ssa)
277 return typeOfSize(insn->dest.ssa.bit_size / 8, false, isSigned);
278 else
279 return typeOfSize(insn->dest.reg.reg->bit_size / 8, false, isSigned);
280 }
281
282 DataType
283 Converter::getDType(nir_op op, uint8_t bitSize)
284 {
285 DataType ty = typeOfSize(bitSize / 8, isResultFloat(op), isResultSigned(op));
286 if (ty == TYPE_NONE) {
287 ERROR("couldn't get Type for op %s with bitSize %u\n", nir_op_infos[op].name, bitSize);
288 assert(false);
289 }
290 return ty;
291 }
292
293 std::vector<DataType>
294 Converter::getSTypes(nir_alu_instr *insn)
295 {
296 const nir_op_info &info = nir_op_infos[insn->op];
297 std::vector<DataType> res(info.num_inputs);
298
299 for (uint8_t i = 0; i < info.num_inputs; ++i) {
300 if (info.input_types[i] != nir_type_invalid) {
301 res[i] = getSType(insn->src[i].src, isFloatType(info.input_types[i]), isSignedType(info.input_types[i]));
302 } else {
303 ERROR("getSType not implemented for %s idx %u\n", info.name, i);
304 assert(false);
305 res[i] = TYPE_NONE;
306 break;
307 }
308 }
309
310 return res;
311 }
312
313 DataType
314 Converter::getSType(nir_src &src, bool isFloat, bool isSigned)
315 {
316 uint8_t bitSize;
317 if (src.is_ssa)
318 bitSize = src.ssa->bit_size;
319 else
320 bitSize = src.reg.reg->bit_size;
321
322 DataType ty = typeOfSize(bitSize / 8, isFloat, isSigned);
323 if (ty == TYPE_NONE) {
324 const char *str;
325 if (isFloat)
326 str = "float";
327 else if (isSigned)
328 str = "int";
329 else
330 str = "uint";
331 ERROR("couldn't get Type for %s with bitSize %u\n", str, bitSize);
332 assert(false);
333 }
334 return ty;
335 }
336
337 operation
338 Converter::getOperation(nir_op op)
339 {
340 switch (op) {
341 // basic ops with float and int variants
342 case nir_op_fabs:
343 case nir_op_iabs:
344 return OP_ABS;
345 case nir_op_fadd:
346 case nir_op_iadd:
347 return OP_ADD;
348 case nir_op_iand:
349 return OP_AND;
350 case nir_op_ifind_msb:
351 case nir_op_ufind_msb:
352 return OP_BFIND;
353 case nir_op_fceil:
354 return OP_CEIL;
355 case nir_op_fcos:
356 return OP_COS;
357 case nir_op_f2f32:
358 case nir_op_f2f64:
359 case nir_op_f2i32:
360 case nir_op_f2i64:
361 case nir_op_f2u32:
362 case nir_op_f2u64:
363 case nir_op_i2f32:
364 case nir_op_i2f64:
365 case nir_op_i2i32:
366 case nir_op_i2i64:
367 case nir_op_u2f32:
368 case nir_op_u2f64:
369 case nir_op_u2u32:
370 case nir_op_u2u64:
371 return OP_CVT;
372 case nir_op_fddx:
373 case nir_op_fddx_coarse:
374 case nir_op_fddx_fine:
375 return OP_DFDX;
376 case nir_op_fddy:
377 case nir_op_fddy_coarse:
378 case nir_op_fddy_fine:
379 return OP_DFDY;
380 case nir_op_fdiv:
381 case nir_op_idiv:
382 case nir_op_udiv:
383 return OP_DIV;
384 case nir_op_fexp2:
385 return OP_EX2;
386 case nir_op_ffloor:
387 return OP_FLOOR;
388 case nir_op_ffma:
389 return OP_FMA;
390 case nir_op_flog2:
391 return OP_LG2;
392 case nir_op_fmax:
393 case nir_op_imax:
394 case nir_op_umax:
395 return OP_MAX;
396 case nir_op_pack_64_2x32_split:
397 return OP_MERGE;
398 case nir_op_fmin:
399 case nir_op_imin:
400 case nir_op_umin:
401 return OP_MIN;
402 case nir_op_fmod:
403 case nir_op_imod:
404 case nir_op_umod:
405 case nir_op_frem:
406 case nir_op_irem:
407 return OP_MOD;
408 case nir_op_fmul:
409 case nir_op_imul:
410 case nir_op_imul_high:
411 case nir_op_umul_high:
412 return OP_MUL;
413 case nir_op_fneg:
414 case nir_op_ineg:
415 return OP_NEG;
416 case nir_op_inot:
417 return OP_NOT;
418 case nir_op_ior:
419 return OP_OR;
420 case nir_op_fpow:
421 return OP_POW;
422 case nir_op_frcp:
423 return OP_RCP;
424 case nir_op_frsq:
425 return OP_RSQ;
426 case nir_op_fsat:
427 return OP_SAT;
428 case nir_op_feq32:
429 case nir_op_ieq32:
430 case nir_op_fge32:
431 case nir_op_ige32:
432 case nir_op_uge32:
433 case nir_op_flt32:
434 case nir_op_ilt32:
435 case nir_op_ult32:
436 case nir_op_fne32:
437 case nir_op_ine32:
438 return OP_SET;
439 case nir_op_ishl:
440 return OP_SHL;
441 case nir_op_ishr:
442 case nir_op_ushr:
443 return OP_SHR;
444 case nir_op_fsin:
445 return OP_SIN;
446 case nir_op_fsqrt:
447 return OP_SQRT;
448 case nir_op_ftrunc:
449 return OP_TRUNC;
450 case nir_op_ixor:
451 return OP_XOR;
452 default:
453 ERROR("couldn't get operation for op %s\n", nir_op_infos[op].name);
454 assert(false);
455 return OP_NOP;
456 }
457 }
458
459 operation
460 Converter::getOperation(nir_texop op)
461 {
462 switch (op) {
463 case nir_texop_tex:
464 return OP_TEX;
465 case nir_texop_lod:
466 return OP_TXLQ;
467 case nir_texop_txb:
468 return OP_TXB;
469 case nir_texop_txd:
470 return OP_TXD;
471 case nir_texop_txf:
472 case nir_texop_txf_ms:
473 return OP_TXF;
474 case nir_texop_tg4:
475 return OP_TXG;
476 case nir_texop_txl:
477 return OP_TXL;
478 case nir_texop_query_levels:
479 case nir_texop_texture_samples:
480 case nir_texop_txs:
481 return OP_TXQ;
482 default:
483 ERROR("couldn't get operation for nir_texop %u\n", op);
484 assert(false);
485 return OP_NOP;
486 }
487 }
488
489 operation
490 Converter::getOperation(nir_intrinsic_op op)
491 {
492 switch (op) {
493 case nir_intrinsic_emit_vertex:
494 return OP_EMIT;
495 case nir_intrinsic_end_primitive:
496 return OP_RESTART;
497 case nir_intrinsic_bindless_image_atomic_add:
498 case nir_intrinsic_image_atomic_add:
499 case nir_intrinsic_bindless_image_atomic_and:
500 case nir_intrinsic_image_atomic_and:
501 case nir_intrinsic_bindless_image_atomic_comp_swap:
502 case nir_intrinsic_image_atomic_comp_swap:
503 case nir_intrinsic_bindless_image_atomic_exchange:
504 case nir_intrinsic_image_atomic_exchange:
505 case nir_intrinsic_bindless_image_atomic_imax:
506 case nir_intrinsic_image_atomic_imax:
507 case nir_intrinsic_bindless_image_atomic_umax:
508 case nir_intrinsic_image_atomic_umax:
509 case nir_intrinsic_bindless_image_atomic_imin:
510 case nir_intrinsic_image_atomic_imin:
511 case nir_intrinsic_bindless_image_atomic_umin:
512 case nir_intrinsic_image_atomic_umin:
513 case nir_intrinsic_bindless_image_atomic_or:
514 case nir_intrinsic_image_atomic_or:
515 case nir_intrinsic_bindless_image_atomic_xor:
516 case nir_intrinsic_image_atomic_xor:
517 case nir_intrinsic_bindless_image_atomic_inc_wrap:
518 case nir_intrinsic_image_atomic_inc_wrap:
519 case nir_intrinsic_bindless_image_atomic_dec_wrap:
520 case nir_intrinsic_image_atomic_dec_wrap:
521 return OP_SUREDP;
522 case nir_intrinsic_bindless_image_load:
523 case nir_intrinsic_image_load:
524 return OP_SULDP;
525 case nir_intrinsic_bindless_image_samples:
526 case nir_intrinsic_image_samples:
527 case nir_intrinsic_bindless_image_size:
528 case nir_intrinsic_image_size:
529 return OP_SUQ;
530 case nir_intrinsic_bindless_image_store:
531 case nir_intrinsic_image_store:
532 return OP_SUSTP;
533 default:
534 ERROR("couldn't get operation for nir_intrinsic_op %u\n", op);
535 assert(false);
536 return OP_NOP;
537 }
538 }
539
540 operation
541 Converter::preOperationNeeded(nir_op op)
542 {
543 switch (op) {
544 case nir_op_fcos:
545 case nir_op_fsin:
546 return OP_PRESIN;
547 default:
548 return OP_NOP;
549 }
550 }
551
552 int
553 Converter::getSubOp(nir_op op)
554 {
555 switch (op) {
556 case nir_op_imul_high:
557 case nir_op_umul_high:
558 return NV50_IR_SUBOP_MUL_HIGH;
559 case nir_op_ishl:
560 case nir_op_ishr:
561 case nir_op_ushr:
562 return NV50_IR_SUBOP_SHIFT_WRAP;
563 default:
564 return 0;
565 }
566 }
567
568 int
569 Converter::getSubOp(nir_intrinsic_op op)
570 {
571 switch (op) {
572 case nir_intrinsic_bindless_image_atomic_add:
573 case nir_intrinsic_global_atomic_add:
574 case nir_intrinsic_image_atomic_add:
575 case nir_intrinsic_shared_atomic_add:
576 case nir_intrinsic_ssbo_atomic_add:
577 return NV50_IR_SUBOP_ATOM_ADD;
578 case nir_intrinsic_bindless_image_atomic_and:
579 case nir_intrinsic_global_atomic_and:
580 case nir_intrinsic_image_atomic_and:
581 case nir_intrinsic_shared_atomic_and:
582 case nir_intrinsic_ssbo_atomic_and:
583 return NV50_IR_SUBOP_ATOM_AND;
584 case nir_intrinsic_bindless_image_atomic_comp_swap:
585 case nir_intrinsic_global_atomic_comp_swap:
586 case nir_intrinsic_image_atomic_comp_swap:
587 case nir_intrinsic_shared_atomic_comp_swap:
588 case nir_intrinsic_ssbo_atomic_comp_swap:
589 return NV50_IR_SUBOP_ATOM_CAS;
590 case nir_intrinsic_bindless_image_atomic_exchange:
591 case nir_intrinsic_global_atomic_exchange:
592 case nir_intrinsic_image_atomic_exchange:
593 case nir_intrinsic_shared_atomic_exchange:
594 case nir_intrinsic_ssbo_atomic_exchange:
595 return NV50_IR_SUBOP_ATOM_EXCH;
596 case nir_intrinsic_bindless_image_atomic_or:
597 case nir_intrinsic_global_atomic_or:
598 case nir_intrinsic_image_atomic_or:
599 case nir_intrinsic_shared_atomic_or:
600 case nir_intrinsic_ssbo_atomic_or:
601 return NV50_IR_SUBOP_ATOM_OR;
602 case nir_intrinsic_bindless_image_atomic_imax:
603 case nir_intrinsic_bindless_image_atomic_umax:
604 case nir_intrinsic_global_atomic_imax:
605 case nir_intrinsic_global_atomic_umax:
606 case nir_intrinsic_image_atomic_imax:
607 case nir_intrinsic_image_atomic_umax:
608 case nir_intrinsic_shared_atomic_imax:
609 case nir_intrinsic_shared_atomic_umax:
610 case nir_intrinsic_ssbo_atomic_imax:
611 case nir_intrinsic_ssbo_atomic_umax:
612 return NV50_IR_SUBOP_ATOM_MAX;
613 case nir_intrinsic_bindless_image_atomic_imin:
614 case nir_intrinsic_bindless_image_atomic_umin:
615 case nir_intrinsic_global_atomic_imin:
616 case nir_intrinsic_global_atomic_umin:
617 case nir_intrinsic_image_atomic_imin:
618 case nir_intrinsic_image_atomic_umin:
619 case nir_intrinsic_shared_atomic_imin:
620 case nir_intrinsic_shared_atomic_umin:
621 case nir_intrinsic_ssbo_atomic_imin:
622 case nir_intrinsic_ssbo_atomic_umin:
623 return NV50_IR_SUBOP_ATOM_MIN;
624 case nir_intrinsic_bindless_image_atomic_xor:
625 case nir_intrinsic_global_atomic_xor:
626 case nir_intrinsic_image_atomic_xor:
627 case nir_intrinsic_shared_atomic_xor:
628 case nir_intrinsic_ssbo_atomic_xor:
629 return NV50_IR_SUBOP_ATOM_XOR;
630 case nir_intrinsic_bindless_image_atomic_inc_wrap:
631 case nir_intrinsic_image_atomic_inc_wrap:
632 return NV50_IR_SUBOP_ATOM_INC;
633 case nir_intrinsic_bindless_image_atomic_dec_wrap:
634 case nir_intrinsic_image_atomic_dec_wrap:
635 return NV50_IR_SUBOP_ATOM_DEC;
636
637 case nir_intrinsic_group_memory_barrier:
638 case nir_intrinsic_memory_barrier:
639 case nir_intrinsic_memory_barrier_buffer:
640 case nir_intrinsic_memory_barrier_image:
641 return NV50_IR_SUBOP_MEMBAR(M, GL);
642 case nir_intrinsic_memory_barrier_shared:
643 return NV50_IR_SUBOP_MEMBAR(M, CTA);
644
645 case nir_intrinsic_vote_all:
646 return NV50_IR_SUBOP_VOTE_ALL;
647 case nir_intrinsic_vote_any:
648 return NV50_IR_SUBOP_VOTE_ANY;
649 case nir_intrinsic_vote_ieq:
650 return NV50_IR_SUBOP_VOTE_UNI;
651 default:
652 return 0;
653 }
654 }
655
656 CondCode
657 Converter::getCondCode(nir_op op)
658 {
659 switch (op) {
660 case nir_op_feq32:
661 case nir_op_ieq32:
662 return CC_EQ;
663 case nir_op_fge32:
664 case nir_op_ige32:
665 case nir_op_uge32:
666 return CC_GE;
667 case nir_op_flt32:
668 case nir_op_ilt32:
669 case nir_op_ult32:
670 return CC_LT;
671 case nir_op_fne32:
672 return CC_NEU;
673 case nir_op_ine32:
674 return CC_NE;
675 default:
676 ERROR("couldn't get CondCode for op %s\n", nir_op_infos[op].name);
677 assert(false);
678 return CC_FL;
679 }
680 }
681
682 Converter::LValues&
683 Converter::convert(nir_alu_dest *dest)
684 {
685 return convert(&dest->dest);
686 }
687
688 Converter::LValues&
689 Converter::convert(nir_dest *dest)
690 {
691 if (dest->is_ssa)
692 return convert(&dest->ssa);
693 if (dest->reg.indirect) {
694 ERROR("no support for indirects.");
695 assert(false);
696 }
697 return convert(dest->reg.reg);
698 }
699
700 Converter::LValues&
701 Converter::convert(nir_register *reg)
702 {
703 NirDefMap::iterator it = regDefs.find(reg->index);
704 if (it != regDefs.end())
705 return it->second;
706
707 LValues newDef(reg->num_components);
708 for (uint8_t i = 0; i < reg->num_components; i++)
709 newDef[i] = getScratch(std::max(4, reg->bit_size / 8));
710 return regDefs[reg->index] = newDef;
711 }
712
713 Converter::LValues&
714 Converter::convert(nir_ssa_def *def)
715 {
716 NirDefMap::iterator it = ssaDefs.find(def->index);
717 if (it != ssaDefs.end())
718 return it->second;
719
720 LValues newDef(def->num_components);
721 for (uint8_t i = 0; i < def->num_components; i++)
722 newDef[i] = getSSA(std::max(4, def->bit_size / 8));
723 return ssaDefs[def->index] = newDef;
724 }
725
726 Value*
