nouveau: Fix build, invalid extern "C" around header inclusion.
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_from_tgsi.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "tgsi/tgsi_dump.h"
24 #include "tgsi/tgsi_scan.h"
25 #include "tgsi/tgsi_util.h"
26
27 #include <set>
28
29 #include "codegen/nv50_ir.h"
30 #include "codegen/nv50_ir_util.h"
31 #include "codegen/nv50_ir_build_util.h"
32
33 namespace tgsi {
34
35 class Source;
36
37 static nv50_ir::operation translateOpcode(uint opcode);
38 static nv50_ir::DataFile translateFile(uint file);
39 static nv50_ir::TexTarget translateTexture(uint texTarg);
40 static nv50_ir::SVSemantic translateSysVal(uint sysval);
41
42 class Instruction
43 {
44 public:
45 Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
46
47 class SrcRegister
48 {
49 public:
50 SrcRegister(const struct tgsi_full_src_register *src)
51 : reg(src->Register),
52 fsr(src)
53 { }
54
55 SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
56
57 SrcRegister(const struct tgsi_ind_register& ind)
58 : reg(tgsi_util_get_src_from_ind(&ind)),
59 fsr(NULL)
60 { }
61
62 struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
63 {
64 struct tgsi_src_register reg;
65 memset(&reg, 0, sizeof(reg));
66 reg.Index = off.Index;
67 reg.File = off.File;
68 reg.SwizzleX = off.SwizzleX;
69 reg.SwizzleY = off.SwizzleY;
70 reg.SwizzleZ = off.SwizzleZ;
71 return reg;
72 }
73
74 SrcRegister(const struct tgsi_texture_offset& off) :
75 reg(offsetToSrc(off)),
76 fsr(NULL)
77 { }
78
79 uint getFile() const { return reg.File; }
80
81 bool is2D() const { return reg.Dimension; }
82
83 bool isIndirect(int dim) const
84 {
85 return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
86 }
87
88 int getIndex(int dim) const
89 {
90 return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
91 }
92
93 int getSwizzle(int chan) const
94 {
95 return tgsi_util_get_src_register_swizzle(&reg, chan);
96 }
97
98 nv50_ir::Modifier getMod(int chan) const;
99
100 SrcRegister getIndirect(int dim) const
101 {
102 assert(fsr && isIndirect(dim));
103 if (dim)
104 return SrcRegister(fsr->DimIndirect);
105 return SrcRegister(fsr->Indirect);
106 }
107
108 uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
109 {
110 assert(reg.File == TGSI_FILE_IMMEDIATE);
111 assert(!reg.Absolute);
112 assert(!reg.Negate);
113 return info->immd.data[reg.Index * 4 + getSwizzle(c)];
114 }
115
116 private:
117 const struct tgsi_src_register reg;
118 const struct tgsi_full_src_register *fsr;
119 };
120
121 class DstRegister
122 {
123 public:
124 DstRegister(const struct tgsi_full_dst_register *dst)
125 : reg(dst->Register),
126 fdr(dst)
127 { }
128
129 DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
130
131 uint getFile() const { return reg.File; }
132
133 bool is2D() const { return reg.Dimension; }
134
135 bool isIndirect(int dim) const
136 {
137 return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
138 }
139
140 int getIndex(int dim) const
141 {
142 return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
143 }
144
145 unsigned int getMask() const { return reg.WriteMask; }
146
147 bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
148
149 SrcRegister getIndirect(int dim) const
150 {
151 assert(fdr && isIndirect(dim));
152 if (dim)
153 return SrcRegister(fdr->DimIndirect);
154 return SrcRegister(fdr->Indirect);
155 }
156
157 private:
158 const struct tgsi_dst_register reg;
159 const struct tgsi_full_dst_register *fdr;
160 };
161
162 inline uint getOpcode() const { return insn->Instruction.Opcode; }
163
164 unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
165 unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
166
167 // mask of used components of source s
168 unsigned int srcMask(unsigned int s) const;
169
170 SrcRegister getSrc(unsigned int s) const
171 {
172 assert(s < srcCount());
173 return SrcRegister(&insn->Src[s]);
174 }
175
176 DstRegister getDst(unsigned int d) const
177 {
178 assert(d < dstCount());
179 return DstRegister(&insn->Dst[d]);
180 }
181
182 SrcRegister getTexOffset(unsigned int i) const
183 {
184 assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
185 return SrcRegister(insn->TexOffsets[i]);
186 }
187
188 unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
189
190 bool checkDstSrcAliasing() const;
191
192 inline nv50_ir::operation getOP() const {
193 return translateOpcode(getOpcode()); }
194
195 nv50_ir::DataType inferSrcType() const;
196 nv50_ir::DataType inferDstType() const;
197
198 nv50_ir::CondCode getSetCond() const;
199
200 nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
201
202 inline uint getLabel() { return insn->Label.Label; }
203
204 unsigned getSaturate() const { return insn->Instruction.Saturate; }
205
206 void print() const
207 {
208 tgsi_dump_instruction(insn, 1);
209 }
210
211 private:
212 const struct tgsi_full_instruction *insn;
213 };
214
215 unsigned int Instruction::srcMask(unsigned int s) const
216 {
217 unsigned int mask = insn->Dst[0].Register.WriteMask;
218
219 switch (insn->Instruction.Opcode) {
220 case TGSI_OPCODE_COS:
221 case TGSI_OPCODE_SIN:
222 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
223 case TGSI_OPCODE_DP2:
224 return 0x3;
225 case TGSI_OPCODE_DP3:
226 return 0x7;
227 case TGSI_OPCODE_DP4:
228 case TGSI_OPCODE_DPH:
229 case TGSI_OPCODE_KILL_IF: /* WriteMask ignored */
230 return 0xf;
231 case TGSI_OPCODE_DST:
232 return mask & (s ? 0xa : 0x6);
233 case TGSI_OPCODE_EX2:
234 case TGSI_OPCODE_EXP:
235 case TGSI_OPCODE_LG2:
236 case TGSI_OPCODE_LOG:
237 case TGSI_OPCODE_POW:
238 case TGSI_OPCODE_RCP:
239 case TGSI_OPCODE_RSQ:
240 case TGSI_OPCODE_SCS:
241 return 0x1;
242 case TGSI_OPCODE_IF:
243 case TGSI_OPCODE_UIF:
244 return 0x1;
245 case TGSI_OPCODE_LIT:
246 return 0xb;
247 case TGSI_OPCODE_TEX2:
248 case TGSI_OPCODE_TXB2:
249 case TGSI_OPCODE_TXL2:
250 return (s == 0) ? 0xf : 0x3;
251 case TGSI_OPCODE_TEX:
252 case TGSI_OPCODE_TXB:
253 case TGSI_OPCODE_TXD:
254 case TGSI_OPCODE_TXL:
255 case TGSI_OPCODE_TXP:
256 case TGSI_OPCODE_LODQ:
257 {
258 const struct tgsi_instruction_texture *tex = &insn->Texture;
259
260 assert(insn->Instruction.Texture);
261
262 mask = 0x7;
263 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
264 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
265 mask |= 0x8; /* bias, lod or proj */
266
267 switch (tex->Texture) {
268 case TGSI_TEXTURE_1D:
269 mask &= 0x9;
270 break;
271 case TGSI_TEXTURE_SHADOW1D:
272 mask &= 0xd;
273 break;
274 case TGSI_TEXTURE_1D_ARRAY:
275 case TGSI_TEXTURE_2D:
276 case TGSI_TEXTURE_RECT:
277 mask &= 0xb;
278 break;
279 case TGSI_TEXTURE_CUBE_ARRAY:
280 case TGSI_TEXTURE_SHADOW2D_ARRAY:
281 case TGSI_TEXTURE_SHADOWCUBE:
282 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
283 mask |= 0x8;
284 break;
285 default:
286 break;
287 }
288 }
289 return mask;
290 case TGSI_OPCODE_XPD:
291 {
292 unsigned int x = 0;
293 if (mask & 1) x |= 0x6;
294 if (mask & 2) x |= 0x5;
295 if (mask & 4) x |= 0x3;
296 return x;
297 }
298 case TGSI_OPCODE_D2I:
299 case TGSI_OPCODE_D2U:
300 case TGSI_OPCODE_D2F:
301 case TGSI_OPCODE_DSLT:
302 case TGSI_OPCODE_DSGE:
303 case TGSI_OPCODE_DSEQ:
304 case TGSI_OPCODE_DSNE:
305 switch (util_bitcount(mask)) {
306 case 1: return 0x3;
307 case 2: return 0xf;
308 default:
309 assert(!"unexpected mask");
310 return 0xf;
311 }
312 case TGSI_OPCODE_I2D:
313 case TGSI_OPCODE_U2D:
314 case TGSI_OPCODE_F2D: {
315 unsigned int x = 0;
316 if ((mask & 0x3) == 0x3)
317 x |= 1;
318 if ((mask & 0xc) == 0xc)
319 x |= 2;
320 return x;
321 }
322 default:
323 break;
324 }
325
326 return mask;
327 }
328
329 nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
330 {
331 nv50_ir::Modifier m(0);
332
333 if (reg.Absolute)
334 m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
335 if (reg.Negate)
336 m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
337 return m;
338 }
339
340 static nv50_ir::DataFile translateFile(uint file)
341 {
342 switch (file) {
343 case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST;
344 case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT;
345 case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT;
346 case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR;
347 case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS;
348 case TGSI_FILE_PREDICATE: return nv50_ir::FILE_PREDICATE;
349 case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE;
350 case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE;
351 case TGSI_FILE_RESOURCE: return nv50_ir::FILE_MEMORY_GLOBAL;
352 case TGSI_FILE_SAMPLER:
353 case TGSI_FILE_NULL:
354 default:
355 return nv50_ir::FILE_NULL;
356 }
357 }
358
359 static nv50_ir::SVSemantic translateSysVal(uint sysval)
360 {
361 switch (sysval) {
362 case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE;
363 case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE;
364 case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID;
365 case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
366 case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID;
367 case TGSI_SEMANTIC_GRID_SIZE: return nv50_ir::SV_NCTAID;
368 case TGSI_SEMANTIC_BLOCK_ID: return nv50_ir::SV_CTAID;
369 case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID;
370 case TGSI_SEMANTIC_THREAD_ID: return nv50_ir::SV_TID;
371 case TGSI_SEMANTIC_SAMPLEID: return nv50_ir::SV_SAMPLE_INDEX;
372 case TGSI_SEMANTIC_SAMPLEPOS: return nv50_ir::SV_SAMPLE_POS;
373 case TGSI_SEMANTIC_SAMPLEMASK: return nv50_ir::SV_SAMPLE_MASK;
374 case TGSI_SEMANTIC_INVOCATIONID: return nv50_ir::SV_INVOCATION_ID;
375 default:
376 assert(0);
377 return nv50_ir::SV_CLOCK;
378 }
379 }
380
381 #define NV50_IR_TEX_TARG_CASE(a, b) \
382 case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
383
384 static nv50_ir::TexTarget translateTexture(uint tex)
385 {
386 switch (tex) {
387 NV50_IR_TEX_TARG_CASE(1D, 1D);
388 NV50_IR_TEX_TARG_CASE(2D, 2D);
389 NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS);
390 NV50_IR_TEX_TARG_CASE(3D, 3D);
391 NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
392 NV50_IR_TEX_TARG_CASE(RECT, RECT);
393 NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
394 NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
395 NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY);
396 NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY);
397 NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
398 NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
399 NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
400 NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
401 NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
402 NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
403 NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW);
404 NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
405
406 case TGSI_TEXTURE_UNKNOWN:
407 default:
408 assert(!"invalid texture target");
409 return nv50_ir::TEX_TARGET_2D;
410 }
411 }
412
413 nv50_ir::DataType Instruction::inferSrcType() const
414 {
415 switch (getOpcode()) {
416 case TGSI_OPCODE_UIF:
417 case TGSI_OPCODE_AND:
418 case TGSI_OPCODE_OR:
419 case TGSI_OPCODE_XOR:
420 case TGSI_OPCODE_NOT:
421 case TGSI_OPCODE_U2F:
422 case TGSI_OPCODE_U2D:
423 case TGSI_OPCODE_UADD:
424 case TGSI_OPCODE_UDIV:
425 case TGSI_OPCODE_UMOD:
426 case TGSI_OPCODE_UMAD:
427 case TGSI_OPCODE_UMUL:
428 case TGSI_OPCODE_UMUL_HI:
429 case TGSI_OPCODE_UMAX:
430 case TGSI_OPCODE_UMIN:
431 case TGSI_OPCODE_USEQ:
432 case TGSI_OPCODE_USGE:
433 case TGSI_OPCODE_USLT:
434 case TGSI_OPCODE_USNE:
435 case TGSI_OPCODE_USHR:
436 case TGSI_OPCODE_UCMP:
437 case TGSI_OPCODE_ATOMUADD:
438 case TGSI_OPCODE_ATOMXCHG:
439 case TGSI_OPCODE_ATOMCAS:
440 case TGSI_OPCODE_ATOMAND:
441 case TGSI_OPCODE_ATOMOR:
442 case TGSI_OPCODE_ATOMXOR:
443 case TGSI_OPCODE_ATOMUMIN:
444 case TGSI_OPCODE_ATOMUMAX:
445 case TGSI_OPCODE_UBFE:
446 case TGSI_OPCODE_UMSB:
447 return nv50_ir::TYPE_U32;
448 case TGSI_OPCODE_I2F:
449 case TGSI_OPCODE_I2D:
450 case TGSI_OPCODE_IDIV:
451 case TGSI_OPCODE_IMUL_HI:
452 case TGSI_OPCODE_IMAX:
453 case TGSI_OPCODE_IMIN:
454 case TGSI_OPCODE_IABS:
455 case TGSI_OPCODE_INEG:
456 case TGSI_OPCODE_ISGE:
457 case TGSI_OPCODE_ISHR:
458 case TGSI_OPCODE_ISLT:
459 case TGSI_OPCODE_ISSG:
460 case TGSI_OPCODE_SAD: // not sure about SAD, but no one has a float version
461 case TGSI_OPCODE_MOD:
462 case TGSI_OPCODE_UARL:
463 case TGSI_OPCODE_ATOMIMIN:
464 case TGSI_OPCODE_ATOMIMAX:
465 case TGSI_OPCODE_IBFE:
466 case TGSI_OPCODE_IMSB:
467 return nv50_ir::TYPE_S32;
468 case TGSI_OPCODE_D2F:
469 case TGSI_OPCODE_D2I:
470 case TGSI_OPCODE_D2U:
471 case TGSI_OPCODE_DABS:
472 case TGSI_OPCODE_DNEG:
473 case TGSI_OPCODE_DADD:
474 case TGSI_OPCODE_DMUL:
475 case TGSI_OPCODE_DMAX:
476 case TGSI_OPCODE_DMIN:
477 case TGSI_OPCODE_DSLT:
478 case TGSI_OPCODE_DSGE:
479 case TGSI_OPCODE_DSEQ:
480 case TGSI_OPCODE_DSNE:
481 case TGSI_OPCODE_DRCP:
482 case TGSI_OPCODE_DSQRT:
483 case TGSI_OPCODE_DMAD:
484 case TGSI_OPCODE_DFRAC:
485 case TGSI_OPCODE_DRSQ:
486 case TGSI_OPCODE_DTRUNC:
487 case TGSI_OPCODE_DCEIL:
488 case TGSI_OPCODE_DFLR:
489 case TGSI_OPCODE_DROUND:
490 return nv50_ir::TYPE_F64;
491 default:
492 return nv50_ir::TYPE_F32;
493 }
494 }
495
496 nv50_ir::DataType Instruction::inferDstType() const
497 {
498 switch (getOpcode()) {
499 case TGSI_OPCODE_D2U:
500 case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
501 case TGSI_OPCODE_D2I:
502 case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
503 case TGSI_OPCODE_FSEQ:
504 case TGSI_OPCODE_FSGE:
505 case TGSI_OPCODE_FSLT:
506 case TGSI_OPCODE_FSNE:
507 case TGSI_OPCODE_DSEQ:
508 case TGSI_OPCODE_DSGE:
509 case TGSI_OPCODE_DSLT:
510 case TGSI_OPCODE_DSNE:
511 return nv50_ir::TYPE_U32;
512 case TGSI_OPCODE_I2F:
513 case TGSI_OPCODE_U2F:
514 case TGSI_OPCODE_D2F:
515 return nv50_ir::TYPE_F32;
516 case TGSI_OPCODE_I2D:
517 case TGSI_OPCODE_U2D:
518 case TGSI_OPCODE_F2D:
519 return nv50_ir::TYPE_F64;
520 default:
521 return inferSrcType();
522 }
523 }
524
525 nv50_ir::CondCode Instruction::getSetCond() const
526 {
527 using namespace nv50_ir;
528
529 switch (getOpcode()) {
530 case TGSI_OPCODE_SLT:
531 case TGSI_OPCODE_ISLT:
532 case TGSI_OPCODE_USLT:
533 case TGSI_OPCODE_FSLT:
534 case TGSI_OPCODE_DSLT:
535 return CC_LT;
536 case TGSI_OPCODE_SLE:
537 return CC_LE;
538 case TGSI_OPCODE_SGE:
539 case TGSI_OPCODE_ISGE:
540 case TGSI_OPCODE_USGE:
541 case TGSI_OPCODE_FSGE:
542 case TGSI_OPCODE_DSGE:
543 return CC_GE;
544 case TGSI_OPCODE_SGT:
545 return CC_GT;
546 case TGSI_OPCODE_SEQ:
547 case TGSI_OPCODE_USEQ:
548 case TGSI_OPCODE_FSEQ:
549 case TGSI_OPCODE_DSEQ:
550 return CC_EQ;
551 case TGSI_OPCODE_SNE:
552 case TGSI_OPCODE_FSNE:
553 case TGSI_OPCODE_DSNE:
554 return CC_NEU;
555 case TGSI_OPCODE_USNE:
556 return CC_NE;
557 default:
558 return CC_ALWAYS;
559 }
560 }
561
562 #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
563
564 static nv50_ir::operation translateOpcode(uint opcode)
565 {
566 switch (opcode) {
567 NV50_IR_OPCODE_CASE(ARL, SHL);
568 NV50_IR_OPCODE_CASE(MOV, MOV);
569
570 NV50_IR_OPCODE_CASE(RCP, RCP);
571 NV50_IR_OPCODE_CASE(RSQ, RSQ);
572
573 NV50_IR_OPCODE_CASE(MUL, MUL);
574 NV50_IR_OPCODE_CASE(ADD, ADD);
575
576 NV50_IR_OPCODE_CASE(MIN, MIN);
577 NV50_IR_OPCODE_CASE(MAX, MAX);
578 NV50_IR_OPCODE_CASE(SLT, SET);
579 NV50_IR_OPCODE_CASE(SGE, SET);
580 NV50_IR_OPCODE_CASE(MAD, MAD);
581 NV50_IR_OPCODE_CASE(SUB, SUB);
582
583 NV50_IR_OPCODE_CASE(FLR, FLOOR);
584 NV50_IR_OPCODE_CASE(ROUND, CVT);
585 NV50_IR_OPCODE_CASE(EX2, EX2);
586 NV50_IR_OPCODE_CASE(LG2, LG2);
587 NV50_IR_OPCODE_CASE(POW, POW);
588
589 NV50_IR_OPCODE_CASE(ABS, ABS);
590
591 NV50_IR_OPCODE_CASE(COS, COS);
592 NV50_IR_OPCODE_CASE(DDX, DFDX);
593 NV50_IR_OPCODE_CASE(DDX_FINE, DFDX);
594 NV50_IR_OPCODE_CASE(DDY, DFDY);
595 NV50_IR_OPCODE_CASE(DDY_FINE, DFDY);
596 NV50_IR_OPCODE_CASE(KILL, DISCARD);
597
598 NV50_IR_OPCODE_CASE(SEQ, SET);
599 NV50_IR_OPCODE_CASE(SGT, SET);
600 NV50_IR_OPCODE_CASE(SIN, SIN);
601 NV50_IR_OPCODE_CASE(SLE, SET);
602 NV50_IR_OPCODE_CASE(SNE, SET);
603 NV50_IR_OPCODE_CASE(TEX, TEX);
604 NV50_IR_OPCODE_CASE(TXD, TXD);
605 NV50_IR_OPCODE_CASE(TXP, TEX);
606
607 NV50_IR_OPCODE_CASE(CAL, CALL);
608 NV50_IR_OPCODE_CASE(RET, RET);
609 NV50_IR_OPCODE_CASE(CMP, SLCT);
610
611 NV50_IR_OPCODE_CASE(TXB, TXB);
612
613 NV50_IR_OPCODE_CASE(DIV, DIV);
614
615 NV50_IR_OPCODE_CASE(TXL, TXL);
616
617 NV50_IR_OPCODE_CASE(CEIL, CEIL);
618 NV50_IR_OPCODE_CASE(I2F, CVT);
619 NV50_IR_OPCODE_CASE(NOT, NOT);
620 NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
621 NV50_IR_OPCODE_CASE(SHL, SHL);
622
623 NV50_IR_OPCODE_CASE(AND, AND);
624 NV50_IR_OPCODE_CASE(OR, OR);
625 NV50_IR_OPCODE_CASE(MOD, MOD);
626 NV50_IR_OPCODE_CASE(XOR, XOR);
627 NV50_IR_OPCODE_CASE(SAD, SAD);
628 NV50_IR_OPCODE_CASE(TXF, TXF);
629 NV50_IR_OPCODE_CASE(TXQ, TXQ);
630 NV50_IR_OPCODE_CASE(TG4, TXG);
631 NV50_IR_OPCODE_CASE(LODQ, TXLQ);
632
633 NV50_IR_OPCODE_CASE(EMIT, EMIT);
634 NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
635
636 NV50_IR_OPCODE_CASE(KILL_IF, DISCARD);
637
638 NV50_IR_OPCODE_CASE(F2I, CVT);
639 NV50_IR_OPCODE_CASE(FSEQ, SET);
640 NV50_IR_OPCODE_CASE(FSGE, SET);
641 NV50_IR_OPCODE_CASE(FSLT, SET);
642 NV50_IR_OPCODE_CASE(FSNE, SET);
643 NV50_IR_OPCODE_CASE(IDIV, DIV);
644 NV50_IR_OPCODE_CASE(IMAX, MAX);
645 NV50_IR_OPCODE_CASE(IMIN, MIN);
646 NV50_IR_OPCODE_CASE(IABS, ABS);
647 NV50_IR_OPCODE_CASE(INEG, NEG);
648 NV50_IR_OPCODE_CASE(ISGE, SET);
649 NV50_IR_OPCODE_CASE(ISHR, SHR);
650 NV50_IR_OPCODE_CASE(ISLT, SET);
651 NV50_IR_OPCODE_CASE(F2U, CVT);
652 NV50_IR_OPCODE_CASE(U2F, CVT);
653 NV50_IR_OPCODE_CASE(UADD, ADD);
654 NV50_IR_OPCODE_CASE(UDIV, DIV);
655 NV50_IR_OPCODE_CASE(UMAD, MAD);
656 NV50_IR_OPCODE_CASE(UMAX, MAX);
657 NV50_IR_OPCODE_CASE(UMIN, MIN);
658 NV50_IR_OPCODE_CASE(UMOD, MOD);
659 NV50_IR_OPCODE_CASE(UMUL, MUL);
660 NV50_IR_OPCODE_CASE(USEQ, SET);
661 NV50_IR_OPCODE_CASE(USGE, SET);
662 NV50_IR_OPCODE_CASE(USHR, SHR);
663 NV50_IR_OPCODE_CASE(USLT, SET);
664 NV50_IR_OPCODE_CASE(USNE, SET);
665
666 NV50_IR_OPCODE_CASE(DABS, ABS);
667 NV50_IR_OPCODE_CASE(DNEG, NEG);
668 NV50_IR_OPCODE_CASE(DADD, ADD);
669 NV50_IR_OPCODE_CASE(DMUL, MUL);
670 NV50_IR_OPCODE_CASE(DMAX, MAX);
671 NV50_IR_OPCODE_CASE(DMIN, MIN);
672 NV50_IR_OPCODE_CASE(DSLT, SET);
673 NV50_IR_OPCODE_CASE(DSGE, SET);
674 NV50_IR_OPCODE_CASE(DSEQ, SET);
675 NV50_IR_OPCODE_CASE(DSNE, SET);
676 NV50_IR_OPCODE_CASE(DRCP, RCP);
677 NV50_IR_OPCODE_CASE(DSQRT, SQRT);
678 NV50_IR_OPCODE_CASE(DMAD, MAD);
679 NV50_IR_OPCODE_CASE(D2I, CVT);
680 NV50_IR_OPCODE_CASE(D2U, CVT);
681 NV50_IR_OPCODE_CASE(I2D, CVT);
682 NV50_IR_OPCODE_CASE(U2D, CVT);
683 NV50_IR_OPCODE_CASE(DRSQ, RSQ);
684 NV50_IR_OPCODE_CASE(DTRUNC, TRUNC);
685 NV50_IR_OPCODE_CASE(DCEIL, CEIL);
686 NV50_IR_OPCODE_CASE(DFLR, FLOOR);
687 NV50_IR_OPCODE_CASE(DROUND, CVT);
688
689 NV50_IR_OPCODE_CASE(IMUL_HI, MUL);
690 NV50_IR_OPCODE_CASE(UMUL_HI, MUL);
691
692 NV50_IR_OPCODE_CASE(SAMPLE, TEX);
693 NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
694 NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
695 NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
696 NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
697 NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
698 NV50_IR_OPCODE_CASE(SAMPLE_I, TXF);
699 NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF);
700 NV50_IR_OPCODE_CASE(GATHER4, TXG);
701 NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
702
703 NV50_IR_OPCODE_CASE(ATOMUADD, ATOM);
704 NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM);
705 NV50_IR_OPCODE_CASE(ATOMCAS, ATOM);
706 NV50_IR_OPCODE_CASE(ATOMAND, ATOM);
707 NV50_IR_OPCODE_CASE(ATOMOR, ATOM);
708 NV50_IR_OPCODE_CASE(ATOMXOR, ATOM);
709 NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM);
710 NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM);
711 NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM);
712 NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM);
713
714 NV50_IR_OPCODE_CASE(TEX2, TEX);
715 NV50_IR_OPCODE_CASE(TXB2, TXB);
716 NV50_IR_OPCODE_CASE(TXL2, TXL);
717
718 NV50_IR_OPCODE_CASE(IBFE, EXTBF);
719 NV50_IR_OPCODE_CASE(UBFE, EXTBF);
720 NV50_IR_OPCODE_CASE(BFI, INSBF);
721 NV50_IR_OPCODE_CASE(BREV, EXTBF);
722 NV50_IR_OPCODE_CASE(POPC, POPCNT);
723 NV50_IR_OPCODE_CASE(LSB, BFIND);
724 NV50_IR_OPCODE_CASE(IMSB, BFIND);
725 NV50_IR_OPCODE_CASE(UMSB, BFIND);
726
727 NV50_IR_OPCODE_CASE(END, EXIT);
728
729 default:
730 return nv50_ir::OP_NOP;
731 }
732 }
733
734 static uint16_t opcodeToSubOp(uint opcode)
735 {
736 switch (opcode) {
737 case TGSI_OPCODE_LFENCE: return NV50_IR_SUBOP_MEMBAR(L, GL);
738 case TGSI_OPCODE_SFENCE: return NV50_IR_SUBOP_MEMBAR(S, GL);
739 case TGSI_OPCODE_MFENCE: return NV50_IR_SUBOP_MEMBAR(M, GL);
740 case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD;
741 case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH;
742 case TGSI_OPCODE_ATOMCAS: return NV50_IR_SUBOP_ATOM_CAS;
743 case TGSI_OPCODE_ATOMAND: return NV50_IR_SUBOP_ATOM_AND;
744 case TGSI_OPCODE_ATOMOR: return NV50_IR_SUBOP_ATOM_OR;
745 case TGSI_OPCODE_ATOMXOR: return NV50_IR_SUBOP_ATOM_XOR;
746 case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN;
747 case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN;
748 case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX;
749 case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX;
750 case TGSI_OPCODE_IMUL_HI:
751 case TGSI_OPCODE_UMUL_HI:
752 return NV50_IR_SUBOP_MUL_HIGH;
753 default:
754 return 0;
755 }
756 }
757
758 bool Instruction::checkDstSrcAliasing() const
759 {
760 if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
761 return false;
762
763 for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
764 if (insn->Src[s].Register.File == TGSI_FILE_NULL)
765 break;
766 if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
767 insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
768 return true;
769 }
770 return false;
771 }
772
773 class Source
774 {
775 public:
776 Source(struct nv50_ir_prog_info *);
777 ~Source();
778
779 public:
780 bool scanSource();
781 unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
