nvc0: enable EXT_texture_shadow_lod
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_from_tgsi.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "tgsi/tgsi_build.h"
24 #include "tgsi/tgsi_dump.h"
25 #include "tgsi/tgsi_scan.h"
26 #include "tgsi/tgsi_util.h"
27
28 #include <set>
29
30 #include "codegen/nv50_ir.h"
31 #include "codegen/nv50_ir_from_common.h"
32 #include "codegen/nv50_ir_util.h"
33
34 namespace tgsi {
35
36 class Source;
37
38 static nv50_ir::operation translateOpcode(uint opcode);
39 static nv50_ir::DataFile translateFile(uint file);
40 static nv50_ir::TexTarget translateTexture(uint texTarg);
41 static nv50_ir::SVSemantic translateSysVal(uint sysval);
42 static nv50_ir::CacheMode translateCacheMode(uint qualifier);
43
44 class Instruction
45 {
46 public:
47 Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
48
49 class SrcRegister
50 {
51 public:
52 SrcRegister(const struct tgsi_full_src_register *src)
53 : reg(src->Register),
54 fsr(src)
55 { }
56
57 SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
58
59 SrcRegister(const struct tgsi_ind_register& ind)
60 : reg(tgsi_util_get_src_from_ind(&ind)),
61 fsr(NULL)
62 { }
63
64 struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
65 {
66 struct tgsi_src_register reg;
67 memset(&reg, 0, sizeof(reg));
68 reg.Index = off.Index;
69 reg.File = off.File;
70 reg.SwizzleX = off.SwizzleX;
71 reg.SwizzleY = off.SwizzleY;
72 reg.SwizzleZ = off.SwizzleZ;
73 return reg;
74 }
75
76 SrcRegister(const struct tgsi_texture_offset& off) :
77 reg(offsetToSrc(off)),
78 fsr(NULL)
79 { }
80
81 uint getFile() const { return reg.File; }
82
83 bool is2D() const { return reg.Dimension; }
84
85 bool isIndirect(int dim) const
86 {
87 return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
88 }
89
90 int getIndex(int dim) const
91 {
92 return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
93 }
94
95 int getSwizzle(int chan) const
96 {
97 return tgsi_util_get_src_register_swizzle(&reg, chan);
98 }
99
100 int getArrayId() const
101 {
102 if (isIndirect(0))
103 return fsr->Indirect.ArrayID;
104 return 0;
105 }
106
107 nv50_ir::Modifier getMod(int chan) const;
108
109 SrcRegister getIndirect(int dim) const
110 {
111 assert(fsr && isIndirect(dim));
112 if (dim)
113 return SrcRegister(fsr->DimIndirect);
114 return SrcRegister(fsr->Indirect);
115 }
116
117 uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
118 {
119 assert(reg.File == TGSI_FILE_IMMEDIATE);
120 assert(!reg.Absolute);
121 assert(!reg.Negate);
122 return info->immd.data[reg.Index * 4 + getSwizzle(c)];
123 }
124
125 private:
126 const struct tgsi_src_register reg;
127 const struct tgsi_full_src_register *fsr;
128 };
129
130 class DstRegister
131 {
132 public:
133 DstRegister(const struct tgsi_full_dst_register *dst)
134 : reg(dst->Register),
135 fdr(dst)
136 { }
137
138 DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
139
140 uint getFile() const { return reg.File; }
141
142 bool is2D() const { return reg.Dimension; }
143
144 bool isIndirect(int dim) const
145 {
146 return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
147 }
148
149 int getIndex(int dim) const
150 {
151 return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
152 }
153
154 unsigned int getMask() const { return reg.WriteMask; }
155
156 bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
157
158 SrcRegister getIndirect(int dim) const
159 {
160 assert(fdr && isIndirect(dim));
161 if (dim)
162 return SrcRegister(fdr->DimIndirect);
163 return SrcRegister(fdr->Indirect);
164 }
165
166 struct tgsi_full_src_register asSrc()
167 {
168 assert(fdr);
169 return tgsi_full_src_register_from_dst(fdr);
170 }
171
172 int getArrayId() const
173 {
174 if (isIndirect(0))
175 return fdr->Indirect.ArrayID;
176 return 0;
177 }
178
179 private:
180 const struct tgsi_dst_register reg;
181 const struct tgsi_full_dst_register *fdr;
182 };
183
184 inline uint getOpcode() const { return insn->Instruction.Opcode; }
185
186 unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
187 unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
188
189 // mask of used components of source s
190 unsigned int srcMask(unsigned int s) const;
191 unsigned int texOffsetMask() const;
192
193 SrcRegister getSrc(unsigned int s) const
194 {
195 assert(s < srcCount());
196 return SrcRegister(&insn->Src[s]);
197 }
198
199 DstRegister getDst(unsigned int d) const
200 {
201 assert(d < dstCount());
202 return DstRegister(&insn->Dst[d]);
203 }
204
205 SrcRegister getTexOffset(unsigned int i) const
206 {
207 assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
208 return SrcRegister(insn->TexOffsets[i]);
209 }
210
211 unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
212
213 bool checkDstSrcAliasing() const;
214
215 inline nv50_ir::operation getOP() const {
216 return translateOpcode(getOpcode()); }
217
218 nv50_ir::DataType inferSrcType() const;
219 nv50_ir::DataType inferDstType() const;
220
221 nv50_ir::CondCode getSetCond() const;
222
223 nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
224
225 const nv50_ir::TexInstruction::ImgFormatDesc *getImageFormat() const {
226 return nv50_ir::TexInstruction::translateImgFormat((enum pipe_format)insn->Memory.Format);
227 }
228
229 nv50_ir::TexTarget getImageTarget() const {
230 return translateTexture(insn->Memory.Texture);
231 }
232
233 nv50_ir::CacheMode getCacheMode() const {
234 if (!insn->Instruction.Memory)
235 return nv50_ir::CACHE_CA;
236 return translateCacheMode(insn->Memory.Qualifier);
237 }
238
239 inline uint getLabel() { return insn->Label.Label; }
240
241 unsigned getSaturate() const { return insn->Instruction.Saturate; }
242
243 void print() const
244 {
245 tgsi_dump_instruction(insn, 1);
246 }
247
248 private:
249 const struct tgsi_full_instruction *insn;
250 };
251
252 unsigned int Instruction::texOffsetMask() const
253 {
254 const struct tgsi_instruction_texture *tex = &insn->Texture;
255 assert(insn->Instruction.Texture);
256
257 switch (tex->Texture) {
258 case TGSI_TEXTURE_BUFFER:
259 case TGSI_TEXTURE_1D:
260 case TGSI_TEXTURE_SHADOW1D:
261 case TGSI_TEXTURE_1D_ARRAY:
262 case TGSI_TEXTURE_SHADOW1D_ARRAY:
263 return 0x1;
264 case TGSI_TEXTURE_2D:
265 case TGSI_TEXTURE_SHADOW2D:
266 case TGSI_TEXTURE_2D_ARRAY:
267 case TGSI_TEXTURE_SHADOW2D_ARRAY:
268 case TGSI_TEXTURE_RECT:
269 case TGSI_TEXTURE_SHADOWRECT:
270 case TGSI_TEXTURE_2D_MSAA:
271 case TGSI_TEXTURE_2D_ARRAY_MSAA:
272 return 0x3;
273 case TGSI_TEXTURE_3D:
274 return 0x7;
275 default:
276 assert(!"Unexpected texture target");
277 return 0xf;
278 }
279 }
280
281 unsigned int Instruction::srcMask(unsigned int s) const
282 {
283 unsigned int mask = insn->Dst[0].Register.WriteMask;
284
285 switch (insn->Instruction.Opcode) {
286 case TGSI_OPCODE_COS:
287 case TGSI_OPCODE_SIN:
288 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
289 case TGSI_OPCODE_DP2:
290 return 0x3;
291 case TGSI_OPCODE_DP3:
292 return 0x7;
293 case TGSI_OPCODE_DP4:
294 case TGSI_OPCODE_KILL_IF: /* WriteMask ignored */
295 return 0xf;
296 case TGSI_OPCODE_DST:
297 return mask & (s ? 0xa : 0x6);
298 case TGSI_OPCODE_EX2:
299 case TGSI_OPCODE_EXP:
300 case TGSI_OPCODE_LG2:
301 case TGSI_OPCODE_LOG:
302 case TGSI_OPCODE_POW:
303 case TGSI_OPCODE_RCP:
304 case TGSI_OPCODE_RSQ:
305 return 0x1;
306 case TGSI_OPCODE_IF:
307 case TGSI_OPCODE_UIF:
308 return 0x1;
309 case TGSI_OPCODE_LIT:
310 return 0xb;
311 case TGSI_OPCODE_TEX2:
312 case TGSI_OPCODE_TXB2:
313 case TGSI_OPCODE_TXL2:
314 return (s == 0) ? 0xf : 0x3;
315 case TGSI_OPCODE_TEX:
316 case TGSI_OPCODE_TXB:
317 case TGSI_OPCODE_TXD:
318 case TGSI_OPCODE_TXL:
319 case TGSI_OPCODE_TXP:
320 case TGSI_OPCODE_TXF:
321 case TGSI_OPCODE_TG4:
322 case TGSI_OPCODE_TEX_LZ:
323 case TGSI_OPCODE_TXF_LZ:
324 case TGSI_OPCODE_LODQ:
325 {
326 const struct tgsi_instruction_texture *tex = &insn->Texture;
327
328 assert(insn->Instruction.Texture);
329
330 mask = 0x7;
331 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
332 insn->Instruction.Opcode != TGSI_OPCODE_TEX_LZ &&
333 insn->Instruction.Opcode != TGSI_OPCODE_TXF_LZ &&
334 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
335 mask |= 0x8; /* bias, lod or proj */
336
337 switch (tex->Texture) {
338 case TGSI_TEXTURE_1D:
339 mask &= 0x9;
340 break;
341 case TGSI_TEXTURE_SHADOW1D:
342 mask &= 0xd;
343 break;
344 case TGSI_TEXTURE_1D_ARRAY:
345 case TGSI_TEXTURE_2D:
346 case TGSI_TEXTURE_RECT:
347 mask &= 0xb;
348 break;
349 case TGSI_TEXTURE_CUBE_ARRAY:
350 case TGSI_TEXTURE_SHADOW2D_ARRAY:
351 case TGSI_TEXTURE_SHADOWCUBE:
352 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
353 mask |= 0x8;
354 break;
355 default:
356 break;
357 }
358 }
359 return mask;
360 case TGSI_OPCODE_TXQ:
361 return 1;
362 case TGSI_OPCODE_D2I:
363 case TGSI_OPCODE_D2U:
364 case TGSI_OPCODE_D2F:
365 case TGSI_OPCODE_DSLT:
366 case TGSI_OPCODE_DSGE:
367 case TGSI_OPCODE_DSEQ:
368 case TGSI_OPCODE_DSNE:
369 case TGSI_OPCODE_U64SEQ:
370 case TGSI_OPCODE_U64SNE:
371 case TGSI_OPCODE_I64SLT:
372 case TGSI_OPCODE_U64SLT:
373 case TGSI_OPCODE_I64SGE:
374 case TGSI_OPCODE_U64SGE:
375 case TGSI_OPCODE_I642F:
376 case TGSI_OPCODE_U642F:
377 switch (util_bitcount(mask)) {
378 case 1: return 0x3;
379 case 2: return 0xf;
380 default:
381 assert(!"unexpected mask");
382 return 0xf;
383 }
384 case TGSI_OPCODE_I2D:
385 case TGSI_OPCODE_U2D:
386 case TGSI_OPCODE_F2D: {
387 unsigned int x = 0;
388 if ((mask & 0x3) == 0x3)
389 x |= 1;
390 if ((mask & 0xc) == 0xc)
391 x |= 2;
392 return x;
393 }
394 case TGSI_OPCODE_PK2H:
395 return 0x3;
396 case TGSI_OPCODE_UP2H:
397 return 0x1;
398 default:
399 break;
400 }
401
402 return mask;
403 }
404
405 nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
406 {
407 nv50_ir::Modifier m(0);
408
409 if (reg.Absolute)
410 m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
411 if (reg.Negate)
412 m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
413 return m;
414 }
415
416 static nv50_ir::DataFile translateFile(uint file)
417 {
418 switch (file) {
419 case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST;
420 case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT;
421 case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT;
422 case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR;
423 case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS;
424 case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE;
425 case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE;
426 case TGSI_FILE_BUFFER: return nv50_ir::FILE_MEMORY_BUFFER;
427 case TGSI_FILE_IMAGE: return nv50_ir::FILE_MEMORY_GLOBAL;
428 case TGSI_FILE_MEMORY: return nv50_ir::FILE_MEMORY_GLOBAL;
429 case TGSI_FILE_SAMPLER:
430 case TGSI_FILE_NULL:
431 default:
432 return nv50_ir::FILE_NULL;
433 }
434 }
435
436 static nv50_ir::SVSemantic translateSysVal(uint sysval)
437 {
438 switch (sysval) {
439 case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE;
440 case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE;
441 case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID;
442 case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
443 case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID;
444 case TGSI_SEMANTIC_GRID_SIZE: return nv50_ir::SV_NCTAID;
445 case TGSI_SEMANTIC_BLOCK_ID: return nv50_ir::SV_CTAID;
446 case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID;
447 case TGSI_SEMANTIC_THREAD_ID: return nv50_ir::SV_TID;
448 case TGSI_SEMANTIC_SAMPLEID: return nv50_ir::SV_SAMPLE_INDEX;
449 case TGSI_SEMANTIC_SAMPLEPOS: return nv50_ir::SV_SAMPLE_POS;
450 case TGSI_SEMANTIC_SAMPLEMASK: return nv50_ir::SV_SAMPLE_MASK;
451 case TGSI_SEMANTIC_INVOCATIONID: return nv50_ir::SV_INVOCATION_ID;
452 case TGSI_SEMANTIC_TESSCOORD: return nv50_ir::SV_TESS_COORD;
453 case TGSI_SEMANTIC_TESSOUTER: return nv50_ir::SV_TESS_OUTER;
454 case TGSI_SEMANTIC_TESSINNER: return nv50_ir::SV_TESS_INNER;
455 case TGSI_SEMANTIC_VERTICESIN: return nv50_ir::SV_VERTEX_COUNT;
456 case TGSI_SEMANTIC_HELPER_INVOCATION: return nv50_ir::SV_THREAD_KILL;
457 case TGSI_SEMANTIC_BASEVERTEX: return nv50_ir::SV_BASEVERTEX;
458 case TGSI_SEMANTIC_BASEINSTANCE: return nv50_ir::SV_BASEINSTANCE;
459 case TGSI_SEMANTIC_DRAWID: return nv50_ir::SV_DRAWID;
460 case TGSI_SEMANTIC_WORK_DIM: return nv50_ir::SV_WORK_DIM;
461 case TGSI_SEMANTIC_SUBGROUP_INVOCATION: return nv50_ir::SV_LANEID;
462 case TGSI_SEMANTIC_SUBGROUP_EQ_MASK: return nv50_ir::SV_LANEMASK_EQ;
463 case TGSI_SEMANTIC_SUBGROUP_LT_MASK: return nv50_ir::SV_LANEMASK_LT;
464 case TGSI_SEMANTIC_SUBGROUP_LE_MASK: return nv50_ir::SV_LANEMASK_LE;
465 case TGSI_SEMANTIC_SUBGROUP_GT_MASK: return nv50_ir::SV_LANEMASK_GT;
466 case TGSI_SEMANTIC_SUBGROUP_GE_MASK: return nv50_ir::SV_LANEMASK_GE;
467 default:
468 assert(0);
469 return nv50_ir::SV_CLOCK;
470 }
471 }
472
473 #define NV50_IR_TEX_TARG_CASE(a, b) \
474 case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
475
476 static nv50_ir::TexTarget translateTexture(uint tex)
477 {
478 switch (tex) {
479 NV50_IR_TEX_TARG_CASE(1D, 1D);
480 NV50_IR_TEX_TARG_CASE(2D, 2D);
481 NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS);
482 NV50_IR_TEX_TARG_CASE(3D, 3D);
483 NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
484 NV50_IR_TEX_TARG_CASE(RECT, RECT);
485 NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
486 NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
487 NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY);
488 NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY);
489 NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
490 NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
491 NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
492 NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
493 NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
494 NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
495 NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW);
496 NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
497
498 case TGSI_TEXTURE_UNKNOWN:
499 default:
500 assert(!"invalid texture target");
501 return nv50_ir::TEX_TARGET_2D;
502 }
503 }
504
505 static nv50_ir::CacheMode translateCacheMode(uint qualifier)
506 {
507 if (qualifier & TGSI_MEMORY_VOLATILE)
508 return nv50_ir::CACHE_CV;
509 if (qualifier & TGSI_MEMORY_COHERENT)
510 return nv50_ir::CACHE_CG;
511 return nv50_ir::CACHE_CA;
512 }
513
514 nv50_ir::DataType Instruction::inferSrcType() const
515 {
516 switch (getOpcode()) {
517 case TGSI_OPCODE_UIF:
518 case TGSI_OPCODE_AND:
519 case TGSI_OPCODE_OR:
520 case TGSI_OPCODE_XOR:
521 case TGSI_OPCODE_NOT:
522 case TGSI_OPCODE_SHL:
523 case TGSI_OPCODE_U2F:
524 case TGSI_OPCODE_U2D:
525 case TGSI_OPCODE_U2I64:
526 case TGSI_OPCODE_UADD:
527 case TGSI_OPCODE_UDIV:
528 case TGSI_OPCODE_UMOD:
529 case TGSI_OPCODE_UMAD:
530 case TGSI_OPCODE_UMUL:
531 case TGSI_OPCODE_UMUL_HI:
532 case TGSI_OPCODE_UMAX:
533 case TGSI_OPCODE_UMIN:
534 case TGSI_OPCODE_USEQ:
535 case TGSI_OPCODE_USGE:
536 case TGSI_OPCODE_USLT:
537 case TGSI_OPCODE_USNE:
538 case TGSI_OPCODE_USHR:
539 case TGSI_OPCODE_ATOMUADD:
540 case TGSI_OPCODE_ATOMXCHG:
541 case TGSI_OPCODE_ATOMCAS:
542 case TGSI_OPCODE_ATOMAND:
543 case TGSI_OPCODE_ATOMOR:
544 case TGSI_OPCODE_ATOMXOR:
545 case TGSI_OPCODE_ATOMUMIN:
546 case TGSI_OPCODE_ATOMUMAX:
547 case TGSI_OPCODE_ATOMDEC_WRAP:
548 case TGSI_OPCODE_ATOMINC_WRAP:
549 case TGSI_OPCODE_UBFE:
550 case TGSI_OPCODE_UMSB:
551 case TGSI_OPCODE_UP2H:
552 case TGSI_OPCODE_VOTE_ALL:
553 case TGSI_OPCODE_VOTE_ANY:
554 case TGSI_OPCODE_VOTE_EQ:
555 return nv50_ir::TYPE_U32;
556 case TGSI_OPCODE_I2F:
557 case TGSI_OPCODE_I2D:
558 case TGSI_OPCODE_I2I64:
559 case TGSI_OPCODE_IDIV:
560 case TGSI_OPCODE_IMUL_HI:
561 case TGSI_OPCODE_IMAX:
562 case TGSI_OPCODE_IMIN:
563 case TGSI_OPCODE_IABS:
564 case TGSI_OPCODE_INEG:
565 case TGSI_OPCODE_ISGE:
566 case TGSI_OPCODE_ISHR:
567 case TGSI_OPCODE_ISLT:
568 case TGSI_OPCODE_ISSG:
569 case TGSI_OPCODE_MOD:
570 case TGSI_OPCODE_UARL:
571 case TGSI_OPCODE_ATOMIMIN:
572 case TGSI_OPCODE_ATOMIMAX:
573 case TGSI_OPCODE_IBFE:
574 case TGSI_OPCODE_IMSB:
575 return nv50_ir::TYPE_S32;
576 case TGSI_OPCODE_D2F:
577 case TGSI_OPCODE_D2I:
578 case TGSI_OPCODE_D2U:
579 case TGSI_OPCODE_D2I64:
580 case TGSI_OPCODE_D2U64:
581 case TGSI_OPCODE_DABS:
582 case TGSI_OPCODE_DNEG:
583 case TGSI_OPCODE_DADD:
584 case TGSI_OPCODE_DMUL:
585 case TGSI_OPCODE_DDIV:
586 case TGSI_OPCODE_DMAX:
587 case TGSI_OPCODE_DMIN:
588 case TGSI_OPCODE_DSLT:
589 case TGSI_OPCODE_DSGE:
590 case TGSI_OPCODE_DSEQ:
591 case TGSI_OPCODE_DSNE:
592 case TGSI_OPCODE_DRCP:
593 case TGSI_OPCODE_DSQRT:
594 case TGSI_OPCODE_DMAD:
595 case TGSI_OPCODE_DFMA:
596 case TGSI_OPCODE_DFRAC:
597 case TGSI_OPCODE_DRSQ:
598 case TGSI_OPCODE_DTRUNC:
599 case TGSI_OPCODE_DCEIL:
600 case TGSI_OPCODE_DFLR:
601 case TGSI_OPCODE_DROUND:
602 return nv50_ir::TYPE_F64;
603 case TGSI_OPCODE_U64SEQ:
604 case TGSI_OPCODE_U64SNE:
605 case TGSI_OPCODE_U64SLT:
606 case TGSI_OPCODE_U64SGE:
607 case TGSI_OPCODE_U64MIN:
608 case TGSI_OPCODE_U64MAX:
609 case TGSI_OPCODE_U64ADD:
610 case TGSI_OPCODE_U64MUL:
611 case TGSI_OPCODE_U64SHL:
612 case TGSI_OPCODE_U64SHR:
613 case TGSI_OPCODE_U64DIV:
614 case TGSI_OPCODE_U64MOD:
615 case TGSI_OPCODE_U642F:
616 case TGSI_OPCODE_U642D:
617 return nv50_ir::TYPE_U64;
618 case TGSI_OPCODE_I64ABS:
619 case TGSI_OPCODE_I64SSG:
620 case TGSI_OPCODE_I64NEG:
621 case TGSI_OPCODE_I64SLT:
622 case TGSI_OPCODE_I64SGE:
623 case TGSI_OPCODE_I64MIN:
624 case TGSI_OPCODE_I64MAX:
625 case TGSI_OPCODE_I64SHR:
626 case TGSI_OPCODE_I64DIV:
627 case TGSI_OPCODE_I64MOD:
628 case TGSI_OPCODE_I642F:
629 case TGSI_OPCODE_I642D:
630 return nv50_ir::TYPE_S64;
631 default:
632 return nv50_ir::TYPE_F32;
633 }
634 }
635
636 nv50_ir::DataType Instruction::inferDstType() const
637 {
638 switch (getOpcode()) {
639 case TGSI_OPCODE_D2U:
640 case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
641 case TGSI_OPCODE_D2I:
642 case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
643 case TGSI_OPCODE_FSEQ:
644 case TGSI_OPCODE_FSGE:
645 case TGSI_OPCODE_FSLT:
646 case TGSI_OPCODE_FSNE:
647 case TGSI_OPCODE_DSEQ:
648 case TGSI_OPCODE_DSGE:
649 case TGSI_OPCODE_DSLT:
650 case TGSI_OPCODE_DSNE:
651 case TGSI_OPCODE_I64SLT:
652 case TGSI_OPCODE_I64SGE:
653 case TGSI_OPCODE_U64SEQ:
654 case TGSI_OPCODE_U64SNE:
655 case TGSI_OPCODE_U64SLT:
656 case TGSI_OPCODE_U64SGE:
657 case TGSI_OPCODE_PK2H:
658 return nv50_ir::TYPE_U32;
659 case TGSI_OPCODE_I2F:
660 case TGSI_OPCODE_U2F:
661 case TGSI_OPCODE_D2F:
662 case TGSI_OPCODE_I642F:
663 case TGSI_OPCODE_U642F:
664 case TGSI_OPCODE_UP2H:
665 return nv50_ir::TYPE_F32;
666 case TGSI_OPCODE_I2D:
667 case TGSI_OPCODE_U2D:
668 case TGSI_OPCODE_F2D:
669 case TGSI_OPCODE_I642D:
670 case TGSI_OPCODE_U642D:
671 return nv50_ir::TYPE_F64;
672 case TGSI_OPCODE_I2I64:
673 case TGSI_OPCODE_U2I64:
674 case TGSI_OPCODE_F2I64:
675 case TGSI_OPCODE_D2I64:
676 return nv50_ir::TYPE_S64;
677 case TGSI_OPCODE_F2U64:
678 case TGSI_OPCODE_D2U64:
679 return nv50_ir::TYPE_U64;
680 default:
681 return inferSrcType();
682 }
683 }
684
685 nv50_ir::CondCode Instruction::getSetCond() const
686 {
687 using namespace nv50_ir;
688
689 switch (getOpcode()) {
690 case TGSI_OPCODE_SLT:
691 case TGSI_OPCODE_ISLT:
692 case TGSI_OPCODE_USLT:
693 case TGSI_OPCODE_FSLT:
694 case TGSI_OPCODE_DSLT:
695 case TGSI_OPCODE_I64SLT:
696 case TGSI_OPCODE_U64SLT:
697 return CC_LT;
698 case TGSI_OPCODE_SLE:
699 return CC_LE;
700 case TGSI_OPCODE_SGE:
701 case TGSI_OPCODE_ISGE:
702 case TGSI_OPCODE_USGE:
703 case TGSI_OPCODE_FSGE:
704 case TGSI_OPCODE_DSGE:
705 case TGSI_OPCODE_I64SGE:
706 case TGSI_OPCODE_U64SGE:
707 return CC_GE;
708 case TGSI_OPCODE_SGT:
709 return CC_GT;
710 case TGSI_OPCODE_SEQ:
711 case TGSI_OPCODE_USEQ:
712 case TGSI_OPCODE_FSEQ:
713 case TGSI_OPCODE_DSEQ:
714 case TGSI_OPCODE_U64SEQ:
715 return CC_EQ;
716 case TGSI_OPCODE_SNE:
717 case TGSI_OPCODE_FSNE:
718 case TGSI_OPCODE_DSNE:
719 case TGSI_OPCODE_U64SNE:
720 return CC_NEU;
721 case TGSI_OPCODE_USNE:
722 return CC_NE;
723 default:
724 return CC_ALWAYS;
725 }
726 }
727
728 #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
729
730 static nv50_ir::operation translateOpcode(uint opcode)
731 {
732 switch (opcode) {
733 NV50_IR_OPCODE_CASE(ARL, SHL);
734 NV50_IR_OPCODE_CASE(MOV, MOV);
735
736 NV50_IR_OPCODE_CASE(RCP, RCP);
737 NV50_IR_OPCODE_CASE(RSQ, RSQ);
738 NV50_IR_OPCODE_CASE(SQRT, SQRT);
739
740 NV50_IR_OPCODE_CASE(MUL, MUL);
741 NV50_IR_OPCODE_CASE(ADD, ADD);
742
743 NV50_IR_OPCODE_CASE(MIN, MIN);
744 NV50_IR_OPCODE_CASE(MAX, MAX);
745 NV50_IR_OPCODE_CASE(SLT, SET);
746 NV50_IR_OPCODE_CASE(SGE, SET);
747 NV50_IR_OPCODE_CASE(MAD, MAD);
748 NV50_IR_OPCODE_CASE(FMA, FMA);
749
750 NV50_IR_OPCODE_CASE(FLR, FLOOR);
751 NV50_IR_OPCODE_CASE(ROUND, CVT);
752 NV50_IR_OPCODE_CASE(EX2, EX2);
753 NV50_IR_OPCODE_CASE(LG2, LG2);
754 NV50_IR_OPCODE_CASE(POW, POW);
755
756 NV50_IR_OPCODE_CASE(COS, COS);
757 NV50_IR_OPCODE_CASE(DDX, DFDX);
758 NV50_IR_OPCODE_CASE(DDX_FINE, DFDX);
759 NV50_IR_OPCODE_CASE(DDY, DFDY);
760 NV50_IR_OPCODE_CASE(DDY_FINE, DFDY);
761 NV50_IR_OPCODE_CASE(KILL, DISCARD);
762 NV50_IR_OPCODE_CASE(DEMOTE, DISCARD);
763
764 NV50_IR_OPCODE_CASE(SEQ, SET);
765 NV50_IR_OPCODE_CASE(SGT, SET);
766 NV50_IR_OPCODE_CASE(SIN, SIN);
767 NV50_IR_OPCODE_CASE(SLE, SET);
768 NV50_IR_OPCODE_CASE(SNE, SET);
769 NV50_IR_OPCODE_CASE(TEX, TEX);
770 NV50_IR_OPCODE_CASE(TXD, TXD);
771 NV50_IR_OPCODE_CASE(TXP, TEX);
772
773 NV50_IR_OPCODE_CASE(CAL, CALL);
774 NV50_IR_OPCODE_CASE(RET, RET);
775 NV50_IR_OPCODE_CASE(CMP, SLCT);
776
777 NV50_IR_OPCODE_CASE(TXB, TXB);
778
779 NV50_IR_OPCODE_CASE(DIV, DIV);
780
781 NV50_IR_OPCODE_CASE(TXL, TXL);
782 NV50_IR_OPCODE_CASE(TEX_LZ, TXL);
783
784 NV50_IR_OPCODE_CASE(CEIL, CEIL);
785 NV50_IR_OPCODE_CASE(I2F, CVT);
786 NV50_IR_OPCODE_CASE(NOT, NOT);
787 NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
788 NV50_IR_OPCODE_CASE(SHL, SHL);
789
790 NV50_IR_OPCODE_CASE(AND, AND);
791 NV50_IR_OPCODE_CASE(OR, OR);
792 NV50_IR_OPCODE_CASE(MOD, MOD);
793 NV50_IR_OPCODE_CASE(XOR, XOR);
794 NV50_IR_OPCODE_CASE(TXF, TXF);
795 NV50_IR_OPCODE_CASE(TXF_LZ, TXF);
796 NV50_IR_OPCODE_CASE(TXQ, TXQ);
797 NV50_IR_OPCODE_CASE(TXQS, TXQ);
798 NV50_IR_OPCODE_CASE(TG4, TXG);
799 NV50_IR_OPCODE_CASE(LODQ, TXLQ);
800
801 NV50_IR_OPCODE_CASE(EMIT, EMIT);
802 NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
803
804 NV50_IR_OPCODE_CASE(KILL_IF, DISCARD);
805
806 NV50_IR_OPCODE_CASE(F2I, CVT);
807 NV50_IR_OPCODE_CASE(FSEQ, SET);
808 NV50_IR_OPCODE_CASE(FSGE, SET);
809 NV50_IR_OPCODE_CASE(FSLT, SET);
810 NV50_IR_OPCODE_CASE(FSNE, SET);
811 NV50_IR_OPCODE_CASE(IDIV, DIV);
812 NV50_IR_OPCODE_CASE(IMAX, MAX);
813 NV50_IR_OPCODE_CASE(IMIN, MIN);
814 NV50_IR_OPCODE_CASE(IABS, ABS);
815 NV50_IR_OPCODE_CASE(INEG, NEG);
816 NV50_IR_OPCODE_CASE(ISGE, SET);
817 NV50_IR_OPCODE_CASE(ISHR, SHR);
818 NV50_IR_OPCODE_CASE(ISLT, SET);
819 NV50_IR_OPCODE_CASE(F2U, CVT);
820 NV50_IR_OPCODE_CASE(U2F, CVT);
821 NV50_IR_OPCODE_CASE(UADD, ADD);
822 NV50_IR_OPCODE_CASE(UDIV, DIV);
823 NV50_IR_OPCODE_CASE(UMAD, MAD);
824 NV50_IR_OPCODE_CASE(UMAX, MAX);
825 NV50_IR_OPCODE_CASE(UMIN, MIN);
826 NV50_IR_OPCODE_CASE(UMOD, MOD);
827 NV50_IR_OPCODE_CASE(UMUL, MUL);
828 NV50_IR_OPCODE_CASE(USEQ, SET);
829 NV50_IR_OPCODE_CASE(USGE, SET);
830 NV50_IR_OPCODE_CASE(USHR, SHR);
831 NV50_IR_OPCODE_CASE(USLT, SET);
832 NV50_IR_OPCODE_CASE(USNE, SET);
833
834 NV50_IR_OPCODE_CASE(DABS, ABS);
835 NV50_IR_OPCODE_CASE(DNEG, NEG);
836 NV50_IR_OPCODE_CASE(DADD, ADD);
837 NV50_IR_OPCODE_CASE(DMUL, MUL);
838 NV50_IR_OPCODE_CASE(DDIV, DIV);
839 NV50_IR_OPCODE_CASE(DMAX, MAX);
840 NV50_IR_OPCODE_CASE(DMIN, MIN);
841 NV50_IR_OPCODE_CASE(DSLT, SET);
842 NV50_IR_OPCODE_CASE(DSGE, SET);
843 NV50_IR_OPCODE_CASE(DSEQ, SET);
844 NV50_IR_OPCODE_CASE(DSNE, SET);
845 NV50_IR_OPCODE_CASE(DRCP, RCP);
846 NV50_IR_OPCODE_CASE(DSQRT, SQRT);
847 NV50_IR_OPCODE_CASE(DMAD, MAD);
848 NV50_IR_OPCODE_CASE(DFMA, FMA);
849 NV50_IR_OPCODE_CASE(D2I, CVT);
850 NV50_IR_OPCODE_CASE(D2U, CVT);
851 NV50_IR_OPCODE_CASE(I2D, CVT);
852 NV50_IR_OPCODE_CASE(U2D, CVT);
853 NV50_IR_OPCODE_CASE(DRSQ, RSQ);
854 NV50_IR_OPCODE_CASE(DTRUNC, TRUNC);
855 NV50_IR_OPCODE_CASE(DCEIL, CEIL);
856 NV50_IR_OPCODE_CASE(DFLR, FLOOR);
857 NV50_IR_OPCODE_CASE(DROUND, CVT);
858
859 NV50_IR_OPCODE_CASE(U64SEQ, SET);
860 NV50_IR_OPCODE_CASE(U64SNE, SET);
861 NV50_IR_OPCODE_CASE(U64SLT, SET);
862 NV50_IR_OPCODE_CASE(U64SGE, SET);
863 NV50_IR_OPCODE_CASE(I64SLT, SET);
864 NV50_IR_OPCODE_CASE(I64SGE, SET);
865 NV50_IR_OPCODE_CASE(I2I64, CVT);
866 NV50_IR_OPCODE_CASE(U2I64, CVT);
867 NV50_IR_OPCODE_CASE(F2I64, CVT);
868 NV50_IR_OPCODE_CASE(F2U64, CVT);
869 NV50_IR_OPCODE_CASE(D2I64, CVT);
870 NV50_IR_OPCODE_CASE(D2U64, CVT);
871 NV50_IR_OPCODE_CASE(I642F, CVT);
872 NV50_IR_OPCODE_CASE(U642F, CVT);
873 NV50_IR_OPCODE_CASE(I642D, CVT);
874 NV50_IR_OPCODE_CASE(U642D, CVT);
875
876 NV50_IR_OPCODE_CASE(I64MIN, MIN);
877 NV50_IR_OPCODE_CASE(U64MIN, MIN);
878 NV50_IR_OPCODE_CASE(I64MAX, MAX);
879 NV50_IR_OPCODE_CASE(U64MAX, MAX);
880 NV50_IR_OPCODE_CASE(I64ABS, ABS);
881 NV50_IR_OPCODE_CASE(I64NEG, NEG);
882 NV50_IR_OPCODE_CASE(U64ADD, ADD);
883 NV50_IR_OPCODE_CASE(U64MUL, MUL);
884 NV50_IR_OPCODE_CASE(U64SHL, SHL);
885 NV50_IR_OPCODE_CASE(I64SHR, SHR);
886 NV50_IR_OPCODE_CASE(U64SHR, SHR);
887
888 NV50_IR_OPCODE_CASE(IMUL_HI, MUL);
889 NV50_IR_OPCODE_CASE(UMUL_HI, MUL);
890
891 NV50_IR_OPCODE_CASE(SAMPLE, TEX);
892 NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
893 NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
894 NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
895 NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
896 NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
897 NV50_IR_OPCODE_CASE(SAMPLE_I, TXF);
898 NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF);
899 NV50_IR_OPCODE_CASE(GATHER4, TXG);
900 NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
901
902 NV50_IR_OPCODE_CASE(ATOMUADD, ATOM);
903 NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM);
904 NV50_IR_OPCODE_CASE(ATOMCAS, ATOM);
905 NV50_IR_OPCODE_CASE(ATOMAND, ATOM);
906 NV50_IR_OPCODE_CASE(ATOMOR, ATOM);
907 NV50_IR_OPCODE_CASE(ATOMXOR, ATOM);
908 NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM);
909 NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM);
910 NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM);
911 NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM);
912 NV50_IR_OPCODE_CASE(ATOMFADD, ATOM);
913 NV50_IR_OPCODE_CASE(ATOMDEC_WRAP, ATOM);
914 NV50_IR_OPCODE_CASE(ATOMINC_WRAP, ATOM);
915
916 NV50_IR_OPCODE_CASE(TEX2, TEX);
917 NV50_IR_OPCODE_CASE(TXB2, TXB);
918 NV50_IR_OPCODE_CASE(TXL2, TXL);
919
920 NV50_IR_OPCODE_CASE(IBFE, EXTBF);
921 NV50_IR_OPCODE_CASE(UBFE, EXTBF);
922 NV50_IR_OPCODE_CASE(BFI, INSBF);
923 NV50_IR_OPCODE_CASE(BREV, EXTBF);
924 NV50_IR_OPCODE_CASE(POPC, POPCNT);
925 NV50_IR_OPCODE_CASE(LSB, BFIND);
926 NV50_IR_OPCODE_CASE(IMSB, BFIND);
927 NV50_IR_OPCODE_CASE(UMSB, BFIND);
928
929 NV50_IR_OPCODE_CASE(VOTE_ALL, VOTE);
930 NV50_IR_OPCODE_CASE(VOTE_ANY, VOTE);
931 NV50_IR_OPCODE_CASE(VOTE_EQ, VOTE);
932
933 NV50_IR_OPCODE_CASE(BALLOT, VOTE);
934 NV50_IR_OPCODE_CASE(READ_INVOC, SHFL);
935 NV50_IR_OPCODE_CASE(READ_FIRST, SHFL);
936
937 NV50_IR_OPCODE_CASE(END, EXIT);
938
939 default:
940 return nv50_ir::OP_NOP;
941 }
942 }
943
944 static uint16_t opcodeToSubOp(uint opcode)
945 {
946 switch (opcode) {
947 case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD;
948 case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH;
949 case TGSI_OPCODE_ATOMCAS: return NV50_IR_SUBOP_ATOM_CAS;
950 case TGSI_OPCODE_ATOMAND: return NV50_IR_SUBOP_ATOM_AND;
951 case TGSI_OPCODE_ATOMOR: return NV50_IR_SUBOP_ATOM_OR;
952 case TGSI_OPCODE_ATOMXOR: return NV50_IR_SUBOP_ATOM_XOR;
953 case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN;
954 case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN;
955 case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX;
956 case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX;
957 case TGSI_OPCODE_ATOMFADD: return NV50_IR_SUBOP_ATOM_ADD;
958 case TGSI_OPCODE_ATOMDEC_WRAP: return NV50_IR_SUBOP_ATOM_DEC;
959 case TGSI_OPCODE_ATOMINC_WRAP: return NV50_IR_SUBOP_ATOM_INC;
960 case TGSI_OPCODE_IMUL_HI:
961 case TGSI_OPCODE_UMUL_HI:
962 return NV50_IR_SUBOP_MUL_HIGH;
963 case TGSI_OPCODE_VOTE_ALL: return NV50_IR_SUBOP_VOTE_ALL;
964 case TGSI_OPCODE_VOTE_ANY: return NV50_IR_SUBOP_VOTE_ANY;
965 case TGSI_OPCODE_VOTE_EQ: return NV50_IR_SUBOP_VOTE_UNI;
966 default:
967 return 0;
968 }
969 }
970
971 bool Instruction::checkDstSrcAliasing() const
972 {
973 if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
974 return false;
975
976 for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
977 if (insn->Src[s].Register.File == TGSI_FILE_NULL)
978 break;
979 if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
980 insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
981 return true;
982 }
983 return false;
984 }
985
986 class Source
987 {
988 public:
989 Source(struct nv50_ir_prog_info *);
990 ~Source();
991
992 public:
993 bool scanSource();
994 unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
995
996 public:
997 struct tgsi_shader_info scan;
998 struct tgsi_full_instruction *insns;
999 const struct tgsi_token *tokens;
1000 struct nv50_ir_prog_info *info;
1001
1002 nv50_ir::DynArray tempArrays;
1003 nv50_ir::DynArray immdArrays;
1004
1005 typedef nv50_ir::BuildUtil::Location Location;
1006 // these registers are per-subroutine, cannot be used for parameter passing
1007 std::set<Location> locals;
1008
1009 std::set<int> indirectTempArrays;
1010 std::map<int, int> indirectTempOffsets;
1011 std::map<int, std::pair<int, int> > tempArrayInfo;
1012 std::vector<int> tempArrayId;
1013
1014 int clipVertexOutput;
1015
1016 struct TextureView {
1017 uint8_t target; // TGSI_TEXTURE_*
1018 };
1019 std::vector<TextureView> textureViews;
1020
1021 /*
1022 struct Resource {
1023 uint8_t target; // TGSI_TEXTURE_*
1024 bool raw;
1025 uint8_t slot; // $surface index
1026 };
1027 std::vector<Resource> resources;
1028 */
1029
1030 struct MemoryFile {
1031 uint8_t mem_type; // TGSI_MEMORY_TYPE_*