727 Converter::getSrc(nir_alu_src *src, uint8_t component)
728 {
729 if (src->abs || src->negate) {
730 ERROR("modifiers currently not supported on nir_alu_src\n");
731 assert(false);
732 }
733 return getSrc(&src->src, src->swizzle[component]);
734 }
735
736 Value*
737 Converter::getSrc(nir_register *reg, uint8_t idx)
738 {
739 NirDefMap::iterator it = regDefs.find(reg->index);
740 if (it == regDefs.end())
741 return convert(reg)[idx];
742 return it->second[idx];
743 }
744
745 Value*
746 Converter::getSrc(nir_src *src, uint8_t idx, bool indirect)
747 {
748 if (src->is_ssa)
749 return getSrc(src->ssa, idx);
750
751 if (src->reg.indirect) {
752 if (indirect)
753 return getSrc(src->reg.indirect, idx);
754 ERROR("no support for indirects.");
755 assert(false);
756 return NULL;
757 }
758
759 return getSrc(src->reg.reg, idx);
760 }
761
762 Value*
763 Converter::getSrc(nir_ssa_def *src, uint8_t idx)
764 {
765 ImmediateMap::iterator iit = immediates.find(src->index);
766 if (iit != immediates.end())
767 return convert((*iit).second, idx);
768
769 NirDefMap::iterator it = ssaDefs.find(src->index);
770 if (it == ssaDefs.end()) {
771 ERROR("SSA value %u not found\n", src->index);
772 assert(false);
773 return NULL;
774 }
775 return it->second[idx];
776 }
777
778 uint32_t
779 Converter::getIndirect(nir_src *src, uint8_t idx, Value *&indirect)
780 {
781 nir_const_value *offset = nir_src_as_const_value(*src);
782
783 if (offset) {
784 indirect = NULL;
785 return offset[0].u32;
786 }
787
788 indirect = getSrc(src, idx, true);
789 return 0;
790 }
791
792 uint32_t
793 Converter::getIndirect(nir_intrinsic_instr *insn, uint8_t s, uint8_t c, Value *&indirect, bool isScalar)
794 {
795 int32_t idx = nir_intrinsic_base(insn) + getIndirect(&insn->src[s], c, indirect);
796 if (indirect && !isScalar)
797 indirect = mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), indirect, loadImm(NULL, 4));
798 return idx;
799 }
800
801 static void
802 vert_attrib_to_tgsi_semantic(gl_vert_attrib slot, unsigned *name, unsigned *index)
803 {
804 assert(name && index);
805
806 if (slot >= VERT_ATTRIB_MAX) {
807 ERROR("invalid varying slot %u\n", slot);
808 assert(false);
809 return;
810 }
811
812 if (slot >= VERT_ATTRIB_GENERIC0 &&
813 slot < VERT_ATTRIB_GENERIC0 + VERT_ATTRIB_GENERIC_MAX) {
814 *name = TGSI_SEMANTIC_GENERIC;
815 *index = slot - VERT_ATTRIB_GENERIC0;
816 return;
817 }
818
819 if (slot >= VERT_ATTRIB_TEX0 &&
820 slot < VERT_ATTRIB_TEX0 + VERT_ATTRIB_TEX_MAX) {
821 *name = TGSI_SEMANTIC_TEXCOORD;
822 *index = slot - VERT_ATTRIB_TEX0;
823 return;
824 }
825
826 switch (slot) {
827 case VERT_ATTRIB_COLOR0:
828 *name = TGSI_SEMANTIC_COLOR;
829 *index = 0;
830 break;
831 case VERT_ATTRIB_COLOR1:
832 *name = TGSI_SEMANTIC_COLOR;
833 *index = 1;
834 break;
835 case VERT_ATTRIB_EDGEFLAG:
836 *name = TGSI_SEMANTIC_EDGEFLAG;
837 *index = 0;
838 break;
839 case VERT_ATTRIB_FOG:
840 *name = TGSI_SEMANTIC_FOG;
841 *index = 0;
842 break;
843 case VERT_ATTRIB_NORMAL:
844 *name = TGSI_SEMANTIC_NORMAL;
845 *index = 0;
846 break;
847 case VERT_ATTRIB_POS:
848 *name = TGSI_SEMANTIC_POSITION;
849 *index = 0;
850 break;
851 case VERT_ATTRIB_POINT_SIZE:
852 *name = TGSI_SEMANTIC_PSIZE;
853 *index = 0;
854 break;
855 default:
856 ERROR("unknown vert attrib slot %u\n", slot);
857 assert(false);
858 break;
859 }
860 }
861
862 void
863 Converter::setInterpolate(nv50_ir_varying *var,
864 uint8_t mode,
865 bool centroid,
866 unsigned semantic)
867 {
868 switch (mode) {
869 case INTERP_MODE_FLAT:
870 var->flat = 1;
871 break;
872 case INTERP_MODE_NONE:
873 if (semantic == TGSI_SEMANTIC_COLOR)
874 var->sc = 1;
875 else if (semantic == TGSI_SEMANTIC_POSITION)
876 var->linear = 1;
877 break;
878 case INTERP_MODE_NOPERSPECTIVE:
879 var->linear = 1;
880 break;
881 case INTERP_MODE_SMOOTH:
882 break;
883 }
884 var->centroid = centroid;
885 }
886
887 static uint16_t
888 calcSlots(const glsl_type *type, Program::Type stage, const shader_info &info,
889 bool input, const nir_variable *var)
890 {
891 if (!type->is_array())
892 return type->count_attribute_slots(false);
893
894 uint16_t slots;
895 switch (stage) {
896 case Program::TYPE_GEOMETRY:
897 slots = type->uniform_locations();
898 if (input)
899 slots /= info.gs.vertices_in;
900 break;
901 case Program::TYPE_TESSELLATION_CONTROL:
902 case Program::TYPE_TESSELLATION_EVAL:
903 // remove first dimension
904 if (var->data.patch || (!input && stage == Program::TYPE_TESSELLATION_EVAL))
905 slots = type->uniform_locations();
906 else
907 slots = type->fields.array->uniform_locations();
908 break;
909 default:
910 slots = type->count_attribute_slots(false);
911 break;
912 }
913
914 return slots;
915 }
916
917 bool Converter::assignSlots() {
918 unsigned name;
919 unsigned index;
920
921 info->io.viewportId = -1;
922 info->numInputs = 0;
923 info->numOutputs = 0;
924 info->numSysVals = 0;
925
926 for (uint8_t i = 0; i < SYSTEM_VALUE_MAX; ++i) {
927 if (!(nir->info.system_values_read & 1ull << i))
928 continue;
929
930 info->sv[info->numSysVals].sn = tgsi_get_sysval_semantic(i);
931 info->sv[info->numSysVals].si = 0;
932 info->sv[info->numSysVals].input = 0; // TODO inferSysValDirection(sn);
933
934 switch (i) {
935 case SYSTEM_VALUE_INSTANCE_ID:
936 info->io.instanceId = info->numSysVals;
937 break;
938 case SYSTEM_VALUE_TESS_LEVEL_INNER:
939 case SYSTEM_VALUE_TESS_LEVEL_OUTER:
940 info->sv[info->numSysVals].patch = 1;
941 break;
942 case SYSTEM_VALUE_VERTEX_ID:
943 info->io.vertexId = info->numSysVals;
944 break;
945 default:
946 break;
947 }
948
949 info->numSysVals += 1;
950 }
951
952 if (prog->getType() == Program::TYPE_COMPUTE)
953 return true;
954
955 nir_foreach_variable(var, &nir->inputs) {
956 const glsl_type *type = var->type;
957 int slot = var->data.location;
958 uint16_t slots = calcSlots(type, prog->getType(), nir->info, true, var);
959 uint32_t comp = type->is_array() ? type->without_array()->component_slots()
960 : type->component_slots();
961 uint32_t frac = var->data.location_frac;
962 uint32_t vary = var->data.driver_location;
963
964 if (glsl_base_type_is_64bit(type->without_array()->base_type)) {
965 if (comp > 2)
966 slots *= 2;
967 }
968
969 assert(vary + slots <= PIPE_MAX_SHADER_INPUTS);
970
971 switch(prog->getType()) {
972 case Program::TYPE_FRAGMENT:
973 tgsi_get_gl_varying_semantic((gl_varying_slot)slot, true,
974 &name, &index);
975 for (uint16_t i = 0; i < slots; ++i) {
976 setInterpolate(&info->in[vary + i], var->data.interpolation,
977 var->data.centroid | var->data.sample, name);
978 }
979 break;
980 case Program::TYPE_GEOMETRY:
981 tgsi_get_gl_varying_semantic((gl_varying_slot)slot, true,
982 &name, &index);
983 break;
984 case Program::TYPE_TESSELLATION_CONTROL:
985 case Program::TYPE_TESSELLATION_EVAL:
986 tgsi_get_gl_varying_semantic((gl_varying_slot)slot, true,
987 &name, &index);
988 if (var->data.patch && name == TGSI_SEMANTIC_PATCH)
989 info->numPatchConstants = MAX2(info->numPatchConstants, index + slots);
990 break;
991 case Program::TYPE_VERTEX:
992 if (slot >= VERT_ATTRIB_GENERIC0)
993 slot = VERT_ATTRIB_GENERIC0 + vary;
994 vert_attrib_to_tgsi_semantic((gl_vert_attrib)slot, &name, &index);
995 switch (name) {
996 case TGSI_SEMANTIC_EDGEFLAG:
997 info->io.edgeFlagIn = vary;
998 break;
999 default:
1000 break;
1001 }
1002 break;
1003 default:
1004 ERROR("unknown shader type %u in assignSlots\n", prog->getType());
1005 return false;
1006 }
1007
1008 for (uint16_t i = 0u; i < slots; ++i, ++vary) {
1009 info->in[vary].id = vary;
1010 info->in[vary].patch = var->data.patch;
1011 info->in[vary].sn = name;
1012 info->in[vary].si = index + i;
1013 if (glsl_base_type_is_64bit(type->without_array()->base_type))
1014 if (i & 0x1)
1015 info->in[vary].mask |= (((1 << (comp * 2)) - 1) << (frac * 2) >> 0x4);
1016 else
1017 info->in[vary].mask |= (((1 << (comp * 2)) - 1) << (frac * 2) & 0xf);
1018 else
1019 info->in[vary].mask |= ((1 << comp) - 1) << frac;
1020 }
1021 info->numInputs = std::max<uint8_t>(info->numInputs, vary);
1022 }
1023
1024 nir_foreach_variable(var, &nir->outputs) {
1025 const glsl_type *type = var->type;
1026 int slot = var->data.location;
1027 uint16_t slots = calcSlots(type, prog->getType(), nir->info, false, var);
1028 uint32_t comp = type->is_array() ? type->without_array()->component_slots()
1029 : type->component_slots();
1030 uint32_t frac = var->data.location_frac;
1031 uint32_t vary = var->data.driver_location;
1032
1033 if (glsl_base_type_is_64bit(type->without_array()->base_type)) {
1034 if (comp > 2)
1035 slots *= 2;
1036 }
1037
1038 assert(vary < PIPE_MAX_SHADER_OUTPUTS);
1039
1040 switch(prog->getType()) {
1041 case Program::TYPE_FRAGMENT:
1042 tgsi_get_gl_frag_result_semantic((gl_frag_result)slot, &name, &index);
1043 switch (name) {
1044 case TGSI_SEMANTIC_COLOR:
1045 if (!var->data.fb_fetch_output)
1046 info->prop.fp.numColourResults++;
1047
1048 if (var->data.location == FRAG_RESULT_COLOR &&
1049 nir->info.outputs_written & BITFIELD64_BIT(var->data.location))
1050 info->prop.fp.separateFragData = true;
1051
1052 // sometimes we get FRAG_RESULT_DATAX with data.index 0
1053 // sometimes we get FRAG_RESULT_DATA0 with data.index X
1054 index = index == 0 ? var->data.index : index;
1055 break;
1056 case TGSI_SEMANTIC_POSITION:
1057 info->io.fragDepth = vary;
1058 info->prop.fp.writesDepth = true;
1059 break;
1060 case TGSI_SEMANTIC_SAMPLEMASK:
1061 info->io.sampleMask = vary;
1062 break;
1063 default:
1064 break;
1065 }
1066 break;
1067 case Program::TYPE_GEOMETRY:
1068 case Program::TYPE_TESSELLATION_CONTROL:
1069 case Program::TYPE_TESSELLATION_EVAL:
1070 case Program::TYPE_VERTEX:
1071 tgsi_get_gl_varying_semantic((gl_varying_slot)slot, true,
1072 &name, &index);
1073
1074 if (var->data.patch && name != TGSI_SEMANTIC_TESSINNER &&
1075 name != TGSI_SEMANTIC_TESSOUTER)
1076 info->numPatchConstants = MAX2(info->numPatchConstants, index + slots);
1077
1078 switch (name) {
1079 case TGSI_SEMANTIC_CLIPDIST:
1080 info->io.genUserClip = -1;
1081 break;
1082 case TGSI_SEMANTIC_CLIPVERTEX:
1083 clipVertexOutput = vary;
1084 break;
1085 case TGSI_SEMANTIC_EDGEFLAG:
1086 info->io.edgeFlagOut = vary;
1087 break;
1088 case TGSI_SEMANTIC_POSITION:
1089 if (clipVertexOutput < 0)
1090 clipVertexOutput = vary;
1091 break;
1092 default:
1093 break;
1094 }
1095 break;
1096 default:
1097 ERROR("unknown shader type %u in assignSlots\n", prog->getType());
1098 return false;
1099 }
1100
1101 for (uint16_t i = 0u; i < slots; ++i, ++vary) {
1102 info->out[vary].id = vary;
1103 info->out[vary].patch = var->data.patch;
1104 info->out[vary].sn = name;
1105 info->out[vary].si = index + i;
1106 if (glsl_base_type_is_64bit(type->without_array()->base_type))
1107 if (i & 0x1)
1108 info->out[vary].mask |= (((1 << (comp * 2)) - 1) << (frac * 2) >> 0x4);
1109 else
1110 info->out[vary].mask |= (((1 << (comp * 2)) - 1) << (frac * 2) & 0xf);
1111 else
1112 info->out[vary].mask |= ((1 << comp) - 1) << frac;
1113
1114 if (nir->info.outputs_read & 1ull << slot)
1115 info->out[vary].oread = 1;
1116 }
1117 info->numOutputs = std::max<uint8_t>(info->numOutputs, vary);
1118 }
1119
1120 if (info->io.genUserClip > 0) {
1121 info->io.clipDistances = info->io.genUserClip;
1122
1123 const unsigned int nOut = (info->io.genUserClip + 3) / 4;
1124
1125 for (unsigned int n = 0; n < nOut; ++n) {
1126 unsigned int i = info->numOutputs++;
1127 info->out[i].id = i;
1128 info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
1129 info->out[i].si = n;
1130 info->out[i].mask = ((1 << info->io.clipDistances) - 1) >> (n * 4);
1131 }
1132 }
1133
1134 return info->assignSlots(info) == 0;
1135 }
1136
1137 uint32_t
1138 Converter::getSlotAddress(nir_intrinsic_instr *insn, uint8_t idx, uint8_t slot)
1139 {
1140 DataType ty;
1141 int offset = nir_intrinsic_component(insn);
1142 bool input;
1143
1144 if (nir_intrinsic_infos[insn->intrinsic].has_dest)
1145 ty = getDType(insn);
1146 else
1147 ty = getSType(insn->src[0], false, false);
1148
1149 switch (insn->intrinsic) {
1150 case nir_intrinsic_load_input:
1151 case nir_intrinsic_load_interpolated_input:
1152 case nir_intrinsic_load_per_vertex_input:
1153 input = true;
1154 break;
1155 case nir_intrinsic_load_output:
1156 case nir_intrinsic_load_per_vertex_output:
1157 case nir_intrinsic_store_output:
1158 case nir_intrinsic_store_per_vertex_output:
1159 input = false;
1160 break;
1161 default:
1162 ERROR("unknown intrinsic in getSlotAddress %s",
1163 nir_intrinsic_infos[insn->intrinsic].name);