782
783 public:
784 struct tgsi_shader_info scan;
785 struct tgsi_full_instruction *insns;
786 const struct tgsi_token *tokens;
787 struct nv50_ir_prog_info *info;
788
789 nv50_ir::DynArray tempArrays;
790 nv50_ir::DynArray immdArrays;
791
792 typedef nv50_ir::BuildUtil::Location Location;
793 // these registers are per-subroutine, cannot be used for parameter passing
794 std::set<Location> locals;
795
796 bool mainTempsInLMem;
797
798 int clipVertexOutput;
799
800 struct TextureView {
801 uint8_t target; // TGSI_TEXTURE_*
802 };
803 std::vector<TextureView> textureViews;
804
805 struct Resource {
806 uint8_t target; // TGSI_TEXTURE_*
807 bool raw;
808 uint8_t slot; // $surface index
809 };
810 std::vector<Resource> resources;
811
812 private:
813 int inferSysValDirection(unsigned sn) const;
814 bool scanDeclaration(const struct tgsi_full_declaration *);
815 bool scanInstruction(const struct tgsi_full_instruction *);
816 void scanProperty(const struct tgsi_full_property *);
817 void scanImmediate(const struct tgsi_full_immediate *);
818
819 inline bool isEdgeFlagPassthrough(const Instruction&) const;
820 };
821
822 Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
823 {
824 tokens = (const struct tgsi_token *)info->bin.source;
825
826 if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
827 tgsi_dump(tokens, 0);
828
829 mainTempsInLMem = FALSE;
830 }
831
832 Source::~Source()
833 {
834 if (insns)
835 FREE(insns);
836
837 if (info->immd.data)
838 FREE(info->immd.data);
839 if (info->immd.type)
840 FREE(info->immd.type);
841 }
842
843 bool Source::scanSource()
844 {
845 unsigned insnCount = 0;
846 struct tgsi_parse_context parse;
847
848 tgsi_scan_shader(tokens, &scan);
849
850 insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
851 sizeof(insns[0]));
852 if (!insns)
853 return false;
854
855 clipVertexOutput = -1;
856
857 textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1);
858 resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1);
859
860 info->immd.bufSize = 0;
861
862 info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
863 info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
864 info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
865
866 if (info->type == PIPE_SHADER_FRAGMENT) {
867 info->prop.fp.writesDepth = scan.writes_z;
868 info->prop.fp.usesDiscard = scan.uses_kill;
869 } else
870 if (info->type == PIPE_SHADER_GEOMETRY) {
871 info->prop.gp.instanceCount = 1; // default value
872 }
873
874 info->io.viewportId = -1;
875
876 info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
877 info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
878
879 tgsi_parse_init(&parse, tokens);
880 while (!tgsi_parse_end_of_tokens(&parse)) {
881 tgsi_parse_token(&parse);
882
883 switch (parse.FullToken.Token.Type) {
884 case TGSI_TOKEN_TYPE_IMMEDIATE:
885 scanImmediate(&parse.FullToken.FullImmediate);
886 break;
887 case TGSI_TOKEN_TYPE_DECLARATION:
888 scanDeclaration(&parse.FullToken.FullDeclaration);
889 break;
890 case TGSI_TOKEN_TYPE_INSTRUCTION:
891 insns[insnCount++] = parse.FullToken.FullInstruction;
892 scanInstruction(&parse.FullToken.FullInstruction);
893 break;
894 case TGSI_TOKEN_TYPE_PROPERTY:
895 scanProperty(&parse.FullToken.FullProperty);
896 break;
897 default:
898 INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
899 break;
900 }
901 }
902 tgsi_parse_free(&parse);
903
904 if (mainTempsInLMem)
905 info->bin.tlsSpace += (scan.file_max[TGSI_FILE_TEMPORARY] + 1) * 16;
906
907 if (info->io.genUserClip > 0) {
908 info->io.clipDistanceMask = (1 << info->io.genUserClip) - 1;
909
910 const unsigned int nOut = (info->io.genUserClip + 3) / 4;
911
912 for (unsigned int n = 0; n < nOut; ++n) {
913 unsigned int i = info->numOutputs++;
914 info->out[i].id = i;
915 info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
916 info->out[i].si = n;
917 info->out[i].mask = info->io.clipDistanceMask >> (n * 4);
918 }
919 }
920
921 return info->assignSlots(info) == 0;
922 }
923
924 void Source::scanProperty(const struct tgsi_full_property *prop)
925 {
926 switch (prop->Property.PropertyName) {
927 case TGSI_PROPERTY_GS_OUTPUT_PRIM:
928 info->prop.gp.outputPrim = prop->u[0].Data;
929 break;
930 case TGSI_PROPERTY_GS_INPUT_PRIM:
931 info->prop.gp.inputPrim = prop->u[0].Data;
932 break;
933 case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
934 info->prop.gp.maxVertices = prop->u[0].Data;
935 break;
936 case TGSI_PROPERTY_GS_INVOCATIONS:
937 info->prop.gp.instanceCount = prop->u[0].Data;
938 break;
939 case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
940 info->prop.fp.separateFragData = TRUE;
941 break;
942 case TGSI_PROPERTY_FS_COORD_ORIGIN:
943 case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
944 // we don't care
945 break;
946 case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
947 info->io.genUserClip = -1;
948 break;
949 default:
950 INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
951 break;
952 }
953 }
954
955 void Source::scanImmediate(const struct tgsi_full_immediate *imm)
956 {
957 const unsigned n = info->immd.count++;
958
959 assert(n < scan.immediate_count);
960
961 for (int c = 0; c < 4; ++c)
962 info->immd.data[n * 4 + c] = imm->u[c].Uint;
963
964 info->immd.type[n] = imm->Immediate.DataType;
965 }
966
967 int Source::inferSysValDirection(unsigned sn) const
968 {
969 switch (sn) {
970 case TGSI_SEMANTIC_INSTANCEID:
971 case TGSI_SEMANTIC_VERTEXID:
972 return 1;
973 case TGSI_SEMANTIC_LAYER:
974 #if 0
975 case TGSI_SEMANTIC_VIEWPORTINDEX:
976 return 0;
977 #endif
978 case TGSI_SEMANTIC_PRIMID:
979 return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
980 default:
981 return 0;
982 }
983 }
984
985 bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
986 {
987 unsigned i, c;
988 unsigned sn = TGSI_SEMANTIC_GENERIC;
989 unsigned si = 0;
990 const unsigned first = decl->Range.First, last = decl->Range.Last;
991
992 if (decl->Declaration.Semantic) {
993 sn = decl->Semantic.Name;
994 si = decl->Semantic.Index;
995 }
996
997 if (decl->Declaration.Local) {
998 for (i = first; i <= last; ++i) {
999 for (c = 0; c < 4; ++c) {
1000 locals.insert(
1001 Location(decl->Declaration.File, decl->Dim.Index2D, i, c));
1002 }
1003 }
1004 }
1005
1006 switch (decl->Declaration.File) {
1007 case TGSI_FILE_INPUT:
1008 if (info->type == PIPE_SHADER_VERTEX) {
1009 // all vertex attributes are equal
1010 for (i = first; i <= last; ++i) {
1011 info->in[i].sn = TGSI_SEMANTIC_GENERIC;
1012 info->in[i].si = i;
1013 }
1014 } else {
1015 for (i = first; i <= last; ++i, ++si) {
1016 info->in[i].id = i;
1017 info->in[i].sn = sn;
1018 info->in[i].si = si;
1019 if (info->type == PIPE_SHADER_FRAGMENT) {
1020 // translate interpolation mode
1021 switch (decl->Interp.Interpolate) {
1022 case TGSI_INTERPOLATE_CONSTANT:
1023 info->in[i].flat = 1;
1024 break;
1025 case TGSI_INTERPOLATE_COLOR:
1026 info->in[i].sc = 1;
1027 break;
1028 case TGSI_INTERPOLATE_LINEAR:
1029 info->in[i].linear = 1;
1030 break;
1031 default:
1032 break;
1033 }
1034 if (decl->Interp.Location || info->io.sampleInterp)
1035 info->in[i].centroid = 1;
1036 }
1037 }
1038 }
1039 break;
1040 case TGSI_FILE_OUTPUT:
1041 for (i = first; i <= last; ++i, ++si) {
1042 switch (sn) {
1043 case TGSI_SEMANTIC_POSITION:
1044 if (info->type == PIPE_SHADER_FRAGMENT)
1045 info->io.fragDepth = i;
1046 else
1047 if (clipVertexOutput < 0)
1048 clipVertexOutput = i;
1049 break;
1050 case TGSI_SEMANTIC_COLOR:
1051 if (info->type == PIPE_SHADER_FRAGMENT)
1052 info->prop.fp.numColourResults++;
1053 break;
1054 case TGSI_SEMANTIC_EDGEFLAG:
1055 info->io.edgeFlagOut = i;
1056 break;
1057 case TGSI_SEMANTIC_CLIPVERTEX:
1058 clipVertexOutput = i;
1059 break;
1060 case TGSI_SEMANTIC_CLIPDIST:
1061 info->io.clipDistanceMask |=
1062 decl->Declaration.UsageMask << (si * 4);
1063 info->io.genUserClip = -1;
1064 break;
1065 case TGSI_SEMANTIC_SAMPLEMASK:
1066 info->io.sampleMask = i;
1067 break;
1068 case TGSI_SEMANTIC_VIEWPORT_INDEX:
1069 info->io.viewportId = i;
1070 break;
1071 default:
1072 break;
1073 }
1074 info->out[i].id = i;
1075 info->out[i].sn = sn;
1076 info->out[i].si = si;
1077 }
1078 break;
1079 case TGSI_FILE_SYSTEM_VALUE:
1080 switch (sn) {
1081 case TGSI_SEMANTIC_INSTANCEID:
1082 info->io.instanceId = first;
1083 break;
1084 case TGSI_SEMANTIC_VERTEXID:
1085 info->io.vertexId = first;
1086 break;
1087 default:
1088 break;
1089 }
1090 for (i = first; i <= last; ++i, ++si) {
1091 info->sv[i].sn = sn;
1092 info->sv[i].si = si;
1093 info->sv[i].input = inferSysValDirection(sn);
1094 }
1095 break;
1096 case TGSI_FILE_RESOURCE:
1097 for (i = first; i <= last; ++i) {
1098 resources[i].target = decl->Resource.Resource;
1099 resources[i].raw = decl->Resource.Raw;
1100 resources[i].slot = i;
1101 }
1102 break;
1103 case TGSI_FILE_SAMPLER_VIEW:
1104 for (i = first; i <= last; ++i)
1105 textureViews[i].target = decl->SamplerView.Resource;
1106 break;
1107 case TGSI_FILE_NULL:
1108 case TGSI_FILE_TEMPORARY:
1109 case TGSI_FILE_ADDRESS:
1110 case TGSI_FILE_CONSTANT:
1111 case TGSI_FILE_IMMEDIATE:
1112 case TGSI_FILE_PREDICATE:
1113 case TGSI_FILE_SAMPLER:
1114 break;
1115 default:
1116 ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
1117 return false;
1118 }
1119 return true;
1120 }
1121
1122 inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
1123 {
1124 return insn.getOpcode() == TGSI_OPCODE_MOV &&
1125 insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
1126 insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
1127 }
1128
1129 bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
1130 {
1131 Instruction insn(inst);
1132
1133 if (insn.getOpcode() == TGSI_OPCODE_BARRIER)
1134 info->numBarriers = 1;
1135
1136 if (insn.dstCount()) {
1137 if (insn.getDst(0).getFile() == TGSI_FILE_OUTPUT) {
1138 Instruction::DstRegister dst = insn.getDst(0);
1139
1140 if (dst.isIndirect(0))
1141 for (unsigned i = 0; i < info->numOutputs; ++i)
1142 info->out[i].mask = 0xf;
1143 else
1144 info->out[dst.getIndex(0)].mask |= dst.getMask();
1145
1146 if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE ||
1147 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID ||
1148 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_LAYER ||
1149 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_VIEWPORT_INDEX ||
1150 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG)
1151 info->out[dst.getIndex(0)].mask &= 1;
1152
1153 if (isEdgeFlagPassthrough(insn))
1154 info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
1155 } else
1156 if (insn.getDst(0).getFile() == TGSI_FILE_TEMPORARY) {
1157 if (insn.getDst(0).isIndirect(0))
1158 mainTempsInLMem = TRUE;
1159 }
1160 }
1161
1162 for (unsigned s = 0; s < insn.srcCount(); ++s) {
1163 Instruction::SrcRegister src = insn.getSrc(s);
1164 if (src.getFile() == TGSI_FILE_TEMPORARY) {
1165 if (src.isIndirect(0))
1166 mainTempsInLMem = TRUE;
1167 } else
1168 if (src.getFile() == TGSI_FILE_RESOURCE) {
1169 if (src.getIndex(0) == TGSI_RESOURCE_GLOBAL)
1170 info->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ?
