radeon: enable Hyper-Z on r600g and radeonsi by default
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_from_tgsi.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 extern "C" {
24 #include "tgsi/tgsi_dump.h"
25 #include "tgsi/tgsi_scan.h"
26 #include "tgsi/tgsi_util.h"
27 }
28
29 #include <set>
30
31 #include "codegen/nv50_ir.h"
32 #include "codegen/nv50_ir_util.h"
33 #include "codegen/nv50_ir_build_util.h"
34
35 namespace tgsi {
36
37 class Source;
38
39 static nv50_ir::operation translateOpcode(uint opcode);
40 static nv50_ir::DataFile translateFile(uint file);
41 static nv50_ir::TexTarget translateTexture(uint texTarg);
42 static nv50_ir::SVSemantic translateSysVal(uint sysval);
43
44 class Instruction
45 {
46 public:
47 Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
48
49 class SrcRegister
50 {
51 public:
52 SrcRegister(const struct tgsi_full_src_register *src)
53 : reg(src->Register),
54 fsr(src)
55 { }
56
57 SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
58
59 SrcRegister(const struct tgsi_ind_register& ind)
60 : reg(tgsi_util_get_src_from_ind(&ind)),
61 fsr(NULL)
62 { }
63
64 struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
65 {
66 struct tgsi_src_register reg;
67 memset(&reg, 0, sizeof(reg));
68 reg.Index = off.Index;
69 reg.File = off.File;
70 reg.SwizzleX = off.SwizzleX;
71 reg.SwizzleY = off.SwizzleY;
72 reg.SwizzleZ = off.SwizzleZ;
73 return reg;
74 }
75
76 SrcRegister(const struct tgsi_texture_offset& off) :
77 reg(offsetToSrc(off)),
78 fsr(NULL)
79 { }
80
81 uint getFile() const { return reg.File; }
82
83 bool is2D() const { return reg.Dimension; }
84
85 bool isIndirect(int dim) const
86 {
87 return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
88 }
89
90 int getIndex(int dim) const
91 {
92 return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
93 }
94
95 int getSwizzle(int chan) const
96 {
97 return tgsi_util_get_src_register_swizzle(&reg, chan);
98 }
99
100 nv50_ir::Modifier getMod(int chan) const;
101
102 SrcRegister getIndirect(int dim) const
103 {
104 assert(fsr && isIndirect(dim));
105 if (dim)
106 return SrcRegister(fsr->DimIndirect);
107 return SrcRegister(fsr->Indirect);
108 }
109
110 uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
111 {
112 assert(reg.File == TGSI_FILE_IMMEDIATE);
113 assert(!reg.Absolute);
114 assert(!reg.Negate);
115 return info->immd.data[reg.Index * 4 + getSwizzle(c)];
116 }
117
118 private:
119 const struct tgsi_src_register reg;
120 const struct tgsi_full_src_register *fsr;
121 };
122
123 class DstRegister
124 {
125 public:
126 DstRegister(const struct tgsi_full_dst_register *dst)
127 : reg(dst->Register),
128 fdr(dst)
129 { }
130
131 DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
132
133 uint getFile() const { return reg.File; }
134
135 bool is2D() const { return reg.Dimension; }
136
137 bool isIndirect(int dim) const
138 {
139 return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
140 }
141
142 int getIndex(int dim) const
143 {
144 return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
145 }
146
147 unsigned int getMask() const { return reg.WriteMask; }
148
149 bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
150
151 SrcRegister getIndirect(int dim) const
152 {
153 assert(fdr && isIndirect(dim));
154 if (dim)
155 return SrcRegister(fdr->DimIndirect);
156 return SrcRegister(fdr->Indirect);
157 }
158
159 private:
160 const struct tgsi_dst_register reg;
161 const struct tgsi_full_dst_register *fdr;
162 };
163
164 inline uint getOpcode() const { return insn->Instruction.Opcode; }
165
166 unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
167 unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
168
169 // mask of used components of source s
170 unsigned int srcMask(unsigned int s) const;
171
172 SrcRegister getSrc(unsigned int s) const
173 {
174 assert(s < srcCount());
175 return SrcRegister(&insn->Src[s]);
176 }
177
178 DstRegister getDst(unsigned int d) const
179 {
180 assert(d < dstCount());
181 return DstRegister(&insn->Dst[d]);
182 }
183
184 SrcRegister getTexOffset(unsigned int i) const