1164 input = false;
1165 assert(false);
1166 break;
1167 }
1168
1169 if (typeSizeof(ty) == 8) {
1170 slot *= 2;
1171 slot += offset;
1172 if (slot >= 4) {
1173 idx += 1;
1174 slot -= 4;
1175 }
1176 } else {
1177 slot += offset;
1178 }
1179
1180 assert(slot < 4);
1181 assert(!input || idx < PIPE_MAX_SHADER_INPUTS);
1182 assert(input || idx < PIPE_MAX_SHADER_OUTPUTS);
1183
1184 const nv50_ir_varying *vary = input ? info->in : info->out;
1185 return vary[idx].slot[slot] * 4;
1186 }
1187
1188 Instruction *
1189 Converter::loadFrom(DataFile file, uint8_t i, DataType ty, Value *def,
1190 uint32_t base, uint8_t c, Value *indirect0,
1191 Value *indirect1, bool patch)
1192 {
1193 unsigned int tySize = typeSizeof(ty);
1194
1195 if (tySize == 8 &&
1196 (file == FILE_MEMORY_CONST || file == FILE_MEMORY_BUFFER || indirect0)) {
1197 Value *lo = getSSA();
1198 Value *hi = getSSA();
1199
1200 Instruction *loi =
1201 mkLoad(TYPE_U32, lo,
1202 mkSymbol(file, i, TYPE_U32, base + c * tySize),
1203 indirect0);
1204 loi->setIndirect(0, 1, indirect1);
1205 loi->perPatch = patch;
1206
1207 Instruction *hii =
1208 mkLoad(TYPE_U32, hi,
1209 mkSymbol(file, i, TYPE_U32, base + c * tySize + 4),
1210 indirect0);
1211 hii->setIndirect(0, 1, indirect1);
1212 hii->perPatch = patch;
1213
1214 return mkOp2(OP_MERGE, ty, def, lo, hi);
1215 } else {
1216 Instruction *ld =
1217 mkLoad(ty, def, mkSymbol(file, i, ty, base + c * tySize), indirect0);
1218 ld->setIndirect(0, 1, indirect1);
1219 ld->perPatch = patch;
1220 return ld;
1221 }
1222 }
1223
1224 void
1225 Converter::storeTo(nir_intrinsic_instr *insn, DataFile file, operation op,
1226 DataType ty, Value *src, uint8_t idx, uint8_t c,
1227 Value *indirect0, Value *indirect1)
1228 {
1229 uint8_t size = typeSizeof(ty);
1230 uint32_t address = getSlotAddress(insn, idx, c);
1231
1232 if (size == 8 && indirect0) {
1233 Value *split[2];
1234 mkSplit(split, 4, src);
1235
1236 if (op == OP_EXPORT) {
1237 split[0] = mkMov(getSSA(), split[0], ty)->getDef(0);
1238 split[1] = mkMov(getSSA(), split[1], ty)->getDef(0);
1239 }
1240
1241 mkStore(op, TYPE_U32, mkSymbol(file, 0, TYPE_U32, address), indirect0,
1242 split[0])->perPatch = info->out[idx].patch;
1243 mkStore(op, TYPE_U32, mkSymbol(file, 0, TYPE_U32, address + 4), indirect0,
1244 split[1])->perPatch = info->out[idx].patch;
1245 } else {
1246 if (op == OP_EXPORT)
1247 src = mkMov(getSSA(size), src, ty)->getDef(0);
1248 mkStore(op, ty, mkSymbol(file, 0, ty, address), indirect0,
1249 src)->perPatch = info->out[idx].patch;
1250 }
1251 }
1252
1253 bool
1254 Converter::parseNIR()
1255 {
1256 info->bin.tlsSpace = 0;
1257 info->io.clipDistances = nir->info.clip_distance_array_size;
1258 info->io.cullDistances = nir->info.cull_distance_array_size;
1259 info->io.layer_viewport_relative = nir->info.layer_viewport_relative;
1260
1261 switch(prog->getType()) {
1262 case Program::TYPE_COMPUTE:
1263 info->prop.cp.numThreads[0] = nir->info.cs.local_size[0];
1264 info->prop.cp.numThreads[1] = nir->info.cs.local_size[1];
1265 info->prop.cp.numThreads[2] = nir->info.cs.local_size[2];
1266 info->bin.smemSize = nir->info.cs.shared_size;
1267 break;
1268 case Program::TYPE_FRAGMENT:
1269 info->prop.fp.earlyFragTests = nir->info.fs.early_fragment_tests;
1270 info->prop.fp.persampleInvocation =
1271 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_ID) ||
1272 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS);
1273 info->prop.fp.postDepthCoverage = nir->info.fs.post_depth_coverage;
1274 info->prop.fp.readsSampleLocations =
1275 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS);
1276 info->prop.fp.usesDiscard = nir->info.fs.uses_discard || nir->info.fs.uses_demote;
1277 info->prop.fp.usesSampleMaskIn =
1278 !!(nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN);
1279 break;
1280 case Program::TYPE_GEOMETRY:
1281 info->prop.gp.inputPrim = nir->info.gs.input_primitive;
1282 info->prop.gp.instanceCount = nir->info.gs.invocations;
1283 info->prop.gp.maxVertices = nir->info.gs.vertices_out;
1284 info->prop.gp.outputPrim = nir->info.gs.output_primitive;
1285 break;
1286 case Program::TYPE_TESSELLATION_CONTROL:
1287 case Program::TYPE_TESSELLATION_EVAL:
1288 if (nir->info.tess.primitive_mode == GL_ISOLINES)
1289 info->prop.tp.domain = GL_LINES;
1290 else
1291 info->prop.tp.domain = nir->info.tess.primitive_mode;
1292 info->prop.tp.outputPatchSize = nir->info.tess.tcs_vertices_out;
1293 info->prop.tp.outputPrim =
1294 nir->info.tess.point_mode ? PIPE_PRIM_POINTS : PIPE_PRIM_TRIANGLES;
1295 info->prop.tp.partitioning = (nir->info.tess.spacing + 1) % 3;
1296 info->prop.tp.winding = !nir->info.tess.ccw;
1297 break;
1298 case Program::TYPE_VERTEX:
1299 info->prop.vp.usesDrawParameters =
1300 (nir->info.system_values_read & BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX)) ||
1301 (nir->info.system_values_read & BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE)) ||
1302 (nir->info.system_values_read & BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID));
1303 break;
1304 default:
1305 break;
1306 }
1307
1308 return true;
1309 }
1310
1311 bool
1312 Converter::visit(nir_function *function)
1313 {
1314 assert(function->impl);
1315
1316 // usually the blocks will set everything up, but main is special
1317 BasicBlock *entry = new BasicBlock(prog->main);
1318 exit = new BasicBlock(prog->main);
1319 blocks[nir_start_block(function->impl)->index] = entry;
1320 prog->main->setEntry(entry);
1321 prog->main->setExit(exit);
1322
1323 setPosition(entry, true);
1324
1325 if (info->io.genUserClip > 0) {
1326 for (int c = 0; c < 4; ++c)
1327 clipVtx[c] = getScratch();
1328 }
1329
1330 switch (prog->getType()) {
1331 case Program::TYPE_TESSELLATION_CONTROL:
1332 outBase = mkOp2v(
1333 OP_SUB, TYPE_U32, getSSA(),
1334 mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_LANEID, 0)),
1335 mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_INVOCATION_ID, 0)));
1336 break;
1337 case Program::TYPE_FRAGMENT: {
1338 Symbol *sv = mkSysVal(SV_POSITION, 3);
1339 fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
1340 fp.position = mkOp1v(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
1341 break;
1342 }
1343 default:
1344 break;
1345 }
1346
1347 nir_foreach_register(reg, &function->impl->registers) {
1348 if (reg->num_array_elems) {
1349 // TODO: packed variables would be nice, but MemoryOpt fails
1350 // replace 4 with reg->num_components
1351 uint32_t size = 4 * reg->num_array_elems * (reg->bit_size / 8);
1352 regToLmemOffset[reg->index] = info->bin.tlsSpace;
1353 info->bin.tlsSpace += size;
1354 }
1355 }
1356
1357 nir_index_ssa_defs(function->impl);
1358 foreach_list_typed(nir_cf_node, node, node, &function->impl->body) {
1359 if (!visit(node))
1360 return false;
1361 }
1362
1363 bb->cfg.attach(&exit->cfg, Graph::Edge::TREE);
1364 setPosition(exit, true);
1365
1366 if ((prog->getType() == Program::TYPE_VERTEX ||
1367 prog->getType() == Program::TYPE_TESSELLATION_EVAL)
1368 && info->io.genUserClip > 0)
1369 handleUserClipPlanes();
1370
1371 // TODO: for non main function this needs to be a OP_RETURN
1372 mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
1373 return true;
1374 }
1375
1376 bool
1377 Converter::visit(nir_cf_node *node)
1378 {
1379 switch (node->type) {
1380 case nir_cf_node_block:
1381 return visit(nir_cf_node_as_block(node));
1382 case nir_cf_node_if:
1383 return visit(nir_cf_node_as_if(node));
1384 case nir_cf_node_loop:
1385 return visit(nir_cf_node_as_loop(node));
1386 default:
1387 ERROR("unknown nir_cf_node type %u\n", node->type);
1388 return false;
1389 }
1390 }
1391
1392 bool
1393 Converter::visit(nir_block *block)
1394 {
1395 if (!block->predecessors->entries && block->instr_list.is_empty())
1396 return true;
1397
1398 BasicBlock *bb = convert(block);
1399
1400 setPosition(bb, true);
1401 nir_foreach_instr(insn, block) {
1402 if (!visit(insn))
1403 return false;
1404 }
1405 return true;
1406 }
1407
1408 bool
1409 Converter::visit(nir_if *nif)
1410 {
1411 DataType sType = getSType(nif->condition, false, false);
1412 Value *src = getSrc(&nif->condition, 0);
1413
1414 nir_block *lastThen = nir_if_last_then_block(nif);
1415 nir_block *lastElse = nir_if_last_else_block(nif);
1416
1417 assert(!lastThen->successors[1]);
1418 assert(!lastElse->successors[1]);
1419
1420 BasicBlock *ifBB = convert(nir_if_first_then_block(nif));
1421 BasicBlock *elseBB = convert(nir_if_first_else_block(nif));
1422
1423 bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
1424 bb->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
1425
1426 // we only insert joinats, if both nodes end up at the end of the if again.
1427 // the reason for this to not happens are breaks/continues/ret/... which
1428 // have their own handling
1429 if (lastThen->successors[0] == lastElse->successors[0])
1430 bb->joinAt = mkFlow(OP_JOINAT, convert(lastThen->successors[0]),
1431 CC_ALWAYS, NULL);
1432
1433 mkFlow(OP_BRA, elseBB, CC_EQ, src)->setType(sType);
1434
1435 foreach_list_typed(nir_cf_node, node, node, &nif->then_list) {
1436 if (!visit(node))
1437 return false;
1438 }
1439 setPosition(convert(lastThen), true);
1440 if (!bb->getExit() ||
1441 !bb->getExit()->asFlow() ||
1442 bb->getExit()->asFlow()->op == OP_JOIN) {
1443 BasicBlock *tailBB = convert(lastThen->successors[0]);
1444 mkFlow(OP_BRA, tailBB, CC_ALWAYS, NULL);
1445 bb->cfg.attach(&tailBB->cfg, Graph::Edge::FORWARD);
1446 }
1447
1448 foreach_list_typed(nir_cf_node, node, node, &nif->else_list) {
1449 if (!visit(node))
1450 return false;
1451 }
1452 setPosition(convert(lastElse), true);
1453 if (!bb->getExit() ||
1454 !bb->getExit()->asFlow() ||
1455 bb->getExit()->asFlow()->op == OP_JOIN) {
1456 BasicBlock *tailBB = convert(lastElse->successors[0]);
1457 mkFlow(OP_BRA, tailBB, CC_ALWAYS, NULL);
1458 bb->cfg.attach(&tailBB->cfg, Graph::Edge::FORWARD);
1459 }
1460
1461 if (lastThen->successors[0] == lastElse->successors[0]) {
1462 setPosition(convert(lastThen->successors[0]), true);
1463 mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1464 }
1465
1466 return true;
1467 }
1468
1469 bool
1470 Converter::visit(nir_loop *loop)
1471 {
1472 curLoopDepth += 1;
1473 func->loopNestingBound = std::max(func->loopNestingBound, curLoopDepth);
1474
1475 BasicBlock *loopBB = convert(nir_loop_first_block(loop));
1476 BasicBlock *tailBB =
1477 convert(nir_cf_node_as_block(nir_cf_node_next(&loop->cf_node)));
1478 bb->cfg.attach(&loopBB->cfg, Graph::Edge::TREE);
1479
1480 mkFlow(OP_PREBREAK, tailBB, CC_ALWAYS, NULL);
1481 setPosition(loopBB, false);
1482 mkFlow(OP_PRECONT, loopBB, CC_ALWAYS, NULL);
1483
1484 foreach_list_typed(nir_cf_node, node, node, &loop->body) {
1485 if (!visit(node))
1486 return false;
1487 }
1488 Instruction *insn = bb->getExit();
1489 if (bb->cfg.incidentCount() != 0) {
1490 if (!insn || !insn->asFlow()) {
1491 mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
1492 bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
1493 } else if (insn && insn->op == OP_BRA && !insn->getPredicate() &&
1494 tailBB->cfg.incidentCount() == 0) {
1495 // RA doesn't like having blocks around with no incident edge,
1496 // so we create a fake one to make it happy
1497 bb->cfg.attach(&tailBB->cfg, Graph::Edge::TREE);
1498 }
1499 }
1500
1501 curLoopDepth -= 1;
1502
1503 return true;
1504 }
1505
1506 bool
1507 Converter::visit(nir_instr *insn)
1508 {
1509 // we need an insertion point for on the fly generated immediate loads
1510 immInsertPos = bb->getExit();
1511 switch (insn->type) {
1512 case nir_instr_type_alu:
1513 return visit(nir_instr_as_alu(insn));
1514 case nir_instr_type_intrinsic:
1515 return visit(nir_instr_as_intrinsic(insn));
1516 case nir_instr_type_jump:
1517 return visit(nir_instr_as_jump(insn));
1518 case nir_instr_type_load_const:
1519 return visit(nir_instr_as_load_const(insn));
1520 case nir_instr_type_ssa_undef:
1521 return visit(nir_instr_as_ssa_undef(insn));
1522 case nir_instr_type_tex:
1523 return visit(nir_instr_as_tex(insn));
1524 default:
1525 ERROR("unknown nir_instr type %u\n", insn->type);
1526 return false;
1527 }
1528 return true;
1529 }
1530
1531 SVSemantic
1532 Converter::convert(nir_intrinsic_op intr)
1533 {
1534 switch (intr) {
1535 case nir_intrinsic_load_base_vertex:
1536 return SV_BASEVERTEX;
1537 case nir_intrinsic_load_base_instance:
1538 return SV_BASEINSTANCE;
1539 case nir_intrinsic_load_draw_id:
1540 return SV_DRAWID;
1541 case nir_intrinsic_load_front_face:
1542 return SV_FACE;
1543 case nir_intrinsic_is_helper_invocation:
1544 case nir_intrinsic_load_helper_invocation:
1545 return SV_THREAD_KILL;
1546 case nir_intrinsic_load_instance_id:
1547 return SV_INSTANCE_ID;
1548 case nir_intrinsic_load_invocation_id:
1549 return SV_INVOCATION_ID;
1550 case nir_intrinsic_load_local_group_size:
1551 return SV_NTID;
1552 case nir_intrinsic_load_local_invocation_id:
1553 return SV_TID;
1554 case nir_intrinsic_load_num_work_groups:
1555 return SV_NCTAID;
1556 case nir_intrinsic_load_patch_vertices_in:
1557 return SV_VERTEX_COUNT;
1558 case nir_intrinsic_load_primitive_id:
1559 return SV_PRIMITIVE_ID;
1560 case nir_intrinsic_load_sample_id:
1561 return SV_SAMPLE_INDEX;
1562 case nir_intrinsic_load_sample_mask_in:
1563 return SV_SAMPLE_MASK;
1564 case nir_intrinsic_load_sample_pos:
1565 return SV_SAMPLE_POS;
1566 case nir_intrinsic_load_subgroup_eq_mask:
1567 return SV_LANEMASK_EQ;
1568 case nir_intrinsic_load_subgroup_ge_mask:
1569 return SV_LANEMASK_GE;
1570 case nir_intrinsic_load_subgroup_gt_mask:
1571 return SV_LANEMASK_GT;
1572 case nir_intrinsic_load_subgroup_le_mask:
1573 return SV_LANEMASK_LE;
1574 case nir_intrinsic_load_subgroup_lt_mask:
1575 return SV_LANEMASK_LT;
1576 case nir_intrinsic_load_subgroup_invocation:
1577 return SV_LANEID;
1578 case nir_intrinsic_load_tess_coord:
1579 return SV_TESS_COORD;
1580 case nir_intrinsic_load_tess_level_inner:
1581 return SV_TESS_INNER;
1582 case nir_intrinsic_load_tess_level_outer:
1583 return SV_TESS_OUTER;
1584 case nir_intrinsic_load_vertex_id:
1585 return SV_VERTEX_ID;
1586 case nir_intrinsic_load_work_group_id:
1587 return SV_CTAID;
1588 default:
1589 ERROR("unknown SVSemantic for nir_intrinsic_op %s\n",
1590 nir_intrinsic_infos[intr].name);
1591 assert(false);
1592 return SV_LAST;
1593 }
1594 }
1595
1596 bool
1597 Converter::visit(nir_intrinsic_instr *insn)
1598 {
1599 nir_intrinsic_op op = insn->intrinsic;
1600 const nir_intrinsic_info &opInfo = nir_intrinsic_infos[op];
1601 unsigned dest_components = nir_intrinsic_dest_components(insn);
1602
1603 switch (op) {
1604 case nir_intrinsic_load_uniform: {
1605 LValues &newDefs = convert(&insn->dest);
1606 const DataType dType = getDType(insn);
1607 Value *indirect;
1608 uint32_t coffset = getIndirect(insn, 0, 0, indirect);
1609 for (uint8_t i = 0; i < dest_components; ++i) {
1610 loadFrom(FILE_MEMORY_CONST, 0, dType, newDefs[i], 16 * coffset, i, indirect);
1611 }
1612 break;
1613 }
1614 case nir_intrinsic_store_output:
1615 case nir_intrinsic_store_per_vertex_output: {
1616 Value *indirect;
1617 DataType dType = getSType(insn->src[0], false, false);
1618 uint32_t idx = getIndirect(insn, op == nir_intrinsic_store_output ? 1 : 2, 0, indirect);
1619
1620 for (uint8_t i = 0u; i < nir_intrinsic_src_components(insn, 0); ++i) {
1621 if (!((1u << i) & nir_intrinsic_write_mask(insn)))
1622 continue;
1623
1624 uint8_t offset = 0;
1625 Value *src = getSrc(&insn->src[0], i);
1626 switch (prog->getType()) {
1627 case Program::TYPE_FRAGMENT: {
1628 if (info->out[idx].sn == TGSI_SEMANTIC_POSITION) {
1629 // TGSI uses a different interface than NIR, TGSI stores that
1630 // value in the z component, NIR in X
1631 offset += 2;
1632 src = mkOp1v(OP_SAT, TYPE_F32, getScratch(), src);
1633 }
1634 break;
1635 }
1636 case Program::TYPE_GEOMETRY:
1637 case Program::TYPE_VERTEX: {
1638 if (info->io.genUserClip > 0 && idx == (uint32_t)clipVertexOutput) {
1639 mkMov(clipVtx[i], src);
1640 src = clipVtx[i];
1641 }
1642 break;
1643 }
1644 default:
1645 break;
1646 }
1647
1648 storeTo(insn, FILE_SHADER_OUTPUT, OP_EXPORT, dType, src, idx, i + offset, indirect);
1649 }
1650 break;
1651 }
1652 case nir_intrinsic_load_input:
1653 case nir_intrinsic_load_interpolated_input:
1654 case nir_intrinsic_load_output: {
1655 LValues &newDefs = convert(&insn->dest);
1656
1657 // FBFetch
1658 if (prog->getType() == Program::TYPE_FRAGMENT &&
1659 op == nir_intrinsic_load_output) {
1660 std::vector<Value*> defs, srcs;
1661 uint8_t mask = 0;
1662
1663 srcs.push_back(getSSA());
1664 srcs.push_back(getSSA());
1665 Value *x = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_POSITION, 0));
1666 Value *y = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_POSITION, 1));
1667 mkCvt(OP_CVT, TYPE_U32, srcs[0], TYPE_F32, x)->rnd = ROUND_Z;
1668 mkCvt(OP_CVT, TYPE_U32, srcs[1], TYPE_F32, y)->rnd = ROUND_Z;
1669
1670 srcs.push_back(mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_LAYER, 0)));
1671 srcs.push_back(mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_SAMPLE_INDEX, 0)));
1672
1673 for (uint8_t i = 0u; i < dest_components; ++i) {
1674 defs.push_back(newDefs[i]);
1675 mask |= 1 << i;
1676 }
1677
1678 TexInstruction *texi = mkTex(OP_TXF, TEX_TARGET_2D_MS_ARRAY, 0, 0, defs, srcs);
1679 texi->tex.levelZero = 1;
1680 texi->tex.mask = mask;
1681 texi->tex.useOffsets = 0;
1682 texi->tex.r = 0xffff;
1683 texi->tex.s = 0xffff;
1684
1685 info->prop.fp.readsFramebuffer = true;
1686 break;
1687 }
1688
1689 const DataType dType = getDType(insn);
1690 Value *indirect;
1691 bool input = op != nir_intrinsic_load_output;
1692 operation nvirOp;
1693 uint32_t mode = 0;
1694
1695 uint32_t idx = getIndirect(insn, op == nir_intrinsic_load_interpolated_input ? 1 : 0, 0, indirect);
1696 nv50_ir_varying& vary = input ? info->in[idx] : info->out[idx];
1697
1698 // see load_barycentric_* handling
1699 if (prog->getType() == Program::TYPE_FRAGMENT) {
1700 mode = translateInterpMode(&vary, nvirOp);
1701 if (op == nir_intrinsic_load_interpolated_input) {
1702 ImmediateValue immMode;
1703 if (getSrc(&insn->src[0], 1)->getUniqueInsn()->src(0).getImmediate(immMode))
1704 mode |= immMode.reg.data.u32;
1705 }
1706 }
1707
1708 for (uint8_t i = 0u; i < dest_components; ++i) {
1709 uint32_t address = getSlotAddress(insn, idx, i);
1710 Symbol *sym = mkSymbol(input ? FILE_SHADER_INPUT : FILE_SHADER_OUTPUT, 0, dType, address);
1711 if (prog->getType() == Program::TYPE_FRAGMENT) {
1712 int s = 1;
1713 if (typeSizeof(dType) == 8) {
1714 Value *lo = getSSA();
1715 Value *hi = getSSA();
1716 Instruction *interp;
1717
1718 interp = mkOp1(nvirOp, TYPE_U32, lo, sym);
1719 if (nvirOp == OP_PINTERP)
1720 interp->setSrc(s++, fp.position);
1721 if (mode & NV50_IR_INTERP_OFFSET)
1722 interp->setSrc(s++, getSrc(&insn->src[0], 0));
1723 interp->setInterpolate(mode);
1724 interp->setIndirect(0, 0, indirect);
1725
1726 Symbol *sym1 = mkSymbol(input ? FILE_SHADER_INPUT : FILE_SHADER_OUTPUT, 0, dType, address + 4);
1727 interp = mkOp1(nvirOp, TYPE_U32, hi, sym1);
1728 if (nvirOp == OP_PINTERP)
1729 interp->setSrc(s++, fp.position);
1730 if (mode & NV50_IR_INTERP_OFFSET)
1731 interp->setSrc(s++, getSrc(&insn->src[0], 0));
1732 interp->setInterpolate(mode);
1733 interp->setIndirect(0, 0, indirect);
1734
1735 mkOp2(OP_MERGE, dType, newDefs[i], lo, hi);
1736 } else {
1737 Instruction *interp = mkOp1(nvirOp, dType, newDefs[i], sym);
1738 if (nvirOp == OP_PINTERP)
1739 interp->setSrc(s++, fp.position);
1740 if (mode & NV50_IR_INTERP_OFFSET)
1741 interp->setSrc(s++, getSrc(&insn->src[0], 0));
1742 interp->setInterpolate(mode);
1743 interp->setIndirect(0, 0, indirect);
1744 }
1745 } else {
1746 mkLoad(dType, newDefs[i], sym, indirect)->perPatch = vary.patch;
1747 }
1748 }
1749 break;
1750 }
1751 case nir_intrinsic_load_kernel_input: {
1752 assert(prog->getType() == Program::TYPE_COMPUTE);
1753 assert(insn->num_components == 1);
1754
1755 LValues &newDefs = convert(&insn->dest);
1756 const DataType dType = getDType(insn);
1757 Value *indirect;
1758 uint32_t idx = getIndirect(insn, 0, 0, indirect, true);
1759
1760 mkLoad(dType, newDefs[0], mkSymbol(FILE_SHADER_INPUT, 0, dType, idx), indirect);
1761 break;
1762 }
1763 case nir_intrinsic_load_barycentric_at_offset:
1764 case nir_intrinsic_load_barycentric_at_sample:
1765 case nir_intrinsic_load_barycentric_centroid:
1766 case nir_intrinsic_load_barycentric_pixel:
1767 case nir_intrinsic_load_barycentric_sample: {
1768 LValues &newDefs = convert(&insn->dest);
1769 uint32_t mode;
1770
1771 if (op == nir_intrinsic_load_barycentric_centroid ||
1772 op == nir_intrinsic_load_barycentric_sample) {
1773 mode = NV50_IR_INTERP_CENTROID;
1774 } else if (op == nir_intrinsic_load_barycentric_at_offset) {
1775 Value *offs[2];
1776 for (uint8_t c = 0; c < 2; c++) {
1777 offs[c] = getScratch();
1778 mkOp2(OP_MIN, TYPE_F32, offs[c], getSrc(&insn->src[0], c), loadImm(NULL, 0.4375f));
1779 mkOp2(OP_MAX, TYPE_F32, offs[c], offs[c], loadImm(NULL, -0.5f));
1780 mkOp2(OP_MUL, TYPE_F32, offs[c], offs[c], loadImm(NULL, 4096.0f));
1781 mkCvt(OP_CVT, TYPE_S32, offs[c], TYPE_F32, offs[c]);
1782 }
1783 mkOp3v(OP_INSBF, TYPE_U32, newDefs[0], offs[1], mkImm(0x1010), offs[0]);
1784
1785 mode = NV50_IR_INTERP_OFFSET;
1786 } else if (op == nir_intrinsic_load_barycentric_pixel) {
1787 mode = NV50_IR_INTERP_DEFAULT;
1788 } else if (op == nir_intrinsic_load_barycentric_at_sample) {
1789 info->prop.fp.readsSampleLocations = true;
1790 mkOp1(OP_PIXLD, TYPE_U32, newDefs[0], getSrc(&insn->src[0], 0))->subOp = NV50_IR_SUBOP_PIXLD_OFFSET;
1791 mode = NV50_IR_INTERP_OFFSET;
1792 } else {
1793 unreachable("all intrinsics already handled above");
1794 }
1795
1796 loadImm(newDefs[1], mode);
1797 break;
1798 }
1799 case nir_intrinsic_demote:
1800 case nir_intrinsic_discard:
1801 mkOp(OP_DISCARD, TYPE_NONE, NULL);
1802 break;
1803 case nir_intrinsic_demote_if:
1804 case nir_intrinsic_discard_if: {
1805 Value *pred = getSSA(1, FILE_PREDICATE);
1806 if (insn->num_components > 1) {
1807 ERROR("nir_intrinsic_discard_if only with 1 component supported!\n");
1808 assert(false);
1809 return false;
1810 }
1811 mkCmp(OP_SET, CC_NE, TYPE_U8, pred, TYPE_U32, getSrc(&insn->src[0], 0), zero);
1812 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, pred);
1813 break;
1814 }
1815 case nir_intrinsic_load_base_vertex:
1816 case nir_intrinsic_load_base_instance:
1817 case nir_intrinsic_load_draw_id:
1818 case nir_intrinsic_load_front_face:
1819 case nir_intrinsic_is_helper_invocation:
1820 case nir_intrinsic_load_helper_invocation:
1821 case nir_intrinsic_load_instance_id:
1822 case nir_intrinsic_load_invocation_id:
1823 case nir_intrinsic_load_local_group_size:
1824 case nir_intrinsic_load_local_invocation_id:
1825 case nir_intrinsic_load_num_work_groups:
1826 case nir_intrinsic_load_patch_vertices_in:
1827 case nir_intrinsic_load_primitive_id:
1828 case nir_intrinsic_load_sample_id:
1829 case nir_intrinsic_load_sample_mask_in:
1830 case nir_intrinsic_load_sample_pos:
1831 case nir_intrinsic_load_subgroup_eq_mask:
1832 case nir_intrinsic_load_subgroup_ge_mask:
1833 case nir_intrinsic_load_subgroup_gt_mask:
1834 case nir_intrinsic_load_subgroup_le_mask:
1835 case nir_intrinsic_load_subgroup_lt_mask:
1836 case nir_intrinsic_load_subgroup_invocation:
1837 case nir_intrinsic_load_tess_coord:
1838 case nir_intrinsic_load_tess_level_inner:
1839 case nir_intrinsic_load_tess_level_outer:
1840 case nir_intrinsic_load_vertex_id:
1841 case nir_intrinsic_load_work_group_id: {
1842 const DataType dType = getDType(insn);
1843 SVSemantic sv = convert(op);
1844 LValues &newDefs = convert(&insn->dest);
1845
1846 for (uint8_t i = 0u; i < nir_intrinsic_dest_components(insn); ++i) {
1847 Value *def;
1848 if (typeSizeof(dType) == 8)
1849 def = getSSA();
1850 else
1851 def = newDefs[i];
1852
1853 if (sv == SV_TID && info->prop.cp.numThreads[i] == 1) {
1854 loadImm(def, 0u);
1855 } else {
1856 Symbol *sym = mkSysVal(sv, i);
1857 Instruction *rdsv = mkOp1(OP_RDSV, TYPE_U32, def, sym);
1858 if (sv == SV_TESS_OUTER || sv == SV_TESS_INNER)
1859 rdsv->perPatch = 1;
1860 }
1861
1862 if (typeSizeof(dType) == 8)
1863 mkOp2(OP_MERGE, dType, newDefs[i], def, loadImm(getSSA(), 0u));
1864 }
1865 break;
1866 }
1867 // constants
1868 case nir_intrinsic_load_subgroup_size: {
1869 LValues &newDefs = convert(&insn->dest);
1870 loadImm(newDefs[0], 32u);
1871 break;
1872 }
1873 case nir_intrinsic_vote_all:
1874 case nir_intrinsic_vote_any:
1875 case nir_intrinsic_vote_ieq: {
1876 LValues &newDefs = convert(&insn->dest);
1877 Value *pred = getScratch(1, FILE_PREDICATE);
1878 mkCmp(OP_SET, CC_NE, TYPE_U32, pred, TYPE_U32, getSrc(&insn->src[0], 0), zero);
1879 mkOp1(OP_VOTE, TYPE_U32, pred, pred)->subOp = getSubOp(op);
1880 mkCvt(OP_CVT, TYPE_U32, newDefs[0], TYPE_U8, pred);
1881 break;
1882 }
1883 case nir_intrinsic_ballot: {
1884 LValues &newDefs = convert(&insn->dest);
1885 Value *pred = getSSA(1, FILE_PREDICATE);