1171 0x1 : 0x2;
1172 }
1173 if (src.getFile() != TGSI_FILE_INPUT)
1174 continue;
1175 unsigned mask = insn.srcMask(s);
1176
1177 if (src.isIndirect(0)) {
1178 for (unsigned i = 0; i < info->numInputs; ++i)
1179 info->in[i].mask = 0xf;
1180 } else {
1181 const int i = src.getIndex(0);
1182 for (unsigned c = 0; c < 4; ++c) {
1183 if (!(mask & (1 << c)))
1184 continue;
1185 int k = src.getSwizzle(c);
1186 if (k <= TGSI_SWIZZLE_W)
1187 info->in[i].mask |= 1 << k;
1188 }
1189 switch (info->in[i].sn) {
1190 case TGSI_SEMANTIC_PSIZE:
1191 case TGSI_SEMANTIC_PRIMID:
1192 case TGSI_SEMANTIC_FOG:
1193 info->in[i].mask &= 0x1;
1194 break;
1195 case TGSI_SEMANTIC_PCOORD:
1196 info->in[i].mask &= 0x3;
1197 break;
1198 default:
1199 break;
1200 }
1201 }
1202 }
1203 return true;
1204 }
1205
1206 nv50_ir::TexInstruction::Target
1207 Instruction::getTexture(const tgsi::Source *code, int s) const
1208 {
1209 // XXX: indirect access
1210 unsigned int r;
1211
1212 switch (getSrc(s).getFile()) {
1213 case TGSI_FILE_RESOURCE:
1214 r = getSrc(s).getIndex(0);
1215 return translateTexture(code->resources.at(r).target);
1216 case TGSI_FILE_SAMPLER_VIEW:
1217 r = getSrc(s).getIndex(0);
1218 return translateTexture(code->textureViews.at(r).target);
1219 default:
1220 return translateTexture(insn->Texture.Texture);
1221 }
1222 }
1223
1224 } // namespace tgsi
1225
1226 namespace {
1227
1228 using namespace nv50_ir;
1229
1230 class Converter : public BuildUtil
1231 {
1232 public:
1233 Converter(Program *, const tgsi::Source *);
1234 ~Converter();
1235
1236 bool run();
1237
1238 private:
1239 struct Subroutine
1240 {
1241 Subroutine(Function *f) : f(f) { }
1242 Function *f;
1243 ValueMap values;
1244 };
1245
1246 Value *shiftAddress(Value *);
1247 Value *getVertexBase(int s);
1248 DataArray *getArrayForFile(unsigned file, int idx);
1249 Value *fetchSrc(int s, int c);
1250 Value *acquireDst(int d, int c);
1251 void storeDst(int d, int c, Value *);
1252
1253 Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1254 void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1255 Value *val, Value *ptr);
1256
1257 Value *applySrcMod(Value *, int s, int c);
1258
1259 Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1260 Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1261 Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1262
1263 bool handleInstruction(const struct tgsi_full_instruction *);
1264 void exportOutputs();
1265 inline Subroutine *getSubroutine(unsigned ip);
1266 inline Subroutine *getSubroutine(Function *);
1267 inline bool isEndOfSubroutine(uint ip);
1268
1269 void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1270
1271 // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1272 void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1273 void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1274 void handleTXF(Value *dst0[4], int R, int L_M);
1275 void handleTXQ(Value *dst0[4], enum TexQuery);
1276 void handleLIT(Value *dst0[4]);
1277 void handleUserClipPlanes();
1278
1279 Symbol *getResourceBase(int r);
1280 void getResourceCoords(std::vector<Value *>&, int r, int s);
1281
1282 void handleLOAD(Value *dst0[4]);
1283 void handleSTORE();
1284 void handleATOM(Value *dst0[4], DataType, uint16_t subOp);
1285
1286 void handleINTERP(Value *dst0[4]);
1287
1288 Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1289
1290 void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1291
1292 Value *buildDot(int dim);
1293
1294 class BindArgumentsPass : public Pass {
1295 public:
1296 BindArgumentsPass(Converter &conv) : conv(conv) { }
1297
1298 private:
1299 Converter &conv;
1300 Subroutine *sub;
1301
1302 inline const Location *getValueLocation(Subroutine *, Value *);
1303
1304 template<typename T> inline void
1305 updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1306 T (Function::*proto));
1307
1308 template<typename T> inline void
1309 updatePrototype(BitSet *set, void (Function::*updateSet)(),
1310 T (Function::*proto));
1311
1312 protected:
1313 bool visit(Function *);
1314 bool visit(BasicBlock *bb) { return false; }
1315 };
1316
1317 private:
1318 const struct tgsi::Source *code;
1319 const struct nv50_ir_prog_info *info;
1320
1321 struct {
1322 std::map<unsigned, Subroutine> map;
1323 Subroutine *cur;
1324 } sub;
1325
1326 uint ip; // instruction pointer
1327
1328 tgsi::Instruction tgsi;
1329
1330 DataType dstTy;
1331 DataType srcTy;
1332
1333 DataArray tData; // TGSI_FILE_TEMPORARY
1334 DataArray aData; // TGSI_FILE_ADDRESS
1335 DataArray pData; // TGSI_FILE_PREDICATE
1336 DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1337
1338 Value *zero;
1339 Value *fragCoord[4];
1340 Value *clipVtx[4];
1341
1342 Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1343 uint8_t vtxBaseValid;
1344
1345 Stack condBBs; // fork BB, then else clause BB
1346 Stack joinBBs; // fork BB, for inserting join ops on ENDIF
1347 Stack loopBBs; // loop headers
1348 Stack breakBBs; // end of / after loop
1349
1350 Value *viewport;
1351 };
1352
1353 Symbol *
1354 Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1355 {
1356 const int swz = src.getSwizzle(c);
1357
1358 return makeSym(src.getFile(),
1359 src.is2D() ? src.getIndex(1) : 0,
1360 src.isIndirect(0) ? -1 : src.getIndex(0), swz,
1361 src.getIndex(0) * 16 + swz * 4);
1362 }
1363
1364 Symbol *
1365 Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1366 {
1367 return makeSym(dst.getFile(),
1368 dst.is2D() ? dst.getIndex(1) : 0,
1369 dst.isIndirect(0) ? -1 : dst.getIndex(0), c,
1370 dst.getIndex(0) * 16 + c * 4);
1371 }
1372
1373 Symbol *
1374 Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1375 {
1376 Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1377
1378 sym->reg.fileIndex = fileIdx;
1379
1380 if (idx >= 0) {
1381 if (sym->reg.file == FILE_SHADER_INPUT)
1382 sym->setOffset(info->in[idx].slot[c] * 4);
1383 else
1384 if (sym->reg.file == FILE_SHADER_OUTPUT)
1385 sym->setOffset(info->out[idx].slot[c] * 4);
1386 else
1387 if (sym->reg.file == FILE_SYSTEM_VALUE)
1388 sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
1389 else
1390 sym->setOffset(address);
1391 } else {
1392 sym->setOffset(address);
1393 }
1394 return sym;
1395 }
1396
1397 static inline uint8_t
1398 translateInterpMode(const struct nv50_ir_varying *var, operation& op)
1399 {
1400 uint8_t mode = NV50_IR_INTERP_PERSPECTIVE;
1401
1402 if (var->flat)
1403 mode = NV50_IR_INTERP_FLAT;
1404 else
1405 if (var->linear)
1406 mode = NV50_IR_INTERP_LINEAR;
1407 else
1408 if (var->sc)
1409 mode = NV50_IR_INTERP_SC;
1410
1411 op = (mode == NV50_IR_INTERP_PERSPECTIVE || mode == NV50_IR_INTERP_SC)
1412 ? OP_PINTERP : OP_LINTERP;
1413
1414 if (var->centroid)
1415 mode |= NV50_IR_INTERP_CENTROID;
1416
1417 return mode;
1418 }
1419
1420 Value *
1421 Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1422 {
1423 operation op;
1424
1425 // XXX: no way to know interpolation mode if we don't know what's accessed
1426 const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
1427 src.getIndex(0)], op);
1428
1429 Instruction *insn = new_Instruction(func, op, TYPE_F32);
1430
1431 insn->setDef(0, getScratch());
1432 insn->setSrc(0, srcToSym(src, c));
1433 if (op == OP_PINTERP)
1434 insn->setSrc(1, fragCoord[3]);
1435 if (ptr)
1436 insn->setIndirect(0, 0, ptr);
1437
1438 insn->setInterpolate(mode);
1439
1440 bb->insertTail(insn);
1441 return insn->getDef(0);
1442 }
1443
1444 Value *
1445 Converter::applySrcMod(Value *val, int s, int c)
1446 {
1447 Modifier m = tgsi.getSrc(s).getMod(c);
1448 DataType ty = tgsi.inferSrcType();
1449
1450 if (m & Modifier(NV50_IR_MOD_ABS))
1451 val = mkOp1v(OP_ABS, ty, getScratch(), val);
1452
1453 if (m & Modifier(NV50_IR_MOD_NEG))
1454 val = mkOp1v(OP_NEG, ty, getScratch(), val);
1455
1456 return val;
1457 }
1458
1459 Value *
1460 Converter::getVertexBase(int s)
1461 {
1462 assert(s < 5);
1463 if (!(vtxBaseValid & (1 << s))) {
1464 const int index = tgsi.getSrc(s).getIndex(1);
1465 Value *rel = NULL;
1466 if (tgsi.getSrc(s).isIndirect(1))
1467 rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1468 vtxBaseValid |= 1 << s;
1469 vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1470 mkImm(index), rel);
1471 }
1472 return vtxBase[s];
1473 }
1474
1475 Value *
1476 Converter::fetchSrc(int s, int c)
1477 {
1478 Value *res;
1479 Value *ptr = NULL, *dimRel = NULL;
1480
1481 tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1482
1483 if (src.isIndirect(0))
1484 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1485
1486 if (src.is2D()) {
1487 switch (src.getFile()) {
1488 case TGSI_FILE_INPUT:
1489 dimRel = getVertexBase(s);
1490 break;
1491 case TGSI_FILE_CONSTANT:
1492 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1493 if (src.isIndirect(1))
1494 dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1495 break;
1496 default:
1497 break;
1498 }
1499 }
1500
1501 res = fetchSrc(src, c, ptr);
1502
1503 if (dimRel)
1504 res->getInsn()->setIndirect(0, 1, dimRel);
1505
1506 return applySrcMod(res, s, c);
1507 }
1508
1509 Converter::DataArray *
1510 Converter::getArrayForFile(unsigned file, int idx)
1511 {
1512 switch (file) {
1513 case TGSI_FILE_TEMPORARY:
1514 return &tData;
1515 case TGSI_FILE_PREDICATE:
1516 return &pData;
1517 case TGSI_FILE_ADDRESS:
1518 return &aData;
1519 case TGSI_FILE_OUTPUT:
1520 assert(prog->getType() == Program::TYPE_FRAGMENT);
1521 return &oData;
1522 default:
1523 assert(!"invalid/unhandled TGSI source file");
1524 return NULL;
1525 }
1526 }
1527
1528 Value *
1529 Converter::shiftAddress(Value *index)
1530 {
1531 if (!index)
1532 return NULL;
1533 return mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), index, mkImm(4));
1534 }
1535
1536 Value *
1537 Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1538 {
1539 const int idx2d = src.is2D() ? src.getIndex(1) : 0;
1540 const int idx = src.getIndex(0);
1541 const int swz = src.getSwizzle(c);
1542
1543 switch (src.getFile()) {
1544 case TGSI_FILE_IMMEDIATE:
1545 assert(!ptr);
1546 return loadImm(NULL, info->immd.data[idx * 4 + swz]);
1547 case TGSI_FILE_CONSTANT:
1548 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1549 case TGSI_FILE_INPUT:
1550 if (prog->getType() == Program::TYPE_FRAGMENT) {
1551 // don't load masked inputs, won't be assigned a slot
1552 if (!ptr && !(info->in[idx].mask & (1 << swz)))
1553 return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
1554 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_FACE)
1555 return mkOp1v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_FACE, 0));
1556 return interpolate(src, c, shiftAddress(ptr));
1557 } else
1558 if (prog->getType() == Program::TYPE_GEOMETRY) {
1559 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_PRIMID)
1560 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_PRIMITIVE_ID, 0));
1561 // XXX: This is going to be a problem with scalar arrays, i.e. when
1562 // we cannot assume that the address is given in units of vec4.