1032 };
1033 std::vector<MemoryFile> memoryFiles;
1034
1035 std::vector<bool> bufferAtomics;
1036
1037 private:
1038 int inferSysValDirection(unsigned sn) const;
1039 bool scanDeclaration(const struct tgsi_full_declaration *);
1040 bool scanInstruction(const struct tgsi_full_instruction *);
1041 void scanInstructionSrc(const Instruction& insn,
1042 const Instruction::SrcRegister& src,
1043 unsigned mask);
1044 void scanProperty(const struct tgsi_full_property *);
1045 void scanImmediate(const struct tgsi_full_immediate *);
1046
1047 inline bool isEdgeFlagPassthrough(const Instruction&) const;
1048 };
1049
1050 Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
1051 {
1052 tokens = (const struct tgsi_token *)info->bin.source;
1053
1054 if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
1055 tgsi_dump(tokens, 0);
1056 }
1057
1058 Source::~Source()
1059 {
1060 if (insns)
1061 FREE(insns);
1062
1063 if (info->immd.data)
1064 FREE(info->immd.data);
1065 if (info->immd.type)
1066 FREE(info->immd.type);
1067 }
1068
1069 bool Source::scanSource()
1070 {
1071 unsigned insnCount = 0;
1072 struct tgsi_parse_context parse;
1073
1074 tgsi_scan_shader(tokens, &scan);
1075
1076 insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
1077 sizeof(insns[0]));
1078 if (!insns)
1079 return false;
1080
1081 clipVertexOutput = -1;
1082
1083 textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1);
1084 //resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1);
1085 tempArrayId.resize(scan.file_max[TGSI_FILE_TEMPORARY] + 1);
1086 memoryFiles.resize(scan.file_max[TGSI_FILE_MEMORY] + 1);
1087 bufferAtomics.resize(scan.file_max[TGSI_FILE_BUFFER] + 1);
1088
1089 info->immd.bufSize = 0;
1090
1091 info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
1092 info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
1093 info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
1094
1095 if (info->type == PIPE_SHADER_FRAGMENT) {
1096 info->prop.fp.writesDepth = scan.writes_z;
1097 info->prop.fp.usesDiscard = scan.uses_kill || info->io.alphaRefBase;
1098 } else
1099 if (info->type == PIPE_SHADER_GEOMETRY) {
1100 info->prop.gp.instanceCount = 1; // default value
1101 }
1102
1103 info->io.viewportId = -1;
1104
1105 info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
1106 info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
1107
1108 tgsi_parse_init(&parse, tokens);
1109 while (!tgsi_parse_end_of_tokens(&parse)) {
1110 tgsi_parse_token(&parse);
1111
1112 switch (parse.FullToken.Token.Type) {
1113 case TGSI_TOKEN_TYPE_IMMEDIATE:
1114 scanImmediate(&parse.FullToken.FullImmediate);
1115 break;
1116 case TGSI_TOKEN_TYPE_DECLARATION:
1117 scanDeclaration(&parse.FullToken.FullDeclaration);
1118 break;
1119 case TGSI_TOKEN_TYPE_INSTRUCTION:
1120 insns[insnCount++] = parse.FullToken.FullInstruction;
1121 scanInstruction(&parse.FullToken.FullInstruction);
1122 break;
1123 case TGSI_TOKEN_TYPE_PROPERTY:
1124 scanProperty(&parse.FullToken.FullProperty);
1125 break;
1126 default:
1127 INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
1128 break;
1129 }
1130 }
1131 tgsi_parse_free(&parse);
1132
1133 if (indirectTempArrays.size()) {
1134 int tempBase = 0;
1135 for (std::set<int>::const_iterator it = indirectTempArrays.begin();
1136 it != indirectTempArrays.end(); ++it) {
1137 std::pair<int, int>& info = tempArrayInfo[*it];
1138 indirectTempOffsets.insert(std::make_pair(*it, tempBase - info.first));
1139 tempBase += info.second;
1140 }
1141 info->bin.tlsSpace += tempBase * 16;
1142 }
1143
1144 if (info->io.genUserClip > 0) {
1145 info->io.clipDistances = info->io.genUserClip;
1146
1147 const unsigned int nOut = (info->io.genUserClip + 3) / 4;
1148
1149 for (unsigned int n = 0; n < nOut; ++n) {
1150 unsigned int i = info->numOutputs++;
1151 info->out[i].id = i;
1152 info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
1153 info->out[i].si = n;
1154 info->out[i].mask = ((1 << info->io.clipDistances) - 1) >> (n * 4);
1155 }
1156 }
1157
1158 return info->assignSlots(info) == 0;
1159 }
1160
1161 void Source::scanProperty(const struct tgsi_full_property *prop)
1162 {
1163 switch (prop->Property.PropertyName) {
1164 case TGSI_PROPERTY_GS_OUTPUT_PRIM:
1165 info->prop.gp.outputPrim = prop->u[0].Data;
1166 break;
1167 case TGSI_PROPERTY_GS_INPUT_PRIM:
1168 info->prop.gp.inputPrim = prop->u[0].Data;
1169 break;
1170 case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
1171 info->prop.gp.maxVertices = prop->u[0].Data;
1172 break;
1173 case TGSI_PROPERTY_GS_INVOCATIONS:
1174 info->prop.gp.instanceCount = prop->u[0].Data;
1175 break;
1176 case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
1177 info->prop.fp.separateFragData = true;
1178 break;
1179 case TGSI_PROPERTY_FS_COORD_ORIGIN:
1180 case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
1181 case TGSI_PROPERTY_FS_DEPTH_LAYOUT:
1182 // we don't care
1183 break;
1184 case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
1185 info->io.genUserClip = -1;
1186 break;
1187 case TGSI_PROPERTY_TCS_VERTICES_OUT:
1188 info->prop.tp.outputPatchSize = prop->u[0].Data;
1189 break;
1190 case TGSI_PROPERTY_TES_PRIM_MODE:
1191 info->prop.tp.domain = prop->u[0].Data;
1192 break;
1193 case TGSI_PROPERTY_TES_SPACING:
1194 info->prop.tp.partitioning = prop->u[0].Data;
1195 break;
1196 case TGSI_PROPERTY_TES_VERTEX_ORDER_CW:
1197 info->prop.tp.winding = prop->u[0].Data;
1198 break;
1199 case TGSI_PROPERTY_TES_POINT_MODE:
1200 if (prop->u[0].Data)
1201 info->prop.tp.outputPrim = PIPE_PRIM_POINTS;
1202 else
1203 info->prop.tp.outputPrim = PIPE_PRIM_TRIANGLES; /* anything but points */
1204 break;
1205 case TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH:
1206 info->prop.cp.numThreads[0] = prop->u[0].Data;
1207 break;
1208 case TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT:
1209 info->prop.cp.numThreads[1] = prop->u[0].Data;
1210 break;
1211 case TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH:
1212 info->prop.cp.numThreads[2] = prop->u[0].Data;
1213 break;
1214 case TGSI_PROPERTY_NUM_CLIPDIST_ENABLED:
1215 info->io.clipDistances = prop->u[0].Data;
1216 break;
1217 case TGSI_PROPERTY_NUM_CULLDIST_ENABLED:
1218 info->io.cullDistances = prop->u[0].Data;
1219 break;
1220 case TGSI_PROPERTY_NEXT_SHADER:
1221 /* Do not need to know the next shader stage. */
1222 break;
1223 case TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL:
1224 info->prop.fp.earlyFragTests = prop->u[0].Data;
1225 break;
1226 case TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE:
1227 info->prop.fp.postDepthCoverage = prop->u[0].Data;
1228 break;
1229 case TGSI_PROPERTY_MUL_ZERO_WINS:
1230 info->io.mul_zero_wins = prop->u[0].Data;
1231 break;
1232 default:
1233 INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
1234 break;
1235 }
1236 }
1237
1238 void Source::scanImmediate(const struct tgsi_full_immediate *imm)
1239 {
1240 const unsigned n = info->immd.count++;
1241
1242 assert(n < scan.immediate_count);
1243
1244 for (int c = 0; c < 4; ++c)
1245 info->immd.data[n * 4 + c] = imm->u[c].Uint;
1246
1247 info->immd.type[n] = imm->Immediate.DataType;
1248 }
1249
1250 int Source::inferSysValDirection(unsigned sn) const
1251 {
1252 switch (sn) {
1253 case TGSI_SEMANTIC_INSTANCEID:
1254 case TGSI_SEMANTIC_VERTEXID:
1255 return 1;
1256 case TGSI_SEMANTIC_LAYER:
1257 #if 0
1258 case TGSI_SEMANTIC_VIEWPORTINDEX:
1259 return 0;
1260 #endif
1261 case TGSI_SEMANTIC_PRIMID:
1262 return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
1263 default:
1264 return 0;
1265 }
1266 }
1267
1268 bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
1269 {
1270 unsigned i, c;
1271 unsigned sn = TGSI_SEMANTIC_GENERIC;
1272 unsigned si = 0;
1273 const unsigned first = decl->Range.First, last = decl->Range.Last;
1274 const int arrayId = decl->Array.ArrayID;
1275
1276 if (decl->Declaration.Semantic) {
1277 sn = decl->Semantic.Name;
1278 si = decl->Semantic.Index;
1279 }
1280
1281 if (decl->Declaration.Local || decl->Declaration.File == TGSI_FILE_ADDRESS) {
1282 for (i = first; i <= last; ++i) {
1283 for (c = 0; c < 4; ++c) {
1284 locals.insert(
1285 Location(decl->Declaration.File, decl->Dim.Index2D, i, c));
1286 }
1287 }
1288 }
1289
1290 switch (decl->Declaration.File) {
1291 case TGSI_FILE_INPUT:
1292 if (info->type == PIPE_SHADER_VERTEX) {
1293 // all vertex attributes are equal
1294 for (i = first; i <= last; ++i) {
1295 info->in[i].sn = TGSI_SEMANTIC_GENERIC;
1296 info->in[i].si = i;
1297 }
1298 } else {
1299 for (i = first; i <= last; ++i, ++si) {
1300 info->in[i].id = i;
1301 info->in[i].sn = sn;
1302 info->in[i].si = si;
1303 if (info->type == PIPE_SHADER_FRAGMENT) {
1304 // translate interpolation mode
1305 switch (decl->Interp.Interpolate) {
1306 case TGSI_INTERPOLATE_CONSTANT:
1307 info->in[i].flat = 1;
1308 break;
1309 case TGSI_INTERPOLATE_COLOR:
1310 info->in[i].sc = 1;
1311 break;
1312 case TGSI_INTERPOLATE_LINEAR:
1313 info->in[i].linear = 1;
1314 break;
1315 default:
1316 break;
1317 }
1318 if (decl->Interp.Location)
1319 info->in[i].centroid = 1;
1320 }
1321
1322 if (sn == TGSI_SEMANTIC_PATCH)
1323 info->in[i].patch = 1;
1324 if (sn == TGSI_SEMANTIC_PATCH)
1325 info->numPatchConstants = MAX2(info->numPatchConstants, si + 1);
1326 }
1327 }
1328 break;
1329 case TGSI_FILE_OUTPUT:
1330 for (i = first; i <= last; ++i, ++si) {
1331 switch (sn) {
1332 case TGSI_SEMANTIC_POSITION:
1333 if (info->type == PIPE_SHADER_FRAGMENT)
1334 info->io.fragDepth = i;
1335 else
1336 if (clipVertexOutput < 0)
1337 clipVertexOutput = i;
1338 break;
1339 case TGSI_SEMANTIC_COLOR:
1340 if (info->type == PIPE_SHADER_FRAGMENT)
1341 info->prop.fp.numColourResults++;
1342 break;
1343 case TGSI_SEMANTIC_EDGEFLAG:
1344 info->io.edgeFlagOut = i;
1345 break;
1346 case TGSI_SEMANTIC_CLIPVERTEX:
1347 clipVertexOutput = i;
1348 break;
1349 case TGSI_SEMANTIC_CLIPDIST:
1350 info->io.genUserClip = -1;
1351 break;
1352 case TGSI_SEMANTIC_SAMPLEMASK:
1353 info->io.sampleMask = i;
1354 break;
1355 case TGSI_SEMANTIC_VIEWPORT_INDEX:
1356 info->io.viewportId = i;
1357 break;
1358 case TGSI_SEMANTIC_PATCH:
1359 info->numPatchConstants = MAX2(info->numPatchConstants, si + 1);
1360 /* fallthrough */
1361 case TGSI_SEMANTIC_TESSOUTER:
1362 case TGSI_SEMANTIC_TESSINNER:
1363 info->out[i].patch = 1;
1364 break;
1365 default:
1366 break;
1367 }
1368 info->out[i].id = i;
1369 info->out[i].sn = sn;
1370 info->out[i].si = si;
1371 }
1372 break;
1373 case TGSI_FILE_SYSTEM_VALUE:
1374 switch (sn) {
1375 case TGSI_SEMANTIC_INSTANCEID:
1376 info->io.instanceId = first;
1377 break;
1378 case TGSI_SEMANTIC_VERTEXID:
1379 info->io.vertexId = first;
1380 break;
1381 case TGSI_SEMANTIC_BASEVERTEX:
1382 case TGSI_SEMANTIC_BASEINSTANCE:
1383 case TGSI_SEMANTIC_DRAWID:
1384 info->prop.vp.usesDrawParameters = true;
1385 break;
1386 case TGSI_SEMANTIC_SAMPLEID:
1387 case TGSI_SEMANTIC_SAMPLEPOS:
1388 info->prop.fp.persampleInvocation = true;
1389 break;
1390 case TGSI_SEMANTIC_SAMPLEMASK:
1391 info->prop.fp.usesSampleMaskIn = true;
1392 break;
1393 default:
1394 break;
1395 }
1396 for (i = first; i <= last; ++i, ++si) {
1397 info->sv[i].sn = sn;
1398 info->sv[i].si = si;
1399 info->sv[i].input = inferSysValDirection(sn);
1400
1401 switch (sn) {
1402 case TGSI_SEMANTIC_TESSOUTER:
1403 case TGSI_SEMANTIC_TESSINNER:
1404 info->sv[i].patch = 1;
1405 break;
1406 }
1407 }
1408 break;
1409 /*
1410 case TGSI_FILE_RESOURCE:
1411 for (i = first; i <= last; ++i) {
1412 resources[i].target = decl->Resource.Resource;
1413 resources[i].raw = decl->Resource.Raw;
1414 resources[i].slot = i;
1415 }
1416 break;
1417 */
1418 case TGSI_FILE_SAMPLER_VIEW:
1419 for (i = first; i <= last; ++i)
1420 textureViews[i].target = decl->SamplerView.Resource;
1421 break;
1422 case TGSI_FILE_MEMORY:
1423 for (i = first; i <= last; ++i)
1424 memoryFiles[i].mem_type = decl->Declaration.MemType;
1425 break;
1426 case TGSI_FILE_NULL:
1427 case TGSI_FILE_TEMPORARY:
1428 for (i = first; i <= last; ++i)
1429 tempArrayId[i] = arrayId;
1430 if (arrayId)
1431 tempArrayInfo.insert(std::make_pair(arrayId, std::make_pair(
1432 first, last - first + 1)));
1433 break;
1434 case TGSI_FILE_BUFFER:
1435 for (i = first; i <= last; ++i)
1436 bufferAtomics[i] = decl->Declaration.Atomic;
1437 break;
1438 case TGSI_FILE_ADDRESS:
1439 case TGSI_FILE_CONSTANT:
1440 case TGSI_FILE_IMMEDIATE:
1441 case TGSI_FILE_SAMPLER:
1442 case TGSI_FILE_IMAGE:
1443 break;
1444 default:
1445 ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
1446 return false;
1447 }
1448 return true;
1449 }
1450
1451 inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
1452 {
1453 return insn.getOpcode() == TGSI_OPCODE_MOV &&
1454 insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
1455 insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
1456 }
1457
1458 void Source::scanInstructionSrc(const Instruction& insn,
1459 const Instruction::SrcRegister& src,
1460 unsigned mask)
1461 {
1462 if (src.getFile() == TGSI_FILE_TEMPORARY) {
1463 if (src.isIndirect(0))
1464 indirectTempArrays.insert(src.getArrayId());
1465 } else
1466 if (src.getFile() == TGSI_FILE_OUTPUT) {
1467 if (src.isIndirect(0)) {
1468 // We don't know which one is accessed, just mark everything for
1469 // reading. This is an extremely unlikely occurrence.
1470 for (unsigned i = 0; i < info->numOutputs; ++i)
1471 info->out[i].oread = 1;
1472 } else {
1473 info->out[src.getIndex(0)].oread = 1;
1474 }
1475 }
1476 if (src.getFile() == TGSI_FILE_SYSTEM_VALUE) {
1477 if (info->sv[src.getIndex(0)].sn == TGSI_SEMANTIC_SAMPLEPOS)
1478 info->prop.fp.readsSampleLocations = true;
1479 }
1480 if (src.getFile() != TGSI_FILE_INPUT)
1481 return;
1482
1483 if (src.isIndirect(0)) {
1484 for (unsigned i = 0; i < info->numInputs; ++i)
1485 info->in[i].mask = 0xf;
1486 } else {
1487 const int i = src.getIndex(0);
1488 for (unsigned c = 0; c < 4; ++c) {
1489 if (!(mask & (1 << c)))
1490 continue;
1491 int k = src.getSwizzle(c);
1492 if (k <= TGSI_SWIZZLE_W)
1493 info->in[i].mask |= 1 << k;
1494 }
1495 switch (info->in[i].sn) {
1496 case TGSI_SEMANTIC_PSIZE:
1497 case TGSI_SEMANTIC_PRIMID:
1498 case TGSI_SEMANTIC_FOG:
1499 info->in[i].mask &= 0x1;
1500 break;
1501 case TGSI_SEMANTIC_PCOORD:
1502 info->in[i].mask &= 0x3;
1503 break;
1504 default:
1505 break;
1506 }
1507 }
1508 }
1509
1510 bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
1511 {
1512 Instruction insn(inst);
1513
1514 if (insn.getOpcode() == TGSI_OPCODE_BARRIER)
1515 info->numBarriers = 1;
1516
1517 if (insn.getOpcode() == TGSI_OPCODE_FBFETCH)
1518 info->prop.fp.readsFramebuffer = true;
1519
1520 if (insn.getOpcode() == TGSI_OPCODE_INTERP_SAMPLE)
1521 info->prop.fp.readsSampleLocations = true;
1522
1523 if (insn.getOpcode() == TGSI_OPCODE_DEMOTE)
1524 info->prop.fp.usesDiscard = true;
1525
1526 if (insn.dstCount()) {
1527 Instruction::DstRegister dst = insn.getDst(0);
1528
1529 if (insn.getOpcode() == TGSI_OPCODE_STORE &&
1530 dst.getFile() != TGSI_FILE_MEMORY) {
1531 info->io.globalAccess |= 0x2;
1532
1533 if (dst.getFile() == TGSI_FILE_INPUT) {
1534 // TODO: Handle indirect somehow?