1886 mkCmp(OP_SET, CC_NE, TYPE_U32, pred, TYPE_U32, getSrc(&insn->src[0], 0), zero);
1887 mkOp1(OP_VOTE, TYPE_U32, newDefs[0], pred)->subOp = NV50_IR_SUBOP_VOTE_ANY;
1888 break;
1889 }
1890 case nir_intrinsic_read_first_invocation:
1891 case nir_intrinsic_read_invocation: {
1892 LValues &newDefs = convert(&insn->dest);
1893 const DataType dType = getDType(insn);
1894 Value *tmp = getScratch();
1895
1896 if (op == nir_intrinsic_read_first_invocation) {
1897 mkOp1(OP_VOTE, TYPE_U32, tmp, mkImm(1))->subOp = NV50_IR_SUBOP_VOTE_ANY;
1898 mkOp1(OP_BREV, TYPE_U32, tmp, tmp);
1899 mkOp1(OP_BFIND, TYPE_U32, tmp, tmp)->subOp = NV50_IR_SUBOP_BFIND_SAMT;
1900 } else
1901 tmp = getSrc(&insn->src[1], 0);
1902
1903 for (uint8_t i = 0; i < dest_components; ++i) {
1904 mkOp3(OP_SHFL, dType, newDefs[i], getSrc(&insn->src[0], i), tmp, mkImm(0x1f))
1905 ->subOp = NV50_IR_SUBOP_SHFL_IDX;
1906 }
1907 break;
1908 }
1909 case nir_intrinsic_load_per_vertex_input: {
1910 const DataType dType = getDType(insn);
1911 LValues &newDefs = convert(&insn->dest);
1912 Value *indirectVertex;
1913 Value *indirectOffset;
1914 uint32_t baseVertex = getIndirect(&insn->src[0], 0, indirectVertex);
1915 uint32_t idx = getIndirect(insn, 1, 0, indirectOffset);
1916
1917 Value *vtxBase = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1918 mkImm(baseVertex), indirectVertex);
1919 for (uint8_t i = 0u; i < dest_components; ++i) {
1920 uint32_t address = getSlotAddress(insn, idx, i);
1921 loadFrom(FILE_SHADER_INPUT, 0, dType, newDefs[i], address, 0,
1922 indirectOffset, vtxBase, info->in[idx].patch);
1923 }
1924 break;
1925 }
1926 case nir_intrinsic_load_per_vertex_output: {
1927 const DataType dType = getDType(insn);
1928 LValues &newDefs = convert(&insn->dest);
1929 Value *indirectVertex;
1930 Value *indirectOffset;
1931 uint32_t baseVertex = getIndirect(&insn->src[0], 0, indirectVertex);
1932 uint32_t idx = getIndirect(insn, 1, 0, indirectOffset);
1933 Value *vtxBase = NULL;
1934
1935 if (indirectVertex)
1936 vtxBase = indirectVertex;
1937 else
1938 vtxBase = loadImm(NULL, baseVertex);
1939
1940 vtxBase = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, FILE_ADDRESS), outBase, vtxBase);
1941
1942 for (uint8_t i = 0u; i < dest_components; ++i) {
1943 uint32_t address = getSlotAddress(insn, idx, i);
1944 loadFrom(FILE_SHADER_OUTPUT, 0, dType, newDefs[i], address, 0,
1945 indirectOffset, vtxBase, info->in[idx].patch);
1946 }
1947 break;
1948 }
1949 case nir_intrinsic_emit_vertex:
1950 if (info->io.genUserClip > 0)
1951 handleUserClipPlanes();
1952 // fallthrough
1953 case nir_intrinsic_end_primitive: {
1954 uint32_t idx = nir_intrinsic_stream_id(insn);
1955 mkOp1(getOperation(op), TYPE_U32, NULL, mkImm(idx))->fixed = 1;
1956 break;
1957 }
1958 case nir_intrinsic_load_ubo: {
1959 const DataType dType = getDType(insn);
1960 LValues &newDefs = convert(&insn->dest);
1961 Value *indirectIndex;
1962 Value *indirectOffset;
1963 uint32_t index = getIndirect(&insn->src[0], 0, indirectIndex) + 1;
1964 uint32_t offset = getIndirect(&insn->src[1], 0, indirectOffset);
1965
1966 for (uint8_t i = 0u; i < dest_components; ++i) {
1967 loadFrom(FILE_MEMORY_CONST, index, dType, newDefs[i], offset, i,
1968 indirectOffset, indirectIndex);
1969 }
1970 break;
1971 }
1972 case nir_intrinsic_get_buffer_size: {
1973 LValues &newDefs = convert(&insn->dest);
1974 const DataType dType = getDType(insn);
1975 Value *indirectBuffer;
1976 uint32_t buffer = getIndirect(&insn->src[0], 0, indirectBuffer);
1977
1978 Symbol *sym = mkSymbol(FILE_MEMORY_BUFFER, buffer, dType, 0);
1979 mkOp1(OP_BUFQ, dType, newDefs[0], sym)->setIndirect(0, 0, indirectBuffer);
1980 break;
1981 }
1982 case nir_intrinsic_store_ssbo: {
1983 DataType sType = getSType(insn->src[0], false, false);
1984 Value *indirectBuffer;
1985 Value *indirectOffset;
1986 uint32_t buffer = getIndirect(&insn->src[1], 0, indirectBuffer);
1987 uint32_t offset = getIndirect(&insn->src[2], 0, indirectOffset);
1988
1989 for (uint8_t i = 0u; i < nir_intrinsic_src_components(insn, 0); ++i) {
1990 if (!((1u << i) & nir_intrinsic_write_mask(insn)))
1991 continue;
1992 Symbol *sym = mkSymbol(FILE_MEMORY_BUFFER, buffer, sType,
1993 offset + i * typeSizeof(sType));
1994 mkStore(OP_STORE, sType, sym, indirectOffset, getSrc(&insn->src[0], i))
1995 ->setIndirect(0, 1, indirectBuffer);
1996 }
1997 info->io.globalAccess |= 0x2;
1998 break;
1999 }
2000 case nir_intrinsic_load_ssbo: {
2001 const DataType dType = getDType(insn);
2002 LValues &newDefs = convert(&insn->dest);
2003 Value *indirectBuffer;
2004 Value *indirectOffset;
2005 uint32_t buffer = getIndirect(&insn->src[0], 0, indirectBuffer);
2006 uint32_t offset = getIndirect(&insn->src[1], 0, indirectOffset);
2007
2008 for (uint8_t i = 0u; i < dest_components; ++i)
2009 loadFrom(FILE_MEMORY_BUFFER, buffer, dType, newDefs[i], offset, i,
2010 indirectOffset, indirectBuffer);
2011
2012 info->io.globalAccess |= 0x1;
2013 break;
2014 }
2015 case nir_intrinsic_shared_atomic_add:
2016 case nir_intrinsic_shared_atomic_and:
2017 case nir_intrinsic_shared_atomic_comp_swap:
2018 case nir_intrinsic_shared_atomic_exchange:
2019 case nir_intrinsic_shared_atomic_or:
2020 case nir_intrinsic_shared_atomic_imax:
2021 case nir_intrinsic_shared_atomic_imin:
2022 case nir_intrinsic_shared_atomic_umax:
2023 case nir_intrinsic_shared_atomic_umin:
2024 case nir_intrinsic_shared_atomic_xor: {
2025 const DataType dType = getDType(insn);
2026 LValues &newDefs = convert(&insn->dest);
2027 Value *indirectOffset;
2028 uint32_t offset = getIndirect(&insn->src[0], 0, indirectOffset);
2029 Symbol *sym = mkSymbol(FILE_MEMORY_SHARED, 0, dType, offset);
2030 Instruction *atom = mkOp2(OP_ATOM, dType, newDefs[0], sym, getSrc(&insn->src[1], 0));
2031 if (op == nir_intrinsic_shared_atomic_comp_swap)
2032 atom->setSrc(2, getSrc(&insn->src[2], 0));
2033 atom->setIndirect(0, 0, indirectOffset);
2034 atom->subOp = getSubOp(op);
2035 break;
2036 }
2037 case nir_intrinsic_ssbo_atomic_add:
2038 case nir_intrinsic_ssbo_atomic_and:
2039 case nir_intrinsic_ssbo_atomic_comp_swap:
2040 case nir_intrinsic_ssbo_atomic_exchange:
2041 case nir_intrinsic_ssbo_atomic_or:
2042 case nir_intrinsic_ssbo_atomic_imax:
2043 case nir_intrinsic_ssbo_atomic_imin:
2044 case nir_intrinsic_ssbo_atomic_umax:
2045 case nir_intrinsic_ssbo_atomic_umin:
2046 case nir_intrinsic_ssbo_atomic_xor: {
2047 const DataType dType = getDType(insn);
2048 LValues &newDefs = convert(&insn->dest);
2049 Value *indirectBuffer;
2050 Value *indirectOffset;
2051 uint32_t buffer = getIndirect(&insn->src[0], 0, indirectBuffer);
2052 uint32_t offset = getIndirect(&insn->src[1], 0, indirectOffset);
2053
2054 Symbol *sym = mkSymbol(FILE_MEMORY_BUFFER, buffer, dType, offset);
2055 Instruction *atom = mkOp2(OP_ATOM, dType, newDefs[0], sym,
2056 getSrc(&insn->src[2], 0));
2057 if (op == nir_intrinsic_ssbo_atomic_comp_swap)
2058 atom->setSrc(2, getSrc(&insn->src[3], 0));
2059 atom->setIndirect(0, 0, indirectOffset);
2060 atom->setIndirect(0, 1, indirectBuffer);
2061 atom->subOp = getSubOp(op);
2062
2063 info->io.globalAccess |= 0x2;
2064 break;
2065 }
2066 case nir_intrinsic_global_atomic_add:
2067 case nir_intrinsic_global_atomic_and:
2068 case nir_intrinsic_global_atomic_comp_swap:
2069 case nir_intrinsic_global_atomic_exchange:
2070 case nir_intrinsic_global_atomic_or:
2071 case nir_intrinsic_global_atomic_imax:
2072 case nir_intrinsic_global_atomic_imin:
2073 case nir_intrinsic_global_atomic_umax:
2074 case nir_intrinsic_global_atomic_umin:
2075 case nir_intrinsic_global_atomic_xor: {
2076 const DataType dType = getDType(insn);
2077 LValues &newDefs = convert(&insn->dest);
2078 Value *address;
2079 uint32_t offset = getIndirect(&insn->src[0], 0, address);
2080
2081 Symbol *sym = mkSymbol(FILE_MEMORY_GLOBAL, 0, dType, offset);
2082 Instruction *atom =
2083 mkOp2(OP_ATOM, dType, newDefs[0], sym, getSrc(&insn->src[1], 0));
2084 atom->setIndirect(0, 0, address);
2085 atom->subOp = getSubOp(op);
2086
2087 info->io.globalAccess |= 0x2;
2088 break;
2089 }
2090 case nir_intrinsic_bindless_image_atomic_add:
2091 case nir_intrinsic_bindless_image_atomic_and:
2092 case nir_intrinsic_bindless_image_atomic_comp_swap:
2093 case nir_intrinsic_bindless_image_atomic_exchange:
2094 case nir_intrinsic_bindless_image_atomic_imax:
2095 case nir_intrinsic_bindless_image_atomic_umax:
2096 case nir_intrinsic_bindless_image_atomic_imin:
2097 case nir_intrinsic_bindless_image_atomic_umin:
2098 case nir_intrinsic_bindless_image_atomic_or:
2099 case nir_intrinsic_bindless_image_atomic_xor:
2100 case nir_intrinsic_bindless_image_atomic_inc_wrap:
2101 case nir_intrinsic_bindless_image_atomic_dec_wrap:
2102 case nir_intrinsic_bindless_image_load:
2103 case nir_intrinsic_bindless_image_samples:
2104 case nir_intrinsic_bindless_image_size:
2105 case nir_intrinsic_bindless_image_store:
2106 case nir_intrinsic_image_atomic_add:
2107 case nir_intrinsic_image_atomic_and:
2108 case nir_intrinsic_image_atomic_comp_swap:
2109 case nir_intrinsic_image_atomic_exchange:
2110 case nir_intrinsic_image_atomic_imax:
2111 case nir_intrinsic_image_atomic_umax:
2112 case nir_intrinsic_image_atomic_imin:
2113 case nir_intrinsic_image_atomic_umin:
2114 case nir_intrinsic_image_atomic_or:
2115 case nir_intrinsic_image_atomic_xor:
2116 case nir_intrinsic_image_atomic_inc_wrap:
2117 case nir_intrinsic_image_atomic_dec_wrap:
2118 case nir_intrinsic_image_load:
2119 case nir_intrinsic_image_samples:
2120 case nir_intrinsic_image_size:
2121 case nir_intrinsic_image_store: {
2122 std::vector<Value*> srcs, defs;
2123 Value *indirect;
2124 DataType ty;
2125
2126 uint32_t mask = 0;
2127 TexInstruction::Target target =
2128 convert(nir_intrinsic_image_dim(insn), !!nir_intrinsic_image_array(insn), false);
2129 unsigned int argCount = getNIRArgCount(target);
2130 uint16_t location = 0;
2131
2132 if (opInfo.has_dest) {
2133 LValues &newDefs = convert(&insn->dest);
2134 for (uint8_t i = 0u; i < newDefs.size(); ++i) {
2135 defs.push_back(newDefs[i]);
2136 mask |= 1 << i;
2137 }
2138 }
2139
2140 int lod_src = -1;
2141 bool bindless = false;
2142 switch (op) {
2143 case nir_intrinsic_bindless_image_atomic_add:
2144 case nir_intrinsic_bindless_image_atomic_and:
2145 case nir_intrinsic_bindless_image_atomic_comp_swap:
2146 case nir_intrinsic_bindless_image_atomic_exchange:
2147 case nir_intrinsic_bindless_image_atomic_imax:
2148 case nir_intrinsic_bindless_image_atomic_umax:
2149 case nir_intrinsic_bindless_image_atomic_imin:
2150 case nir_intrinsic_bindless_image_atomic_umin:
2151 case nir_intrinsic_bindless_image_atomic_or:
2152 case nir_intrinsic_bindless_image_atomic_xor:
2153 case nir_intrinsic_bindless_image_atomic_inc_wrap:
2154 case nir_intrinsic_bindless_image_atomic_dec_wrap:
2155 ty = getDType(insn);
2156 bindless = true;
2157 info->io.globalAccess |= 0x2;
2158 mask = 0x1;
2159 break;
2160 case nir_intrinsic_image_atomic_add:
2161 case nir_intrinsic_image_atomic_and:
2162 case nir_intrinsic_image_atomic_comp_swap:
2163 case nir_intrinsic_image_atomic_exchange:
2164 case nir_intrinsic_image_atomic_imax:
2165 case nir_intrinsic_image_atomic_umax:
2166 case nir_intrinsic_image_atomic_imin:
2167 case nir_intrinsic_image_atomic_umin:
2168 case nir_intrinsic_image_atomic_or:
2169 case nir_intrinsic_image_atomic_xor:
2170 case nir_intrinsic_image_atomic_inc_wrap:
2171 case nir_intrinsic_image_atomic_dec_wrap:
2172 ty = getDType(insn);
2173 bindless = false;
2174 info->io.globalAccess |= 0x2;
2175 mask = 0x1;
2176 break;
2177 case nir_intrinsic_bindless_image_load:
2178 case nir_intrinsic_image_load:
2179 ty = TYPE_U32;
2180 bindless = op == nir_intrinsic_bindless_image_load;
2181 info->io.globalAccess |= 0x1;
2182 lod_src = 4;
2183 break;
2184 case nir_intrinsic_bindless_image_store:
2185 case nir_intrinsic_image_store:
2186 ty = TYPE_U32;
2187 bindless = op == nir_intrinsic_bindless_image_store;
2188 info->io.globalAccess |= 0x2;
2189 lod_src = 5;
2190 mask = 0xf;
2191 break;
2192 case nir_intrinsic_bindless_image_samples:
2193 case nir_intrinsic_image_samples:
2194 ty = TYPE_U32;
2195 bindless = op == nir_intrinsic_bindless_image_samples;
2196 mask = 0x8;
2197 break;
2198 case nir_intrinsic_bindless_image_size:
2199 case nir_intrinsic_image_size:
2200 ty = TYPE_U32;
2201 bindless = op == nir_intrinsic_bindless_image_size;
2202 break;
2203 default:
2204 unreachable("unhandled image opcode");
2205 break;
2206 }
2207
2208 if (bindless)
2209 indirect = getSrc(&insn->src[0], 0);