185 {
186 assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
187 return SrcRegister(insn->TexOffsets[i]);
188 }
189
190 unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
191
192 bool checkDstSrcAliasing() const;
193
194 inline nv50_ir::operation getOP() const {
195 return translateOpcode(getOpcode()); }
196
197 nv50_ir::DataType inferSrcType() const;
198 nv50_ir::DataType inferDstType() const;
199
200 nv50_ir::CondCode getSetCond() const;
201
202 nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
203
204 inline uint getLabel() { return insn->Label.Label; }
205
206 unsigned getSaturate() const { return insn->Instruction.Saturate; }
207
208 void print() const
209 {
210 tgsi_dump_instruction(insn, 1);
211 }
212
213 private:
214 const struct tgsi_full_instruction *insn;
215 };
216
217 unsigned int Instruction::srcMask(unsigned int s) const
218 {
219 unsigned int mask = insn->Dst[0].Register.WriteMask;
220
221 switch (insn->Instruction.Opcode) {
222 case TGSI_OPCODE_COS:
223 case TGSI_OPCODE_SIN:
224 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
225 case TGSI_OPCODE_DP2:
226 return 0x3;
227 case TGSI_OPCODE_DP3:
228 return 0x7;
229 case TGSI_OPCODE_DP4:
230 case TGSI_OPCODE_DPH:
231 case TGSI_OPCODE_KILL_IF: /* WriteMask ignored */
232 return 0xf;
233 case TGSI_OPCODE_DST:
234 return mask & (s ? 0xa : 0x6);
235 case TGSI_OPCODE_EX2:
236 case TGSI_OPCODE_EXP:
237 case TGSI_OPCODE_LG2:
238 case TGSI_OPCODE_LOG:
239 case TGSI_OPCODE_POW:
240 case TGSI_OPCODE_RCP:
241 case TGSI_OPCODE_RSQ:
242 case TGSI_OPCODE_SCS:
243 return 0x1;
244 case TGSI_OPCODE_IF:
245 case TGSI_OPCODE_UIF:
246 return 0x1;
247 case TGSI_OPCODE_LIT:
248 return 0xb;
249 case TGSI_OPCODE_TEX2:
250 case TGSI_OPCODE_TXB2:
251 case TGSI_OPCODE_TXL2:
252 return (s == 0) ? 0xf : 0x3;
253 case TGSI_OPCODE_TEX:
254 case TGSI_OPCODE_TXB:
255 case TGSI_OPCODE_TXD:
256 case TGSI_OPCODE_TXL:
257 case TGSI_OPCODE_TXP:
258 case TGSI_OPCODE_LODQ:
259 {
260 const struct tgsi_instruction_texture *tex = &insn->Texture;
261
262 assert(insn->Instruction.Texture);
263
264 mask = 0x7;
265 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
266 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
267 mask |= 0x8; /* bias, lod or proj */
268
269 switch (tex->Texture) {
270 case TGSI_TEXTURE_1D:
271 mask &= 0x9;
272 break;
273 case TGSI_TEXTURE_SHADOW1D:
274 mask &= 0xd;
275 break;
276 case TGSI_TEXTURE_1D_ARRAY:
277 case TGSI_TEXTURE_2D:
278 case TGSI_TEXTURE_RECT:
279 mask &= 0xb;
280 break;
281 case TGSI_TEXTURE_CUBE_ARRAY:
282 case TGSI_TEXTURE_SHADOW2D_ARRAY:
283 case TGSI_TEXTURE_SHADOWCUBE:
284 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
285 mask |= 0x8;
286 break;
287 default:
288 break;
289 }
290 }
291 return mask;
292 case TGSI_OPCODE_XPD:
293 {
294 unsigned int x = 0;
295 if (mask & 1) x |= 0x6;
296 if (mask & 2) x |= 0x5;
297 if (mask & 4) x |= 0x3;
298 return x;
299 }
300 default:
301 break;
302 }
303
304 return mask;
305 }
306
307 nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
308 {
309 nv50_ir::Modifier m(0);
310
311 if (reg.Absolute)
312 m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
313 if (reg.Negate)
314 m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
315 return m;
316 }
317
318 static nv50_ir::DataFile translateFile(uint file)
319 {
320 switch (file) {
321 case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST;
322 case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT;
323 case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT;
324 case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR;
325 case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS;
326 case TGSI_FILE_PREDICATE: return nv50_ir::FILE_PREDICATE;
327 case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE;
328 case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE;
329 case TGSI_FILE_RESOURCE: return nv50_ir::FILE_MEMORY_GLOBAL;
330 case TGSI_FILE_SAMPLER:
331 case TGSI_FILE_NULL:
332 default:
333 return nv50_ir::FILE_NULL;
334 }
335 }
336
337 static nv50_ir::SVSemantic translateSysVal(uint sysval)
338 {