1535 const int i = dst.getIndex(0);
1536 info->in[i].mask |= 1;
1537 }
1538 }
1539
1540 if (dst.getFile() == TGSI_FILE_OUTPUT) {
1541 if (dst.isIndirect(0))
1542 for (unsigned i = 0; i < info->numOutputs; ++i)
1543 info->out[i].mask = 0xf;
1544 else
1545 info->out[dst.getIndex(0)].mask |= dst.getMask();
1546
1547 if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE ||
1548 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID ||
1549 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_LAYER ||
1550 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_VIEWPORT_INDEX ||
1551 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG)
1552 info->out[dst.getIndex(0)].mask &= 1;
1553
1554 if (isEdgeFlagPassthrough(insn))
1555 info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
1556 } else
1557 if (dst.getFile() == TGSI_FILE_TEMPORARY) {
1558 if (dst.isIndirect(0))
1559 indirectTempArrays.insert(dst.getArrayId());
1560 } else
1561 if (dst.getFile() == TGSI_FILE_BUFFER ||
1562 dst.getFile() == TGSI_FILE_IMAGE ||
1563 (dst.getFile() == TGSI_FILE_MEMORY &&
1564 memoryFiles[dst.getIndex(0)].mem_type == TGSI_MEMORY_TYPE_GLOBAL)) {
1565 info->io.globalAccess |= 0x2;
1566 }
1567 }
1568
1569 if (insn.srcCount() && (
1570 insn.getSrc(0).getFile() != TGSI_FILE_MEMORY ||
1571 memoryFiles[insn.getSrc(0).getIndex(0)].mem_type ==
1572 TGSI_MEMORY_TYPE_GLOBAL)) {
1573 switch (insn.getOpcode()) {
1574 case TGSI_OPCODE_ATOMUADD:
1575 case TGSI_OPCODE_ATOMXCHG:
1576 case TGSI_OPCODE_ATOMCAS:
1577 case TGSI_OPCODE_ATOMAND:
1578 case TGSI_OPCODE_ATOMOR:
1579 case TGSI_OPCODE_ATOMXOR:
1580 case TGSI_OPCODE_ATOMUMIN:
1581 case TGSI_OPCODE_ATOMIMIN:
1582 case TGSI_OPCODE_ATOMUMAX:
1583 case TGSI_OPCODE_ATOMIMAX:
1584 case TGSI_OPCODE_ATOMFADD:
1585 case TGSI_OPCODE_ATOMDEC_WRAP:
1586 case TGSI_OPCODE_ATOMINC_WRAP:
1587 case TGSI_OPCODE_LOAD:
1588 info->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ?
1589 0x1 : 0x2;
1590 break;
1591 }
1592 }
1593
1594
1595 for (unsigned s = 0; s < insn.srcCount(); ++s)
1596 scanInstructionSrc(insn, insn.getSrc(s), insn.srcMask(s));
1597
1598 for (unsigned s = 0; s < insn.getNumTexOffsets(); ++s)
1599 scanInstructionSrc(insn, insn.getTexOffset(s), insn.texOffsetMask());
1600
1601 return true;
1602 }
1603
1604 nv50_ir::TexInstruction::Target
1605 Instruction::getTexture(const tgsi::Source *code, int s) const
1606 {
1607 // XXX: indirect access
1608 unsigned int r;
1609
1610 switch (getSrc(s).getFile()) {
1611 /*
1612 case TGSI_FILE_RESOURCE:
1613 r = getSrc(s).getIndex(0);
1614 return translateTexture(code->resources.at(r).target);
1615 */
1616 case TGSI_FILE_SAMPLER_VIEW:
1617 r = getSrc(s).getIndex(0);
1618 return translateTexture(code->textureViews.at(r).target);
1619 default:
1620 return translateTexture(insn->Texture.Texture);
1621 }
1622 }
1623
1624 } // namespace tgsi
1625
1626 namespace {
1627
1628 using namespace nv50_ir;
1629
1630 class Converter : public ConverterCommon
1631 {
1632 public:
1633 Converter(Program *, const tgsi::Source *);
1634 ~Converter();
1635
1636 bool run();
1637
1638 private:
1639 Value *shiftAddress(Value *);
1640 Value *getVertexBase(int s);
1641 Value *getOutputBase(int s);
1642 DataArray *getArrayForFile(unsigned file, int idx);
1643 Value *fetchSrc(int s, int c);
1644 Value *fetchDst(int d, int c);
1645 Value *acquireDst(int d, int c);
1646 void storeDst(int d, int c, Value *);
1647
1648 Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1649 void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1650 Value *val, Value *ptr);
1651
1652 void adjustTempIndex(int arrayId, int &idx, int &idx2d) const;
1653 Value *applySrcMod(Value *, int s, int c);
1654
1655 Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1656 Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1657 Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1658
1659 bool isSubGroupMask(uint8_t semantic);
1660
1661 bool handleInstruction(const struct tgsi_full_instruction *);
1662 void exportOutputs();
1663 inline bool isEndOfSubroutine(uint ip);
1664
1665 void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1666
1667 // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1668 void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1669 void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1670 void handleTXF(Value *dst0[4], int R, int L_M);
1671 void handleTXQ(Value *dst0[4], enum TexQuery, int R);
1672 void handleFBFETCH(Value *dst0[4]);
1673 void handleLIT(Value *dst0[4]);
1674
1675 // Symbol *getResourceBase(int r);
1676 void getImageCoords(std::vector<Value *>&, int s);
1677
1678 void handleLOAD(Value *dst0[4]);
1679 void handleSTORE();
1680 void handleATOM(Value *dst0[4], DataType, uint16_t subOp);
1681
1682 void handleINTERP(Value *dst0[4]);
1683
1684 Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1685
1686 void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1687
1688 Value *buildDot(int dim);
1689
1690 class BindArgumentsPass : public Pass {
1691 public:
1692 BindArgumentsPass(Converter &conv) : conv(conv) { }
1693
1694 private:
1695 Converter &conv;
1696 Subroutine *sub;
1697
1698 inline const Location *getValueLocation(Subroutine *, Value *);
1699
1700 template<typename T> inline void
1701 updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1702 T (Function::*proto));
1703
1704 template<typename T> inline void
1705 updatePrototype(BitSet *set, void (Function::*updateSet)(),
1706 T (Function::*proto));
1707
1708 protected:
1709 bool visit(Function *);
1710 bool visit(BasicBlock *bb) { return false; }
1711 };
1712
1713 private:
1714 const tgsi::Source *code;
1715
1716 uint ip; // instruction pointer
1717
1718 tgsi::Instruction tgsi;
1719
1720 DataType dstTy;
1721 DataType srcTy;
1722
1723 DataArray tData; // TGSI_FILE_TEMPORARY
1724 DataArray lData; // TGSI_FILE_TEMPORARY, for indirect arrays
1725 DataArray aData; // TGSI_FILE_ADDRESS
1726 DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1727
1728 Value *zero;
1729
1730 Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1731 uint8_t vtxBaseValid;
1732
1733 Stack condBBs; // fork BB, then else clause BB
1734 Stack joinBBs; // fork BB, for inserting join ops on ENDIF
1735 Stack loopBBs; // loop headers
1736 Stack breakBBs; // end of / after loop
1737
1738 Value *viewport;
1739 };
1740
1741 Symbol *
1742 Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1743 {
1744 const int swz = src.getSwizzle(c);
1745
1746 /* TODO: Use Array ID when it's available for the index */
1747 return makeSym(src.getFile(),
1748 src.is2D() ? src.getIndex(1) : 0,
1749 src.getIndex(0), swz,
1750 src.getIndex(0) * 16 + swz * 4);
1751 }
1752
1753 Symbol *
1754 Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1755 {
1756 /* TODO: Use Array ID when it's available for the index */
1757 return makeSym(dst.getFile(),
1758 dst.is2D() ? dst.getIndex(1) : 0,
1759 dst.getIndex(0), c,
1760 dst.getIndex(0) * 16 + c * 4);
1761 }
1762
1763 Symbol *
1764 Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1765 {
1766 Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1767
1768 sym->reg.fileIndex = fileIdx;
1769
1770 if (tgsiFile == TGSI_FILE_MEMORY) {
1771 switch (code->memoryFiles[fileIdx].mem_type) {
1772 case TGSI_MEMORY_TYPE_GLOBAL:
1773 /* No-op this is the default for TGSI_FILE_MEMORY */
1774 sym->setFile(FILE_MEMORY_GLOBAL);
1775 break;
1776 case TGSI_MEMORY_TYPE_SHARED:
1777 sym->setFile(FILE_MEMORY_SHARED);
1778 break;
1779 case TGSI_MEMORY_TYPE_INPUT:
1780 assert(prog->getType() == Program::TYPE_COMPUTE);
1781 assert(idx == -1);
1782 sym->setFile(FILE_SHADER_INPUT);
1783 address += info->prop.cp.inputOffset;
1784 break;
1785 default:
1786 assert(0); /* TODO: Add support for global and private memory */
1787 }
1788 }
1789
1790 if (idx >= 0) {
1791 if (sym->reg.file == FILE_SHADER_INPUT)
1792 sym->setOffset(info->in[idx].slot[c] * 4);
1793 else
1794 if (sym->reg.file == FILE_SHADER_OUTPUT)
1795 sym->setOffset(info->out[idx].slot[c] * 4);
1796 else
1797 if (sym->reg.file == FILE_SYSTEM_VALUE)
1798 sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
1799 else
1800 sym->setOffset(address);
1801 } else {
1802 sym->setOffset(address);
1803 }
1804 return sym;
1805 }
1806
1807 Value *
1808 Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1809 {
1810 operation op;
1811
1812 // XXX: no way to know interpolation mode if we don't know what's accessed
1813 const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
1814 src.getIndex(0)], op);
1815
1816 Instruction *insn = new_Instruction(func, op, TYPE_F32);
1817
1818 insn->setDef(0, getScratch());
1819 insn->setSrc(0, srcToSym(src, c));
1820 if (op == OP_PINTERP)
1821 insn->setSrc(1, fragCoord[3]);
1822 if (ptr)
1823 insn->setIndirect(0, 0, ptr);
1824
1825 insn->setInterpolate(mode);
1826
1827 bb->insertTail(insn);
1828 return insn->getDef(0);
1829 }
1830
1831 Value *
1832 Converter::applySrcMod(Value *val, int s, int c)
1833 {
1834 Modifier m = tgsi.getSrc(s).getMod(c);
1835 DataType ty = tgsi.inferSrcType();
1836
1837 if (m & Modifier(NV50_IR_MOD_ABS))
1838 val = mkOp1v(OP_ABS, ty, getScratch(), val);
1839
1840 if (m & Modifier(NV50_IR_MOD_NEG))
1841 val = mkOp1v(OP_NEG, ty, getScratch(), val);
1842
1843 return val;
1844 }
1845
1846 Value *
1847 Converter::getVertexBase(int s)
1848 {
1849 assert(s < 5);
1850 if (!(vtxBaseValid & (1 << s))) {
1851 const int index = tgsi.getSrc(s).getIndex(1);
1852 Value *rel = NULL;
1853 if (tgsi.getSrc(s).isIndirect(1))
1854 rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1855 vtxBaseValid |= 1 << s;
1856 vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1857 mkImm(index), rel);
1858 }
1859 return vtxBase[s];
1860 }
1861
1862 Value *
1863 Converter::getOutputBase(int s)
1864 {
1865 assert(s < 5);
1866 if (!(vtxBaseValid & (1 << s))) {
1867 Value *offset = loadImm(NULL, tgsi.getSrc(s).getIndex(1));
1868 if (tgsi.getSrc(s).isIndirect(1))
1869 offset = mkOp2v(OP_ADD, TYPE_U32, getSSA(),
1870 fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL),
1871 offset);
1872 vtxBaseValid |= 1 << s;
1873 vtxBase[s] = mkOp2v(OP_ADD, TYPE_U32, getSSA(), outBase, offset);
1874 }
1875 return vtxBase[s];
1876 }
1877
1878 Value *
1879 Converter::fetchSrc(int s, int c)
1880 {
1881 Value *res;
1882 Value *ptr = NULL, *dimRel = NULL;
1883
1884 tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1885
1886 if (src.isIndirect(0))
1887 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1888
1889 if (src.is2D()) {
1890 switch (src.getFile()) {
1891 case TGSI_FILE_OUTPUT:
1892 dimRel = getOutputBase(s);
1893 break;
1894 case TGSI_FILE_INPUT:
1895 dimRel = getVertexBase(s);
1896 break;
1897 case TGSI_FILE_CONSTANT:
1898 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1899 if (src.isIndirect(1))
1900 dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1901 break;
1902 default:
1903 break;
1904 }
1905 }
1906
1907 res = fetchSrc(src, c, ptr);
1908
1909 if (dimRel)
1910 res->getInsn()->setIndirect(0, 1, dimRel);
1911
1912 return applySrcMod(res, s, c);
1913 }
1914
1915 Value *
1916 Converter::fetchDst(int d, int c)
1917 {
1918 Value *res;
1919 Value *ptr = NULL, *dimRel = NULL;
1920
1921 tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1922
1923 if (dst.isIndirect(0))
1924 ptr = fetchSrc(dst.getIndirect(0), 0, NULL);
1925
1926 if (dst.is2D()) {
1927 switch (dst.getFile()) {
1928 case TGSI_FILE_OUTPUT:
1929 assert(0); // TODO
1930 dimRel = NULL;
1931 break;
1932 case TGSI_FILE_INPUT:
1933 assert(0); // TODO
1934 dimRel = NULL;
1935 break;
1936 case TGSI_FILE_CONSTANT:
1937 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1938 if (dst.isIndirect(1))
1939 dimRel = fetchSrc(dst.getIndirect(1), 0, 0);
1940 break;
1941 default:
1942 break;
1943 }
1944 }
1945
1946 struct tgsi_full_src_register fsr = dst.asSrc();
1947 tgsi::Instruction::SrcRegister src(&fsr);
1948 res = fetchSrc(src, c, ptr);
1949
1950 if (dimRel)
1951 res->getInsn()->setIndirect(0, 1, dimRel);
1952
1953 return res;
1954 }
1955
1956 Converter::DataArray *
1957 Converter::getArrayForFile(unsigned file, int idx)
1958 {
1959 switch (file) {
1960 case TGSI_FILE_TEMPORARY:
1961 return idx == 0 ? &tData : &lData;
1962 case TGSI_FILE_ADDRESS:
1963 return &aData;
1964 case TGSI_FILE_OUTPUT:
1965 assert(prog->getType() == Program::TYPE_FRAGMENT);
1966 return &oData;
1967 default:
1968 assert(!"invalid/unhandled TGSI source file");
1969 return NULL;
1970 }
1971 }
1972
1973 Value *
1974 Converter::shiftAddress(Value *index)
1975 {
1976 if (!index)
1977 return NULL;
1978 return mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), index, mkImm(4));
1979 }
1980
1981 void
1982 Converter::adjustTempIndex(int arrayId, int &idx, int &idx2d) const
1983 {
1984 std::map<int, int>::const_iterator it =
1985 code->indirectTempOffsets.find(arrayId);
1986 if (it == code->indirectTempOffsets.end())
1987 return;
1988
1989 idx2d = 1;
1990 idx += it->second;
1991 }
1992
1993 bool
1994 Converter::isSubGroupMask(uint8_t semantic)
1995 {
1996 switch (semantic) {
1997 case TGSI_SEMANTIC_SUBGROUP_EQ_MASK:
1998 case TGSI_SEMANTIC_SUBGROUP_LT_MASK:
1999 case TGSI_SEMANTIC_SUBGROUP_LE_MASK:
2000 case TGSI_SEMANTIC_SUBGROUP_GT_MASK:
2001 case TGSI_SEMANTIC_SUBGROUP_GE_MASK:
2002 return true;
2003 default:
2004 return false;
2005 }
2006 }
2007
2008 Value *
2009 Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
2010 {
2011 int idx2d = src.is2D() ? src.getIndex(1) : 0;
2012 int idx = src.getIndex(0);
2013 const int swz = src.getSwizzle(c);
2014 Instruction *ld;
2015
2016 switch (src.getFile()) {
2017 case TGSI_FILE_IMMEDIATE:
2018 assert(!ptr);
2019 return loadImm(NULL, info->immd.data[idx * 4 + swz]);
2020 case TGSI_FILE_CONSTANT:
2021 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
2022 case TGSI_FILE_INPUT:
2023 if (prog->getType() == Program::TYPE_FRAGMENT) {
2024 // don't load masked inputs, won't be assigned a slot
2025 if (!ptr && !(info->in[idx].mask & (1 << swz)))
2026 return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
2027 return interpolate(src, c, shiftAddress(ptr));
2028 } else
2029 if (prog->getType() == Program::TYPE_GEOMETRY) {
2030 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_PRIMID)
2031 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_PRIMITIVE_ID, 0));
2032 // XXX: This is going to be a problem with scalar arrays, i.e. when
2033 // we cannot assume that the address is given in units of vec4.
2034 //
2035 // nv50 and nvc0 need different things here, so let the lowering
2036 // passes decide what to do with the address
2037 if (ptr)
2038 return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
2039 }
2040 ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr));
2041 ld->perPatch = info->in[idx].patch;
2042 return ld->getDef(0);
2043 case TGSI_FILE_OUTPUT:
2044 assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
2045 ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr));
2046 ld->perPatch = info->out[idx].patch;
2047 return ld->getDef(0);
2048 case TGSI_FILE_SYSTEM_VALUE:
2049 assert(!ptr);
2050 if (info->sv[idx].sn == TGSI_SEMANTIC_THREAD_ID &&
2051 info->prop.cp.numThreads[swz] == 1)
2052 return loadImm(NULL, 0u);
2053 if (isSubGroupMask(info->sv[idx].sn) && swz > 0)
2054 return loadImm(NULL, 0u);
2055 if (info->sv[idx].sn == TGSI_SEMANTIC_SUBGROUP_SIZE)
2056 return loadImm(NULL, 32u);
2057 ld = mkOp1(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
2058 ld->perPatch = info->sv[idx].patch;
2059 return ld->getDef(0);
2060 case TGSI_FILE_TEMPORARY: {
2061 int arrayid = src.getArrayId();
2062 if (!arrayid)
2063 arrayid = code->tempArrayId[idx];
2064 adjustTempIndex(arrayid, idx, idx2d);
2065 }
2066 /* fallthrough */
2067 default:
2068 return getArrayForFile(src.getFile(), idx2d)->load(
2069 sub.cur->values, idx, swz, shiftAddress(ptr));
2070 }
2071 }
2072
2073 Value *
2074 Converter::acquireDst(int d, int c)
2075 {
2076 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
2077 const unsigned f = dst.getFile();
2078 int idx = dst.getIndex(0);
2079 int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
2080
2081 if (dst.isMasked(c) || f == TGSI_FILE_BUFFER || f == TGSI_FILE_MEMORY ||
2082 f == TGSI_FILE_IMAGE)
2083 return NULL;
2084
2085 if (dst.isIndirect(0) ||
2086 f == TGSI_FILE_SYSTEM_VALUE ||
2087 (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
2088 return getScratch();
2089
2090 if (f == TGSI_FILE_TEMPORARY) {
2091 int arrayid = dst.getArrayId();
2092 if (!arrayid)
2093 arrayid = code->tempArrayId[idx];
2094 adjustTempIndex(arrayid, idx, idx2d);
2095 }
2096
2097 return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
2098 }
2099
2100 void
2101 Converter::storeDst(int d, int c, Value *val)
2102 {
2103 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
2104
2105 if (tgsi.getSaturate()) {
2106 mkOp1(OP_SAT, dstTy, val, val);
2107 }
2108
2109 Value *ptr = NULL;
2110 if (dst.isIndirect(0))
2111 ptr = shiftAddress(fetchSrc(dst.getIndirect(0), 0, NULL));
2112
2113 if (info->io.genUserClip > 0 &&
2114 dst.getFile() == TGSI_FILE_OUTPUT &&
2115 !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
2116 mkMov(clipVtx[c], val);
2117 val = clipVtx[c];
2118 }
2119
2120 storeDst(dst, c, val, ptr);
2121 }
2122
2123 void
2124 Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
2125 Value *val, Value *ptr)
2126 {
2127 const unsigned f = dst.getFile();
2128 int idx = dst.getIndex(0);
2129 int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
2130
2131 if (f == TGSI_FILE_SYSTEM_VALUE) {
2132 assert(!ptr);
2133 mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
2134 } else
2135 if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
2136
2137 if (ptr || (info->out[idx].mask & (1 << c))) {
2138 /* Save the viewport index into a scratch register so that it can be
2139 exported at EMIT time */
2140 if (info->out[idx].sn == TGSI_SEMANTIC_VIEWPORT_INDEX &&
2141 prog->getType() == Program::TYPE_GEOMETRY &&
2142 viewport != NULL)
2143 mkOp1(OP_MOV, TYPE_U32, viewport, val);
2144 else
2145 mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val)->perPatch =
2146 info->out[idx].patch;
2147 }
2148 } else
2149 if (f == TGSI_FILE_TEMPORARY ||
2150 f == TGSI_FILE_ADDRESS ||
2151 f == TGSI_FILE_OUTPUT) {
2152 if (f == TGSI_FILE_TEMPORARY) {
2153 int arrayid = dst.getArrayId();
2154 if (!arrayid)
2155 arrayid = code->tempArrayId[idx];
2156 adjustTempIndex(arrayid, idx, idx2d);
2157 }
2158
2159 getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
2160 } else {
2161 assert(!"invalid dst file");
2162 }
2163 }
2164
2165 #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
2166 for (chan = 0; chan < 4; ++chan) \
2167 if (!inst.getDst(d).isMasked(chan))
2168
2169 Value *
2170 Converter::buildDot(int dim)
2171 {
2172 assert(dim > 0);
2173
2174 Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
2175 Value *dotp = getScratch();
2176
2177 mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1)
2178 ->dnz = info->io.mul_zero_wins;
2179
2180 for (int c = 1; c < dim; ++c) {
2181 src0 = fetchSrc(0, c);
2182 src1 = fetchSrc(1, c);
2183 mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp)
2184 ->dnz = info->io.mul_zero_wins;
2185 }
2186 return dotp;
2187 }
2188
2189 void
2190 Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
2191 {
2192 FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
2193 join->fixed = 1;
2194 conv->insertHead(join);
2195
2196 assert(!fork->joinAt);
2197 fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
2198 fork->insertBefore(fork->getExit(), fork->joinAt);
2199 }
2200
2201 void
2202 Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
2203 {
2204 unsigned rIdx = 0, sIdx = 0;
2205
2206 if (R >= 0 && tgsi.getSrc(R).getFile() != TGSI_FILE_SAMPLER) {
2207 // This is the bindless case. We have to get the actual value and pass
2208 // it in. This will be the complete handle.