2210 else
2211 location = getIndirect(&insn->src[0], 0, indirect);
2212
2213 // coords
2214 if (opInfo.num_srcs >= 2)
2215 for (unsigned int i = 0u; i < argCount; ++i)
2216 srcs.push_back(getSrc(&insn->src[1], i));
2217
2218 // the sampler is just another src added after coords
2219 if (opInfo.num_srcs >= 3 && target.isMS())
2220 srcs.push_back(getSrc(&insn->src[2], 0));
2221
2222 if (opInfo.num_srcs >= 4 && lod_src != 4) {
2223 unsigned components = opInfo.src_components[3] ? opInfo.src_components[3] : insn->num_components;
2224 for (uint8_t i = 0u; i < components; ++i)
2225 srcs.push_back(getSrc(&insn->src[3], i));
2226 }
2227
2228 if (opInfo.num_srcs >= 5 && lod_src != 5)
2229 // 1 for aotmic swap
2230 for (uint8_t i = 0u; i < opInfo.src_components[4]; ++i)
2231 srcs.push_back(getSrc(&insn->src[4], i));
2232
2233 TexInstruction *texi = mkTex(getOperation(op), target.getEnum(), location, 0, defs, srcs);
2234 texi->tex.bindless = bindless;
2235 texi->tex.format = nv50_ir::TexInstruction::translateImgFormat(nir_intrinsic_format(insn));
2236 texi->tex.mask = mask;
2237 texi->cache = convert(nir_intrinsic_access(insn));
2238 texi->setType(ty);
2239 texi->subOp = getSubOp(op);
2240
2241 if (indirect)
2242 texi->setIndirectR(indirect);
2243
2244 break;
2245 }
2246 case nir_intrinsic_store_shared: {
2247 DataType sType = getSType(insn->src[0], false, false);
2248 Value *indirectOffset;
2249 uint32_t offset = getIndirect(&insn->src[1], 0, indirectOffset);
2250
2251 for (uint8_t i = 0u; i < nir_intrinsic_src_components(insn, 0); ++i) {
2252 if (!((1u << i) & nir_intrinsic_write_mask(insn)))
2253 continue;
2254 Symbol *sym = mkSymbol(FILE_MEMORY_SHARED, 0, sType, offset + i * typeSizeof(sType));
2255 mkStore(OP_STORE, sType, sym, indirectOffset, getSrc(&insn->src[0], i));
2256 }
2257 break;
2258 }
2259 case nir_intrinsic_load_shared: {
2260 const DataType dType = getDType(insn);
2261 LValues &newDefs = convert(&insn->dest);
2262 Value *indirectOffset;
2263 uint32_t offset = getIndirect(&insn->src[0], 0, indirectOffset);
2264
2265 for (uint8_t i = 0u; i < dest_components; ++i)
2266 loadFrom(FILE_MEMORY_SHARED, 0, dType, newDefs[i], offset, i, indirectOffset);
2267
2268 break;
2269 }
2270 case nir_intrinsic_control_barrier: {
2271 // TODO: add flag to shader_info
2272 info->numBarriers = 1;
2273 Instruction *bar = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
2274 bar->fixed = 1;
2275 bar->subOp = NV50_IR_SUBOP_BAR_SYNC;
2276 break;
2277 }
2278 case nir_intrinsic_group_memory_barrier:
2279 case nir_intrinsic_memory_barrier:
2280 case nir_intrinsic_memory_barrier_buffer:
2281 case nir_intrinsic_memory_barrier_image:
2282 case nir_intrinsic_memory_barrier_shared: {
2283 Instruction *bar = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
2284 bar->fixed = 1;
2285 bar->subOp = getSubOp(op);
2286 break;
2287 }
2288 case nir_intrinsic_memory_barrier_tcs_patch:
2289 break;
2290 case nir_intrinsic_shader_clock: {
2291 const DataType dType = getDType(insn);
2292 LValues &newDefs = convert(&insn->dest);
2293
2294 loadImm(newDefs[0], 0u);
2295 mkOp1(OP_RDSV, dType, newDefs[1], mkSysVal(SV_CLOCK, 0))->fixed = 1;
2296 break;
2297 }
2298 case nir_intrinsic_load_global: {
2299 const DataType dType = getDType(insn);
2300 LValues &newDefs = convert(&insn->dest);
2301 Value *indirectOffset;
2302 uint32_t offset = getIndirect(&insn->src[0], 0, indirectOffset);
2303
2304 for (auto i = 0u; i < dest_components; ++i)
2305 loadFrom(FILE_MEMORY_GLOBAL, 0, dType, newDefs[i], offset, i, indirectOffset);
2306
2307 info->io.globalAccess |= 0x1;
2308 break;
2309 }
2310 case nir_intrinsic_store_global: {
2311 DataType sType = getSType(insn->src[0], false, false);
2312
2313 for (auto i = 0u; i < nir_intrinsic_src_components(insn, 0); ++i) {
2314 if (!((1u << i) & nir_intrinsic_write_mask(insn)))
2315 continue;
2316 if (typeSizeof(sType) == 8) {
2317 Value *split[2];
2318 mkSplit(split, 4, getSrc(&insn->src[0], i));
2319
2320 Symbol *sym = mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, i * typeSizeof(sType));
2321 mkStore(OP_STORE, TYPE_U32, sym, getSrc(&insn->src[1], 0), split[0]);
2322
2323 sym = mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, i * typeSizeof(sType) + 4);
2324 mkStore(OP_STORE, TYPE_U32, sym, getSrc(&insn->src[1], 0), split[1]);
2325 } else {
2326 Symbol *sym = mkSymbol(FILE_MEMORY_GLOBAL, 0, sType, i * typeSizeof(sType));
2327 mkStore(OP_STORE, sType, sym, getSrc(&insn->src[1], 0), getSrc(&insn->src[0], i));
2328 }
2329 }
2330
2331 info->io.globalAccess |= 0x2;
2332 break;
2333 }
2334 default:
2335 ERROR("unknown nir_intrinsic_op %s\n", nir_intrinsic_infos[op].name);
2336 return false;
2337 }
2338
2339 return true;
2340 }
2341
2342 bool
2343 Converter::visit(nir_jump_instr *insn)
2344 {
2345 switch (insn->type) {
2346 case nir_jump_return:
2347 // TODO: this only works in the main function
2348 mkFlow(OP_BRA, exit, CC_ALWAYS, NULL);
2349 bb->cfg.attach(&exit->cfg, Graph::Edge::CROSS);
2350 break;
2351 case nir_jump_break:
2352 case nir_jump_continue: {
2353 bool isBreak = insn->type == nir_jump_break;
2354 nir_block *block = insn->instr.block;
2355 assert(!block->successors[1]);
2356 BasicBlock *target = convert(block->successors[0]);
2357 mkFlow(isBreak ? OP_BREAK : OP_CONT, target, CC_ALWAYS, NULL);
2358 bb->cfg.attach(&target->cfg, isBreak ? Graph::Edge::CROSS : Graph::Edge::BACK);
2359 break;
2360 }
2361 default:
2362 ERROR("unknown nir_jump_type %u\n", insn->type);
2363 return false;
2364 }
2365
2366 return true;
2367 }
2368
2369 Value*
2370 Converter::convert(nir_load_const_instr *insn, uint8_t idx)
2371 {
2372 Value *val;
2373
2374 if (immInsertPos)
2375 setPosition(immInsertPos, true);
2376 else
2377 setPosition(bb, false);
2378
2379 switch (insn->def.bit_size) {
2380 case 64:
2381 val = loadImm(getSSA(8), insn->value[idx].u64);
2382 break;
2383 case 32:
2384 val = loadImm(getSSA(4), insn->value[idx].u32);
2385 break;
2386 case 16:
2387 val = loadImm(getSSA(2), insn->value[idx].u16);
2388 break;
2389 case 8:
2390 val = loadImm(getSSA(1), insn->value[idx].u8);
2391 break;
2392 default:
2393 unreachable("unhandled bit size!\n");
2394 }
2395 setPosition(bb, true);
2396 return val;
2397 }
2398
2399 bool
2400 Converter::visit(nir_load_const_instr *insn)
2401 {
2402 assert(insn->def.bit_size <= 64);
2403 immediates[insn->def.index] = insn;
2404 return true;
2405 }
2406
2407 #define DEFAULT_CHECKS \
2408 if (insn->dest.dest.ssa.num_components > 1) { \
2409 ERROR("nir_alu_instr only supported with 1 component!\n"); \
2410 return false; \
2411 } \
2412 if (insn->dest.write_mask != 1) { \
2413 ERROR("nir_alu_instr only with write_mask of 1 supported!\n"); \
2414 return false; \
2415 }
2416 bool
2417 Converter::visit(nir_alu_instr *insn)
2418 {
2419 const nir_op op = insn->op;
2420 const nir_op_info &info = nir_op_infos[op];
2421 DataType dType = getDType(insn);
2422 const std::vector<DataType> sTypes = getSTypes(insn);
2423
2424 Instruction *oldPos = this->bb->getExit();
2425
2426 switch (op) {
2427 case nir_op_fabs:
2428 case nir_op_iabs:
2429 case nir_op_fadd:
2430 case nir_op_iadd:
2431 case nir_op_iand:
2432 case nir_op_fceil:
2433 case nir_op_fcos:
2434 case nir_op_fddx:
2435 case nir_op_fddx_coarse:
2436 case nir_op_fddx_fine:
2437 case nir_op_fddy:
2438 case nir_op_fddy_coarse:
2439 case nir_op_fddy_fine:
2440 case nir_op_fdiv:
2441 case nir_op_idiv:
2442 case nir_op_udiv:
2443 case nir_op_fexp2:
2444 case nir_op_ffloor:
2445 case nir_op_ffma:
2446 case nir_op_flog2:
2447 case nir_op_fmax:
2448 case nir_op_imax:
2449 case nir_op_umax:
2450 case nir_op_fmin:
2451 case nir_op_imin:
2452 case nir_op_umin:
2453 case nir_op_fmod:
2454 case nir_op_imod:
2455 case nir_op_umod:
2456 case nir_op_fmul:
2457 case nir_op_imul:
2458 case nir_op_imul_high:
2459 case nir_op_umul_high:
2460 case nir_op_fneg:
2461 case nir_op_ineg:
2462 case nir_op_inot:
2463 case nir_op_ior:
2464 case nir_op_pack_64_2x32_split:
2465 case nir_op_fpow:
2466 case nir_op_frcp:
2467 case nir_op_frem:
2468 case nir_op_irem:
2469 case nir_op_frsq:
2470 case nir_op_fsat:
2471 case nir_op_ishr:
2472 case nir_op_ushr:
2473 case nir_op_fsin:
2474 case nir_op_fsqrt:
2475 case nir_op_ftrunc:
2476 case nir_op_ishl:
2477 case nir_op_ixor: {
2478 DEFAULT_CHECKS;
2479 LValues &newDefs = convert(&insn->dest);
2480 operation preOp = preOperationNeeded(op);
2481 if (preOp != OP_NOP) {
2482 assert(info.num_inputs < 2);
2483 Value *tmp = getSSA(typeSizeof(dType));
2484 Instruction *i0 = mkOp(preOp, dType, tmp);
2485 Instruction *i1 = mkOp(getOperation(op), dType, newDefs[0]);
2486 if (info.num_inputs) {
2487 i0->setSrc(0, getSrc(&insn->src[0]));
2488 i1->setSrc(0, tmp);
2489 }
2490 i1->subOp = getSubOp(op);
2491 } else {
2492 Instruction *i = mkOp(getOperation(op), dType, newDefs[0]);
2493 for (unsigned s = 0u; s < info.num_inputs; ++s) {
2494 i->setSrc(s, getSrc(&insn->src[s]));
2495 }
2496 i->subOp = getSubOp(op);
2497 }
2498 break;
2499 }
2500 case nir_op_ifind_msb:
2501 case nir_op_ufind_msb: {
2502 DEFAULT_CHECKS;
2503 LValues &newDefs = convert(&insn->dest);
2504 dType = sTypes[0];
2505 mkOp1(getOperation(op), dType, newDefs[0], getSrc(&insn->src[0]));
2506 break;
2507 }
2508 case nir_op_fround_even: {
2509 DEFAULT_CHECKS;
2510 LValues &newDefs = convert(&insn->dest);
2511 mkCvt(OP_CVT, dType, newDefs[0], dType, getSrc(&insn->src[0]))->rnd = ROUND_NI;
2512 break;
2513 }
2514 // convert instructions
2515 case nir_op_f2f32:
2516 case nir_op_f2i32:
2517 case nir_op_f2u32:
2518 case nir_op_i2f32:
2519 case nir_op_i2i32:
2520 case nir_op_u2f32:
2521 case nir_op_u2u32:
2522 case nir_op_f2f64:
2523 case nir_op_f2i64:
2524 case nir_op_f2u64:
2525 case nir_op_i2f64:
2526 case nir_op_i2i64:
2527 case nir_op_u2f64:
2528 case nir_op_u2u64: {
2529 DEFAULT_CHECKS;
2530 LValues &newDefs = convert(&insn->dest);
2531 Instruction *i = mkOp1(getOperation(op), dType, newDefs[0], getSrc(&insn->src[0]));
2532 if (op == nir_op_f2i32 || op == nir_op_f2i64 || op == nir_op_f2u32 || op == nir_op_f2u64)
2533 i->rnd = ROUND_Z;
2534 i->sType = sTypes[0];
2535 break;
2536 }
2537 // compare instructions
2538 case nir_op_feq32:
2539 case nir_op_ieq32:
2540 case nir_op_fge32:
2541 case nir_op_ige32:
2542 case nir_op_uge32:
2543 case nir_op_flt32:
2544 case nir_op_ilt32:
2545 case nir_op_ult32:
2546 case nir_op_fne32:
2547 case nir_op_ine32: {
2548 DEFAULT_CHECKS;
2549 LValues &newDefs = convert(&insn->dest);
2550 Instruction *i = mkCmp(getOperation(op),
2551 getCondCode(op),
2552 dType,
2553 newDefs[0],
2554 dType,
2555 getSrc(&insn->src[0]),
2556 getSrc(&insn->src[1]));
2557 if (info.num_inputs == 3)
2558 i->setSrc(2, getSrc(&insn->src[2]));
2559 i->sType = sTypes[0];
2560 break;
2561 }
2562 // those are weird ALU ops and need special handling, because
2563 // 1. they are always componend based
2564 // 2. they basically just merge multiple values into one data type
2565 case nir_op_mov:
2566 if (!insn->dest.dest.is_ssa && insn->dest.dest.reg.reg->num_array_elems) {
2567 nir_reg_dest& reg = insn->dest.dest.reg;
2568 uint32_t goffset = regToLmemOffset[reg.reg->index];
2569 uint8_t comps = reg.reg->num_components;
2570 uint8_t size = reg.reg->bit_size / 8;
2571 uint8_t csize = 4 * size; // TODO after fixing MemoryOpts: comps * size;
2572 uint32_t aoffset = csize * reg.base_offset;
2573 Value *indirect = NULL;
2574
2575 if (reg.indirect)
2576 indirect = mkOp2v(OP_MUL, TYPE_U32, getSSA(4, FILE_ADDRESS),
2577 getSrc(reg.indirect, 0), mkImm(csize));
2578
2579 for (uint8_t i = 0u; i < comps; ++i) {
2580 if (!((1u << i) & insn->dest.write_mask))
2581 continue;
2582
2583 Symbol *sym = mkSymbol(FILE_MEMORY_LOCAL, 0, dType, goffset + aoffset + i * size);
2584 mkStore(OP_STORE, dType, sym, indirect, getSrc(&insn->src[0], i));
2585 }
2586 break;
2587 } else if (!insn->src[0].src.is_ssa && insn->src[0].src.reg.reg->num_array_elems) {
2588 LValues &newDefs = convert(&insn->dest);
2589 nir_reg_src& reg = insn->src[0].src.reg;
2590 uint32_t goffset = regToLmemOffset[reg.reg->index];
2591 // uint8_t comps = reg.reg->num_components;
2592 uint8_t size = reg.reg->bit_size / 8;
2593 uint8_t csize = 4 * size; // TODO after fixing MemoryOpts: comps * size;
2594 uint32_t aoffset = csize * reg.base_offset;
2595 Value *indirect = NULL;
2596
2597 if (reg.indirect)
2598 indirect = mkOp2v(OP_MUL, TYPE_U32, getSSA(4, FILE_ADDRESS), getSrc(reg.indirect, 0), mkImm(csize));
2599