339 switch (sysval) {
340 case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE;
341 case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE;
342 case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID;
343 case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
344 case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID;
345 case TGSI_SEMANTIC_GRID_SIZE: return nv50_ir::SV_NCTAID;
346 case TGSI_SEMANTIC_BLOCK_ID: return nv50_ir::SV_CTAID;
347 case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID;
348 case TGSI_SEMANTIC_THREAD_ID: return nv50_ir::SV_TID;
349 case TGSI_SEMANTIC_SAMPLEID: return nv50_ir::SV_SAMPLE_INDEX;
350 case TGSI_SEMANTIC_SAMPLEPOS: return nv50_ir::SV_SAMPLE_POS;
351 case TGSI_SEMANTIC_SAMPLEMASK: return nv50_ir::SV_SAMPLE_MASK;
352 case TGSI_SEMANTIC_INVOCATIONID: return nv50_ir::SV_INVOCATION_ID;
353 default:
354 assert(0);
355 return nv50_ir::SV_CLOCK;
356 }
357 }
358
359 #define NV50_IR_TEX_TARG_CASE(a, b) \
360 case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
361
362 static nv50_ir::TexTarget translateTexture(uint tex)
363 {
364 switch (tex) {
365 NV50_IR_TEX_TARG_CASE(1D, 1D);
366 NV50_IR_TEX_TARG_CASE(2D, 2D);
367 NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS);
368 NV50_IR_TEX_TARG_CASE(3D, 3D);
369 NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
370 NV50_IR_TEX_TARG_CASE(RECT, RECT);
371 NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
372 NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
373 NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY);
374 NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY);
375 NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
376 NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
377 NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
378 NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
379 NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
380 NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
381 NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW);
382 NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
383
384 case TGSI_TEXTURE_UNKNOWN:
385 default:
386 assert(!"invalid texture target");
387 return nv50_ir::TEX_TARGET_2D;
388 }
389 }
390
391 nv50_ir::DataType Instruction::inferSrcType() const
392 {
393 switch (getOpcode()) {
394 case TGSI_OPCODE_UIF:
395 case TGSI_OPCODE_AND:
396 case TGSI_OPCODE_OR:
397 case TGSI_OPCODE_XOR:
398 case TGSI_OPCODE_NOT:
399 case TGSI_OPCODE_U2F:
400 case TGSI_OPCODE_UADD:
401 case TGSI_OPCODE_UDIV:
402 case TGSI_OPCODE_UMOD:
403 case TGSI_OPCODE_UMAD:
404 case TGSI_OPCODE_UMUL:
405 case TGSI_OPCODE_UMUL_HI:
406 case TGSI_OPCODE_UMAX:
407 case TGSI_OPCODE_UMIN:
408 case TGSI_OPCODE_USEQ:
409 case TGSI_OPCODE_USGE:
410 case TGSI_OPCODE_USLT:
411 case TGSI_OPCODE_USNE:
412 case TGSI_OPCODE_USHR:
413 case TGSI_OPCODE_UCMP:
414 case TGSI_OPCODE_ATOMUADD:
415 case TGSI_OPCODE_ATOMXCHG:
416 case TGSI_OPCODE_ATOMCAS:
417 case TGSI_OPCODE_ATOMAND:
418 case TGSI_OPCODE_ATOMOR:
419 case TGSI_OPCODE_ATOMXOR:
420 case TGSI_OPCODE_ATOMUMIN:
421 case TGSI_OPCODE_ATOMUMAX:
422 case TGSI_OPCODE_UBFE:
423 case TGSI_OPCODE_UMSB:
424 return nv50_ir::TYPE_U32;
425 case TGSI_OPCODE_I2F:
426 case TGSI_OPCODE_IDIV:
427 case TGSI_OPCODE_IMUL_HI:
428 case TGSI_OPCODE_IMAX:
429 case TGSI_OPCODE_IMIN:
430 case TGSI_OPCODE_IABS:
431 case TGSI_OPCODE_INEG:
432 case TGSI_OPCODE_ISGE:
433 case TGSI_OPCODE_ISHR:
434 case TGSI_OPCODE_ISLT:
435 case TGSI_OPCODE_ISSG:
436 case TGSI_OPCODE_SAD: // not sure about SAD, but no one has a float version
437 case TGSI_OPCODE_MOD:
438 case TGSI_OPCODE_UARL:
439 case TGSI_OPCODE_ATOMIMIN:
440 case TGSI_OPCODE_ATOMIMAX:
441 case TGSI_OPCODE_IBFE:
442 case TGSI_OPCODE_IMSB:
443 return nv50_ir::TYPE_S32;
444 default:
445 return nv50_ir::TYPE_F32;
446 }
447 }
448
449 nv50_ir::DataType Instruction::inferDstType() const
450 {
451 switch (getOpcode()) {
452 case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
453 case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
454 case TGSI_OPCODE_FSEQ:
455 case TGSI_OPCODE_FSGE:
456 case TGSI_OPCODE_FSLT:
457 case TGSI_OPCODE_FSNE:
458 return nv50_ir::TYPE_U32;
459 case TGSI_OPCODE_I2F:
460 case TGSI_OPCODE_U2F:
461 return nv50_ir::TYPE_F32;
462 default:
463 return inferSrcType();
464 }
465 }
466
467 nv50_ir::CondCode Instruction::getSetCond() const
468 {
469 using namespace nv50_ir;
470
471 switch (getOpcode()) {
472 case TGSI_OPCODE_SLT:
473 case TGSI_OPCODE_ISLT:
474 case TGSI_OPCODE_USLT:
475 case TGSI_OPCODE_FSLT:
476 return CC_LT;
477 case TGSI_OPCODE_SLE:
478 return CC_LE;
479 case TGSI_OPCODE_SGE:
480 case TGSI_OPCODE_ISGE:
481 case TGSI_OPCODE_USGE:
482 case TGSI_OPCODE_FSGE:
483 return CC_GE;
484 case TGSI_OPCODE_SGT:
485 return CC_GT;
486 case TGSI_OPCODE_SEQ:
487 case TGSI_OPCODE_USEQ:
488 case TGSI_OPCODE_FSEQ:
489 return CC_EQ;
490 case TGSI_OPCODE_SNE:
491 case TGSI_OPCODE_FSNE:
492 return CC_NEU;
493 case TGSI_OPCODE_USNE:
494 return CC_NE;
495 case TGSI_OPCODE_SFL:
496 return CC_NEVER;
497 case TGSI_OPCODE_STR:
498 default:
499 return CC_ALWAYS;
500 }
501 }
502
503 #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
504
505 static nv50_ir::operation translateOpcode(uint opcode)
506 {
507 switch (opcode) {
508 NV50_IR_OPCODE_CASE(ARL, SHL);
509 NV50_IR_OPCODE_CASE(MOV, MOV);
510
511 NV50_IR_OPCODE_CASE(RCP, RCP);
512 NV50_IR_OPCODE_CASE(RSQ, RSQ);
513
514 NV50_IR_OPCODE_CASE(MUL, MUL);
515 NV50_IR_OPCODE_CASE(ADD, ADD);
516
517 NV50_IR_OPCODE_CASE(MIN, MIN);
518 NV50_IR_OPCODE_CASE(MAX, MAX);
519 NV50_IR_OPCODE_CASE(SLT, SET);
520 NV50_IR_OPCODE_CASE(SGE, SET);
521 NV50_IR_OPCODE_CASE(MAD, MAD);
522 NV50_IR_OPCODE_CASE(SUB, SUB);
523
524 NV50_IR_OPCODE_CASE(FLR, FLOOR);
525 NV50_IR_OPCODE_CASE(ROUND, CVT);
526 NV50_IR_OPCODE_CASE(EX2, EX2);
527 NV50_IR_OPCODE_CASE(LG2, LG2);
528 NV50_IR_OPCODE_CASE(POW, POW);
529
530 NV50_IR_OPCODE_CASE(ABS, ABS);
531
532 NV50_IR_OPCODE_CASE(COS, COS);
533 NV50_IR_OPCODE_CASE(DDX, DFDX);
534 NV50_IR_OPCODE_CASE(DDX_FINE, DFDX);
535 NV50_IR_OPCODE_CASE(DDY, DFDY);
536 NV50_IR_OPCODE_CASE(DDY_FINE, DFDY);
537 NV50_IR_OPCODE_CASE(KILL, DISCARD);
538
539 NV50_IR_OPCODE_CASE(SEQ, SET);
540 NV50_IR_OPCODE_CASE(SFL, SET);
541 NV50_IR_OPCODE_CASE(SGT, SET);
542 NV50_IR_OPCODE_CASE(SIN, SIN);
543 NV50_IR_OPCODE_CASE(SLE, SET);
544 NV50_IR_OPCODE_CASE(SNE, SET);
545 NV50_IR_OPCODE_CASE(STR, SET);
546 NV50_IR_OPCODE_CASE(TEX, TEX);
547 NV50_IR_OPCODE_CASE(TXD, TXD);
548 NV50_IR_OPCODE_CASE(TXP, TEX);
549
550 NV50_IR_OPCODE_CASE(BRA, BRA);
551 NV50_IR_OPCODE_CASE(CAL, CALL);
552 NV50_IR_OPCODE_CASE(RET, RET);
553 NV50_IR_OPCODE_CASE(CMP, SLCT);
554
555 NV50_IR_OPCODE_CASE(TXB, TXB);
556
557 NV50_IR_OPCODE_CASE(DIV, DIV);
558
559 NV50_IR_OPCODE_CASE(TXL, TXL);
560
561 NV50_IR_OPCODE_CASE(CEIL, CEIL);
562 NV50_IR_OPCODE_CASE(I2F, CVT);
563 NV50_IR_OPCODE_CASE(NOT, NOT);
564 NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
565 NV50_IR_OPCODE_CASE(SHL, SHL);
566
567 NV50_IR_OPCODE_CASE(AND, AND);
568 NV50_IR_OPCODE_CASE(OR, OR);
569 NV50_IR_OPCODE_CASE(MOD, MOD);
570 NV50_IR_OPCODE_CASE(XOR, XOR);
571 NV50_IR_OPCODE_CASE(SAD, SAD);
572 NV50_IR_OPCODE_CASE(TXF, TXF);
573 NV50_IR_OPCODE_CASE(TXQ, TXQ);
574 NV50_IR_OPCODE_CASE(TG4, TXG);
575 NV50_IR_OPCODE_CASE(LODQ, TXLQ);
576
577 NV50_IR_OPCODE_CASE(EMIT, EMIT);
578 NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
579
580 NV50_IR_OPCODE_CASE(KILL_IF, DISCARD);
581
582 NV50_IR_OPCODE_CASE(F2I, CVT);
583 NV50_IR_OPCODE_CASE(FSEQ, SET);
584 NV50_IR_OPCODE_CASE(FSGE, SET);
585 NV50_IR_OPCODE_CASE(FSLT, SET);
586 NV50_IR_OPCODE_CASE(FSNE, SET);
587 NV50_IR_OPCODE_CASE(IDIV, DIV);
588 NV50_IR_OPCODE_CASE(IMAX, MAX);
589 NV50_IR_OPCODE_CASE(IMIN, MIN);
590 NV50_IR_OPCODE_CASE(IABS, ABS);
591 NV50_IR_OPCODE_CASE(INEG, NEG);
592 NV50_IR_OPCODE_CASE(ISGE, SET);
593 NV50_IR_OPCODE_CASE(ISHR, SHR);
594 NV50_IR_OPCODE_CASE(ISLT, SET);
595 NV50_IR_OPCODE_CASE(F2U, CVT);
596 NV50_IR_OPCODE_CASE(U2F, CVT);
597 NV50_IR_OPCODE_CASE(UADD, ADD);
598 NV50_IR_OPCODE_CASE(UDIV, DIV);
599 NV50_IR_OPCODE_CASE(UMAD, MAD);
600 NV50_IR_OPCODE_CASE(UMAX, MAX);
601 NV50_IR_OPCODE_CASE(UMIN, MIN);
602 NV50_IR_OPCODE_CASE(UMOD, MOD);