2209 tex->tex.rIndirectSrc = s;
2210 tex->setSrc(s++, fetchSrc(R, 0));
2211 tex->setTexture(tgsi.getTexture(code, R), 0xff, 0x1f);
2212 tex->tex.bindless = true;
2213 return;
2214 }
2215
2216 if (R >= 0)
2217 rIdx = tgsi.getSrc(R).getIndex(0);
2218 if (S >= 0)
2219 sIdx = tgsi.getSrc(S).getIndex(0);
2220
2221 tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
2222
2223 if (tgsi.getSrc(R).isIndirect(0)) {
2224 tex->tex.rIndirectSrc = s;
2225 tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
2226 }
2227 if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
2228 tex->tex.sIndirectSrc = s;
2229 tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
2230 }
2231 }
2232
2233 void
2234 Converter::handleTXQ(Value *dst0[4], enum TexQuery query, int R)
2235 {
2236 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
2237 tex->tex.query = query;
2238 unsigned int c, d;
2239
2240 for (d = 0, c = 0; c < 4; ++c) {
2241 if (!dst0[c])
2242 continue;
2243 tex->tex.mask |= 1 << c;
2244 tex->setDef(d++, dst0[c]);
2245 }
2246 if (query == TXQ_DIMS)
2247 tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
2248 else
2249 tex->setSrc((c = 0), zero);
2250
2251 setTexRS(tex, ++c, R, -1);
2252
2253 bb->insertTail(tex);
2254 }
2255
2256 void
2257 Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
2258 {
2259 Value *proj = fetchSrc(0, 3);
2260 Instruction *insn = proj->getUniqueInsn();
2261 int c;
2262
2263 if (insn->op == OP_PINTERP) {
2264 bb->insertTail(insn = cloneForward(func, insn));
2265 insn->op = OP_LINTERP;
2266 insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
2267 insn->setSrc(1, NULL);
2268 proj = insn->getDef(0);
2269 }
2270 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
2271
2272 for (c = 0; c < 4; ++c) {
2273 if (!(mask & (1 << c)))
2274 continue;
2275 if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
2276 continue;
2277 mask &= ~(1 << c);
2278
2279 bb->insertTail(insn = cloneForward(func, insn));
2280 insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
2281 insn->setSrc(1, proj);
2282 dst[c] = insn->getDef(0);
2283 }
2284 if (!mask)
2285 return;
2286
2287 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
2288
2289 for (c = 0; c < 4; ++c)
2290 if (mask & (1 << c))
2291 dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
2292 }
2293
2294 // order of nv50 ir sources: x y z layer lod/bias shadow
2295 // order of TGSI TEX sources: x y z layer shadow lod/bias
2296 // lowering will finally set the hw specific order (like array first on nvc0)
2297 void
2298 Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
2299 {
2300 Value *arg[4], *src[8];
2301 Value *lod = NULL, *shd = NULL;
2302 unsigned int s, c, d;
2303 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
2304
2305 TexInstruction::Target tgt = tgsi.getTexture(code, R);
2306
2307 for (s = 0; s < tgt.getArgCount(); ++s)
2308 arg[s] = src[s] = fetchSrc(0, s);
2309
2310 if (tgsi.getOpcode() == TGSI_OPCODE_TEX_LZ)
2311 lod = loadImm(NULL, 0);
2312 else if (texi->op == OP_TXL || texi->op == OP_TXB)
2313 lod = fetchSrc(L >> 4, L & 3);
2314
2315 if (C == 0x0f)
2316 C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
2317
2318 if (tgt == TEX_TARGET_CUBE_ARRAY_SHADOW) {
2319 switch (tgsi.getOpcode()) {
2320 case TGSI_OPCODE_TG4: shd = fetchSrc(1, 0); break;
2321 case TGSI_OPCODE_TEX2: shd = fetchSrc(1, 0); break;
2322 case TGSI_OPCODE_TXB2: shd = fetchSrc(1, 1); break;
2323 case TGSI_OPCODE_TXL2: shd = fetchSrc(1, 1); break;
2324 default: assert(!"unexpected opcode with cube array shadow"); break;
2325 }
2326 }
2327 else if (tgt.isShadow())
2328 shd = fetchSrc(C >> 4, C & 3);
2329
2330 if (texi->op == OP_TXD) {
2331 for (c = 0; c < tgt.getDim() + tgt.isCube(); ++c) {
2332 texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
2333 texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
2334 }
2335 }
2336
2337 // cube textures don't care about projection value, it's divided out
2338 if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
2339 unsigned int n = tgt.getDim();
2340 if (shd) {
2341 arg[n] = shd;
2342 ++n;
2343 assert(tgt.getDim() == tgt.getArgCount());
2344 }
2345 loadProjTexCoords(src, arg, (1 << n) - 1);
2346 if (shd)
2347 shd = src[n - 1];
2348 }
2349
2350 for (c = 0, d = 0; c < 4; ++c) {
2351 if (dst[c]) {
2352 texi->setDef(d++, dst[c]);
2353 texi->tex.mask |= 1 << c;
2354 } else {
2355 // NOTE: maybe hook up def too, for CSE
2356 }
2357 }
2358 for (s = 0; s < tgt.getArgCount(); ++s)
2359 texi->setSrc(s, src[s]);
2360 if (lod)
2361 texi->setSrc(s++, lod);
2362 if (shd)
2363 texi->setSrc(s++, shd);
2364
2365 setTexRS(texi, s, R, S);
2366
2367 if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
2368 texi->tex.levelZero = true;
2369 if (prog->getType() != Program::TYPE_FRAGMENT &&
2370 (tgsi.getOpcode() == TGSI_OPCODE_TEX ||
2371 tgsi.getOpcode() == TGSI_OPCODE_TEX2 ||
2372 tgsi.getOpcode() == TGSI_OPCODE_TXP))
2373 texi->tex.levelZero = true;
2374 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 && !tgt.isShadow())
2375 texi->tex.gatherComp = tgsi.getSrc(1).getValueU32(0, info);
2376
2377 texi->tex.useOffsets = tgsi.getNumTexOffsets();
2378 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
2379 for (c = 0; c < 3; ++c) {
2380 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
2381 texi->offset[s][c].setInsn(texi);
2382 }
2383 }
2384
2385 bb->insertTail(texi);
2386 }
2387
2388 // 1st source: xyz = coordinates, w = lod/sample
2389 // 2nd source: offset
2390 void
2391 Converter::handleTXF(Value *dst[4], int R, int L_M)
2392 {
2393 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
2394 int ms;
2395 unsigned int c, d, s;
2396
2397 texi->tex.target = tgsi.getTexture(code, R);
2398
2399 ms = texi->tex.target.isMS() ? 1 : 0;
2400 texi->tex.levelZero = ms; /* MS textures don't have mip-maps */
2401
2402 for (c = 0, d = 0; c < 4; ++c) {
2403 if (dst[c]) {
2404 texi->setDef(d++, dst[c]);
2405 texi->tex.mask |= 1 << c;
2406 }
2407 }
2408 for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c)
2409 texi->setSrc(c, fetchSrc(0, c));
2410 if (!ms && tgsi.getOpcode() == TGSI_OPCODE_TXF_LZ)
2411 texi->setSrc(c++, loadImm(NULL, 0));
2412 else
2413 texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms
2414
2415 setTexRS(texi, c, R, -1);
2416
2417 texi->tex.useOffsets = tgsi.getNumTexOffsets();
2418 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
2419 for (c = 0; c < 3; ++c) {
2420 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
2421 texi->offset[s][c].setInsn(texi);
2422 }
2423 }
2424
2425 bb->insertTail(texi);
2426 }
2427
2428 void
2429 Converter::handleFBFETCH(Value *dst[4])
2430 {
2431 TexInstruction *texi = new_TexInstruction(func, OP_TXF);
2432 unsigned int c, d;
2433
2434 texi->tex.target = TEX_TARGET_2D_MS_ARRAY;
2435 texi->tex.levelZero = 1;
2436 texi->tex.useOffsets = 0;
2437
2438 for (c = 0, d = 0; c < 4; ++c) {
2439 if (dst[c]) {
2440 texi->setDef(d++, dst[c]);
2441 texi->tex.mask |= 1 << c;
2442 }
2443 }
2444
2445 Value *x = mkOp1v(OP_RDSV, TYPE_F32, getScratch(), mkSysVal(SV_POSITION, 0));
2446 Value *y = mkOp1v(OP_RDSV, TYPE_F32, getScratch(), mkSysVal(SV_POSITION, 1));
2447 Value *z = mkOp1v(OP_RDSV, TYPE_U32, getScratch(), mkSysVal(SV_LAYER, 0));
2448 Value *ms = mkOp1v(OP_RDSV, TYPE_U32, getScratch(), mkSysVal(SV_SAMPLE_INDEX, 0));
2449
2450 mkCvt(OP_CVT, TYPE_U32, x, TYPE_F32, x)->rnd = ROUND_Z;
2451 mkCvt(OP_CVT, TYPE_U32, y, TYPE_F32, y)->rnd = ROUND_Z;
2452 texi->setSrc(0, x);
2453 texi->setSrc(1, y);
2454 texi->setSrc(2, z);
2455 texi->setSrc(3, ms);
2456
2457 texi->tex.r = texi->tex.s = -1;
2458
2459 bb->insertTail(texi);
2460 }
2461
2462 void
2463 Converter::handleLIT(Value *dst0[4])
2464 {
2465 Value *val0 = NULL;
2466 unsigned int mask = tgsi.getDst(0).getMask();
2467
2468 if (mask & (1 << 0))
2469 loadImm(dst0[0], 1.0f);
2470
2471 if (mask & (1 << 3))
2472 loadImm(dst0[3], 1.0f);
2473
2474 if (mask & (3 << 1)) {
2475 val0 = getScratch();
2476 mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
2477 if (mask & (1 << 1))
2478 mkMov(dst0[1], val0);
2479 }
2480
2481 if (mask & (1 << 2)) {
2482 Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
2483 Value *val1 = getScratch(), *val3 = getScratch();
2484
2485 Value *pos128 = loadImm(NULL, +127.999999f);
2486 Value *neg128 = loadImm(NULL, -127.999999f);
2487
2488 mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
2489 mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
2490 mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
2491 mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
2492
2493 mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], TYPE_F32, val3, zero, val0);
2494 }
2495 }
2496
2497 /* Keep this around for now as reference when adding img support
2498 static inline bool
2499 isResourceSpecial(const int r)
2500 {
2501 return (r == TGSI_RESOURCE_GLOBAL ||
2502 r == TGSI_RESOURCE_LOCAL ||
2503 r == TGSI_RESOURCE_PRIVATE ||
2504 r == TGSI_RESOURCE_INPUT);
2505 }
2506
2507 static inline bool
2508 isResourceRaw(const tgsi::Source *code, const int r)
2509 {
2510 return isResourceSpecial(r) || code->resources[r].raw;
2511 }
2512
2513 static inline nv50_ir::TexTarget
2514 getResourceTarget(const tgsi::Source *code, int r)
2515 {
2516 if (isResourceSpecial(r))
2517 return nv50_ir::TEX_TARGET_BUFFER;
2518 return tgsi::translateTexture(code->resources.at(r).target);
2519 }
2520
2521 Symbol *
2522 Converter::getResourceBase(const int r)
2523 {
2524 Symbol *sym = NULL;
2525
2526 switch (r) {
2527 case TGSI_RESOURCE_GLOBAL:
2528 sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL,
2529 info->io.auxCBSlot);
2530 break;
2531 case TGSI_RESOURCE_LOCAL:
2532 assert(prog->getType() == Program::TYPE_COMPUTE);
2533 sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32,
2534 info->prop.cp.sharedOffset);
2535 break;
2536 case TGSI_RESOURCE_PRIVATE:
2537 sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32,
2538 info->bin.tlsSpace);
2539 break;
2540 case TGSI_RESOURCE_INPUT:
2541 assert(prog->getType() == Program::TYPE_COMPUTE);
2542 sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32,
2543 info->prop.cp.inputOffset);
2544 break;
2545 default:
2546 sym = new_Symbol(prog,
2547 nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot);
2548 break;
2549 }
2550 return sym;
2551 }
2552
2553 void
2554 Converter::getResourceCoords(std::vector<Value *> &coords, int r, int s)
2555 {
2556 const int arg =
2557 TexInstruction::Target(getResourceTarget(code, r)).getArgCount();
2558
2559 for (int c = 0; c < arg; ++c)
2560 coords.push_back(fetchSrc(s, c));
2561
2562 // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk
2563 if (r == TGSI_RESOURCE_LOCAL ||
2564 r == TGSI_RESOURCE_PRIVATE ||
2565 r == TGSI_RESOURCE_INPUT)
2566 coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS),
2567 coords[0]);
2568 }
2569
2570 static inline int
2571 partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask)
2572 {
2573 int n = 0;
2574
2575 while (mask) {
2576 if (mask & 1) {
2577 size[n]++;
2578 } else {
2579 if (size[n])
2580 comp[n = 1] = size[0] + 1;
2581 else
2582 comp[n]++;
2583 }
2584 mask >>= 1;
2585 }
2586 if (size[0] == 3) {
2587 n = 1;
2588 size[0] = (comp[0] == 1) ? 1 : 2;
2589 size[1] = 3 - size[0];
2590 comp[1] = comp[0] + size[0];
2591 }
2592 return n + 1;
2593 }
2594 */
2595 void
2596 Converter::getImageCoords(std::vector<Value *> &coords, int s)
2597 {
2598 TexInstruction::Target t =
2599 TexInstruction::Target(tgsi.getImageTarget());
2600 const int arg = t.getDim() + (t.isArray() || t.isCube());
2601
2602 for (int c = 0; c < arg; ++c)
2603 coords.push_back(fetchSrc(s, c));
2604
2605 if (t.isMS())
2606 coords.push_back(fetchSrc(s, 3));
2607 }
2608
2609 // For raw loads, granularity is 4 byte.
2610 // Usage of the texture read mask on OP_SULDP is not allowed.
2611 void
2612 Converter::handleLOAD(Value *dst0[4])
2613 {
2614 const int r = tgsi.getSrc(0).getIndex(0);
2615 int c;
2616 std::vector<Value *> off, src, ldv, def;
2617 Value *ind = NULL;
2618
2619 if (tgsi.getSrc(0).isIndirect(0))
2620 ind = fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0);
2621
2622 switch (tgsi.getSrc(0).getFile()) {
2623 case TGSI_FILE_BUFFER:
2624 case TGSI_FILE_MEMORY:
2625 for (c = 0; c < 4; ++c) {
2626 if (!dst0[c])
2627 continue;
2628
2629 Value *off;
2630 Symbol *sym;
2631 uint32_t src0_component_offset = tgsi.getSrc(0).getSwizzle(c) * 4;
2632
2633 if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE) {
2634 off = NULL;
2635 sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c,
2636 tgsi.getSrc(1).getValueU32(0, info) +
2637 src0_component_offset);
2638 } else {
2639 // yzw are ignored for buffers
2640 off = fetchSrc(1, 0);
2641 sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c,
2642 src0_component_offset);
2643 }
2644
2645 Instruction *ld = mkLoad(TYPE_U32, dst0[c], sym, off);
2646 if (tgsi.getSrc(0).getFile() == TGSI_FILE_BUFFER &&
2647 code->bufferAtomics[r])
2648 ld->cache = nv50_ir::CACHE_CG;
2649 else
2650 ld->cache = tgsi.getCacheMode();
2651 if (ind)
2652 ld->setIndirect(0, 1, ind);
2653 }
2654 break;
2655 default: {
2656 getImageCoords(off, 1);
2657 def.resize(4);
2658
2659 for (c = 0; c < 4; ++c) {
2660 if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
2661 def[c] = getScratch();
2662 else
2663 def[c] = dst0[c];
2664 }
2665
2666 bool bindless = tgsi.getSrc(0).getFile() != TGSI_FILE_IMAGE;
2667 if (bindless)
2668 ind = fetchSrc(0, 0);
2669
2670 TexInstruction *ld =
2671 mkTex(OP_SULDP, tgsi.getImageTarget(), 0, 0, def, off);
2672 ld->tex.mask = tgsi.getDst(0).getMask();
2673 ld->tex.format = tgsi.getImageFormat();
2674 ld->cache = tgsi.getCacheMode();
2675 ld->tex.bindless = bindless;
2676 if (!bindless)
2677 ld->tex.r = r;
2678 if (ind)
2679 ld->setIndirectR(ind);
2680
2681 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2682 if (dst0[c] != def[c])
2683 mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
2684 break;
2685 }
2686 }
2687
2688
2689 /* Keep this around for now as reference when adding img support
2690 getResourceCoords(off, r, 1);
2691
2692 if (isResourceRaw(code, r)) {
2693 uint8_t mask = 0;
2694 uint8_t comp[2] = { 0, 0 };
2695 uint8_t size[2] = { 0, 0 };
2696
2697 Symbol *base = getResourceBase(r);
2698
2699 // determine the base and size of the at most 2 load ops
2700 for (c = 0; c < 4; ++c)
2701 if (!tgsi.getDst(0).isMasked(c))
2702 mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X);
2703
2704 int n = partitionLoadStore(comp, size, mask);
2705
2706 src = off;
2707
2708 def.resize(4); // index by component, the ones we need will be non-NULL
2709 for (c = 0; c < 4; ++c) {
2710 if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c))
2711 def[c] = dst0[c];
2712 else
2713 if (mask & (1 << c))
2714 def[c] = getScratch();
2715 }
2716
2717 const bool useLd = isResourceSpecial(r) ||
2718 (info->io.nv50styleSurfaces &&
2719 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2720
2721 for (int i = 0; i < n; ++i) {
2722 ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]);
2723
2724 if (comp[i]) // adjust x component of source address if necessary
2725 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2726 off[0], mkImm(comp[i] * 4));
2727 else
2728 src[0] = off[0];
2729
2730 if (useLd) {
2731 Instruction *ld =
2732 mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]);
2733 for (size_t c = 1; c < ldv.size(); ++c)
2734 ld->setDef(c, ldv[c]);
2735 } else {
2736 mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot,
2737 0, ldv, src)->dType = typeOfSize(size[i] * 4);
2738 }
2739 }
2740 } else {
2741 def.resize(4);
2742 for (c = 0; c < 4; ++c) {
2743 if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
2744 def[c] = getScratch();
2745 else
2746 def[c] = dst0[c];
2747 }
2748
2749 mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0,
2750 def, off);
2751 }
2752 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2753 if (dst0[c] != def[c])
2754 mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
2755 */
2756 }
2757
2758 // For formatted stores, the write mask on OP_SUSTP can be used.
2759 // Raw stores have to be split.