1563 //
1564 // nv50 and nvc0 need different things here, so let the lowering
1565 // passes decide what to do with the address
1566 if (ptr)
1567 return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
1568 }
1569 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1570 case TGSI_FILE_OUTPUT:
1571 assert(!"load from output file");
1572 return NULL;
1573 case TGSI_FILE_SYSTEM_VALUE:
1574 assert(!ptr);
1575 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
1576 default:
1577 return getArrayForFile(src.getFile(), idx2d)->load(
1578 sub.cur->values, idx, swz, shiftAddress(ptr));
1579 }
1580 }
1581
1582 Value *
1583 Converter::acquireDst(int d, int c)
1584 {
1585 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1586 const unsigned f = dst.getFile();
1587 const int idx = dst.getIndex(0);
1588 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1589
1590 if (dst.isMasked(c) || f == TGSI_FILE_RESOURCE)
1591 return NULL;
1592
1593 if (dst.isIndirect(0) ||
1594 f == TGSI_FILE_SYSTEM_VALUE ||
1595 (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
1596 return getScratch();
1597
1598 return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
1599 }
1600
1601 void
1602 Converter::storeDst(int d, int c, Value *val)
1603 {
1604 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1605
1606 switch (tgsi.getSaturate()) {
1607 case TGSI_SAT_NONE:
1608 break;
1609 case TGSI_SAT_ZERO_ONE:
1610 mkOp1(OP_SAT, dstTy, val, val);
1611 break;
1612 case TGSI_SAT_MINUS_PLUS_ONE:
1613 mkOp2(OP_MAX, dstTy, val, val, mkImm(-1.0f));
1614 mkOp2(OP_MIN, dstTy, val, val, mkImm(+1.0f));
1615 break;
1616 default:
1617 assert(!"invalid saturation mode");
1618 break;
1619 }
1620
1621 Value *ptr = NULL;
1622 if (dst.isIndirect(0))
1623 ptr = shiftAddress(fetchSrc(dst.getIndirect(0), 0, NULL));
1624
1625 if (info->io.genUserClip > 0 &&
1626 dst.getFile() == TGSI_FILE_OUTPUT &&
1627 !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
1628 mkMov(clipVtx[c], val);
1629 val = clipVtx[c];
1630 }
1631
1632 storeDst(dst, c, val, ptr);
1633 }
1634
1635 void
1636 Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
1637 Value *val, Value *ptr)
1638 {
1639 const unsigned f = dst.getFile();
1640 const int idx = dst.getIndex(0);
1641 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1642
1643 if (f == TGSI_FILE_SYSTEM_VALUE) {
1644 assert(!ptr);
1645 mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
1646 } else
1647 if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
1648
1649 if (ptr || (info->out[idx].mask & (1 << c))) {
1650 /* Save the viewport index into a scratch register so that it can be
1651 exported at EMIT time */
1652 if (info->out[idx].sn == TGSI_SEMANTIC_VIEWPORT_INDEX &&
1653 viewport != NULL)
1654 mkOp1(OP_MOV, TYPE_U32, viewport, val);
1655 else
1656 mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val);
1657 }
1658 } else
1659 if (f == TGSI_FILE_TEMPORARY ||
1660 f == TGSI_FILE_PREDICATE ||
1661 f == TGSI_FILE_ADDRESS ||
1662 f == TGSI_FILE_OUTPUT) {
1663 getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
1664 } else {
1665 assert(!"invalid dst file");
1666 }
1667 }
1668
1669 #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
1670 for (chan = 0; chan < 4; ++chan) \
1671 if (!inst.getDst(d).isMasked(chan))
1672
1673 Value *
1674 Converter::buildDot(int dim)
1675 {
1676 assert(dim > 0);
1677
1678 Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
1679 Value *dotp = getScratch();
1680
1681 mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1);
1682
1683 for (int c = 1; c < dim; ++c) {
1684 src0 = fetchSrc(0, c);
1685 src1 = fetchSrc(1, c);
1686 mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp);
1687 }
1688 return dotp;
1689 }
1690
1691 void
1692 Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
1693 {
1694 FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
1695 join->fixed = 1;
1696 conv->insertHead(join);
1697
1698 fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
1699 fork->insertBefore(fork->getExit(), fork->joinAt);
1700 }
1701
1702 void
1703 Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
1704 {
1705 unsigned rIdx = 0, sIdx = 0;
1706
1707 if (R >= 0)
1708 rIdx = tgsi.getSrc(R).getIndex(0);
1709 if (S >= 0)
1710 sIdx = tgsi.getSrc(S).getIndex(0);
1711
1712 tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
1713
1714 if (tgsi.getSrc(R).isIndirect(0)) {
1715 tex->tex.rIndirectSrc = s;
1716 tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
1717 }
1718 if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
1719 tex->tex.sIndirectSrc = s;
1720 tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
1721 }
1722 }
1723
1724 void
1725 Converter::handleTXQ(Value *dst0[4], enum TexQuery query)
1726 {
1727 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1728 tex->tex.query = query;
1729 unsigned int c, d;
1730
1731 for (d = 0, c = 0; c < 4; ++c) {
1732 if (!dst0[c])
1733 continue;
1734 tex->tex.mask |= 1 << c;
1735 tex->setDef(d++, dst0[c]);
1736 }
1737 tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
1738
1739 setTexRS(tex, c, 1, -1);
1740
1741 bb->insertTail(tex);
1742 }
1743
1744 void
1745 Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
1746 {
1747 Value *proj = fetchSrc(0, 3);
1748 Instruction *insn = proj->getUniqueInsn();
1749 int c;
1750
1751 if (insn->op == OP_PINTERP) {
1752 bb->insertTail(insn = cloneForward(func, insn));
1753 insn->op = OP_LINTERP;
1754 insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
1755 insn->setSrc(1, NULL);
1756 proj = insn->getDef(0);
1757 }
1758 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
1759
1760 for (c = 0; c < 4; ++c) {
1761 if (!(mask & (1 << c)))
1762 continue;
1763 if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
1764 continue;
1765 mask &= ~(1 << c);
1766
1767 bb->insertTail(insn = cloneForward(func, insn));
1768 insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
1769 insn->setSrc(1, proj);
1770 dst[c] = insn->getDef(0);
1771 }
1772 if (!mask)
1773 return;
1774
1775 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
1776
1777 for (c = 0; c < 4; ++c)
1778 if (mask & (1 << c))
1779 dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
1780 }
1781
1782 // order of nv50 ir sources: x y z layer lod/bias shadow
1783 // order of TGSI TEX sources: x y z layer shadow lod/bias
1784 // lowering will finally set the hw specific order (like array first on nvc0)
1785 void
1786 Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
1787 {
1788 Value *val;
1789 Value *arg[4], *src[8];
1790 Value *lod = NULL, *shd = NULL;
1791 unsigned int s, c, d;
1792 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1793
1794 TexInstruction::Target tgt = tgsi.getTexture(code, R);
1795
1796 for (s = 0; s < tgt.getArgCount(); ++s)
1797 arg[s] = src[s] = fetchSrc(0, s);
1798
1799 if (texi->op == OP_TXL || texi->op == OP_TXB)
1800 lod = fetchSrc(L >> 4, L & 3);
1801
1802 if (C == 0x0f)
1803 C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
1804
1805 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 &&
1806 tgt == TEX_TARGET_CUBE_ARRAY_SHADOW)
1807 shd = fetchSrc(1, 0);
1808 else if (tgt.isShadow())
1809 shd = fetchSrc(C >> 4, C & 3);
1810
1811 if (texi->op == OP_TXD) {
1812 for (c = 0; c < tgt.getDim(); ++c) {
1813 texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
1814 texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
1815 }
1816 }
1817
1818 // cube textures don't care about projection value, it's divided out
1819 if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
1820 unsigned int n = tgt.getDim();
1821 if (shd) {
1822 arg[n] = shd;
1823 ++n;
1824 assert(tgt.getDim() == tgt.getArgCount());
1825 }
1826 loadProjTexCoords(src, arg, (1 << n) - 1);
1827 if (shd)
1828 shd = src[n - 1];
1829 }
1830
1831 if (tgt.isCube()) {
1832 for (c = 0; c < 3; ++c)
1833 src[c] = mkOp1v(OP_ABS, TYPE_F32, getSSA(), arg[c]);
1834 val = getScratch();
1835 mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1836 mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1837 mkOp1(OP_RCP, TYPE_F32, val, val);
1838 for (c = 0; c < 3; ++c)
1839 src[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), arg[c], val);
1840 }
1841
1842 for (c = 0, d = 0; c < 4; ++c) {
1843 if (dst[c]) {
1844 texi->setDef(d++, dst[c]);
1845 texi->tex.mask |= 1 << c;
1846 } else {
1847 // NOTE: maybe hook up def too, for CSE
1848 }
1849 }
1850 for (s = 0; s < tgt.getArgCount(); ++s)
1851 texi->setSrc(s, src[s]);
1852 if (lod)
1853 texi->setSrc(s++, lod);
1854 if (shd)
1855 texi->setSrc(s++, shd);
1856
1857 setTexRS(texi, s, R, S);
1858
1859 if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
1860 texi->tex.levelZero = true;
1861 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 && !tgt.isShadow())
1862 texi->tex.gatherComp = tgsi.getSrc(1).getValueU32(0, info);
1863
1864 texi->tex.useOffsets = tgsi.getNumTexOffsets();
1865 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1866 for (c = 0; c < 3; ++c) {
1867 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
1868 texi->offset[s][c].setInsn(texi);
1869 }
1870 }
1871
1872 bb->insertTail(texi);
1873 }
1874
1875 // 1st source: xyz = coordinates, w = lod/sample
1876 // 2nd source: offset
1877 void
1878 Converter::handleTXF(Value *dst[4], int R, int L_M)
1879 {
1880 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1881 int ms;
1882 unsigned int c, d, s;
1883
1884 texi->tex.target = tgsi.getTexture(code, R);
1885
1886 ms = texi->tex.target.isMS() ? 1 : 0;
1887 texi->tex.levelZero = ms; /* MS textures don't have mip-maps */
1888
1889 for (c = 0, d = 0; c < 4; ++c) {
1890 if (dst[c]) {
1891 texi->setDef(d++, dst[c]);
1892 texi->tex.mask |= 1 << c;
1893 }
1894 }
1895 for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c)
1896 texi->setSrc(c, fetchSrc(0, c));
1897 texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms
1898
1899 setTexRS(texi, c, R, -1);
1900
1901 texi->tex.useOffsets = tgsi.getNumTexOffsets();
1902 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1903 for (c = 0; c < 3; ++c) {
1904 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
1905 texi->offset[s][c].setInsn(texi);
1906 }
1907 }
1908
1909 bb->insertTail(texi);
1910 }
1911
1912 void
1913 Converter::handleLIT(Value *dst0[4])
1914 {
1915 Value *val0 = NULL;
1916 unsigned int mask = tgsi.getDst(0).getMask();
1917
1918 if (mask & (1 << 0))
1919 loadImm(dst0[0], 1.0f);
1920
1921 if (mask & (1 << 3))
1922 loadImm(dst0[3], 1.0f);
1923
1924 if (mask & (3 << 1)) {
1925 val0 = getScratch();
1926 mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
1927 if (mask & (1 << 1))
1928 mkMov(dst0[1], val0);
1929 }
1930
1931 if (mask & (1 << 2)) {
1932 Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
1933 Value *val1 = getScratch(), *val3 = getScratch();
1934
1935 Value *pos128 = loadImm(NULL, +127.999999f);
1936 Value *neg128 = loadImm(NULL, -127.999999f);
1937
1938 mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
1939 mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
1940 mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
1941 mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
1942
1943 mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], TYPE_F32, val3, zero, val0);
1944 }
1945 }
1946
1947 static inline bool
1948 isResourceSpecial(const int r)
1949 {
1950 return (r == TGSI_RESOURCE_GLOBAL ||
1951 r == TGSI_RESOURCE_LOCAL ||
1952 r == TGSI_RESOURCE_PRIVATE ||
1953 r == TGSI_RESOURCE_INPUT);
1954 }
1955
1956 static inline bool
1957 isResourceRaw(const struct tgsi::Source *code, const int r)
1958 {
1959 return isResourceSpecial(r) || code->resources[r].raw;
1960 }
1961
1962 static inline nv50_ir::TexTarget
1963 getResourceTarget(const struct tgsi::Source *code, int r)
1964 {
1965 if (isResourceSpecial(r))
1966 return nv50_ir::TEX_TARGET_BUFFER;
1967 return tgsi::translateTexture(code->resources.at(r).target);
1968 }
1969
1970 Symbol *
1971 Converter::getResourceBase(const int r)
1972 {
1973 Symbol *sym = NULL;
1974
1975 switch (r) {
1976 case TGSI_RESOURCE_GLOBAL:
1977 sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL, 15);
1978 break;
1979 case TGSI_RESOURCE_LOCAL:
1980 assert(prog->getType() == Program::TYPE_COMPUTE);
1981 sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32,
1982 info->prop.cp.sharedOffset);
1983 break;
1984 case TGSI_RESOURCE_PRIVATE:
1985 sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32,
1986 info->bin.tlsSpace);
1987 break;
1988 case TGSI_RESOURCE_INPUT:
1989 assert(prog->getType() == Program::TYPE_COMPUTE);
1990 sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32,
1991 info->prop.cp.inputOffset);
1992 break;
1993 default:
1994 sym = new_Symbol(prog,
1995 nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot);
1996 break;
1997 }
1998 return sym;
1999 }
2000
2001 void
2002 Converter::getResourceCoords(std::vector<Value *> &coords, int r, int s)
2003 {
2004 const int arg =
2005 TexInstruction::Target(getResourceTarget(code, r)).getArgCount();
2006
2007 for (int c = 0; c < arg; ++c)
2008 coords.push_back(fetchSrc(s, c));
2009
2010 // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk
2011 if (r == TGSI_RESOURCE_LOCAL ||
2012 r == TGSI_RESOURCE_PRIVATE ||
2013 r == TGSI_RESOURCE_INPUT)
2014 coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS),
2015 coords[0]);
2016 }
2017
2018 static inline int
2019 partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask)
2020 {
2021 int n = 0;
2022
2023 while (mask) {
2024 if (mask & 1) {
2025 size[n]++;
2026 } else {
2027 if (size[n])
2028 comp[n = 1] = size[0] + 1;
2029 else
2030 comp[n]++;
2031 }
2032 mask >>= 1;
2033 }
2034 if (size[0] == 3) {
2035 n = 1;
2036 size[0] = (comp[0] == 1) ? 1 : 2;
2037 size[1] = 3 - size[0];
2038 comp[1] = comp[0] + size[0];
2039 }
2040 return n + 1;
2041 }
2042
2043 // For raw loads, granularity is 4 byte.
2044 // Usage of the texture read mask on OP_SULDP is not allowed.
2045 void
2046 Converter::handleLOAD(Value *dst0[4])
2047 {
2048 const int r = tgsi.getSrc(0).getIndex(0);
2049 int c;
2050 std::vector<Value *> off, src, ldv, def;
2051
2052 getResourceCoords(off, r, 1);
2053
2054 if (isResourceRaw(code, r)) {
2055 uint8_t mask = 0;
2056 uint8_t comp[2] = { 0, 0 };
2057 uint8_t size[2] = { 0, 0 };
2058
2059 Symbol *base = getResourceBase(r);
2060
2061 // determine the base and size of the at most 2 load ops
2062 for (c = 0; c < 4; ++c)
2063 if (!tgsi.getDst(0).isMasked(c))
2064 mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X);
2065
2066 int n = partitionLoadStore(comp, size, mask);
2067
2068 src = off;
2069
2070 def.resize(4); // index by component, the ones we need will be non-NULL
2071 for (c = 0; c < 4; ++c) {
2072 if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c))
2073 def[c] = dst0[c];
2074 else
2075 if (mask & (1 << c))
2076 def[c] = getScratch();
2077 }
2078
2079 const bool useLd = isResourceSpecial(r) ||
2080 (info->io.nv50styleSurfaces &&
2081 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2082
2083 for (int i = 0; i < n; ++i) {
2084 ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]);
2085
2086 if (comp[i]) // adjust x component of source address if necessary
2087 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2088 off[0], mkImm(comp[i] * 4));
2089 else
2090 src[0] = off[0];
2091
2092 if (useLd) {
2093 Instruction *ld =
2094 mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]);
2095 for (size_t c = 1; c < ldv.size(); ++c)
2096 ld->setDef(c, ldv[c]);
2097 } else {
2098 mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot,
2099 0, ldv, src)->dType = typeOfSize(size[i] * 4);
2100 }
2101 }
2102 } else {
2103 def.resize(4);
2104 for (c = 0; c < 4; ++c) {
2105 if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
2106 def[c] = getScratch();
2107 else
2108 def[c] = dst0[c];
2109 }
2110
2111 mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0,
2112 def, off);
2113 }
2114 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2115 if (dst0[c] != def[c])
2116 mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
2117 }
2118
2119 // For formatted stores, the write mask on OP_SUSTP can be used.
2120 // Raw stores have to be split.