603 NV50_IR_OPCODE_CASE(UMUL, MUL);
604 NV50_IR_OPCODE_CASE(USEQ, SET);
605 NV50_IR_OPCODE_CASE(USGE, SET);
606 NV50_IR_OPCODE_CASE(USHR, SHR);
607 NV50_IR_OPCODE_CASE(USLT, SET);
608 NV50_IR_OPCODE_CASE(USNE, SET);
609
610 NV50_IR_OPCODE_CASE(IMUL_HI, MUL);
611 NV50_IR_OPCODE_CASE(UMUL_HI, MUL);
612
613 NV50_IR_OPCODE_CASE(SAMPLE, TEX);
614 NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
615 NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
616 NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
617 NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
618 NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
619 NV50_IR_OPCODE_CASE(SAMPLE_I, TXF);
620 NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF);
621 NV50_IR_OPCODE_CASE(GATHER4, TXG);
622 NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
623
624 NV50_IR_OPCODE_CASE(ATOMUADD, ATOM);
625 NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM);
626 NV50_IR_OPCODE_CASE(ATOMCAS, ATOM);
627 NV50_IR_OPCODE_CASE(ATOMAND, ATOM);
628 NV50_IR_OPCODE_CASE(ATOMOR, ATOM);
629 NV50_IR_OPCODE_CASE(ATOMXOR, ATOM);
630 NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM);
631 NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM);
632 NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM);
633 NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM);
634
635 NV50_IR_OPCODE_CASE(TEX2, TEX);
636 NV50_IR_OPCODE_CASE(TXB2, TXB);
637 NV50_IR_OPCODE_CASE(TXL2, TXL);
638
639 NV50_IR_OPCODE_CASE(IBFE, EXTBF);
640 NV50_IR_OPCODE_CASE(UBFE, EXTBF);
641 NV50_IR_OPCODE_CASE(BFI, INSBF);
642 NV50_IR_OPCODE_CASE(BREV, EXTBF);
643 NV50_IR_OPCODE_CASE(POPC, POPCNT);
644 NV50_IR_OPCODE_CASE(LSB, BFIND);
645 NV50_IR_OPCODE_CASE(IMSB, BFIND);
646 NV50_IR_OPCODE_CASE(UMSB, BFIND);
647
648 NV50_IR_OPCODE_CASE(END, EXIT);
649
650 default:
651 return nv50_ir::OP_NOP;
652 }
653 }
654
655 static uint16_t opcodeToSubOp(uint opcode)
656 {
657 switch (opcode) {
658 case TGSI_OPCODE_LFENCE: return NV50_IR_SUBOP_MEMBAR(L, GL);
659 case TGSI_OPCODE_SFENCE: return NV50_IR_SUBOP_MEMBAR(S, GL);
660 case TGSI_OPCODE_MFENCE: return NV50_IR_SUBOP_MEMBAR(M, GL);
661 case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD;
662 case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH;
663 case TGSI_OPCODE_ATOMCAS: return NV50_IR_SUBOP_ATOM_CAS;
664 case TGSI_OPCODE_ATOMAND: return NV50_IR_SUBOP_ATOM_AND;
665 case TGSI_OPCODE_ATOMOR: return NV50_IR_SUBOP_ATOM_OR;
666 case TGSI_OPCODE_ATOMXOR: return NV50_IR_SUBOP_ATOM_XOR;
667 case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN;
668 case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN;
669 case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX;
670 case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX;
671 case TGSI_OPCODE_IMUL_HI:
672 case TGSI_OPCODE_UMUL_HI:
673 return NV50_IR_SUBOP_MUL_HIGH;
674 default:
675 return 0;
676 }
677 }
678
679 bool Instruction::checkDstSrcAliasing() const
680 {
681 if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
682 return false;
683
684 for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
685 if (insn->Src[s].Register.File == TGSI_FILE_NULL)
686 break;
687 if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
688 insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
689 return true;
690 }
691 return false;
692 }
693
694 class Source
695 {
696 public:
697 Source(struct nv50_ir_prog_info *);
698 ~Source();
699
700 public:
701 bool scanSource();
702 unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
703
704 public:
705 struct tgsi_shader_info scan;
706 struct tgsi_full_instruction *insns;
707 const struct tgsi_token *tokens;
708 struct nv50_ir_prog_info *info;
709
710 nv50_ir::DynArray tempArrays;
711 nv50_ir::DynArray immdArrays;
712
713 typedef nv50_ir::BuildUtil::Location Location;
714 // these registers are per-subroutine, cannot be used for parameter passing
715 std::set<Location> locals;
716
717 bool mainTempsInLMem;
718
719 int clipVertexOutput;
720
721 struct TextureView {
722 uint8_t target; // TGSI_TEXTURE_*
723 };