2760 void
2761 Converter::handleSTORE()
2762 {
2763 const int r = tgsi.getDst(0).getIndex(0);
2764 int c;
2765 std::vector<Value *> off, src, dummy;
2766 Value *ind = NULL;
2767
2768 if (tgsi.getDst(0).isIndirect(0))
2769 ind = fetchSrc(tgsi.getDst(0).getIndirect(0), 0, 0);
2770
2771 switch (tgsi.getDst(0).getFile()) {
2772 case TGSI_FILE_BUFFER:
2773 case TGSI_FILE_MEMORY:
2774 for (c = 0; c < 4; ++c) {
2775 if (!(tgsi.getDst(0).getMask() & (1 << c)))
2776 continue;
2777
2778 Symbol *sym;
2779 Value *off;
2780 if (tgsi.getSrc(0).getFile() == TGSI_FILE_IMMEDIATE) {
2781 off = NULL;
2782 sym = makeSym(tgsi.getDst(0).getFile(), r, -1, c,
2783 tgsi.getSrc(0).getValueU32(0, info) + 4 * c);
2784 } else {
2785 // yzw are ignored for buffers
2786 off = fetchSrc(0, 0);
2787 sym = makeSym(tgsi.getDst(0).getFile(), r, -1, c, 4 * c);
2788 }
2789
2790 Instruction *st = mkStore(OP_STORE, TYPE_U32, sym, off, fetchSrc(1, c));
2791 st->cache = tgsi.getCacheMode();
2792 if (ind)
2793 st->setIndirect(0, 1, ind);
2794 }
2795 break;
2796 default: {
2797 getImageCoords(off, 0);
2798 src = off;
2799
2800 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2801 src.push_back(fetchSrc(1, c));
2802
2803 bool bindless = tgsi.getDst(0).getFile() != TGSI_FILE_IMAGE;
2804 if (bindless)
2805 ind = fetchDst(0, 0);
2806
2807 TexInstruction *st =
2808 mkTex(OP_SUSTP, tgsi.getImageTarget(), 0, 0, dummy, src);
2809 st->tex.mask = tgsi.getDst(0).getMask();
2810 st->tex.format = tgsi.getImageFormat();
2811 st->cache = tgsi.getCacheMode();
2812 st->tex.bindless = bindless;
2813 if (!bindless)
2814 st->tex.r = r;
2815 if (ind)
2816 st->setIndirectR(ind);
2817
2818 break;
2819 }
2820 }
2821
2822 /* Keep this around for now as reference when adding img support
2823 getResourceCoords(off, r, 0);
2824 src = off;
2825 const int s = src.size();
2826
2827 if (isResourceRaw(code, r)) {
2828 uint8_t comp[2] = { 0, 0 };
2829 uint8_t size[2] = { 0, 0 };
2830
2831 int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask());
2832
2833 Symbol *base = getResourceBase(r);
2834
2835 const bool useSt = isResourceSpecial(r) ||
2836 (info->io.nv50styleSurfaces &&
2837 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2838
2839 for (int i = 0; i < n; ++i) {
2840 if (comp[i]) // adjust x component of source address if necessary
2841 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2842 off[0], mkImm(comp[i] * 4));
2843 else
2844 src[0] = off[0];
2845
2846 const DataType stTy = typeOfSize(size[i] * 4);
2847
2848 if (useSt) {
2849 Instruction *st =
2850 mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i]));
2851 for (c = 1; c < size[i]; ++c)
2852 st->setSrc(1 + c, fetchSrc(1, comp[i] + c));
2853 st->setIndirect(0, 0, src[0]);
2854 } else {
2855 // attach values to be stored
2856 src.resize(s + size[i]);
2857 for (c = 0; c < size[i]; ++c)
2858 src[s + c] = fetchSrc(1, comp[i] + c);
2859 mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot,
2860 0, dummy, src)->setType(stTy);
2861 }
2862 }
2863 } else {
2864 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2865 src.push_back(fetchSrc(1, c));
2866
2867 mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0,
2868 dummy, src)->tex.mask = tgsi.getDst(0).getMask();
2869 }
2870 */
2871 }
2872
2873 // XXX: These only work on resources with the single-component u32/s32 formats.
2874 // Therefore the result is replicated. This might not be intended by TGSI, but
2875 // operating on more than 1 component would produce undefined results because
2876 // they do not exist.
2877 void
2878 Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp)
2879 {
2880 const int r = tgsi.getSrc(0).getIndex(0);
2881 std::vector<Value *> srcv;
2882 std::vector<Value *> defv;
2883 LValue *dst = getScratch();
2884 Value *ind = NULL;
2885
2886 if (tgsi.getSrc(0).isIndirect(0))
2887 ind = fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0);
2888
2889 switch (tgsi.getSrc(0).getFile()) {
2890 case TGSI_FILE_BUFFER:
2891 case TGSI_FILE_MEMORY:
2892 for (int c = 0; c < 4; ++c) {
2893 if (!dst0[c])
2894 continue;
2895
2896 Instruction *insn;
2897 Value *off = fetchSrc(1, c);
2898 Value *sym;
2899 if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE)
2900 sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c,
2901 tgsi.getSrc(1).getValueU32(c, info));
2902 else
2903 sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c, 0);
2904 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2905 insn = mkOp3(OP_ATOM, ty, dst, sym, fetchSrc(2, c), fetchSrc(3, c));
2906 else
2907 insn = mkOp2(OP_ATOM, ty, dst, sym, fetchSrc(2, c));
2908 if (tgsi.getSrc(1).getFile() != TGSI_FILE_IMMEDIATE)
2909 insn->setIndirect(0, 0, off);
2910 if (ind)
2911 insn->setIndirect(0, 1, ind);
2912 insn->subOp = subOp;
2913 }
2914 for (int c = 0; c < 4; ++c)
2915 if (dst0[c])
2916 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2917 break;
2918 default: {
2919 getImageCoords(srcv, 1);
2920 defv.push_back(dst);
2921 srcv.push_back(fetchSrc(2, 0));
2922
2923 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2924 srcv.push_back(fetchSrc(3, 0));
2925
2926 bool bindless = tgsi.getSrc(0).getFile() != TGSI_FILE_IMAGE;
2927 if (bindless)
2928 ind = fetchSrc(0, 0);
2929
2930 TexInstruction *tex = mkTex(OP_SUREDP, tgsi.getImageTarget(),
2931 0, 0, defv, srcv);
2932 tex->subOp = subOp;
2933 tex->tex.mask = 1;
2934 tex->tex.format = tgsi.getImageFormat();
2935 tex->setType(ty);
2936 tex->tex.bindless = bindless;
2937 if (!bindless)
2938 tex->tex.r = r;
2939 if (ind)
2940 tex->setIndirectR(ind);
2941
2942 for (int c = 0; c < 4; ++c)
2943 if (dst0[c])
2944 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2945 break;
2946 }
2947 }
2948
2949 /* Keep this around for now as reference when adding img support
2950 getResourceCoords(srcv, r, 1);
2951
2952 if (isResourceSpecial(r)) {
2953 assert(r != TGSI_RESOURCE_INPUT);
2954 Instruction *insn;
2955 insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0));
2956 insn->subOp = subOp;
2957 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2958 insn->setSrc(2, fetchSrc(3, 0));
2959 insn->setIndirect(0, 0, srcv.at(0));
2960 } else {
2961 operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP;
2962 TexTarget targ = getResourceTarget(code, r);
2963 int idx = code->resources[r].slot;
2964 defv.push_back(dst);
2965 srcv.push_back(fetchSrc(2, 0));
2966 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2967 srcv.push_back(fetchSrc(3, 0));
2968 TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv);
2969 tex->subOp = subOp;
2970 tex->tex.mask = 1;
2971 tex->setType(ty);
2972 }
2973
2974 for (int c = 0; c < 4; ++c)
2975 if (dst0[c])
2976 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2977 */
2978 }
2979
2980 void
2981 Converter::handleINTERP(Value *dst[4])
2982 {
2983 // Check whether the input is linear. All other attributes ignored.
2984 Instruction *insn;
2985 Value *offset = NULL, *ptr = NULL, *w = NULL;
2986 Symbol *sym[4] = { NULL };
2987 bool linear;
2988 operation op = OP_NOP;
2989 int c, mode = 0;
2990
2991 tgsi::Instruction::SrcRegister src = tgsi.getSrc(0);
2992
2993 // In some odd cases, in large part due to varying packing, the source
2994 // might not actually be an input. This is illegal TGSI, but it's easier to
2995 // account for it here than it is to fix it where the TGSI is being
2996 // generated. In that case, it's going to be a straight up mov (or sequence
2997 // of mov's) from the input in question. We follow the mov chain to see
2998 // which input we need to use.
2999 if (src.getFile() != TGSI_FILE_INPUT) {
3000 if (src.isIndirect(0)) {
3001 ERROR("Ignoring indirect input interpolation\n");
3002 return;
3003 }
3004 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3005 Value *val = fetchSrc(0, c);
3006 assert(val->defs.size() == 1);
3007 insn = val->getInsn();
3008 while (insn->op == OP_MOV) {
3009 assert(insn->getSrc(0)->defs.size() == 1);
3010 insn = insn->getSrc(0)->getInsn();
3011 if (!insn) {
3012 ERROR("Miscompiling shader due to unhandled INTERP\n");
3013 return;
3014 }
3015 }
3016 if (insn->op != OP_LINTERP && insn->op != OP_PINTERP) {
3017 ERROR("Trying to interpolate non-input, this is not allowed.\n");
3018 return;
3019 }
3020 sym[c] = insn->getSrc(0)->asSym();
3021 assert(sym[c]);
3022 op = insn->op;
3023 mode = insn->ipa;
3024 ptr = insn->getIndirect(0, 0);
3025 }
3026 } else {
3027 if (src.isIndirect(0))
3028 ptr = shiftAddress(fetchSrc(src.getIndirect(0), 0, NULL));
3029
3030 // We can assume that the fixed index will point to an input of the same
3031 // interpolation type in case of an indirect.
3032 // TODO: Make use of ArrayID.
3033 linear = info->in[src.getIndex(0)].linear;
3034 if (linear) {
3035 op = OP_LINTERP;
3036 mode = NV50_IR_INTERP_LINEAR;
3037 } else {
3038 op = OP_PINTERP;
3039 mode = NV50_IR_INTERP_PERSPECTIVE;
3040 }
3041 }
3042
3043 switch (tgsi.getOpcode()) {
3044 case TGSI_OPCODE_INTERP_CENTROID:
3045 mode |= NV50_IR_INTERP_CENTROID;
3046 break;
3047 case TGSI_OPCODE_INTERP_SAMPLE:
3048 insn = mkOp1(OP_PIXLD, TYPE_U32, (offset = getScratch()), fetchSrc(1, 0));
3049 insn->subOp = NV50_IR_SUBOP_PIXLD_OFFSET;
3050 mode |= NV50_IR_INTERP_OFFSET;
3051 break;
3052 case TGSI_OPCODE_INTERP_OFFSET: {
3053 // The input in src1.xy is float, but we need a single 32-bit value
3054 // where the upper and lower 16 bits are encoded in S0.12 format. We need
3055 // to clamp the input coordinates to (-0.5, 0.4375), multiply by 4096,
3056 // and then convert to s32.
3057 Value *offs[2];
3058 for (c = 0; c < 2; c++) {
3059 offs[c] = getScratch();
3060 mkOp2(OP_MIN, TYPE_F32, offs[c], fetchSrc(1, c), loadImm(NULL, 0.4375f));
3061 mkOp2(OP_MAX, TYPE_F32, offs[c], offs[c], loadImm(NULL, -0.5f));
3062 mkOp2(OP_MUL, TYPE_F32, offs[c], offs[c], loadImm(NULL, 4096.0f));
3063 mkCvt(OP_CVT, TYPE_S32, offs[c], TYPE_F32, offs[c]);
3064 }
3065 offset = mkOp3v(OP_INSBF, TYPE_U32, getScratch(),
3066 offs[1], mkImm(0x1010), offs[0]);
3067 mode |= NV50_IR_INTERP_OFFSET;
3068 break;
3069 }
3070 }
3071
3072 if (op == OP_PINTERP) {
3073 if (offset) {
3074 w = mkOp2v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_POSITION, 3), offset);
3075 mkOp1(OP_RCP, TYPE_F32, w, w);
3076 } else {
3077 w = fragCoord[3];
3078 }
3079 }
3080
3081
3082 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3083 insn = mkOp1(op, TYPE_F32, dst[c], sym[c] ? sym[c] : srcToSym(src, c));
3084 if (op == OP_PINTERP)
3085 insn->setSrc(1, w);
3086 if (offset)
3087 insn->setSrc(op == OP_PINTERP ? 2 : 1, offset);
3088 if (ptr)
3089 insn->setIndirect(0, 0, ptr);
3090
3091 insn->setInterpolate(mode);
3092 }
3093 }
3094
3095 bool
3096 Converter::isEndOfSubroutine(uint ip)
3097 {
3098 assert(ip < code->scan.num_instructions);
3099 tgsi::Instruction insn(&code->insns[ip]);
3100 return (insn.getOpcode() == TGSI_OPCODE_END ||
3101 insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
3102 // does END occur at end of main or the very end ?
3103 insn.getOpcode() == TGSI_OPCODE_BGNSUB);
3104 }
3105
3106 bool
3107 Converter::handleInstruction(const struct tgsi_full_instruction *insn)
3108 {
3109 Instruction *geni;
3110
3111 Value *dst0[4], *rDst0[4];
3112 Value *src0, *src1, *src2, *src3;
3113 Value *val0, *val1;
3114 int c;
3115
3116 tgsi = tgsi::Instruction(insn);
3117
3118 bool useScratchDst = tgsi.checkDstSrcAliasing();
3119
3120 operation op = tgsi.getOP();
3121 dstTy = tgsi.inferDstType();
3122 srcTy = tgsi.inferSrcType();
3123
3124 unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
3125
3126 if (tgsi.dstCount() && tgsi.getOpcode() != TGSI_OPCODE_STORE) {
3127 for (c = 0; c < 4; ++c) {
3128 rDst0[c] = acquireDst(0, c);
3129 dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
3130 }
3131 }
3132
3133 switch (tgsi.getOpcode()) {
3134 case TGSI_OPCODE_ADD:
3135 case TGSI_OPCODE_UADD:
3136 case TGSI_OPCODE_AND:
3137 case TGSI_OPCODE_DIV:
3138 case TGSI_OPCODE_IDIV:
3139 case TGSI_OPCODE_UDIV:
3140 case TGSI_OPCODE_MAX:
3141 case TGSI_OPCODE_MIN:
3142 case TGSI_OPCODE_IMAX:
3143 case TGSI_OPCODE_IMIN:
3144 case TGSI_OPCODE_UMAX:
3145 case TGSI_OPCODE_UMIN:
3146 case TGSI_OPCODE_MOD:
3147 case TGSI_OPCODE_UMOD:
3148 case TGSI_OPCODE_MUL:
3149 case TGSI_OPCODE_UMUL:
3150 case TGSI_OPCODE_IMUL_HI:
3151 case TGSI_OPCODE_UMUL_HI:
3152 case TGSI_OPCODE_OR:
3153 case TGSI_OPCODE_SHL:
3154 case TGSI_OPCODE_ISHR:
3155 case TGSI_OPCODE_USHR:
3156 case TGSI_OPCODE_XOR:
3157 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3158 src0 = fetchSrc(0, c);
3159 src1 = fetchSrc(1, c);
3160 geni = mkOp2(op, dstTy, dst0[c], src0, src1);
3161 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
3162 if (op == OP_MUL && dstTy == TYPE_F32)
3163 geni->dnz = info->io.mul_zero_wins;
3164 geni->precise = insn->Instruction.Precise;
3165 }
3166 break;
3167 case TGSI_OPCODE_MAD:
3168 case TGSI_OPCODE_UMAD:
3169 case TGSI_OPCODE_FMA:
3170 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3171 src0 = fetchSrc(0, c);
3172 src1 = fetchSrc(1, c);
3173 src2 = fetchSrc(2, c);
3174 geni = mkOp3(op, dstTy, dst0[c], src0, src1, src2);
3175 if (dstTy == TYPE_F32)
3176 geni->dnz = info->io.mul_zero_wins;
3177 geni->precise = insn->Instruction.Precise;
3178 }
3179 break;
3180 case TGSI_OPCODE_MOV:
3181 case TGSI_OPCODE_CEIL:
3182 case TGSI_OPCODE_FLR:
3183 case TGSI_OPCODE_TRUNC:
3184 case TGSI_OPCODE_RCP:
3185 case TGSI_OPCODE_SQRT:
3186 case TGSI_OPCODE_IABS:
3187 case TGSI_OPCODE_INEG:
3188 case TGSI_OPCODE_NOT:
3189 case TGSI_OPCODE_DDX:
3190 case TGSI_OPCODE_DDY:
3191 case TGSI_OPCODE_DDX_FINE:
3192 case TGSI_OPCODE_DDY_FINE:
3193 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3194 mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
3195 break;
3196 case TGSI_OPCODE_RSQ:
3197 src0 = fetchSrc(0, 0);
3198 val0 = getScratch();
3199 mkOp1(OP_ABS, TYPE_F32, val0, src0);
3200 mkOp1(OP_RSQ, TYPE_F32, val0, val0);
3201 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3202 mkMov(dst0[c], val0);
3203 break;
3204 case TGSI_OPCODE_ARL:
3205 case TGSI_OPCODE_ARR:
3206 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3207 const RoundMode rnd =
3208 tgsi.getOpcode() == TGSI_OPCODE_ARR ? ROUND_N : ROUND_M;
3209 src0 = fetchSrc(0, c);
3210 mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = rnd;
3211 }
3212 break;
3213 case TGSI_OPCODE_UARL:
3214 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3215 mkOp1(OP_MOV, TYPE_U32, dst0[c], fetchSrc(0, c));
3216 break;
3217 case TGSI_OPCODE_POW:
3218 val0 = mkOp2v(op, TYPE_F32, getScratch(), fetchSrc(0, 0), fetchSrc(1, 0));
3219 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3220 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
3221 break;
3222 case TGSI_OPCODE_EX2:
3223 case TGSI_OPCODE_LG2:
3224 val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
3225 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3226 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
3227 break;
3228 case TGSI_OPCODE_COS:
3229 case TGSI_OPCODE_SIN:
3230 val0 = getScratch();
3231 if (mask & 7) {
3232 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
3233 mkOp1(op, TYPE_F32, val0, val0);
3234 for (c = 0; c < 3; ++c)
3235 if (dst0[c])
3236 mkMov(dst0[c], val0);
3237 }
3238 if (dst0[3]) {
3239 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
3240 mkOp1(op, TYPE_F32, dst0[3], val0);
3241 }
3242 break;
3243 case TGSI_OPCODE_EXP:
3244 src0 = fetchSrc(0, 0);
3245 val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
3246 if (dst0[1])
3247 mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
3248 if (dst0[0])
3249 mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
3250 if (dst0[2])
3251 mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
3252 if (dst0[3])
3253 loadImm(dst0[3], 1.0f);
3254 break;
3255 case TGSI_OPCODE_LOG:
3256 src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
3257 val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
3258 if (dst0[0] || dst0[1])
3259 val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
3260 if (dst0[1]) {
3261 mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
3262 mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
3263 mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0)
3264 ->dnz = info->io.mul_zero_wins;
3265 }
3266 if (dst0[3])
3267 loadImm(dst0[3], 1.0f);
3268 break;
3269 case TGSI_OPCODE_DP2:
3270 val0 = buildDot(2);
3271 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3272 mkMov(dst0[c], val0);
3273 break;
3274 case TGSI_OPCODE_DP3:
3275 val0 = buildDot(3);
3276 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3277 mkMov(dst0[c], val0);
3278 break;
3279 case TGSI_OPCODE_DP4:
3280 val0 = buildDot(4);
3281 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3282 mkMov(dst0[c], val0);
3283 break;
3284 case TGSI_OPCODE_DST:
3285 if (dst0[0])
3286 loadImm(dst0[0], 1.0f);
3287 if (dst0[1]) {
3288 src0 = fetchSrc(0, 1);
3289 src1 = fetchSrc(1, 1);
3290 mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1)
3291 ->dnz = info->io.mul_zero_wins;
3292 }
3293 if (dst0[2])
3294 mkMov(dst0[2], fetchSrc(0, 2));
3295 if (dst0[3])
3296 mkMov(dst0[3], fetchSrc(1, 3));
3297 break;
3298 case TGSI_OPCODE_LRP:
3299 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3300 src0 = fetchSrc(0, c);
3301 src1 = fetchSrc(1, c);
3302 src2 = fetchSrc(2, c);
3303 mkOp3(OP_MAD, TYPE_F32, dst0[c],
3304 mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2)
3305 ->dnz = info->io.mul_zero_wins;
3306 }
3307 break;
3308 case TGSI_OPCODE_LIT:
3309 handleLIT(dst0);
3310 break;
3311 case TGSI_OPCODE_ISSG:
3312 case TGSI_OPCODE_SSG:
3313 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3314 src0 = fetchSrc(0, c);
3315 val0 = getScratch();
3316 val1 = getScratch();
3317 mkCmp(OP_SET, CC_GT, srcTy, val0, srcTy, src0, zero);
3318 mkCmp(OP_SET, CC_LT, srcTy, val1, srcTy, src0, zero);
3319 if (srcTy == TYPE_F32)
3320 mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
3321 else
3322 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
3323 }
3324 break;
3325 case TGSI_OPCODE_UCMP:
3326 srcTy = TYPE_U32;
3327 /* fallthrough */
3328 case TGSI_OPCODE_CMP:
3329 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3330 src0 = fetchSrc(0, c);
3331 src1 = fetchSrc(1, c);
3332 src2 = fetchSrc(2, c);
3333 if (src1 == src2)
3334 mkMov(dst0[c], src1);
3335 else
3336 mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
3337 srcTy, dst0[c], srcTy, src1, src2, src0);
3338 }
3339 break;
3340 case TGSI_OPCODE_FRC:
3341 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3342 src0 = fetchSrc(0, c);
3343 val0 = getScratch();
3344 mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
3345 mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
3346 }
3347 break;
3348 case TGSI_OPCODE_ROUND:
3349 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3350 mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
3351 ->rnd = ROUND_NI;
3352 break;
3353 case TGSI_OPCODE_SLT:
3354 case TGSI_OPCODE_SGE:
3355 case TGSI_OPCODE_SEQ:
3356 case TGSI_OPCODE_SGT:
3357 case TGSI_OPCODE_SLE:
3358 case TGSI_OPCODE_SNE:
3359 case TGSI_OPCODE_FSEQ:
3360 case TGSI_OPCODE_FSGE:
3361 case TGSI_OPCODE_FSLT:
3362 case TGSI_OPCODE_FSNE:
3363 case TGSI_OPCODE_ISGE:
3364 case TGSI_OPCODE_ISLT:
3365 case TGSI_OPCODE_USEQ:
3366 case TGSI_OPCODE_USGE:
3367 case TGSI_OPCODE_USLT:
3368 case TGSI_OPCODE_USNE:
3369 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3370 src0 = fetchSrc(0, c);
3371 src1 = fetchSrc(1, c);
3372 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
3373 }
3374 break;
3375 case TGSI_OPCODE_VOTE_ALL:
3376 case TGSI_OPCODE_VOTE_ANY:
3377 case TGSI_OPCODE_VOTE_EQ:
3378 val0 = new_LValue(func, FILE_PREDICATE);
3379 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3380 mkCmp(OP_SET, CC_NE, TYPE_U32, val0, TYPE_U32, fetchSrc(0, c), zero);
3381 mkOp1(op, dstTy, val0, val0)
3382 ->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
3383 mkCvt(OP_CVT, TYPE_U32, dst0[c], TYPE_U8, val0);
3384 }
3385 break;
3386 case TGSI_OPCODE_BALLOT:
3387 if (!tgsi.getDst(0).isMasked(0)) {
3388 val0 = new_LValue(func, FILE_PREDICATE);
3389 mkCmp(OP_SET, CC_NE, TYPE_U32, val0, TYPE_U32, fetchSrc(0, 0), zero);
3390 mkOp1(op, TYPE_U32, dst0[0], val0)->subOp = NV50_IR_SUBOP_VOTE_ANY;
3391 }
3392 if (!tgsi.getDst(0).isMasked(1))
3393 mkMov(dst0[1], zero, TYPE_U32);
3394 break;
3395 case TGSI_OPCODE_READ_FIRST:
3396 // ReadFirstInvocationARB(src) is implemented as
3397 // ReadInvocationARB(src, findLSB(ballot(true)))
3398 val0 = getScratch();
3399 mkOp1(OP_VOTE, TYPE_U32, val0, mkImm(1))->subOp = NV50_IR_SUBOP_VOTE_ANY;
3400 mkOp2(OP_EXTBF, TYPE_U32, val0, val0, mkImm(0x2000))
3401 ->subOp = NV50_IR_SUBOP_EXTBF_REV;
3402 mkOp1(OP_BFIND, TYPE_U32, val0, val0)->subOp = NV50_IR_SUBOP_BFIND_SAMT;
3403 src1 = val0;
3404 /* fallthrough */
3405 case TGSI_OPCODE_READ_INVOC:
3406 if (tgsi.getOpcode() == TGSI_OPCODE_READ_INVOC)
3407 src1 = fetchSrc(1, 0);
3408 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3409 geni = mkOp3(op, dstTy, dst0[c], fetchSrc(0, c), src1, mkImm(0x1f));
3410 geni->subOp = NV50_IR_SUBOP_SHFL_IDX;
3411 }
3412 break;
3413 case TGSI_OPCODE_CLOCK:
3414 // Stick the 32-bit clock into the high dword of the logical result.