2121 void
2122 Converter::handleSTORE()
2123 {
2124 const int r = tgsi.getDst(0).getIndex(0);
2125 int c;
2126 std::vector<Value *> off, src, dummy;
2127
2128 getResourceCoords(off, r, 0);
2129 src = off;
2130 const int s = src.size();
2131
2132 if (isResourceRaw(code, r)) {
2133 uint8_t comp[2] = { 0, 0 };
2134 uint8_t size[2] = { 0, 0 };
2135
2136 int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask());
2137
2138 Symbol *base = getResourceBase(r);
2139
2140 const bool useSt = isResourceSpecial(r) ||
2141 (info->io.nv50styleSurfaces &&
2142 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2143
2144 for (int i = 0; i < n; ++i) {
2145 if (comp[i]) // adjust x component of source address if necessary
2146 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2147 off[0], mkImm(comp[i] * 4));
2148 else
2149 src[0] = off[0];
2150
2151 const DataType stTy = typeOfSize(size[i] * 4);
2152
2153 if (useSt) {
2154 Instruction *st =
2155 mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i]));
2156 for (c = 1; c < size[i]; ++c)
2157 st->setSrc(1 + c, fetchSrc(1, comp[i] + c));
2158 st->setIndirect(0, 0, src[0]);
2159 } else {
2160 // attach values to be stored
2161 src.resize(s + size[i]);
2162 for (c = 0; c < size[i]; ++c)
2163 src[s + c] = fetchSrc(1, comp[i] + c);
2164 mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot,
2165 0, dummy, src)->setType(stTy);
2166 }
2167 }
2168 } else {
2169 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2170 src.push_back(fetchSrc(1, c));
2171
2172 mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0,
2173 dummy, src)->tex.mask = tgsi.getDst(0).getMask();
2174 }
2175 }
2176
2177 // XXX: These only work on resources with the single-component u32/s32 formats.
2178 // Therefore the result is replicated. This might not be intended by TGSI, but
2179 // operating on more than 1 component would produce undefined results because
2180 // they do not exist.
2181 void
2182 Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp)
2183 {
2184 const int r = tgsi.getSrc(0).getIndex(0);
2185 std::vector<Value *> srcv;
2186 std::vector<Value *> defv;
2187 LValue *dst = getScratch();
2188
2189 getResourceCoords(srcv, r, 1);
2190
2191 if (isResourceSpecial(r)) {
2192 assert(r != TGSI_RESOURCE_INPUT);
2193 Instruction *insn;
2194 insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0));
2195 insn->subOp = subOp;
2196 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2197 insn->setSrc(2, fetchSrc(3, 0));
2198 insn->setIndirect(0, 0, srcv.at(0));
2199 } else {
2200 operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP;
2201 TexTarget targ = getResourceTarget(code, r);
2202 int idx = code->resources[r].slot;
2203 defv.push_back(dst);
2204 srcv.push_back(fetchSrc(2, 0));
2205 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2206 srcv.push_back(fetchSrc(3, 0));
2207 TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv);
2208 tex->subOp = subOp;
2209 tex->tex.mask = 1;
2210 tex->setType(ty);
2211 }
2212
2213 for (int c = 0; c < 4; ++c)
2214 if (dst0[c])
2215 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2216 }
2217
2218 void
2219 Converter::handleINTERP(Value *dst[4])
2220 {
2221 // Check whether the input is linear. All other attributes ignored.
2222 Instruction *insn;
2223 Value *offset = NULL, *ptr = NULL, *w = NULL;
2224 bool linear;
2225 operation op;
2226 int c, mode;
2227
2228 tgsi::Instruction::SrcRegister src = tgsi.getSrc(0);
2229 assert(src.getFile() == TGSI_FILE_INPUT);
2230
2231 if (src.isIndirect(0))
2232 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
2233
2234 // XXX: no way to know interp mode if we don't know the index
2235 linear = info->in[ptr ? 0 : src.getIndex(0)].linear;
2236 if (linear) {
2237 op = OP_LINTERP;
2238 mode = NV50_IR_INTERP_LINEAR;
2239 } else {
2240 op = OP_PINTERP;
2241 mode = NV50_IR_INTERP_PERSPECTIVE;
2242 }
2243
2244 switch (tgsi.getOpcode()) {
2245 case TGSI_OPCODE_INTERP_CENTROID:
2246 mode |= NV50_IR_INTERP_CENTROID;
2247 break;
2248 case TGSI_OPCODE_INTERP_SAMPLE:
2249 insn = mkOp1(OP_PIXLD, TYPE_U32, (offset = getScratch()), fetchSrc(1, 0));
2250 insn->subOp = NV50_IR_SUBOP_PIXLD_OFFSET;
2251 mode |= NV50_IR_INTERP_OFFSET;
2252 break;
2253 case TGSI_OPCODE_INTERP_OFFSET: {
2254 // The input in src1.xy is float, but we need a single 32-bit value
2255 // where the upper and lower 16 bits are encoded in S0.12 format. We need
2256 // to clamp the input coordinates to (-0.5, 0.4375), multiply by 4096,
2257 // and then convert to s32.
2258 Value *offs[2];
2259 for (c = 0; c < 2; c++) {
2260 offs[c] = fetchSrc(1, c);
2261 mkOp2(OP_MIN, TYPE_F32, offs[c], offs[c], loadImm(NULL, 0.4375f));
2262 mkOp2(OP_MAX, TYPE_F32, offs[c], offs[c], loadImm(NULL, -0.5f));
2263 mkOp2(OP_MUL, TYPE_F32, offs[c], offs[c], loadImm(NULL, 4096.0f));
2264 mkCvt(OP_CVT, TYPE_S32, offs[c], TYPE_F32, offs[c]);
2265 }
2266 offset = mkOp3v(OP_INSBF, TYPE_U32, getScratch(),
2267 offs[1], mkImm(0x1010), offs[0]);
2268 mode |= NV50_IR_INTERP_OFFSET;
2269 break;
2270 }
2271 }
2272
2273 if (op == OP_PINTERP) {
2274 if (offset) {
2275 w = mkOp2v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_POSITION, 3), offset);
2276 mkOp1(OP_RCP, TYPE_F32, w, w);
2277 } else {
2278 w = fragCoord[3];
2279 }
2280 }
2281
2282
2283 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2284 insn = mkOp1(op, TYPE_F32, dst[c], srcToSym(src, c));
2285 if (op == OP_PINTERP)
2286 insn->setSrc(1, w);
2287 if (ptr)
2288 insn->setIndirect(0, 0, ptr);
2289 if (offset)
2290 insn->setSrc(op == OP_PINTERP ? 2 : 1, offset);
2291
2292 insn->setInterpolate(mode);
2293 }
2294 }
2295
2296 Converter::Subroutine *
2297 Converter::getSubroutine(unsigned ip)
2298 {
2299 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2300
2301 if (it == sub.map.end())
2302 it = sub.map.insert(std::make_pair(
2303 ip, Subroutine(new Function(prog, "SUB", ip)))).first;
2304
2305 return &it->second;
2306 }
2307
2308 Converter::Subroutine *
2309 Converter::getSubroutine(Function *f)
2310 {
2311 unsigned ip = f->getLabel();
2312 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2313
2314 if (it == sub.map.end())
2315 it = sub.map.insert(std::make_pair(ip, Subroutine(f))).first;
2316
2317 return &it->second;
2318 }
2319
2320 bool
2321 Converter::isEndOfSubroutine(uint ip)
2322 {
2323 assert(ip < code->scan.num_instructions);
2324 tgsi::Instruction insn(&code->insns[ip]);
2325 return (insn.getOpcode() == TGSI_OPCODE_END ||
2326 insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
2327 // does END occur at end of main or the very end ?
2328 insn.getOpcode() == TGSI_OPCODE_BGNSUB);
2329 }
2330
2331 bool
2332 Converter::handleInstruction(const struct tgsi_full_instruction *insn)
2333 {
2334 Instruction *geni;
2335
2336 Value *dst0[4], *rDst0[4];
2337 Value *src0, *src1, *src2, *src3;
2338 Value *val0, *val1;
2339 int c;
2340
2341 tgsi = tgsi::Instruction(insn);
2342
2343 bool useScratchDst = tgsi.checkDstSrcAliasing();
2344
2345 operation op = tgsi.getOP();
2346 dstTy = tgsi.inferDstType();
2347 srcTy = tgsi.inferSrcType();
2348
2349 unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
2350
2351 if (tgsi.dstCount()) {
2352 for (c = 0; c < 4; ++c) {
2353 rDst0[c] = acquireDst(0, c);
2354 dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
2355 }
2356 }
2357
2358 switch (tgsi.getOpcode()) {
2359 case TGSI_OPCODE_ADD:
2360 case TGSI_OPCODE_UADD:
2361 case TGSI_OPCODE_AND:
2362 case TGSI_OPCODE_DIV:
2363 case TGSI_OPCODE_IDIV:
2364 case TGSI_OPCODE_UDIV:
2365 case TGSI_OPCODE_MAX:
2366 case TGSI_OPCODE_MIN:
2367 case TGSI_OPCODE_IMAX:
2368 case TGSI_OPCODE_IMIN:
2369 case TGSI_OPCODE_UMAX:
2370 case TGSI_OPCODE_UMIN:
2371 case TGSI_OPCODE_MOD:
2372 case TGSI_OPCODE_UMOD:
2373 case TGSI_OPCODE_MUL:
2374 case TGSI_OPCODE_UMUL:
2375 case TGSI_OPCODE_IMUL_HI:
2376 case TGSI_OPCODE_UMUL_HI:
2377 case TGSI_OPCODE_OR:
2378 case TGSI_OPCODE_SHL:
2379 case TGSI_OPCODE_ISHR:
2380 case TGSI_OPCODE_USHR:
2381 case TGSI_OPCODE_SUB:
2382 case TGSI_OPCODE_XOR:
2383 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2384 src0 = fetchSrc(0, c);
2385 src1 = fetchSrc(1, c);
2386 geni = mkOp2(op, dstTy, dst0[c], src0, src1);
2387 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2388 }
2389 break;
2390 case TGSI_OPCODE_MAD:
2391 case TGSI_OPCODE_UMAD:
2392 case TGSI_OPCODE_SAD:
2393 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2394 src0 = fetchSrc(0, c);
2395 src1 = fetchSrc(1, c);
2396 src2 = fetchSrc(2, c);
2397 mkOp3(op, dstTy, dst0[c], src0, src1, src2);
2398 }
2399 break;
2400 case TGSI_OPCODE_MOV:
2401 case TGSI_OPCODE_ABS:
2402 case TGSI_OPCODE_CEIL:
2403 case TGSI_OPCODE_FLR:
2404 case TGSI_OPCODE_TRUNC:
2405 case TGSI_OPCODE_RCP:
2406 case TGSI_OPCODE_IABS:
2407 case TGSI_OPCODE_INEG:
2408 case TGSI_OPCODE_NOT:
2409 case TGSI_OPCODE_DDX:
2410 case TGSI_OPCODE_DDY:
2411 case TGSI_OPCODE_DDX_FINE:
2412 case TGSI_OPCODE_DDY_FINE:
2413 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2414 mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
2415 break;
2416 case TGSI_OPCODE_RSQ:
2417 src0 = fetchSrc(0, 0);
2418 val0 = getScratch();
2419 mkOp1(OP_ABS, TYPE_F32, val0, src0);
2420 mkOp1(OP_RSQ, TYPE_F32, val0, val0);
2421 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2422 mkMov(dst0[c], val0);
2423 break;
2424 case TGSI_OPCODE_ARL:
2425 case TGSI_OPCODE_ARR:
2426 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2427 const RoundMode rnd =
2428 tgsi.getOpcode() == TGSI_OPCODE_ARR ? ROUND_N : ROUND_M;
2429 src0 = fetchSrc(0, c);
2430 mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = rnd;
2431 }
2432 break;
2433 case TGSI_OPCODE_UARL:
2434 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2435 mkOp1(OP_MOV, TYPE_U32, dst0[c], fetchSrc(0, c));
2436 break;
2437 case TGSI_OPCODE_POW:
2438 val0 = mkOp2v(op, TYPE_F32, getScratch(), fetchSrc(0, 0), fetchSrc(1, 0));
2439 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2440 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2441 break;
2442 case TGSI_OPCODE_EX2:
2443 case TGSI_OPCODE_LG2:
2444 val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
2445 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2446 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2447 break;
2448 case TGSI_OPCODE_COS:
2449 case TGSI_OPCODE_SIN:
2450 val0 = getScratch();
2451 if (mask & 7) {
2452 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
2453 mkOp1(op, TYPE_F32, val0, val0);
2454 for (c = 0; c < 3; ++c)
2455 if (dst0[c])
2456 mkMov(dst0[c], val0);
2457 }
2458 if (dst0[3]) {
2459 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
2460 mkOp1(op, TYPE_F32, dst0[3], val0);
2461 }
2462 break;
2463 case TGSI_OPCODE_SCS:
2464 if (mask & 3) {
2465 val0 = mkOp1v(OP_PRESIN, TYPE_F32, getSSA(), fetchSrc(0, 0));
2466 if (dst0[0])
2467 mkOp1(OP_COS, TYPE_F32, dst0[0], val0);
2468 if (dst0[1])
2469 mkOp1(OP_SIN, TYPE_F32, dst0[1], val0);
2470 }
2471 if (dst0[2])
2472 loadImm(dst0[2], 0.0f);
2473 if (dst0[3])
2474 loadImm(dst0[3], 1.0f);
2475 break;
2476 case TGSI_OPCODE_EXP:
2477 src0 = fetchSrc(0, 0);
2478 val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
2479 if (dst0[1])
2480 mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
2481 if (dst0[0])
2482 mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
2483 if (dst0[2])
2484 mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
2485 if (dst0[3])
2486 loadImm(dst0[3], 1.0f);
2487 break;
2488 case TGSI_OPCODE_LOG:
2489 src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
2490 val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
2491 if (dst0[0] || dst0[1])
2492 val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
2493 if (dst0[1]) {
2494 mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
2495 mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
2496 mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0);
2497 }
2498 if (dst0[3])
2499 loadImm(dst0[3], 1.0f);
2500 break;
2501 case TGSI_OPCODE_DP2:
2502 val0 = buildDot(2);
2503 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2504 mkMov(dst0[c], val0);
2505 break;
2506 case TGSI_OPCODE_DP3:
2507 val0 = buildDot(3);
2508 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2509 mkMov(dst0[c], val0);
2510 break;
2511 case TGSI_OPCODE_DP4:
2512 val0 = buildDot(4);
2513 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2514 mkMov(dst0[c], val0);
2515 break;
2516 case TGSI_OPCODE_DPH:
2517 val0 = buildDot(3);
2518 src1 = fetchSrc(1, 3);
2519 mkOp2(OP_ADD, TYPE_F32, val0, val0, src1);