2600 for (uint8_t i = 0u; i < newDefs.size(); ++i)
2601 loadFrom(FILE_MEMORY_LOCAL, 0, dType, newDefs[i], goffset + aoffset, i, indirect);
2602
2603 break;
2604 } else {
2605 LValues &newDefs = convert(&insn->dest);
2606 for (LValues::size_type c = 0u; c < newDefs.size(); ++c) {
2607 mkMov(newDefs[c], getSrc(&insn->src[0], c), dType);
2608 }
2609 }
2610 break;
2611 case nir_op_vec2:
2612 case nir_op_vec3:
2613 case nir_op_vec4:
2614 case nir_op_vec8:
2615 case nir_op_vec16: {
2616 LValues &newDefs = convert(&insn->dest);
2617 for (LValues::size_type c = 0u; c < newDefs.size(); ++c) {
2618 mkMov(newDefs[c], getSrc(&insn->src[c]), dType);
2619 }
2620 break;
2621 }
2622 // (un)pack
2623 case nir_op_pack_64_2x32: {
2624 LValues &newDefs = convert(&insn->dest);
2625 Instruction *merge = mkOp(OP_MERGE, dType, newDefs[0]);
2626 merge->setSrc(0, getSrc(&insn->src[0], 0));
2627 merge->setSrc(1, getSrc(&insn->src[0], 1));
2628 break;
2629 }
2630 case nir_op_pack_half_2x16_split: {
2631 LValues &newDefs = convert(&insn->dest);
2632 Value *tmpH = getSSA();
2633 Value *tmpL = getSSA();
2634
2635 mkCvt(OP_CVT, TYPE_F16, tmpL, TYPE_F32, getSrc(&insn->src[0]));
2636 mkCvt(OP_CVT, TYPE_F16, tmpH, TYPE_F32, getSrc(&insn->src[1]));
2637 mkOp3(OP_INSBF, TYPE_U32, newDefs[0], tmpH, mkImm(0x1010), tmpL);
2638 break;
2639 }
2640 case nir_op_unpack_half_2x16_split_x:
2641 case nir_op_unpack_half_2x16_split_y: {
2642 LValues &newDefs = convert(&insn->dest);
2643 Instruction *cvt = mkCvt(OP_CVT, TYPE_F32, newDefs[0], TYPE_F16, getSrc(&insn->src[0]));
2644 if (op == nir_op_unpack_half_2x16_split_y)
2645 cvt->subOp = 1;
2646 break;
2647 }
2648 case nir_op_unpack_64_2x32: {
2649 LValues &newDefs = convert(&insn->dest);
2650 mkOp1(OP_SPLIT, dType, newDefs[0], getSrc(&insn->src[0]))->setDef(1, newDefs[1]);
2651 break;
2652 }
2653 case nir_op_unpack_64_2x32_split_x: {
2654 LValues &newDefs = convert(&insn->dest);
2655 mkOp1(OP_SPLIT, dType, newDefs[0], getSrc(&insn->src[0]))->setDef(1, getSSA());
2656 break;
2657 }
2658 case nir_op_unpack_64_2x32_split_y: {
2659 LValues &newDefs = convert(&insn->dest);
2660 mkOp1(OP_SPLIT, dType, getSSA(), getSrc(&insn->src[0]))->setDef(1, newDefs[0]);
2661 break;
2662 }
2663 // special instructions
2664 case nir_op_fsign:
2665 case nir_op_isign: {
2666 DEFAULT_CHECKS;
2667 DataType iType;
2668 if (::isFloatType(dType))
2669 iType = TYPE_F32;
2670 else
2671 iType = TYPE_S32;
2672
2673 LValues &newDefs = convert(&insn->dest);
2674 LValue *val0 = getScratch();
2675 LValue *val1 = getScratch();
2676 mkCmp(OP_SET, CC_GT, iType, val0, dType, getSrc(&insn->src[0]), zero);
2677 mkCmp(OP_SET, CC_LT, iType, val1, dType, getSrc(&insn->src[0]), zero);
2678
2679 if (dType == TYPE_F64) {
2680 mkOp2(OP_SUB, iType, val0, val0, val1);
2681 mkCvt(OP_CVT, TYPE_F64, newDefs[0], iType, val0);
2682 } else if (dType == TYPE_S64 || dType == TYPE_U64) {
2683 mkOp2(OP_SUB, iType, val0, val1, val0);
2684 mkOp2(OP_SHR, iType, val1, val0, loadImm(NULL, 31));
2685 mkOp2(OP_MERGE, dType, newDefs[0], val0, val1);
2686 } else if (::isFloatType(dType))
2687 mkOp2(OP_SUB, iType, newDefs[0], val0, val1);
2688 else
2689 mkOp2(OP_SUB, iType, newDefs[0], val1, val0);
2690 break;
2691 }
2692 case nir_op_fcsel:
2693 case nir_op_b32csel: {
2694 DEFAULT_CHECKS;
2695 LValues &newDefs = convert(&insn->dest);
2696 mkCmp(OP_SLCT, CC_NE, dType, newDefs[0], sTypes[0], getSrc(&insn->src[1]), getSrc(&insn->src[2]), getSrc(&insn->src[0]));
2697 break;
2698 }
2699 case nir_op_ibitfield_extract:
2700 case nir_op_ubitfield_extract: {
2701 DEFAULT_CHECKS;
2702 Value *tmp = getSSA();
2703 LValues &newDefs = convert(&insn->dest);
2704 mkOp3(OP_INSBF, dType, tmp, getSrc(&insn->src[2]), loadImm(NULL, 0x808), getSrc(&insn->src[1]));
2705 mkOp2(OP_EXTBF, dType, newDefs[0], getSrc(&insn->src[0]), tmp);
2706 break;
2707 }
2708 case nir_op_bfm: {
2709 DEFAULT_CHECKS;
2710 LValues &newDefs = convert(&insn->dest);
2711 mkOp2(OP_BMSK, dType, newDefs[0], getSrc(&insn->src[1]), getSrc(&insn->src[0]))->subOp = NV50_IR_SUBOP_BMSK_W;
2712 break;
2713 }
2714 case nir_op_bitfield_insert: {
2715 DEFAULT_CHECKS;
2716 LValues &newDefs = convert(&insn->dest);
2717 LValue *temp = getSSA();
2718 mkOp3(OP_INSBF, TYPE_U32, temp, getSrc(&insn->src[3]), mkImm(0x808), getSrc(&insn->src[2]));
2719 mkOp3(OP_INSBF, dType, newDefs[0], getSrc(&insn->src[1]), temp, getSrc(&insn->src[0]));
2720 break;
2721 }
2722 case nir_op_bit_count: {
2723 DEFAULT_CHECKS;
2724 LValues &newDefs = convert(&insn->dest);
2725 mkOp2(OP_POPCNT, dType, newDefs[0], getSrc(&insn->src[0]), getSrc(&insn->src[0]));
2726 break;
2727 }
2728 case nir_op_bitfield_reverse: {
2729 DEFAULT_CHECKS;
2730 LValues &newDefs = convert(&insn->dest);
2731 mkOp1(OP_BREV, TYPE_U32, newDefs[0], getSrc(&insn->src[0]));
2732 break;
2733 }
2734 case nir_op_find_lsb: {
2735 DEFAULT_CHECKS;
2736 LValues &newDefs = convert(&insn->dest);
2737 Value *tmp = getSSA();
2738 mkOp1(OP_BREV, TYPE_U32, tmp, getSrc(&insn->src[0]));
2739 mkOp1(OP_BFIND, TYPE_U32, newDefs[0], tmp)->subOp = NV50_IR_SUBOP_BFIND_SAMT;
2740 break;
2741 }
2742 case nir_op_extract_u8: {
2743 DEFAULT_CHECKS;
2744 LValues &newDefs = convert(&insn->dest);
2745 Value *prmt = getSSA();
2746 mkOp2(OP_OR, TYPE_U32, prmt, getSrc(&insn->src[1]), loadImm(NULL, 0x4440));
2747 mkOp3(OP_PERMT, TYPE_U32, newDefs[0], getSrc(&insn->src[0]), prmt, loadImm(NULL, 0));
2748 break;
2749 }
2750 case nir_op_extract_i8: {
2751 DEFAULT_CHECKS;
2752 LValues &newDefs = convert(&insn->dest);
2753 Value *prmt = getSSA();
2754 mkOp3(OP_MAD, TYPE_U32, prmt, getSrc(&insn->src[1]), loadImm(NULL, 0x1111), loadImm(NULL, 0x8880));
2755 mkOp3(OP_PERMT, TYPE_U32, newDefs[0], getSrc(&insn->src[0]), prmt, loadImm(NULL, 0));
2756 break;
2757 }
2758 case nir_op_extract_u16: {
2759 DEFAULT_CHECKS;
2760 LValues &newDefs = convert(&insn->dest);
2761 Value *prmt = getSSA();
2762 mkOp3(OP_MAD, TYPE_U32, prmt, getSrc(&insn->src[1]), loadImm(NULL, 0x22), loadImm(NULL, 0x4410));
2763 mkOp3(OP_PERMT, TYPE_U32, newDefs[0], getSrc(&insn->src[0]), prmt, loadImm(NULL, 0));
2764 break;
2765 }
2766 case nir_op_extract_i16: {
2767 DEFAULT_CHECKS;
2768 LValues &newDefs = convert(&insn->dest);
2769 Value *prmt = getSSA();
2770 mkOp3(OP_MAD, TYPE_U32, prmt, getSrc(&insn->src[1]), loadImm(NULL, 0x2222), loadImm(NULL, 0x9910));
2771 mkOp3(OP_PERMT, TYPE_U32, newDefs[0], getSrc(&insn->src[0]), prmt, loadImm(NULL, 0));
2772 break;
2773 }
2774 case nir_op_urol: {
2775 DEFAULT_CHECKS;
2776 LValues &newDefs = convert(&insn->dest);
2777 mkOp3(OP_SHF, TYPE_U32, newDefs[0], getSrc(&insn->src[0]),
2778 getSrc(&insn->src[1]), getSrc(&insn->src[0]))
2779 ->subOp = NV50_IR_SUBOP_SHF_L |
2780 NV50_IR_SUBOP_SHF_W |
2781 NV50_IR_SUBOP_SHF_HI;
2782 break;
2783 }
2784 case nir_op_uror: {
2785 DEFAULT_CHECKS;
2786 LValues &newDefs = convert(&insn->dest);
2787 mkOp3(OP_SHF, TYPE_U32, newDefs[0], getSrc(&insn->src[0]),
2788 getSrc(&insn->src[1]), getSrc(&insn->src[0]))
2789 ->subOp = NV50_IR_SUBOP_SHF_R |
2790 NV50_IR_SUBOP_SHF_W |
2791 NV50_IR_SUBOP_SHF_LO;
2792 break;
2793 }
2794 // boolean conversions
2795 case nir_op_b2f32: {
2796 DEFAULT_CHECKS;
2797 LValues &newDefs = convert(&insn->dest);
2798 mkOp2(OP_AND, TYPE_U32, newDefs[0], getSrc(&insn->src[0]), loadImm(NULL, 1.0f));
2799 break;
2800 }
2801 case nir_op_b2f64: {
2802 DEFAULT_CHECKS;
2803 LValues &newDefs = convert(&insn->dest);
2804 Value *tmp = getSSA(4);
2805 mkOp2(OP_AND, TYPE_U32, tmp, getSrc(&insn->src[0]), loadImm(NULL, 0x3ff00000));
2806 mkOp2(OP_MERGE, TYPE_U64, newDefs[0], loadImm(NULL, 0), tmp);
2807 break;
2808 }
2809 case nir_op_f2b32:
2810 case nir_op_i2b32: {
2811 DEFAULT_CHECKS;
2812 LValues &newDefs = convert(&insn->dest);
2813 Value *src1;
2814 if (typeSizeof(sTypes[0]) == 8) {
2815 src1 = loadImm(getSSA(8), 0.0);
2816 } else {
2817 src1 = zero;
2818 }
2819 CondCode cc = op == nir_op_f2b32 ? CC_NEU : CC_NE;
2820 mkCmp(OP_SET, cc, TYPE_U32, newDefs[0], sTypes[0], getSrc(&insn->src[0]), src1);
2821 break;
2822 }
2823 case nir_op_b2i32: {
2824 DEFAULT_CHECKS;
2825 LValues &newDefs = convert(&insn->dest);
2826 mkOp2(OP_AND, TYPE_U32, newDefs[0], getSrc(&insn->src[0]), loadImm(NULL, 1));
2827 break;
2828 }
2829 case nir_op_b2i64: {
2830 DEFAULT_CHECKS;
2831 LValues &newDefs = convert(&insn->dest);
2832 LValue *def = getScratch();
2833 mkOp2(OP_AND, TYPE_U32, def, getSrc(&insn->src[0]), loadImm(NULL, 1));
2834 mkOp2(OP_MERGE, TYPE_S64, newDefs[0], def, loadImm(NULL, 0));
2835 break;
2836 }
2837 default:
2838 ERROR("unknown nir_op %s\n", info.name);
2839 return false;
2840 }
2841
2842 if (!oldPos) {
2843 oldPos = this->bb->getEntry();
2844 oldPos->precise = insn->exact;
2845 }
2846
2847 if (unlikely(!oldPos))
2848 return true;
2849
2850 while (oldPos->next) {
2851 oldPos = oldPos->next;
2852 oldPos->precise = insn->exact;
2853 }
2854 oldPos->saturate = insn->dest.saturate;
2855
2856 return true;
2857 }
2858 #undef DEFAULT_CHECKS
2859
2860 bool
2861 Converter::visit(nir_ssa_undef_instr *insn)
2862 {
2863 LValues &newDefs = convert(&insn->def);
2864 for (uint8_t i = 0u; i < insn->def.num_components; ++i) {
2865 mkOp(OP_NOP, TYPE_NONE, newDefs[i]);
2866 }
2867 return true;
2868 }
2869
2870 #define CASE_SAMPLER(ty) \
2871 case GLSL_SAMPLER_DIM_ ## ty : \
2872 if (isArray && !isShadow) \
2873 return TEX_TARGET_ ## ty ## _ARRAY; \
2874 else if (!isArray && isShadow) \
2875 return TEX_TARGET_## ty ## _SHADOW; \
2876 else if (isArray && isShadow) \
2877 return TEX_TARGET_## ty ## _ARRAY_SHADOW; \
2878 else \
2879 return TEX_TARGET_ ## ty
2880
2881 TexTarget
2882 Converter::convert(glsl_sampler_dim dim, bool isArray, bool isShadow)
2883 {
2884 switch (dim) {
2885 CASE_SAMPLER(1D);
2886 CASE_SAMPLER(2D);
2887 CASE_SAMPLER(CUBE);
2888 case GLSL_SAMPLER_DIM_3D:
2889 return TEX_TARGET_3D;
2890 case GLSL_SAMPLER_DIM_MS:
2891 if (isArray)
2892 return TEX_TARGET_2D_MS_ARRAY;
2893 return TEX_TARGET_2D_MS;
2894 case GLSL_SAMPLER_DIM_RECT:
2895 if (isShadow)
2896 return TEX_TARGET_RECT_SHADOW;
2897 return TEX_TARGET_RECT;
2898 case GLSL_SAMPLER_DIM_BUF:
2899 return TEX_TARGET_BUFFER;
2900 case GLSL_SAMPLER_DIM_EXTERNAL:
2901 return TEX_TARGET_2D;
2902 default:
2903 ERROR("unknown glsl_sampler_dim %u\n", dim);
2904 assert(false);
2905 return TEX_TARGET_COUNT;
2906 }
2907 }
2908 #undef CASE_SAMPLER
2909
2910 Value*
2911 Converter::applyProjection(Value *src, Value *proj)
2912 {
2913 if (!proj)
2914 return src;
2915 return mkOp2v(OP_MUL, TYPE_F32, getScratch(), src, proj);
2916 }
2917
2918 unsigned int
2919 Converter::getNIRArgCount(TexInstruction::Target& target)
2920 {
2921 unsigned int result = target.getArgCount();
2922 if (target.isCube() && target.isArray())
2923 result--;
2924 if (target.isMS())
2925 result--;
2926 return result;
2927 }
2928
2929 CacheMode
2930 Converter::convert(enum gl_access_qualifier access)
2931 {
2932 switch (access) {
2933 case ACCESS_VOLATILE:
2934 return CACHE_CV;
2935 case ACCESS_COHERENT:
2936 return CACHE_CG;
2937 default:
2938 return CACHE_CA;
2939 }
2940 }
2941
2942 bool
2943 Converter::visit(nir_tex_instr *insn)
2944 {
2945 switch (insn->op) {
2946 case nir_texop_lod:
2947 case nir_texop_query_levels:
2948 case nir_texop_tex:
2949 case nir_texop_texture_samples:
2950 case nir_texop_tg4:
2951 case nir_texop_txb:
2952 case nir_texop_txd:
2953 case nir_texop_txf:
2954 case nir_texop_txf_ms:
2955 case nir_texop_txl:
2956 case nir_texop_txs: {
2957 LValues &newDefs = convert(&insn->dest);
2958 std::vector<Value*> srcs;
2959 std::vector<Value*> defs;
2960 std::vector<nir_src*> offsets;
2961 uint8_t mask = 0;
2962 bool lz = false;
2963 Value *proj = NULL;
2964 TexInstruction::Target target = convert(insn->sampler_dim, insn->is_array, insn->is_shadow);
2965 operation op = getOperation(insn->op);
2966
2967 int r, s;
2968 int biasIdx = nir_tex_instr_src_index(insn, nir_tex_src_bias);
2969 int compIdx = nir_tex_instr_src_index(insn, nir_tex_src_comparator);
2970 int coordsIdx = nir_tex_instr_src_index(insn, nir_tex_src_coord);
2971 int ddxIdx = nir_tex_instr_src_index(insn, nir_tex_src_ddx);
2972 int ddyIdx = nir_tex_instr_src_index(insn, nir_tex_src_ddy);
2973 int msIdx = nir_tex_instr_src_index(insn, nir_tex_src_ms_index);
2974 int lodIdx = nir_tex_instr_src_index(insn, nir_tex_src_lod);
2975 int offsetIdx = nir_tex_instr_src_index(insn, nir_tex_src_offset);
2976 int projIdx = nir_tex_instr_src_index(insn, nir_tex_src_projector);
2977 int sampOffIdx = nir_tex_instr_src_index(insn, nir_tex_src_sampler_offset);