724 std::vector<TextureView> textureViews;
725
726 struct Resource {
727 uint8_t target; // TGSI_TEXTURE_*
728 bool raw;
729 uint8_t slot; // $surface index
730 };
731 std::vector<Resource> resources;
732
733 private:
734 int inferSysValDirection(unsigned sn) const;
735 bool scanDeclaration(const struct tgsi_full_declaration *);
736 bool scanInstruction(const struct tgsi_full_instruction *);
737 void scanProperty(const struct tgsi_full_property *);
738 void scanImmediate(const struct tgsi_full_immediate *);
739
740 inline bool isEdgeFlagPassthrough(const Instruction&) const;
741 };
742
743 Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
744 {
745 tokens = (const struct tgsi_token *)info->bin.source;
746
747 if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
748 tgsi_dump(tokens, 0);
749
750 mainTempsInLMem = FALSE;
751 }
752
753 Source::~Source()
754 {
755 if (insns)
756 FREE(insns);
757
758 if (info->immd.data)
759 FREE(info->immd.data);
760 if (info->immd.type)
761 FREE(info->immd.type);
762 }
763
764 bool Source::scanSource()
765 {
766 unsigned insnCount = 0;
767 struct tgsi_parse_context parse;
768
769 tgsi_scan_shader(tokens, &scan);
770
771 insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
772 sizeof(insns[0]));
773 if (!insns)
774 return false;
775
776 clipVertexOutput = -1;
777
778 textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1);
779 resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1);
780
781 info->immd.bufSize = 0;
782
783 info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
784 info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
785 info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
786
787 if (info->type == PIPE_SHADER_FRAGMENT) {
788 info->prop.fp.writesDepth = scan.writes_z;
789 info->prop.fp.usesDiscard = scan.uses_kill;
790 } else
791 if (info->type == PIPE_SHADER_GEOMETRY) {
792 info->prop.gp.instanceCount = 1; // default value
793 }
794
795 info->io.viewportId = -1;
796
797 info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
798 info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
799
800 tgsi_parse_init(&parse, tokens);
801 while (!tgsi_parse_end_of_tokens(&parse)) {
802 tgsi_parse_token(&parse);
803
804 switch (parse.FullToken.Token.Type) {
805 case TGSI_TOKEN_TYPE_IMMEDIATE:
806 scanImmediate(&parse.FullToken.FullImmediate);
807 break;
808 case TGSI_TOKEN_TYPE_DECLARATION:
809 scanDeclaration(&parse.FullToken.FullDeclaration);
810 break;
811 case TGSI_TOKEN_TYPE_INSTRUCTION:
812 insns[insnCount++] = parse.FullToken.FullInstruction;
813 scanInstruction(&parse.FullToken.FullInstruction);
814 break;
815 case TGSI_TOKEN_TYPE_PROPERTY:
816 scanProperty(&parse.FullToken.FullProperty);
817 break;
818 default:
819 INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
820 break;
821 }
822 }
823 tgsi_parse_free(&parse);
824
825 if (mainTempsInLMem)
826 info->bin.tlsSpace += (scan.file_max[TGSI_FILE_TEMPORARY] + 1) * 16;
827
828 if (info->io.genUserClip > 0) {
829 info->io.clipDistanceMask = (1 << info->io.genUserClip) - 1;
830
831 const unsigned int nOut = (info->io.genUserClip + 3) / 4;
832
833 for (unsigned int n = 0; n < nOut; ++n) {
834 unsigned int i = info->numOutputs++;
835 info->out[i].id = i;
836 info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
837 info->out[i].si = n;
838 info->out[i].mask = info->io.clipDistanceMask >> (n * 4);
839 }
840 }
841
842 return info->assignSlots(info) == 0;
843 }
844
845 void Source::scanProperty(const struct tgsi_full_property *prop)
846 {
847 switch (prop->Property.PropertyName) {
848 case TGSI_PROPERTY_GS_OUTPUT_PRIM:
849 info->prop.gp.outputPrim = prop->u[0].Data;
850 break;
851 case TGSI_PROPERTY_GS_INPUT_PRIM:
852 info->prop.gp.inputPrim = prop->u[0].Data;
853 break;
854 case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
855 info->prop.gp.maxVertices = prop->u[0].Data;
856 break;
857 case TGSI_PROPERTY_GS_INVOCATIONS:
858 info->prop.gp.instanceCount = prop->u[0].Data;
859 break;
860 case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
861 info->prop.fp.separateFragData = TRUE;
862 break;