3415 if (!tgsi.getDst(0).isMasked(0))
3416 mkOp1(OP_MOV, TYPE_U32, dst0[0], zero);
3417 if (!tgsi.getDst(0).isMasked(1))
3418 mkOp1(OP_RDSV, TYPE_U32, dst0[1], mkSysVal(SV_CLOCK, 0))->fixed = 1;
3419 break;
3420 case TGSI_OPCODE_READ_HELPER:
3421 if (!tgsi.getDst(0).isMasked(0))
3422 mkOp1(OP_RDSV, TYPE_U32, dst0[0], mkSysVal(SV_THREAD_KILL, 0))
3423 ->fixed = 1;
3424 break;
3425 case TGSI_OPCODE_KILL_IF:
3426 val0 = new_LValue(func, FILE_PREDICATE);
3427 mask = 0;
3428 for (c = 0; c < 4; ++c) {
3429 const int s = tgsi.getSrc(0).getSwizzle(c);
3430 if (mask & (1 << s))
3431 continue;
3432 mask |= 1 << s;
3433 mkCmp(OP_SET, CC_LT, TYPE_F32, val0, TYPE_F32, fetchSrc(0, c), zero);
3434 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
3435 }
3436 break;
3437 case TGSI_OPCODE_KILL:
3438 case TGSI_OPCODE_DEMOTE:
3439 // TODO: Should we make KILL exit that invocation? Some old shaders
3440 // don't like that.
3441 mkOp(OP_DISCARD, TYPE_NONE, NULL);
3442 break;
3443 case TGSI_OPCODE_TEX:
3444 case TGSI_OPCODE_TEX_LZ:
3445 case TGSI_OPCODE_TXB:
3446 case TGSI_OPCODE_TXL:
3447 case TGSI_OPCODE_TXP:
3448 case TGSI_OPCODE_LODQ:
3449 // R S L C Dx Dy
3450 handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
3451 break;
3452 case TGSI_OPCODE_TXD:
3453 handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
3454 break;
3455 case TGSI_OPCODE_TG4:
3456 handleTEX(dst0, 2, 2, 0x03, 0x0f, 0x00, 0x00);
3457 break;
3458 case TGSI_OPCODE_TEX2:
3459 handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00);
3460 break;
3461 case TGSI_OPCODE_TXB2:
3462 case TGSI_OPCODE_TXL2:
3463 handleTEX(dst0, 2, 2, 0x10, 0x0f, 0x00, 0x00);
3464 break;
3465 case TGSI_OPCODE_SAMPLE:
3466 case TGSI_OPCODE_SAMPLE_B:
3467 case TGSI_OPCODE_SAMPLE_D:
3468 case TGSI_OPCODE_SAMPLE_L:
3469 case TGSI_OPCODE_SAMPLE_C:
3470 case TGSI_OPCODE_SAMPLE_C_LZ:
3471 handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40);
3472 break;
3473 case TGSI_OPCODE_TXF_LZ:
3474 case TGSI_OPCODE_TXF:
3475 handleTXF(dst0, 1, 0x03);
3476 break;
3477 case TGSI_OPCODE_SAMPLE_I:
3478 handleTXF(dst0, 1, 0x03);
3479 break;
3480 case TGSI_OPCODE_SAMPLE_I_MS:
3481 handleTXF(dst0, 1, 0x20);
3482 break;
3483 case TGSI_OPCODE_TXQ:
3484 case TGSI_OPCODE_SVIEWINFO:
3485 handleTXQ(dst0, TXQ_DIMS, 1);
3486 break;
3487 case TGSI_OPCODE_TXQS:
3488 // The TXQ_TYPE query returns samples in its 3rd arg, but we need it to
3489 // be in .x
3490 dst0[1] = dst0[2] = dst0[3] = NULL;
3491 std::swap(dst0[0], dst0[2]);
3492 handleTXQ(dst0, TXQ_TYPE, 0);
3493 std::swap(dst0[0], dst0[2]);
3494 break;
3495 case TGSI_OPCODE_FBFETCH:
3496 handleFBFETCH(dst0);
3497 break;
3498 case TGSI_OPCODE_F2I:
3499 case TGSI_OPCODE_F2U:
3500 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3501 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
3502 break;
3503 case TGSI_OPCODE_I2F:
3504 case TGSI_OPCODE_U2F:
3505 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3506 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
3507 break;
3508 case TGSI_OPCODE_PK2H:
3509 val0 = getScratch();
3510 val1 = getScratch();
3511 mkCvt(OP_CVT, TYPE_F16, val0, TYPE_F32, fetchSrc(0, 0));
3512 mkCvt(OP_CVT, TYPE_F16, val1, TYPE_F32, fetchSrc(0, 1));
3513 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3514 mkOp3(OP_INSBF, TYPE_U32, dst0[c], val1, mkImm(0x1010), val0);
3515 break;
3516 case TGSI_OPCODE_UP2H:
3517 src0 = fetchSrc(0, 0);
3518 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3519 geni = mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F16, src0);
3520 geni->subOp = c & 1;
3521 }
3522 break;
3523 case TGSI_OPCODE_EMIT:
3524 /* export the saved viewport index */
3525 if (viewport != NULL) {
3526 Symbol *vpSym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_U32,
3527 info->out[info->io.viewportId].slot[0] * 4);
3528 mkStore(OP_EXPORT, TYPE_U32, vpSym, NULL, viewport);
3529 }
3530 /* handle user clip planes for each emitted vertex */
3531 if (info->io.genUserClip > 0)
3532 handleUserClipPlanes();
3533 /* fallthrough */
3534 case TGSI_OPCODE_ENDPRIM:
3535 {
3536 // get vertex stream (must be immediate)
3537 unsigned int stream = tgsi.getSrc(0).getValueU32(0, info);
3538 if (stream && op == OP_RESTART)
3539 break;
3540 if (info->prop.gp.maxVertices == 0)
3541 break;
3542 src0 = mkImm(stream);
3543 mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
3544 break;
3545 }
3546 case TGSI_OPCODE_IF:
3547 case TGSI_OPCODE_UIF:
3548 {
3549 BasicBlock *ifBB = new BasicBlock(func);
3550
3551 bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
3552 condBBs.push(bb);
3553 joinBBs.push(bb);
3554
3555 mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy);
3556
3557 setPosition(ifBB, true);
3558 }
3559 break;
3560 case TGSI_OPCODE_ELSE:
3561 {
3562 BasicBlock *elseBB = new BasicBlock(func);
3563 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
3564
3565 forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
3566 condBBs.push(bb);
3567
3568 forkBB->getExit()->asFlow()->target.bb = elseBB;
3569 if (!bb->isTerminated())
3570 mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
3571
3572 setPosition(elseBB, true);
3573 }
3574 break;
3575 case TGSI_OPCODE_ENDIF:
3576 {
3577 BasicBlock *convBB = new BasicBlock(func);
3578 BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
3579 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
3580
3581 if (!bb->isTerminated()) {
3582 // we only want join if none of the clauses ended with CONT/BREAK/RET
3583 if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
3584 insertConvergenceOps(convBB, forkBB);
3585 mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
3586 bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
3587 }
3588
3589 if (prevBB->getExit()->op == OP_BRA) {
3590 prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
3591 prevBB->getExit()->asFlow()->target.bb = convBB;
3592 }
3593 setPosition(convBB, true);
3594 }
3595 break;
3596 case TGSI_OPCODE_BGNLOOP:
3597 {
3598 BasicBlock *lbgnBB = new BasicBlock(func);
3599 BasicBlock *lbrkBB = new BasicBlock(func);
3600
3601 loopBBs.push(lbgnBB);
3602 breakBBs.push(lbrkBB);
3603 if (loopBBs.getSize() > func->loopNestingBound)
3604 func->loopNestingBound++;
3605
3606 mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
3607
3608 bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
3609 setPosition(lbgnBB, true);
3610 mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
3611 }
3612 break;
3613 case TGSI_OPCODE_ENDLOOP:
3614 {
3615 BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
3616
3617 if (!bb->isTerminated()) {
3618 mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
3619 bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
3620 }
3621 setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
3622
3623 // If the loop never breaks (e.g. only has RET's inside), then there
3624 // will be no way to get to the break bb. However BGNLOOP will have
3625 // already made a PREBREAK to it, so it must be in the CFG.
3626 if (getBB()->cfg.incidentCount() == 0)
3627 loopBB->cfg.attach(&getBB()->cfg, Graph::Edge::TREE);
3628 }
3629 break;
3630 case TGSI_OPCODE_BRK:
3631 {
3632 if (bb->isTerminated())
3633 break;
3634 BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
3635 mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
3636 bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
3637 }
3638 break;
3639 case TGSI_OPCODE_CONT:
3640 {
3641 if (bb->isTerminated())
3642 break;
3643 BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
3644 mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
3645 contBB->explicitCont = true;
3646 bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
3647 }
3648 break;
3649 case TGSI_OPCODE_BGNSUB:
3650 {
3651 Subroutine *s = getSubroutine(ip);
3652 BasicBlock *entry = new BasicBlock(s->f);
3653 BasicBlock *leave = new BasicBlock(s->f);
3654
3655 // multiple entrypoints possible, keep the graph connected
3656 if (prog->getType() == Program::TYPE_COMPUTE)
3657 prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
3658
3659 sub.cur = s;
3660 s->f->setEntry(entry);
3661 s->f->setExit(leave);
3662 setPosition(entry, true);
3663 return true;
3664 }
3665 case TGSI_OPCODE_ENDSUB:
3666 {
3667 sub.cur = getSubroutine(prog->main);
3668 setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
3669 return true;
3670 }
3671 case TGSI_OPCODE_CAL:
3672 {
3673 Subroutine *s = getSubroutine(tgsi.getLabel());
3674 mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
3675 func->call.attach(&s->f->call, Graph::Edge::TREE);
3676 return true;
3677 }
3678 case TGSI_OPCODE_RET:
3679 {
3680 if (bb->isTerminated())
3681 return true;
3682 BasicBlock *leave = BasicBlock::get(func->cfgExit);
3683
3684 if (!isEndOfSubroutine(ip + 1)) {
3685 // insert a PRERET at the entry if this is an early return
3686 // (only needed for sharing code in the epilogue)
3687 BasicBlock *root = BasicBlock::get(func->cfg.getRoot());
3688 if (root->getEntry() == NULL || root->getEntry()->op != OP_PRERET) {
3689 BasicBlock *pos = getBB();
3690 setPosition(root, false);
3691 mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
3692 setPosition(pos, true);
3693 }
3694 }
3695 mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
3696 bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
3697 }
3698 break;
3699 case TGSI_OPCODE_END:
3700 {
3701 // attach and generate epilogue code
3702 BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
3703 bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
3704 setPosition(epilogue, true);
3705 if (prog->getType() == Program::TYPE_FRAGMENT)
3706 exportOutputs();
3707 if ((prog->getType() == Program::TYPE_VERTEX ||
3708 prog->getType() == Program::TYPE_TESSELLATION_EVAL
3709 ) && info->io.genUserClip > 0)
3710 handleUserClipPlanes();
3711 mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
3712 }
3713 break;
3714 case TGSI_OPCODE_SWITCH:
3715 case TGSI_OPCODE_CASE:
3716 ERROR("switch/case opcode encountered, should have been lowered\n");
3717 abort();
3718 break;
3719 case TGSI_OPCODE_LOAD:
3720 handleLOAD(dst0);
3721 break;
3722 case TGSI_OPCODE_STORE:
3723 handleSTORE();
3724 break;
3725 case TGSI_OPCODE_BARRIER:
3726 geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
3727 geni->fixed = 1;
3728 geni->subOp = NV50_IR_SUBOP_BAR_SYNC;
3729 break;
3730 case TGSI_OPCODE_MEMBAR:
3731 {
3732 uint32_t level = tgsi.getSrc(0).getValueU32(0, info);
3733 geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
3734 geni->fixed = 1;
3735 if (!(level & ~(TGSI_MEMBAR_THREAD_GROUP | TGSI_MEMBAR_SHARED)))
3736 geni->subOp = NV50_IR_SUBOP_MEMBAR(M, CTA);
3737 else
3738 geni->subOp = NV50_IR_SUBOP_MEMBAR(M, GL);
3739 }
3740 break;
3741 case TGSI_OPCODE_ATOMUADD:
3742 case TGSI_OPCODE_ATOMXCHG:
3743 case TGSI_OPCODE_ATOMCAS:
3744 case TGSI_OPCODE_ATOMAND:
3745 case TGSI_OPCODE_ATOMOR:
3746 case TGSI_OPCODE_ATOMXOR:
3747 case TGSI_OPCODE_ATOMUMIN:
3748 case TGSI_OPCODE_ATOMIMIN:
3749 case TGSI_OPCODE_ATOMUMAX:
3750 case TGSI_OPCODE_ATOMIMAX:
3751 case TGSI_OPCODE_ATOMFADD:
3752 case TGSI_OPCODE_ATOMDEC_WRAP:
3753 case TGSI_OPCODE_ATOMINC_WRAP:
3754 handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode()));
3755 break;
3756 case TGSI_OPCODE_RESQ:
3757 if (tgsi.getSrc(0).getFile() == TGSI_FILE_BUFFER) {
3758 Value *ind = NULL;
3759 if (tgsi.getSrc(0).isIndirect(0))
3760 ind = fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0);
3761 geni = mkOp1(OP_BUFQ, TYPE_U32, dst0[0],
3762 makeSym(tgsi.getSrc(0).getFile(),
3763 tgsi.getSrc(0).getIndex(0), -1, 0, 0));
3764 if (ind)
3765 geni->setIndirect(0, 1, ind);
3766 } else {
3767 TexInstruction *texi = new_TexInstruction(func, OP_SUQ);
3768 for (int c = 0, d = 0; c < 4; ++c) {
3769 if (dst0[c]) {
3770 texi->setDef(d++, dst0[c]);
3771 texi->tex.mask |= 1 << c;
3772 }
3773 }
3774 if (tgsi.getSrc(0).getFile() == TGSI_FILE_IMAGE) {
3775 texi->tex.r = tgsi.getSrc(0).getIndex(0);
3776 if (tgsi.getSrc(0).isIndirect(0))
3777 texi->setIndirectR(fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, NULL));
3778 } else {
3779 texi->tex.bindless = true;
3780 texi->setIndirectR(fetchSrc(0, 0));
3781 }
3782 texi->tex.target = tgsi.getImageTarget();
3783
3784 bb->insertTail(texi);
3785 }
3786 break;
3787 case TGSI_OPCODE_IBFE:
3788 case TGSI_OPCODE_UBFE:
3789 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3790 src0 = fetchSrc(0, c);
3791 val0 = getScratch();
3792 if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE &&
3793 tgsi.getSrc(2).getFile() == TGSI_FILE_IMMEDIATE) {
3794 loadImm(val0, (tgsi.getSrc(2).getValueU32(c, info) << 8) |
3795 tgsi.getSrc(1).getValueU32(c, info));
3796 } else {
3797 src1 = fetchSrc(1, c);
3798 src2 = fetchSrc(2, c);
3799 mkOp3(OP_INSBF, TYPE_U32, val0, src2, mkImm(0x808), src1);
3800 }
3801 mkOp2(OP_EXTBF, dstTy, dst0[c], src0, val0);
3802 }
3803 break;
3804 case TGSI_OPCODE_BFI:
3805 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3806 src0 = fetchSrc(0, c);
3807 src1 = fetchSrc(1, c);
3808 src2 = fetchSrc(2, c);
3809 src3 = fetchSrc(3, c);
3810 val0 = getScratch();
3811 mkOp3(OP_INSBF, TYPE_U32, val0, src3, mkImm(0x808), src2);
3812 mkOp3(OP_INSBF, TYPE_U32, dst0[c], src1, val0, src0);
3813 }
3814 break;
3815 case TGSI_OPCODE_LSB:
3816 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3817 src0 = fetchSrc(0, c);
3818 val0 = getScratch();
3819 geni = mkOp2(OP_EXTBF, TYPE_U32, val0, src0, mkImm(0x2000));
3820 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
3821 geni = mkOp1(OP_BFIND, TYPE_U32, dst0[c], val0);
3822 geni->subOp = NV50_IR_SUBOP_BFIND_SAMT;
3823 }
3824 break;
3825 case TGSI_OPCODE_IMSB:
3826 case TGSI_OPCODE_UMSB:
3827 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3828 src0 = fetchSrc(0, c);
3829 mkOp1(OP_BFIND, srcTy, dst0[c], src0);
3830 }
3831 break;
3832 case TGSI_OPCODE_BREV:
3833 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3834 src0 = fetchSrc(0, c);
3835 geni = mkOp2(OP_EXTBF, TYPE_U32, dst0[c], src0, mkImm(0x2000));
3836 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
3837 }
3838 break;
3839 case TGSI_OPCODE_POPC:
3840 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3841 src0 = fetchSrc(0, c);
3842 mkOp2(OP_POPCNT, TYPE_U32, dst0[c], src0, src0);
3843 }
3844 break;
3845 case TGSI_OPCODE_INTERP_CENTROID:
3846 case TGSI_OPCODE_INTERP_SAMPLE:
3847 case TGSI_OPCODE_INTERP_OFFSET:
3848 handleINTERP(dst0);
3849 break;
3850 case TGSI_OPCODE_I642F:
3851 case TGSI_OPCODE_U642F:
3852 case TGSI_OPCODE_D2I:
3853 case TGSI_OPCODE_D2U:
3854 case TGSI_OPCODE_D2F: {
3855 int pos = 0;
3856 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3857 Value *dreg = getSSA(8);
3858 src0 = fetchSrc(0, pos);
3859 src1 = fetchSrc(0, pos + 1);
3860 mkOp2(OP_MERGE, TYPE_U64, dreg, src0, src1);
3861 Instruction *cvt = mkCvt(OP_CVT, dstTy, dst0[c], srcTy, dreg);
3862 if (!isFloatType(dstTy))
3863 cvt->rnd = ROUND_Z;
3864 pos += 2;
3865 }
3866 break;
3867 }
3868 case TGSI_OPCODE_I2I64:
3869 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3870 dst0[c] = fetchSrc(0, c / 2);
3871 mkOp2(OP_SHR, TYPE_S32, dst0[c + 1], dst0[c], loadImm(NULL, 31));
3872 c++;
3873 }
3874 break;
3875 case TGSI_OPCODE_U2I64:
3876 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3877 dst0[c] = fetchSrc(0, c / 2);
3878 dst0[c + 1] = zero;
3879 c++;
3880 }
3881 break;
3882 case TGSI_OPCODE_F2I64:
3883 case TGSI_OPCODE_F2U64:
3884 case TGSI_OPCODE_I2D:
3885 case TGSI_OPCODE_U2D:
3886 case TGSI_OPCODE_F2D:
3887 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3888 Value *dreg = getSSA(8);
3889 Instruction *cvt = mkCvt(OP_CVT, dstTy, dreg, srcTy, fetchSrc(0, c / 2));
3890 if (!isFloatType(dstTy))
3891 cvt->rnd = ROUND_Z;
3892 mkSplit(&dst0[c], 4, dreg);
3893 c++;
3894 }
3895 break;
3896 case TGSI_OPCODE_D2I64:
3897 case TGSI_OPCODE_D2U64:
3898 case TGSI_OPCODE_I642D:
3899 case TGSI_OPCODE_U642D:
3900 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3901 src0 = getSSA(8);
3902 Value *dst = getSSA(8), *tmp[2];
3903 tmp[0] = fetchSrc(0, c);
3904 tmp[1] = fetchSrc(0, c + 1);
3905 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3906 Instruction *cvt = mkCvt(OP_CVT, dstTy, dst, srcTy, src0);
3907 if (!isFloatType(dstTy))
3908 cvt->rnd = ROUND_Z;
3909 mkSplit(&dst0[c], 4, dst);
3910 c++;
3911 }
3912 break;
3913 case TGSI_OPCODE_I64NEG:
3914 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3915 src0 = getSSA(8);
3916 Value *dst = getSSA(8), *tmp[2];
3917 tmp[0] = fetchSrc(0, c);
3918 tmp[1] = fetchSrc(0, c + 1);
3919 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3920 mkOp2(OP_SUB, dstTy, dst, zero, src0);
3921 mkSplit(&dst0[c], 4, dst);
3922 c++;
3923 }
3924 break;
3925 case TGSI_OPCODE_I64ABS:
3926 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3927 src0 = getSSA(8);
3928 Value *neg = getSSA(8), *srcComp[2], *negComp[2];
3929 srcComp[0] = fetchSrc(0, c);
3930 srcComp[1] = fetchSrc(0, c + 1);
3931 mkOp2(OP_MERGE, TYPE_U64, src0, srcComp[0], srcComp[1]);
3932 mkOp2(OP_SUB, dstTy, neg, zero, src0);
3933 mkSplit(negComp, 4, neg);
3934 mkCmp(OP_SLCT, CC_LT, TYPE_S32, dst0[c], TYPE_S32,
3935 negComp[0], srcComp[0], srcComp[1]);
3936 mkCmp(OP_SLCT, CC_LT, TYPE_S32, dst0[c + 1], TYPE_S32,
3937 negComp[1], srcComp[1], srcComp[1]);
3938 c++;
3939 }
3940 break;
3941 case TGSI_OPCODE_DABS:
3942 case TGSI_OPCODE_DNEG:
3943 case TGSI_OPCODE_DRCP:
3944 case TGSI_OPCODE_DSQRT:
3945 case TGSI_OPCODE_DRSQ:
3946 case TGSI_OPCODE_DTRUNC:
3947 case TGSI_OPCODE_DCEIL:
3948 case TGSI_OPCODE_DFLR:
3949 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3950 src0 = getSSA(8);
3951 Value *dst = getSSA(8), *tmp[2];
3952 tmp[0] = fetchSrc(0, c);
3953 tmp[1] = fetchSrc(0, c + 1);
3954 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3955 mkOp1(op, dstTy, dst, src0);
3956 mkSplit(&dst0[c], 4, dst);
3957 c++;
3958 }
3959 break;
3960 case TGSI_OPCODE_DFRAC:
3961 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3962 src0 = getSSA(8);
3963 Value *dst = getSSA(8), *tmp[2];
3964 tmp[0] = fetchSrc(0, c);
3965 tmp[1] = fetchSrc(0, c + 1);
3966 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3967 mkOp1(OP_FLOOR, TYPE_F64, dst, src0);
3968 mkOp2(OP_SUB, TYPE_F64, dst, src0, dst);
3969 mkSplit(&dst0[c], 4, dst);
3970 c++;
3971 }
3972 break;
3973 case TGSI_OPCODE_U64SEQ:
3974 case TGSI_OPCODE_U64SNE:
3975 case TGSI_OPCODE_U64SLT:
3976 case TGSI_OPCODE_U64SGE:
3977 case TGSI_OPCODE_I64SLT:
3978 case TGSI_OPCODE_I64SGE:
3979 case TGSI_OPCODE_DSLT:
3980 case TGSI_OPCODE_DSGE:
3981 case TGSI_OPCODE_DSEQ:
3982 case TGSI_OPCODE_DSNE: {
3983 int pos = 0;
3984 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3985 Value *tmp[2];
3986
3987 src0 = getSSA(8);
3988 src1 = getSSA(8);
3989 tmp[0] = fetchSrc(0, pos);
3990 tmp[1] = fetchSrc(0, pos + 1);
3991 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3992 tmp[0] = fetchSrc(1, pos);
3993 tmp[1] = fetchSrc(1, pos + 1);
3994 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3995 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
3996 pos += 2;
3997 }
3998 break;
3999 }
4000 case TGSI_OPCODE_U64MIN:
4001 case TGSI_OPCODE_U64MAX:
4002 case TGSI_OPCODE_I64MIN:
4003 case TGSI_OPCODE_I64MAX: {
4004 dstTy = isSignedIntType(dstTy) ? TYPE_S32 : TYPE_U32;
4005 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4006 Value *flag = getSSA(1, FILE_FLAGS);
4007 src0 = fetchSrc(0, c + 1);
4008 src1 = fetchSrc(1, c + 1);
4009 geni = mkOp2(op, dstTy, dst0[c + 1], src0, src1);
4010 geni->subOp = NV50_IR_SUBOP_MINMAX_HIGH;
4011 geni->setFlagsDef(1, flag);
4012
4013 src0 = fetchSrc(0, c);
4014 src1 = fetchSrc(1, c);
4015 geni = mkOp2(op, TYPE_U32, dst0[c], src0, src1);
4016 geni->subOp = NV50_IR_SUBOP_MINMAX_LOW;
4017 geni->setFlagsSrc(2, flag);
4018
4019 c++;
4020 }
4021 break;
4022 }
4023 case TGSI_OPCODE_U64SHL:
4024 case TGSI_OPCODE_I64SHR:
4025 case TGSI_OPCODE_U64SHR:
4026 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4027 src0 = getSSA(8);
4028 Value *dst = getSSA(8), *tmp[2];
4029 tmp[0] = fetchSrc(0, c);
4030 tmp[1] = fetchSrc(0, c + 1);
4031 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4032 // Theoretically src1 is a 64-bit value but in practice only the low
4033 // bits matter. The IR expects this to be a 32-bit value.
4034 src1 = fetchSrc(1, c);
4035 mkOp2(op, dstTy, dst, src0, src1);
4036 mkSplit(&dst0[c], 4, dst);
4037 c++;
4038 }
4039 break;
4040 case TGSI_OPCODE_U64ADD:
4041 case TGSI_OPCODE_U64MUL:
4042 case TGSI_OPCODE_DADD:
4043 case TGSI_OPCODE_DMUL:
4044 case TGSI_OPCODE_DDIV:
4045 case TGSI_OPCODE_DMAX:
4046 case TGSI_OPCODE_DMIN:
4047 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4048 src0 = getSSA(8);
4049 src1 = getSSA(8);
4050 Value *dst = getSSA(8), *tmp[2];
4051 tmp[0] = fetchSrc(0, c);
4052 tmp[1] = fetchSrc(0, c + 1);
4053 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4054 tmp[0] = fetchSrc(1, c);
4055 tmp[1] = fetchSrc(1, c + 1);
4056 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
4057 mkOp2(op, dstTy, dst, src0, src1);
4058 mkSplit(&dst0[c], 4, dst);
4059 c++;
4060 }
4061 break;
4062 case TGSI_OPCODE_DMAD:
4063 case TGSI_OPCODE_DFMA:
4064 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4065 src0 = getSSA(8);
4066 src1 = getSSA(8);
4067 src2 = getSSA(8);
4068 Value *dst = getSSA(8), *tmp[2];
4069 tmp[0] = fetchSrc(0, c);
4070 tmp[1] = fetchSrc(0, c + 1);
4071 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4072 tmp[0] = fetchSrc(1, c);
4073 tmp[1] = fetchSrc(1, c + 1);
4074 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
4075 tmp[0] = fetchSrc(2, c);
4076 tmp[1] = fetchSrc(2, c + 1);
4077 mkOp2(OP_MERGE, TYPE_U64, src2, tmp[0], tmp[1]);
4078 mkOp3(op, dstTy, dst, src0, src1, src2);
4079 mkSplit(&dst0[c], 4, dst);
4080 c++;
4081 }
4082 break;
4083 case TGSI_OPCODE_DROUND:
4084 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4085 src0 = getSSA(8);
4086 Value *dst = getSSA(8), *tmp[2];
4087 tmp[0] = fetchSrc(0, c);
4088 tmp[1] = fetchSrc(0, c + 1);
4089 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4090 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F64, src0)
4091 ->rnd = ROUND_NI;
4092 mkSplit(&dst0[c], 4, dst);
4093 c++;
4094 }
4095 break;
4096 case TGSI_OPCODE_DSSG:
4097 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4098 src0 = getSSA(8);
4099 Value *dst = getSSA(8), *dstF32 = getSSA(), *tmp[2];
4100 tmp[0] = fetchSrc(0, c);
4101 tmp[1] = fetchSrc(0, c + 1);
4102 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4103
4104 val0 = getScratch();
4105 val1 = getScratch();
4106 // The zero is wrong here since it's only 32-bit, but it works out in
4107 // the end since it gets replaced with $r63.
4108 mkCmp(OP_SET, CC_GT, TYPE_F32, val0, TYPE_F64, src0, zero);
4109 mkCmp(OP_SET, CC_LT, TYPE_F32, val1, TYPE_F64, src0, zero);
4110 mkOp2(OP_SUB, TYPE_F32, dstF32, val0, val1);
4111 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F32, dstF32);
4112 mkSplit(&dst0[c], 4, dst);
4113 c++;
4114 }
4115 break;
4116 case TGSI_OPCODE_I64SSG:
4117 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
4118 src0 = getSSA(8);
4119 Value *tmp[2];
4120 tmp[0] = fetchSrc(0, c);
4121 tmp[1] = fetchSrc(0, c + 1);
4122 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
4123
4124 val0 = getScratch();
4125 val1 = getScratch();
4126 mkCmp(OP_SET, CC_GT, TYPE_U32, val0, TYPE_S64, src0, zero);
4127 mkCmp(OP_SET, CC_LT, TYPE_U32, val1, TYPE_S64, src0, zero);
4128 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
4129 mkOp2(OP_SHR, TYPE_S32, dst0[c + 1], dst0[c], loadImm(0, 31));
4130 c++;
4131 }
4132 break;
4133 default:
4134 ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
4135 assert(0);
4136 break;
4137 }
4138
4139 if (tgsi.dstCount() && tgsi.getOpcode() != TGSI_OPCODE_STORE) {
4140 for (c = 0; c < 4; ++c) {
4141 if (!dst0[c])
4142 continue;
4143 if (dst0[c] != rDst0[c])
4144 mkMov(rDst0[c], dst0[c]);
4145 storeDst(0, c, rDst0[c]);
4146 }
4147 }
4148 vtxBaseValid = 0;
4149
4150 return true;
4151 }
4152
4153 void
4154 Converter::exportOutputs()
4155 {
4156 if (info->io.alphaRefBase) {
4157 for (unsigned int i = 0; i < info->numOutputs; ++i) {
4158 if (info->out[i].sn != TGSI_SEMANTIC_COLOR ||
4159 info->out[i].si != 0)
4160 continue;
4161 const unsigned int c = 3;
4162 if (!oData.exists(sub.cur->values, i, c))
4163 continue;
4164 Value *val = oData.load(sub.cur->values, i, c, NULL);
4165 if (!val)
4166 continue;
4167
4168 Symbol *ref = mkSymbol(FILE_MEMORY_CONST, info->io.auxCBSlot,
4169 TYPE_U32, info->io.alphaRefBase);
4170 Value *pred = new_LValue(func, FILE_PREDICATE);
4171 mkCmp(OP_SET, CC_TR, TYPE_U32, pred, TYPE_F32, val,
4172 mkLoadv(TYPE_U32, ref, NULL))
4173 ->subOp = 1;
4174 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_NOT_P, pred);
4175 }
4176 }
4177
4178 for (unsigned int i = 0; i < info->numOutputs; ++i) {
4179 for (unsigned int c = 0; c < 4; ++c) {
4180 if (!oData.exists(sub.cur->values, i, c))
4181 continue;
4182 Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
4183 info->out[i].slot[c] * 4);
4184 Value *val = oData.load(sub.cur->values, i, c, NULL);
4185 if (val) {
4186 if (info->out[i].sn == TGSI_SEMANTIC_POSITION)
4187 mkOp1(OP_SAT, TYPE_F32, val, val);
4188 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
4189 }
4190 }
4191 }
4192 }
4193
4194 Converter::Converter(Program *ir, const tgsi::Source *code) : ConverterCommon(ir, code->info),
4195 code(code),
4196 tgsi(NULL),
4197 tData(this), lData(this), aData(this), oData(this)
4198 {
4199 const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
4200 const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
4201 const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
4202
4203 tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, FILE_GPR, 0);
4204 lData.setup(TGSI_FILE_TEMPORARY, 1, 0, tSize, 4, 4, FILE_MEMORY_LOCAL, 0);
4205 aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_GPR, 0);
4206 oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
4207
4208 zero = mkImm((uint32_t)0);
4209
4210 vtxBaseValid = 0;
4211 }
4212
4213 Converter::~Converter()
4214 {
4215 }
4216
4217 inline const Converter::Location *
4218 Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v)
4219 {
4220 ValueMap::l_iterator it = s->values.l.find(v);
4221 return it == s->values.l.end() ? NULL : &it->second;
4222 }
4223
4224 template<typename T> inline void
4225 Converter::BindArgumentsPass::updateCallArgs(
4226 Instruction *i, void (Instruction::*setArg)(int, Value *),
4227 T (Function::*proto))
4228 {
4229 Function *g = i->asFlow()->target.fn;
4230 Subroutine *subg = conv.getSubroutine(g);
4231
4232 for (unsigned a = 0; a < (g->*proto).size(); ++a) {
4233 Value *v = (g->*proto)[a].get();
4234 const Converter::Location &l = *getValueLocation(subg, v);
4235 Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
4236
4237 (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
4238 }
4239 }
4240
4241 template<typename T> inline void
4242 Converter::BindArgumentsPass::updatePrototype(
4243 BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
4244 {
4245 (func->*updateSet)();
4246
4247 for (unsigned i = 0; i < set->getSize(); ++i) {
4248 Value *v = func->getLValue(i);
4249 const Converter::Location *l = getValueLocation(sub, v);
4250
4251 // only include values with a matching TGSI register
4252 if (set->test(i) && l && !conv.code->locals.count(*l))
4253 (func->*proto).push_back(v);
4254 }
4255 }
4256
4257 bool
4258 Converter::BindArgumentsPass::visit(Function *f)
4259 {
4260 sub = conv.getSubroutine(f);
4261
4262 for (ArrayList::Iterator bi = f->allBBlocks.iterator();
4263 !bi.end(); bi.next()) {
4264 for (Instruction *i = BasicBlock::get(bi)->getFirst();
4265 i; i = i->next) {
4266 if (i->op == OP_CALL && !i->asFlow()->builtin) {
4267 updateCallArgs(i, &Instruction::setSrc, &Function::ins);
4268 updateCallArgs(i, &Instruction::setDef, &Function::outs);
4269 }
4270 }
4271 }
4272
4273 if (func == prog->main /* && prog->getType() != Program::TYPE_COMPUTE */)
4274 return true;
4275 updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
4276 &Function::buildLiveSets, &Function::ins);
4277 updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
4278 &Function::buildDefSets, &Function::outs);
4279
4280 return true;
4281 }
4282
4283 bool
4284 Converter::run()
4285 {
4286 BasicBlock *entry = new BasicBlock(prog->main);
4287 BasicBlock *leave = new BasicBlock(prog->main);
4288
4289 prog->main->setEntry(entry);
4290 prog->main->setExit(leave);
4291
4292 setPosition(entry, true);
4293 sub.cur = getSubroutine(prog->main);
4294
4295 if (info->io.genUserClip > 0) {
4296 for (int c = 0; c < 4; ++c)
4297 clipVtx[c] = getScratch();
4298 }
4299
4300 switch (prog->getType()) {
4301 case Program::TYPE_TESSELLATION_CONTROL:
4302 outBase = mkOp2v(
4303 OP_SUB, TYPE_U32, getSSA(),
4304 mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_LANEID, 0)),
4305 mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_INVOCATION_ID, 0)));
4306 break;
4307 case Program::TYPE_FRAGMENT: {
4308 Symbol *sv = mkSysVal(SV_POSITION, 3);
4309 fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
4310 mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
4311 break;
4312 }
4313 default:
4314 break;
4315 }
4316
4317 if (info->io.viewportId >= 0)
4318 viewport = getScratch();
4319 else
4320 viewport = NULL;
4321
4322 for (ip = 0; ip < code->scan.num_instructions; ++ip) {
4323 if (!handleInstruction(&code->insns[ip]))
4324 return false;
4325 }
4326
4327 if (!BindArgumentsPass(*this).run(prog))
4328 return false;
4329
4330 return true;
4331 }
4332
4333 } // unnamed namespace
4334
4335 namespace nv50_ir {
4336
4337 bool
4338 Program::makeFromTGSI(struct nv50_ir_prog_info *info)
4339 {
4340 tgsi::Source src(info);
4341 if (!src.scanSource())
4342 return false;
4343 tlsSize = info->bin.tlsSpace;
4344
4345 Converter builder(this, &src);
4346 return builder.run();
4347 }
4348
4349 } // namespace nv50_ir