2978 int texOffIdx = nir_tex_instr_src_index(insn, nir_tex_src_texture_offset);
2979 int sampHandleIdx = nir_tex_instr_src_index(insn, nir_tex_src_sampler_handle);
2980 int texHandleIdx = nir_tex_instr_src_index(insn, nir_tex_src_texture_handle);
2981
2982 bool bindless = sampHandleIdx != -1 || texHandleIdx != -1;
2983 assert((sampHandleIdx != -1) == (texHandleIdx != -1));
2984
2985 if (projIdx != -1)
2986 proj = mkOp1v(OP_RCP, TYPE_F32, getScratch(), getSrc(&insn->src[projIdx].src, 0));
2987
2988 srcs.resize(insn->coord_components);
2989 for (uint8_t i = 0u; i < insn->coord_components; ++i)
2990 srcs[i] = applyProjection(getSrc(&insn->src[coordsIdx].src, i), proj);
2991
2992 // sometimes we get less args than target.getArgCount, but codegen expects the latter
2993 if (insn->coord_components) {
2994 uint32_t argCount = target.getArgCount();
2995
2996 if (target.isMS())
2997 argCount -= 1;
2998
2999 for (uint32_t i = 0u; i < (argCount - insn->coord_components); ++i)
3000 srcs.push_back(getSSA());
3001 }
3002
3003 if (insn->op == nir_texop_texture_samples)
3004 srcs.push_back(zero);
3005 else if (!insn->num_srcs)
3006 srcs.push_back(loadImm(NULL, 0));
3007 if (biasIdx != -1)
3008 srcs.push_back(getSrc(&insn->src[biasIdx].src, 0));
3009 if (lodIdx != -1)
3010 srcs.push_back(getSrc(&insn->src[lodIdx].src, 0));
3011 else if (op == OP_TXF)
3012 lz = true;
3013 if (msIdx != -1)
3014 srcs.push_back(getSrc(&insn->src[msIdx].src, 0));
3015 if (offsetIdx != -1)
3016 offsets.push_back(&insn->src[offsetIdx].src);
3017 if (compIdx != -1)
3018 srcs.push_back(applyProjection(getSrc(&insn->src[compIdx].src, 0), proj));
3019 if (texOffIdx != -1) {
3020 srcs.push_back(getSrc(&insn->src[texOffIdx].src, 0));
3021 texOffIdx = srcs.size() - 1;
3022 }
3023 if (sampOffIdx != -1) {
3024 srcs.push_back(getSrc(&insn->src[sampOffIdx].src, 0));
3025 sampOffIdx = srcs.size() - 1;
3026 }
3027 if (bindless) {
3028 // currently we use the lower bits
3029 Value *split[2];
3030 Value *handle = getSrc(&insn->src[sampHandleIdx].src, 0);
3031
3032 mkSplit(split, 4, handle);
3033
3034 srcs.push_back(split[0]);
3035 texOffIdx = srcs.size() - 1;
3036 }
3037
3038 r = bindless ? 0xff : insn->texture_index;
3039 s = bindless ? 0x1f : insn->sampler_index;
3040
3041 defs.resize(newDefs.size());
3042 for (uint8_t d = 0u; d < newDefs.size(); ++d) {
3043 defs[d] = newDefs[d];
3044 mask |= 1 << d;
3045 }
3046 if (target.isMS() || (op == OP_TEX && prog->getType() != Program::TYPE_FRAGMENT))
3047 lz = true;
3048
3049 TexInstruction *texi = mkTex(op, target.getEnum(), r, s, defs, srcs);
3050 texi->tex.levelZero = lz;
3051 texi->tex.mask = mask;
3052 texi->tex.bindless = bindless;
3053
3054 if (texOffIdx != -1)
3055 texi->tex.rIndirectSrc = texOffIdx;
3056 if (sampOffIdx != -1)
3057 texi->tex.sIndirectSrc = sampOffIdx;
3058
3059 switch (insn->op) {
3060 case nir_texop_tg4:
3061 if (!target.isShadow())
3062 texi->tex.gatherComp = insn->component;
3063 break;
3064 case nir_texop_txs:
3065 texi->tex.query = TXQ_DIMS;
3066 break;
3067 case nir_texop_texture_samples:
3068 texi->tex.mask = 0x4;
3069 texi->tex.query = TXQ_TYPE;
3070 break;
3071 case nir_texop_query_levels:
3072 texi->tex.mask = 0x8;
3073 texi->tex.query = TXQ_DIMS;
3074 break;
3075 default:
3076 break;
3077 }
3078
3079 texi->tex.useOffsets = offsets.size();
3080 if (texi->tex.useOffsets) {
3081 for (uint8_t s = 0; s < texi->tex.useOffsets; ++s) {
3082 for (uint32_t c = 0u; c < 3; ++c) {
3083 uint8_t s2 = std::min(c, target.getDim() - 1);
3084 texi->offset[s][c].set(getSrc(offsets[s], s2));
3085 texi->offset[s][c].setInsn(texi);
3086 }
3087 }
3088 }
3089
3090 if (op == OP_TXG && offsetIdx == -1) {
3091 if (nir_tex_instr_has_explicit_tg4_offsets(insn)) {
3092 texi->tex.useOffsets = 4;
3093 setPosition(texi, false);
3094 for (uint8_t i = 0; i < 4; ++i) {
3095 for (uint8_t j = 0; j < 2; ++j) {
3096 texi->offset[i][j].set(loadImm(NULL, insn->tg4_offsets[i][j]));
3097 texi->offset[i][j].setInsn(texi);
3098 }
3099 }
3100 setPosition(texi, true);
3101 }
3102 }
3103
3104 if (ddxIdx != -1 && ddyIdx != -1) {
3105 for (uint8_t c = 0u; c < target.getDim() + target.isCube(); ++c) {
3106 texi->dPdx[c].set(getSrc(&insn->src[ddxIdx].src, c));
3107 texi->dPdy[c].set(getSrc(&insn->src[ddyIdx].src, c));
3108 }
3109 }
3110
3111 break;
3112 }
3113 default:
3114 ERROR("unknown nir_texop %u\n", insn->op);
3115 return false;
3116 }
3117 return true;
3118 }
3119
3120 bool
3121 Converter::run()
3122 {
3123 bool progress;
3124
3125 if (prog->dbgFlags & NV50_IR_DEBUG_VERBOSE)
3126 nir_print_shader(nir, stderr);
3127
3128 struct nir_lower_subgroups_options subgroup_options = {
3129 .subgroup_size = 32,
3130 .ballot_bit_size = 32,
3131 };
3132
3133 NIR_PASS_V(nir, nir_lower_io, nir_var_all, type_size, (nir_lower_io_options)0);
3134 NIR_PASS_V(nir, nir_lower_subgroups, &subgroup_options);
3135 NIR_PASS_V(nir, nir_lower_regs_to_ssa);
3136 NIR_PASS_V(nir, nir_lower_load_const_to_scalar);
3137 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3138 NIR_PASS_V(nir, nir_lower_alu_to_scalar, NULL, NULL);
3139 NIR_PASS_V(nir, nir_lower_phis_to_scalar);
3140
3141 /*TODO: improve this lowering/optimisation loop so that we can use
3142 * nir_opt_idiv_const effectively before this.
3143 */
3144 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_precise);
3145
3146 do {
3147 progress = false;
3148 NIR_PASS(progress, nir, nir_copy_prop);
3149 NIR_PASS(progress, nir, nir_opt_remove_phis);
3150 NIR_PASS(progress, nir, nir_opt_trivial_continues);
3151 NIR_PASS(progress, nir, nir_opt_cse);
3152 NIR_PASS(progress, nir, nir_opt_algebraic);
3153 NIR_PASS(progress, nir, nir_opt_constant_folding);
3154 NIR_PASS(progress, nir, nir_copy_prop);
3155 NIR_PASS(progress, nir, nir_opt_dce);
3156 NIR_PASS(progress, nir, nir_opt_dead_cf);
3157 } while (progress);
3158
3159 NIR_PASS_V(nir, nir_lower_bool_to_int32);
3160 NIR_PASS_V(nir, nir_lower_locals_to_regs);
3161 NIR_PASS_V(nir, nir_remove_dead_variables, nir_var_function_temp, NULL);
3162 NIR_PASS_V(nir, nir_convert_from_ssa, true);
3163
3164 // Garbage collect dead instructions
3165 nir_sweep(nir);
3166
3167 if (!parseNIR()) {
3168 ERROR("Couldn't prase NIR!\n");
3169 return false;
3170 }
3171
3172 if (!assignSlots()) {
3173 ERROR("Couldn't assign slots!\n");
3174 return false;
3175 }
3176
3177 if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
3178 nir_print_shader(nir, stderr);
3179
3180 nir_foreach_function(function, nir) {
3181 if (!visit(function))
3182 return false;
3183 }
3184
3185 return true;
3186 }
3187
3188 } // unnamed namespace
3189
3190 namespace nv50_ir {
3191
3192 bool
3193 Program::makeFromNIR(struct nv50_ir_prog_info *info)
3194 {
3195 nir_shader *nir = (nir_shader*)info->bin.source;
3196 Converter converter(this, nir, info);
3197 bool result = converter.run();
3198 if (!result)
3199 return result;
3200 LoweringHelper lowering;
3201 lowering.run(this);
3202 tlsSize = info->bin.tlsSpace;
3203 return result;
3204 }
3205
3206 } // namespace nv50_ir
3207
3208 static nir_shader_compiler_options
3209 nvir_nir_shader_compiler_options(int chipset)
3210 {
3211 nir_shader_compiler_options op = {};
3212 op.lower_fdiv = (chipset >= NVISA_GV100_CHIPSET);
3213 op.lower_ffma = false;
3214 op.fuse_ffma = false; /* nir doesn't track mad vs fma */
3215 op.lower_flrp16 = (chipset >= NVISA_GV100_CHIPSET);
3216 op.lower_flrp32 = true;
3217 op.lower_flrp64 = true;
3218 op.lower_fpow = false; // TODO: nir's lowering is broken, or we could use it
3219 op.lower_fsat = false;
3220 op.lower_fsqrt = false; // TODO: only before gm200
3221 op.lower_sincos = false;
3222 op.lower_fmod = true;
3223 op.lower_bitfield_extract = false;
3224 op.lower_bitfield_extract_to_shifts = (chipset >= NVISA_GV100_CHIPSET);
3225 op.lower_bitfield_insert = false;
3226 op.lower_bitfield_insert_to_shifts = (chipset >= NVISA_GV100_CHIPSET);
3227 op.lower_bitfield_insert_to_bitfield_select = false;
3228 op.lower_bitfield_reverse = false;
3229 op.lower_bit_count = false;
3230 op.lower_ifind_msb = false;
3231 op.lower_find_lsb = false;
3232 op.lower_uadd_carry = true; // TODO
3233 op.lower_usub_borrow = true; // TODO
3234 op.lower_mul_high = false;
3235 op.lower_negate = false;
3236 op.lower_sub = true;
3237 op.lower_scmp = true; // TODO: not implemented yet
3238 op.lower_vector_cmp = false;
3239 op.lower_idiv = true;
3240 op.lower_bitops = false;
3241 op.lower_isign = (chipset >= NVISA_GV100_CHIPSET);
3242 op.lower_fsign = (chipset >= NVISA_GV100_CHIPSET);
3243 op.lower_fdph = false;
3244 op.lower_fdot = false;
3245 op.fdot_replicates = false; // TODO
3246 op.lower_ffloor = false; // TODO
3247 op.lower_ffract = true;
3248 op.lower_fceil = false; // TODO
3249 op.lower_ftrunc = false;
3250 op.lower_ldexp = true;
3251 op.lower_pack_half_2x16 = true;
3252 op.lower_pack_unorm_2x16 = true;
3253 op.lower_pack_snorm_2x16 = true;
3254 op.lower_pack_unorm_4x8 = true;
3255 op.lower_pack_snorm_4x8 = true;
3256 op.lower_unpack_half_2x16 = true;
3257 op.lower_unpack_unorm_2x16 = true;
3258 op.lower_unpack_snorm_2x16 = true;
3259 op.lower_unpack_unorm_4x8 = true;
3260 op.lower_unpack_snorm_4x8 = true;
3261 op.lower_pack_split = false;
3262 op.lower_extract_byte = (chipset < NVISA_GM107_CHIPSET);
3263 op.lower_extract_word = (chipset < NVISA_GM107_CHIPSET);
3264 op.lower_all_io_to_temps = false;
3265 op.lower_all_io_to_elements = false;
3266 op.vertex_id_zero_based = false;
3267 op.lower_base_vertex = false;
3268 op.lower_helper_invocation = false;
3269 op.optimize_sample_mask_in = false;
3270 op.lower_cs_local_index_from_id = true;
3271 op.lower_cs_local_id_from_index = false;
3272 op.lower_device_index_to_zero = false; // TODO
3273 op.lower_wpos_pntc = false; // TODO
3274 op.lower_hadd = true; // TODO
3275 op.lower_add_sat = true; // TODO
3276 op.vectorize_io = false;
3277 op.lower_to_scalar = true;
3278 op.unify_interfaces = false;
3279 op.use_interpolated_input_intrinsics = true;
3280 op.lower_mul_2x32_64 = true; // TODO
3281 op.lower_rotate = (chipset < NVISA_GV100_CHIPSET);
3282 op.has_imul24 = false;
3283 op.intel_vec4 = false;
3284 op.max_unroll_iterations = 32;
3285 op.lower_int64_options = (nir_lower_int64_options) (
3286 ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_imul64 : 0) |
3287 ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_isign64 : 0) |
3288 nir_lower_divmod64 |
3289 ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_imul_high64 : 0) |
3290 ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_mov64 : 0) |
3291 ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_icmp64 : 0) |
3292 ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_iabs64 : 0) |
3293 ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_ineg64 : 0) |
3294 ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_logic64 : 0) |
3295 ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_minmax64 : 0) |
3296 ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_shift64 : 0) |
3297 ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_imul_2x32_64 : 0) |
3298 ((chipset >= NVISA_GM107_CHIPSET) ? nir_lower_extract64 : 0) |
3299 nir_lower_ufind_msb64
3300 );
3301 op.lower_doubles_options = (nir_lower_doubles_options) (
3302 ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_drcp : 0) |
3303 ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_dsqrt : 0) |
3304 ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_drsq : 0) |
3305 ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_dfract : 0) |
3306 nir_lower_dmod |
3307 ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_dsub : 0) |
3308 ((chipset >= NVISA_GV100_CHIPSET) ? nir_lower_ddiv : 0)
3309 );
3310 return op;
3311 }
3312
3313 static const nir_shader_compiler_options gf100_nir_shader_compiler_options =
3314 nvir_nir_shader_compiler_options(NVISA_GF100_CHIPSET);
3315 static const nir_shader_compiler_options gm107_nir_shader_compiler_options =
3316 nvir_nir_shader_compiler_options(NVISA_GM107_CHIPSET);
3317 static const nir_shader_compiler_options gv100_nir_shader_compiler_options =
3318 nvir_nir_shader_compiler_options(NVISA_GV100_CHIPSET);
3319
3320 const nir_shader_compiler_options *
3321 nv50_ir_nir_shader_compiler_options(int chipset)
3322 {
3323 if (chipset >= NVISA_GV100_CHIPSET)
3324 return &gv100_nir_shader_compiler_options;
3325 if (chipset >= NVISA_GM107_CHIPSET)
3326 return &gm107_nir_shader_compiler_options;
3327 return &gf100_nir_shader_compiler_options;
3328 }