2520 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2521 mkMov(dst0[c], val0);
2522 break;
2523 case TGSI_OPCODE_DST:
2524 if (dst0[0])
2525 loadImm(dst0[0], 1.0f);
2526 if (dst0[1]) {
2527 src0 = fetchSrc(0, 1);
2528 src1 = fetchSrc(1, 1);
2529 mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1);
2530 }
2531 if (dst0[2])
2532 mkMov(dst0[2], fetchSrc(0, 2));
2533 if (dst0[3])
2534 mkMov(dst0[3], fetchSrc(1, 3));
2535 break;
2536 case TGSI_OPCODE_LRP:
2537 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2538 src0 = fetchSrc(0, c);
2539 src1 = fetchSrc(1, c);
2540 src2 = fetchSrc(2, c);
2541 mkOp3(OP_MAD, TYPE_F32, dst0[c],
2542 mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2);
2543 }
2544 break;
2545 case TGSI_OPCODE_LIT:
2546 handleLIT(dst0);
2547 break;
2548 case TGSI_OPCODE_XPD:
2549 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2550 if (c < 3) {
2551 val0 = getSSA();
2552 src0 = fetchSrc(1, (c + 1) % 3);
2553 src1 = fetchSrc(0, (c + 2) % 3);
2554 mkOp2(OP_MUL, TYPE_F32, val0, src0, src1);
2555 mkOp1(OP_NEG, TYPE_F32, val0, val0);
2556
2557 src0 = fetchSrc(0, (c + 1) % 3);
2558 src1 = fetchSrc(1, (c + 2) % 3);
2559 mkOp3(OP_MAD, TYPE_F32, dst0[c], src0, src1, val0);
2560 } else {
2561 loadImm(dst0[c], 1.0f);
2562 }
2563 }
2564 break;
2565 case TGSI_OPCODE_ISSG:
2566 case TGSI_OPCODE_SSG:
2567 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2568 src0 = fetchSrc(0, c);
2569 val0 = getScratch();
2570 val1 = getScratch();
2571 mkCmp(OP_SET, CC_GT, srcTy, val0, srcTy, src0, zero);
2572 mkCmp(OP_SET, CC_LT, srcTy, val1, srcTy, src0, zero);
2573 if (srcTy == TYPE_F32)
2574 mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
2575 else
2576 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
2577 }
2578 break;
2579 case TGSI_OPCODE_UCMP:
2580 case TGSI_OPCODE_CMP:
2581 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2582 src0 = fetchSrc(0, c);
2583 src1 = fetchSrc(1, c);
2584 src2 = fetchSrc(2, c);
2585 if (src1 == src2)
2586 mkMov(dst0[c], src1);
2587 else
2588 mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
2589 srcTy, dst0[c], srcTy, src1, src2, src0);
2590 }
2591 break;
2592 case TGSI_OPCODE_FRC:
2593 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2594 src0 = fetchSrc(0, c);
2595 val0 = getScratch();
2596 mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
2597 mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
2598 }
2599 break;
2600 case TGSI_OPCODE_ROUND:
2601 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2602 mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
2603 ->rnd = ROUND_NI;
2604 break;
2605 case TGSI_OPCODE_CLAMP:
2606 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2607 src0 = fetchSrc(0, c);
2608 src1 = fetchSrc(1, c);
2609 src2 = fetchSrc(2, c);
2610 val0 = getScratch();
2611 mkOp2(OP_MIN, TYPE_F32, val0, src0, src1);
2612 mkOp2(OP_MAX, TYPE_F32, dst0[c], val0, src2);
2613 }
2614 break;
2615 case TGSI_OPCODE_SLT:
2616 case TGSI_OPCODE_SGE:
2617 case TGSI_OPCODE_SEQ:
2618 case TGSI_OPCODE_SGT:
2619 case TGSI_OPCODE_SLE:
2620 case TGSI_OPCODE_SNE:
2621 case TGSI_OPCODE_FSEQ:
2622 case TGSI_OPCODE_FSGE:
2623 case TGSI_OPCODE_FSLT:
2624 case TGSI_OPCODE_FSNE:
2625 case TGSI_OPCODE_ISGE:
2626 case TGSI_OPCODE_ISLT:
2627 case TGSI_OPCODE_USEQ:
2628 case TGSI_OPCODE_USGE:
2629 case TGSI_OPCODE_USLT:
2630 case TGSI_OPCODE_USNE:
2631 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2632 src0 = fetchSrc(0, c);
2633 src1 = fetchSrc(1, c);
2634 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
2635 }
2636 break;
2637 case TGSI_OPCODE_KILL_IF:
2638 val0 = new_LValue(func, FILE_PREDICATE);
2639 mask = 0;
2640 for (c = 0; c < 4; ++c) {
2641 const int s = tgsi.getSrc(0).getSwizzle(c);
2642 if (mask & (1 << s))
2643 continue;
2644 mask |= 1 << s;
2645 mkCmp(OP_SET, CC_LT, TYPE_F32, val0, TYPE_F32, fetchSrc(0, c), zero);
2646 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
2647 }
2648 break;
2649 case TGSI_OPCODE_KILL:
2650 mkOp(OP_DISCARD, TYPE_NONE, NULL);
2651 break;
2652 case TGSI_OPCODE_TEX:
2653 case TGSI_OPCODE_TXB:
2654 case TGSI_OPCODE_TXL:
2655 case TGSI_OPCODE_TXP:
2656 case TGSI_OPCODE_LODQ:
2657 // R S L C Dx Dy
2658 handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
2659 break;
2660 case TGSI_OPCODE_TXD:
2661 handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
2662 break;
2663 case TGSI_OPCODE_TG4:
2664 handleTEX(dst0, 2, 2, 0x03, 0x0f, 0x00, 0x00);
2665 break;
2666 case TGSI_OPCODE_TEX2:
2667 handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00);
2668 break;
2669 case TGSI_OPCODE_TXB2:
2670 case TGSI_OPCODE_TXL2:
2671 handleTEX(dst0, 2, 2, 0x10, 0x0f, 0x00, 0x00);
2672 break;
2673 case TGSI_OPCODE_SAMPLE:
2674 case TGSI_OPCODE_SAMPLE_B:
2675 case TGSI_OPCODE_SAMPLE_D:
2676 case TGSI_OPCODE_SAMPLE_L:
2677 case TGSI_OPCODE_SAMPLE_C:
2678 case TGSI_OPCODE_SAMPLE_C_LZ:
2679 handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40);
2680 break;
2681 case TGSI_OPCODE_TXF:
2682 handleTXF(dst0, 1, 0x03);
2683 break;
2684 case TGSI_OPCODE_SAMPLE_I:
2685 handleTXF(dst0, 1, 0x03);
2686 break;
2687 case TGSI_OPCODE_SAMPLE_I_MS:
2688 handleTXF(dst0, 1, 0x20);
2689 break;
2690 case TGSI_OPCODE_TXQ:
2691 case TGSI_OPCODE_SVIEWINFO:
2692 handleTXQ(dst0, TXQ_DIMS);
2693 break;
2694 case TGSI_OPCODE_F2I:
2695 case TGSI_OPCODE_F2U:
2696 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2697 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
2698 break;
2699 case TGSI_OPCODE_I2F:
2700 case TGSI_OPCODE_U2F:
2701 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2702 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
2703 break;
2704 case TGSI_OPCODE_EMIT:
2705 /* export the saved viewport index */
2706 if (viewport != NULL) {
2707 Symbol *vpSym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_U32,
2708 info->out[info->io.viewportId].slot[0] * 4);
2709 mkStore(OP_EXPORT, TYPE_U32, vpSym, NULL, viewport);
2710 }
2711 /* fallthrough */
2712 case TGSI_OPCODE_ENDPRIM:
2713 {
2714 // get vertex stream (must be immediate)
2715 unsigned int stream = tgsi.getSrc(0).getValueU32(0, info);
2716 if (stream && op == OP_RESTART)
2717 break;
2718 src0 = mkImm(stream);
2719 mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
2720 break;
2721 }
2722 case TGSI_OPCODE_IF:
2723 case TGSI_OPCODE_UIF:
2724 {
2725 BasicBlock *ifBB = new BasicBlock(func);
2726
2727 bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
2728 condBBs.push(bb);
2729 joinBBs.push(bb);
2730
2731 mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy);
2732
2733 setPosition(ifBB, true);
2734 }
2735 break;
2736 case TGSI_OPCODE_ELSE:
2737 {
2738 BasicBlock *elseBB = new BasicBlock(func);
2739 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2740
2741 forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
2742 condBBs.push(bb);
2743
2744 forkBB->getExit()->asFlow()->target.bb = elseBB;
2745 if (!bb->isTerminated())
2746 mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
2747
2748 setPosition(elseBB, true);
2749 }
2750 break;
2751 case TGSI_OPCODE_ENDIF:
2752 {
2753 BasicBlock *convBB = new BasicBlock(func);
2754 BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2755 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
2756
2757 if (!bb->isTerminated()) {
2758 // we only want join if none of the clauses ended with CONT/BREAK/RET
2759 if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
2760 insertConvergenceOps(convBB, forkBB);
2761 mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
2762 bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2763 }
2764
2765 if (prevBB->getExit()->op == OP_BRA) {
2766 prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2767 prevBB->getExit()->asFlow()->target.bb = convBB;
2768 }
2769 setPosition(convBB, true);
2770 }
2771 break;
2772 case TGSI_OPCODE_BGNLOOP:
2773 {
2774 BasicBlock *lbgnBB = new BasicBlock(func);
2775 BasicBlock *lbrkBB = new BasicBlock(func);
2776
2777 loopBBs.push(lbgnBB);
2778 breakBBs.push(lbrkBB);
2779 if (loopBBs.getSize() > func->loopNestingBound)
2780 func->loopNestingBound++;
2781
2782 mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
2783
2784 bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
2785 setPosition(lbgnBB, true);
2786 mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
2787 }
2788 break;
2789 case TGSI_OPCODE_ENDLOOP:
2790 {
2791 BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
2792
2793 if (!bb->isTerminated()) {
2794 mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
2795 bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
2796 }
2797 setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
2798 }
2799 break;
2800 case TGSI_OPCODE_BRK:
2801 {
2802 if (bb->isTerminated())
2803 break;
2804 BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
2805 mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
2806 bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
2807 }
2808 break;
2809 case TGSI_OPCODE_CONT:
2810 {
2811 if (bb->isTerminated())
2812 break;
2813 BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
2814 mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
2815 contBB->explicitCont = true;
2816 bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
2817 }
2818 break;
2819 case TGSI_OPCODE_BGNSUB:
2820 {
2821 Subroutine *s = getSubroutine(ip);
2822 BasicBlock *entry = new BasicBlock(s->f);
2823 BasicBlock *leave = new BasicBlock(s->f);
2824
2825 // multiple entrypoints possible, keep the graph connected
2826 if (prog->getType() == Program::TYPE_COMPUTE)
2827 prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
2828
2829 sub.cur = s;
2830 s->f->setEntry(entry);
2831 s->f->setExit(leave);
2832 setPosition(entry, true);
2833 return true;
2834 }
2835 case TGSI_OPCODE_ENDSUB:
2836 {
2837 sub.cur = getSubroutine(prog->main);
2838 setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
2839 return true;
2840 }
2841 case TGSI_OPCODE_CAL:
2842 {
2843 Subroutine *s = getSubroutine(tgsi.getLabel());
2844 mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
2845 func->call.attach(&s->f->call, Graph::Edge::TREE);
2846 return true;
2847 }
2848 case TGSI_OPCODE_RET:
2849 {
2850 if (bb->isTerminated())
2851 return true;
2852 BasicBlock *leave = BasicBlock::get(func->cfgExit);
2853
2854 if (!isEndOfSubroutine(ip + 1)) {
2855 // insert a PRERET at the entry if this is an early return
2856 // (only needed for sharing code in the epilogue)
2857 BasicBlock *pos = getBB();
2858 setPosition(BasicBlock::get(func->cfg.getRoot()), false);
2859 mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
2860 setPosition(pos, true);
2861 }
2862 mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
2863 bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
2864 }
2865 break;
2866 case TGSI_OPCODE_END:
2867 {
2868 // attach and generate epilogue code
2869 BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
2870 bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
2871 setPosition(epilogue, true);
2872 if (prog->getType() == Program::TYPE_FRAGMENT)
2873 exportOutputs();
2874 if (info->io.genUserClip > 0)
2875 handleUserClipPlanes();
2876 mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
2877 }
2878 break;
2879 case TGSI_OPCODE_SWITCH:
2880 case TGSI_OPCODE_CASE:
2881 ERROR("switch/case opcode encountered, should have been lowered\n");
2882 abort();
2883 break;
2884 case TGSI_OPCODE_LOAD:
2885 handleLOAD(dst0);
2886 break;
2887 case TGSI_OPCODE_STORE:
2888 handleSTORE();
2889 break;
2890 case TGSI_OPCODE_BARRIER:
2891 geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
2892 geni->fixed = 1;
2893 geni->subOp = NV50_IR_SUBOP_BAR_SYNC;
2894 break;
2895 case TGSI_OPCODE_MFENCE:
2896 case TGSI_OPCODE_LFENCE:
2897 case TGSI_OPCODE_SFENCE:
2898 geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
2899 geni->fixed = 1;
2900 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2901 break;
2902 case TGSI_OPCODE_ATOMUADD:
2903 case TGSI_OPCODE_ATOMXCHG:
2904 case TGSI_OPCODE_ATOMCAS:
2905 case TGSI_OPCODE_ATOMAND:
2906 case TGSI_OPCODE_ATOMOR:
2907 case TGSI_OPCODE_ATOMXOR:
2908 case TGSI_OPCODE_ATOMUMIN:
2909 case TGSI_OPCODE_ATOMIMIN:
2910 case TGSI_OPCODE_ATOMUMAX:
2911 case TGSI_OPCODE_ATOMIMAX:
2912 handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode()));
2913 break;
2914 case TGSI_OPCODE_IBFE:
2915 case TGSI_OPCODE_UBFE:
2916 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2917 src0 = fetchSrc(0, c);
2918 src1 = fetchSrc(1, c);
2919 src2 = fetchSrc(2, c);
2920 mkOp3(OP_INSBF, TYPE_U32, src1, src2, mkImm(0x808), src1);
2921 mkOp2(OP_EXTBF, dstTy, dst0[c], src0, src1);
2922 }
2923 break;
2924 case TGSI_OPCODE_BFI:
2925 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2926 src0 = fetchSrc(0, c);
2927 src1 = fetchSrc(1, c);
2928 src2 = fetchSrc(2, c);
2929 src3 = fetchSrc(3, c);
2930 mkOp3(OP_INSBF, TYPE_U32, src2, src3, mkImm(0x808), src2);
2931 mkOp3(OP_INSBF, TYPE_U32, dst0[c], src1, src2, src0);
2932 }
2933 break;
2934 case TGSI_OPCODE_LSB:
2935 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2936 src0 = fetchSrc(0, c);
2937 geni = mkOp2(OP_EXTBF, TYPE_U32, src0, src0, mkImm(0x2000));
2938 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
2939 geni = mkOp1(OP_BFIND, TYPE_U32, dst0[c], src0);
2940 geni->subOp = NV50_IR_SUBOP_BFIND_SAMT;
2941 }
2942 break;
2943 case TGSI_OPCODE_IMSB:
2944 case TGSI_OPCODE_UMSB:
2945 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2946 src0 = fetchSrc(0, c);
2947 mkOp1(OP_BFIND, srcTy, dst0[c], src0);
2948 }
2949 break;
2950 case TGSI_OPCODE_BREV:
2951 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2952 src0 = fetchSrc(0, c);
2953 geni = mkOp2(OP_EXTBF, TYPE_U32, dst0[c], src0, mkImm(0x2000));
2954 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
2955 }
2956 break;
2957 case TGSI_OPCODE_POPC:
2958 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2959 src0 = fetchSrc(0, c);
2960 mkOp2(OP_POPCNT, TYPE_U32, dst0[c], src0, src0);
2961 }
2962 break;
2963 case TGSI_OPCODE_INTERP_CENTROID:
2964 case TGSI_OPCODE_INTERP_SAMPLE:
2965 case TGSI_OPCODE_INTERP_OFFSET:
2966 handleINTERP(dst0);
2967 break;
2968 case TGSI_OPCODE_D2I:
2969 case TGSI_OPCODE_D2U:
2970 case TGSI_OPCODE_D2F: {
2971 int pos = 0;
2972 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2973 Value *dreg = getSSA(8);
2974 src0 = fetchSrc(0, pos);
2975 src1 = fetchSrc(0, pos + 1);
2976 mkOp2(OP_MERGE, TYPE_U64, dreg, src0, src1);
2977 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, dreg);
2978 pos += 2;
2979 }
2980 break;
2981 }
2982 case TGSI_OPCODE_I2D:
2983 case TGSI_OPCODE_U2D:
2984 case TGSI_OPCODE_F2D:
2985 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2986 Value *dreg = getSSA(8);
2987 mkCvt(OP_CVT, dstTy, dreg, srcTy, fetchSrc(0, c / 2));
2988 mkSplit(&dst0[c], 4, dreg);
2989 c++;
2990 }
2991 break;
2992 case TGSI_OPCODE_DABS:
2993 case TGSI_OPCODE_DNEG:
2994 case TGSI_OPCODE_DRCP:
2995 case TGSI_OPCODE_DSQRT:
2996 case TGSI_OPCODE_DRSQ:
2997 case TGSI_OPCODE_DTRUNC:
2998 case TGSI_OPCODE_DCEIL:
2999 case TGSI_OPCODE_DFLR:
3000 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3001 src0 = getSSA(8);
3002 Value *dst = getSSA(8), *tmp[2];
3003 tmp[0] = fetchSrc(0, c);
3004 tmp[1] = fetchSrc(0, c + 1);
3005 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3006 mkOp1(op, dstTy, dst, src0);
3007 mkSplit(&dst0[c], 4, dst);
3008 c++;
3009 }
3010 break;
3011 case TGSI_OPCODE_DFRAC:
3012 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3013 src0 = getSSA(8);
3014 Value *dst = getSSA(8), *tmp[2];
3015 tmp[0] = fetchSrc(0, c);
3016 tmp[1] = fetchSrc(0, c + 1);
3017 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3018 mkOp1(OP_FLOOR, TYPE_F64, dst, src0);
3019 mkOp2(OP_SUB, TYPE_F64, dst, src0, dst);
3020 mkSplit(&dst0[c], 4, dst);
3021 c++;
3022 }
3023 break;
3024 case TGSI_OPCODE_DSLT:
3025 case TGSI_OPCODE_DSGE:
3026 case TGSI_OPCODE_DSEQ:
3027 case TGSI_OPCODE_DSNE: {
3028 int pos = 0;
3029 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3030 Value *tmp[2];
3031
3032 src0 = getSSA(8);
3033 src1 = getSSA(8);
3034 tmp[0] = fetchSrc(0, pos);
3035 tmp[1] = fetchSrc(0, pos + 1);
3036 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3037 tmp[0] = fetchSrc(1, pos);
3038 tmp[1] = fetchSrc(1, pos + 1);
3039 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3040 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
3041 pos += 2;
3042 }
3043 break;
3044 }
3045 case TGSI_OPCODE_DADD:
3046 case TGSI_OPCODE_DMUL:
3047 case TGSI_OPCODE_DMAX:
3048 case TGSI_OPCODE_DMIN:
3049 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3050 src0 = getSSA(8);
3051 src1 = getSSA(8);
3052 Value *dst = getSSA(8), *tmp[2];
3053 tmp[0] = fetchSrc(0, c);
3054 tmp[1] = fetchSrc(0, c + 1);
3055 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3056 tmp[0] = fetchSrc(1, c);
3057 tmp[1] = fetchSrc(1, c + 1);
3058 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3059 mkOp2(op, dstTy, dst, src0, src1);
3060 mkSplit(&dst0[c], 4, dst);
3061 c++;
3062 }
3063 break;
3064 case TGSI_OPCODE_DMAD:
3065 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3066 src0 = getSSA(8);
3067 src1 = getSSA(8);
3068 src2 = getSSA(8);
3069 Value *dst = getSSA(8), *tmp[2];
3070 tmp[0] = fetchSrc(0, c);
3071 tmp[1] = fetchSrc(0, c + 1);
3072 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3073 tmp[0] = fetchSrc(1, c);
3074 tmp[1] = fetchSrc(1, c + 1);
3075 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3076 tmp[0] = fetchSrc(2, c);
3077 tmp[1] = fetchSrc(2, c + 1);
3078 mkOp2(OP_MERGE, TYPE_U64, src2, tmp[0], tmp[1]);
3079 mkOp3(op, dstTy, dst, src0, src1, src2);
3080 mkSplit(&dst0[c], 4, dst);
3081 c++;
3082 }
3083 break;
3084 case TGSI_OPCODE_DROUND:
3085 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3086 src0 = getSSA(8);
3087 Value *dst = getSSA(8), *tmp[2];
3088 tmp[0] = fetchSrc(0, c);
3089 tmp[1] = fetchSrc(0, c + 1);
3090 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3091 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F64, src0)
3092 ->rnd = ROUND_NI;
3093 mkSplit(&dst0[c], 4, dst);
3094 c++;
3095 }
3096 break;
3097 case TGSI_OPCODE_DSSG:
3098 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3099 src0 = getSSA(8);
3100 Value *dst = getSSA(8), *dstF32 = getSSA(), *tmp[2];
3101 tmp[0] = fetchSrc(0, c);
3102 tmp[1] = fetchSrc(0, c + 1);
3103 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3104
3105 val0 = getScratch();
3106 val1 = getScratch();
3107 // The zero is wrong here since it's only 32-bit, but it works out in
3108 // the end since it gets replaced with $r63.
3109 mkCmp(OP_SET, CC_GT, TYPE_F32, val0, TYPE_F64, src0, zero);
3110 mkCmp(OP_SET, CC_LT, TYPE_F32, val1, TYPE_F64, src0, zero);
3111 mkOp2(OP_SUB, TYPE_F32, dstF32, val0, val1);
3112 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F32, dstF32);
3113 mkSplit(&dst0[c], 4, dst);
3114 c++;
3115 }
3116 break;
3117 default:
3118 ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
3119 assert(0);
3120 break;
3121 }
3122
3123 if (tgsi.dstCount()) {
3124 for (c = 0; c < 4; ++c) {
3125 if (!dst0[c])
3126 continue;
3127 if (dst0[c] != rDst0[c])
3128 mkMov(rDst0[c], dst0[c]);
3129 storeDst(0, c, rDst0[c]);
3130 }
3131 }
3132 vtxBaseValid = 0;
3133
3134 return true;
3135 }
3136
3137 void
3138 Converter::handleUserClipPlanes()
3139 {
3140 Value *res[8];
3141 int n, i, c;
3142
3143 for (c = 0; c < 4; ++c) {
3144 for (i = 0; i < info->io.genUserClip; ++i) {
3145 Symbol *sym = mkSymbol(FILE_MEMORY_CONST, info->io.ucpCBSlot,
3146 TYPE_F32, info->io.ucpBase + i * 16 + c * 4);
3147 Value *ucp = mkLoadv(TYPE_F32, sym, NULL);
3148 if (c == 0)
3149 res[i] = mkOp2v(OP_MUL, TYPE_F32, getScratch(), clipVtx[c], ucp);
3150 else
3151 mkOp3(OP_MAD, TYPE_F32, res[i], clipVtx[c], ucp, res[i]);
3152 }
3153 }
3154
3155 const int first = info->numOutputs - (info->io.genUserClip + 3) / 4;
3156
3157 for (i = 0; i < info->io.genUserClip; ++i) {
3158 n = i / 4 + first;
3159 c = i % 4;
3160 Symbol *sym =
3161 mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[n].slot[c] * 4);
3162 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, res[i]);
3163 }
3164 }
3165
3166 void
3167 Converter::exportOutputs()
3168 {
3169 for (unsigned int i = 0; i < info->numOutputs; ++i) {
3170 for (unsigned int c = 0; c < 4; ++c) {
3171 if (!oData.exists(sub.cur->values, i, c))
3172 continue;
3173 Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
3174 info->out[i].slot[c] * 4);
3175 Value *val = oData.load(sub.cur->values, i, c, NULL);
3176 if (val)
3177 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
3178 }
3179 }
3180 }
3181
3182 Converter::Converter(Program *ir, const tgsi::Source *code) : BuildUtil(ir),
3183 code(code),
3184 tgsi(NULL),
3185 tData(this), aData(this), pData(this), oData(this)
3186 {
3187 info = code->info;
3188
3189 const DataFile tFile = code->mainTempsInLMem ? FILE_MEMORY_LOCAL : FILE_GPR;
3190
3191 const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
3192 const unsigned pSize = code->fileSize(TGSI_FILE_PREDICATE);
3193 const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
3194 const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
3195
3196 tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, tFile, 0);
3197 pData.setup(TGSI_FILE_PREDICATE, 0, 0, pSize, 4, 4, FILE_PREDICATE, 0);
3198 aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_GPR, 0);
3199 oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
3200
3201 zero = mkImm((uint32_t)0);
3202
3203 vtxBaseValid = 0;
3204 }
3205
3206 Converter::~Converter()
3207 {
3208 }
3209
3210 inline const Converter::Location *
3211 Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v)
3212 {
3213 ValueMap::l_iterator it = s->values.l.find(v);
3214 return it == s->values.l.end() ? NULL : &it->second;
3215 }
3216
3217 template<typename T> inline void
3218 Converter::BindArgumentsPass::updateCallArgs(
3219 Instruction *i, void (Instruction::*setArg)(int, Value *),
3220 T (Function::*proto))
3221 {
3222 Function *g = i->asFlow()->target.fn;
3223 Subroutine *subg = conv.getSubroutine(g);
3224
3225 for (unsigned a = 0; a < (g->*proto).size(); ++a) {
3226 Value *v = (g->*proto)[a].get();
3227 const Converter::Location &l = *getValueLocation(subg, v);
3228 Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
3229
3230 (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
3231 }
3232 }
3233
3234 template<typename T> inline void
3235 Converter::BindArgumentsPass::updatePrototype(
3236 BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
3237 {
3238 (func->*updateSet)();
3239
3240 for (unsigned i = 0; i < set->getSize(); ++i) {
3241 Value *v = func->getLValue(i);
3242 const Converter::Location *l = getValueLocation(sub, v);
3243
3244 // only include values with a matching TGSI register
3245 if (set->test(i) && l && !conv.code->locals.count(*l))
3246 (func->*proto).push_back(v);
3247 }
3248 }
3249
3250 bool
3251 Converter::BindArgumentsPass::visit(Function *f)
3252 {
3253 sub = conv.getSubroutine(f);
3254
3255 for (ArrayList::Iterator bi = f->allBBlocks.iterator();
3256 !bi.end(); bi.next()) {
3257 for (Instruction *i = BasicBlock::get(bi)->getFirst();
3258 i; i = i->next) {
3259 if (i->op == OP_CALL && !i->asFlow()->builtin) {
3260 updateCallArgs(i, &Instruction::setSrc, &Function::ins);
3261 updateCallArgs(i, &Instruction::setDef, &Function::outs);
3262 }
3263 }
3264 }
3265
3266 if (func == prog->main && prog->getType() != Program::TYPE_COMPUTE)
3267 return true;
3268 updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
3269 &Function::buildLiveSets, &Function::ins);
3270 updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
3271 &Function::buildDefSets, &Function::outs);
3272
3273 return true;
3274 }
3275
3276 bool
3277 Converter::run()
3278 {
3279 BasicBlock *entry = new BasicBlock(prog->main);
3280 BasicBlock *leave = new BasicBlock(prog->main);
3281
3282 prog->main->setEntry(entry);
3283 prog->main->setExit(leave);
3284
3285 setPosition(entry, true);
3286 sub.cur = getSubroutine(prog->main);
3287
3288 if (info->io.genUserClip > 0) {
3289 for (int c = 0; c < 4; ++c)
3290 clipVtx[c] = getScratch();
3291 }
3292
3293 if (prog->getType() == Program::TYPE_FRAGMENT) {
3294 Symbol *sv = mkSysVal(SV_POSITION, 3);
3295 fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
3296 mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
3297 }
3298
3299 if (info->io.viewportId >= 0)
3300 viewport = getScratch();
3301 else
3302 viewport = NULL;
3303
3304 for (ip = 0; ip < code->scan.num_instructions; ++ip) {
3305 if (!handleInstruction(&code->insns[ip]))
3306 return false;
3307 }
3308
3309 if (!BindArgumentsPass(*this).run(prog))
3310 return false;
3311
3312 return true;
3313 }
3314
3315 } // unnamed namespace
3316
3317 namespace nv50_ir {
3318
3319 bool
3320 Program::makeFromTGSI(struct nv50_ir_prog_info *info)
3321 {
3322 tgsi::Source src(info);
3323 if (!src.scanSource())
3324 return false;
3325 tlsSize = info->bin.tlsSpace;
3326
3327 Converter builder(this, &src);
3328 return builder.run();
3329 }
3330
3331 } // namespace nv50_ir