863 case TGSI_PROPERTY_FS_COORD_ORIGIN:
864 case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
865 // we don't care
866 break;
867 case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
868 info->io.genUserClip = -1;
869 break;
870 default:
871 INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
872 break;
873 }
874 }
875
876 void Source::scanImmediate(const struct tgsi_full_immediate *imm)
877 {
878 const unsigned n = info->immd.count++;
879
880 assert(n < scan.immediate_count);
881
882 for (int c = 0; c < 4; ++c)
883 info->immd.data[n * 4 + c] = imm->u[c].Uint;
884
885 info->immd.type[n] = imm->Immediate.DataType;
886 }
887
888 int Source::inferSysValDirection(unsigned sn) const
889 {
890 switch (sn) {
891 case TGSI_SEMANTIC_INSTANCEID:
892 case TGSI_SEMANTIC_VERTEXID:
893 return 1;
894 case TGSI_SEMANTIC_LAYER:
895 #if 0
896 case TGSI_SEMANTIC_VIEWPORTINDEX:
897 return 0;
898 #endif
899 case TGSI_SEMANTIC_PRIMID:
900 return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
901 default:
902 return 0;
903 }
904 }
905
906 bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
907 {
908 unsigned i, c;
909 unsigned sn = TGSI_SEMANTIC_GENERIC;
910 unsigned si = 0;
911 const unsigned first = decl->Range.First, last = decl->Range.Last;
912
913 if (decl->Declaration.Semantic) {
914 sn = decl->Semantic.Name;
915 si = decl->Semantic.Index;
916 }
917
918 if (decl->Declaration.Local) {
919 for (i = first; i <= last; ++i) {
920 for (c = 0; c < 4; ++c) {
921 locals.insert(
922 Location(decl->Declaration.File, decl->Dim.Index2D, i, c));
923 }
924 }
925 }
926
927 switch (decl->Declaration.File) {
928 case TGSI_FILE_INPUT:
929 if (info->type == PIPE_SHADER_VERTEX) {
930 // all vertex attributes are equal
931 for (i = first; i <= last; ++i) {
932 info->in[i].sn = TGSI_SEMANTIC_GENERIC;
933 info->in[i].si = i;
934 }
935 } else {
936 for (i = first; i <= last; ++i, ++si) {
937 info->in[i].id = i;
938 info->in[i].sn = sn;
939 info->in[i].si = si;
940 if (info->type == PIPE_SHADER_FRAGMENT) {
941 // translate interpolation mode
942 switch (decl->Interp.Interpolate) {
943 case TGSI_INTERPOLATE_CONSTANT:
944 info->in[i].flat = 1;
945 break;
946 case TGSI_INTERPOLATE_COLOR:
947 info->in[i].sc = 1;
948 break;
949 case TGSI_INTERPOLATE_LINEAR:
950 info->in[i].linear = 1;
951 break;
952 default:
953 break;
954 }
955 if (decl->Interp.Location || info->io.sampleInterp)
956 info->in[i].centroid = 1;
957 }
958 }
959 }
960 break;
961 case TGSI_FILE_OUTPUT:
962 for (i = first; i <= last; ++i, ++si) {
963 switch (sn) {
964 case TGSI_SEMANTIC_POSITION:
965 if (info->type == PIPE_SHADER_FRAGMENT)
966 info->io.fragDepth = i;
967 else
968 if (clipVertexOutput < 0)
969 clipVertexOutput = i;
970 break;
971 case TGSI_SEMANTIC_COLOR:
972 if (info->type == PIPE_SHADER_FRAGMENT)
973 info->prop.fp.numColourResults++;
974 break;
975 case TGSI_SEMANTIC_EDGEFLAG:
976 info->io.edgeFlagOut = i;
977 break;
978 case TGSI_SEMANTIC_CLIPVERTEX:
979 clipVertexOutput = i;
980 break;
981 case TGSI_SEMANTIC_CLIPDIST:
982 info->io.clipDistanceMask |=
983 decl->Declaration.UsageMask << (si * 4);
984 info->io.genUserClip = -1;
985 break;
986 case TGSI_SEMANTIC_SAMPLEMASK:
987 info->io.sampleMask = i;
988 break;
989 case TGSI_SEMANTIC_VIEWPORT_INDEX:
990 info->io.viewportId = i;
991 break;
992 default:
993 break;
994 }
995 info->out[i].id = i;
996 info->out[i].sn = sn;
997 info->out[i].si = si;
998 }
999 break;
1000 case TGSI_FILE_SYSTEM_VALUE:
1001 switch (sn) {
1002 case TGSI_SEMANTIC_INSTANCEID:
1003 info->io.instanceId = first;
1004 break;
1005 case TGSI_SEMANTIC_VERTEXID:
1006 info->io.vertexId = first;
1007 break;
1008 default:
1009 break;
1010 }
1011 for (i = first; i <= last; ++i, ++si) {
1012 info->sv[i].sn = sn;
1013 info->sv[i].si = si;
1014 info->sv[i].input = inferSysValDirection(sn);
1015 }
1016 break;
1017 case TGSI_FILE_RESOURCE:
1018 for (i = first; i <= last; ++i) {
1019 resources[i].target = decl->Resource.Resource;
1020 resources[i].raw = decl->Resource.Raw;
1021 resources[i].slot = i;
1022 }
1023 break;
1024 case TGSI_FILE_SAMPLER_VIEW:
1025 for (i = first; i <= last; ++i)
1026 textureViews[i].target = decl->SamplerView.Resource;
1027 break;
1028 case TGSI_FILE_NULL:
1029 case TGSI_FILE_TEMPORARY:
1030 case TGSI_FILE_ADDRESS:
1031 case TGSI_FILE_CONSTANT:
1032 case TGSI_FILE_IMMEDIATE:
1033 case TGSI_FILE_PREDICATE:
1034 case TGSI_FILE_SAMPLER:
1035 break;
1036 default:
1037 ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
1038 return false;
1039 }
1040 return true;
1041 }
1042
1043 inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
1044 {
1045 return insn.getOpcode() == TGSI_OPCODE_MOV &&
1046 insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
1047 insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
1048 }
1049
1050 bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
1051 {
1052 Instruction insn(inst);
1053
1054 if (insn.getOpcode() == TGSI_OPCODE_BARRIER)
1055 info->numBarriers = 1;
1056
1057 if (insn.dstCount()) {
1058 if (insn.getDst(0).getFile() == TGSI_FILE_OUTPUT) {
1059 Instruction::DstRegister dst = insn.getDst(0);
1060
1061 if (dst.isIndirect(0))
1062 for (unsigned i = 0; i < info->numOutputs; ++i)
1063 info->out[i].mask = 0xf;
1064 else
1065 info->out[dst.getIndex(0)].mask |= dst.getMask();
1066
1067 if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE ||
1068 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID ||
1069 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_LAYER ||
1070 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_VIEWPORT_INDEX ||
1071 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG)
1072 info->out[dst.getIndex(0)].mask &= 1;
1073
1074 if (isEdgeFlagPassthrough(insn))
1075 info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
1076 } else
1077 if (insn.getDst(0).getFile() == TGSI_FILE_TEMPORARY) {
1078 if (insn.getDst(0).isIndirect(0))
1079 mainTempsInLMem = TRUE;
1080 }
1081 }
1082
1083 for (unsigned s = 0; s < insn.srcCount(); ++s) {
1084 Instruction::SrcRegister src = insn.getSrc(s);
1085 if (src.getFile() == TGSI_FILE_TEMPORARY) {
1086 if (src.isIndirect(0))
1087 mainTempsInLMem = TRUE;
1088 } else
1089 if (src.getFile() == TGSI_FILE_RESOURCE) {
1090 if (src.getIndex(0) == TGSI_RESOURCE_GLOBAL)
1091 info->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ?
1092 0x1 : 0x2;
1093 }
1094 if (src.getFile() != TGSI_FILE_INPUT)
1095 continue;
1096 unsigned mask = insn.srcMask(s);
1097
1098 if (src.isIndirect(0)) {
1099 for (unsigned i = 0; i < info->numInputs; ++i)
1100 info->in[i].mask = 0xf;
1101 } else {
1102 const int i = src.getIndex(0);
1103 for (unsigned c = 0; c < 4; ++c) {
1104 if (!(mask & (1 << c)))
1105 continue;
1106 int k = src.getSwizzle(c);
1107 if (k <= TGSI_SWIZZLE_W)
1108 info->in[i].mask |= 1 << k;
1109 }
1110 switch (info->in[i].sn) {
1111 case TGSI_SEMANTIC_PSIZE:
1112 case TGSI_SEMANTIC_PRIMID:
1113 case TGSI_SEMANTIC_FOG:
1114 info->in[i].mask &= 0x1;
1115 break;
1116 case TGSI_SEMANTIC_PCOORD:
1117 info->in[i].mask &= 0x3;
1118 break;
1119 default:
1120 break;
1121 }
1122 }
1123 }
1124 return true;
1125 }
1126
1127 nv50_ir::TexInstruction::Target
1128 Instruction::getTexture(const tgsi::Source *code, int s) const
1129 {
1130 // XXX: indirect access
1131 unsigned int r;
1132
1133 switch (getSrc(s).getFile()) {
1134 case TGSI_FILE_RESOURCE:
1135 r = getSrc(s).getIndex(0);
1136 return translateTexture(code->resources.at(r).target);
1137 case TGSI_FILE_SAMPLER_VIEW:
1138 r = getSrc(s).getIndex(0);
1139 return translateTexture(code->textureViews.at(r).target);
1140 default:
1141 return translateTexture(insn->Texture.Texture);
1142 }
1143 }
1144
1145 } // namespace tgsi
1146
1147 namespace {
1148
1149 using namespace nv50_ir;
1150
1151 class Converter : public BuildUtil
1152 {
1153 public:
1154 Converter(Program *, const tgsi::Source *);
1155 ~Converter();
1156
1157 bool run();
1158
1159 private:
1160 struct Subroutine
1161 {
1162 Subroutine(Function *f) : f(f) { }
1163 Function *f;
1164 ValueMap values;
1165 };
1166
1167 Value *shiftAddress(Value *);
1168 Value *getVertexBase(int s);
1169 DataArray *getArrayForFile(unsigned file, int idx);
1170 Value *fetchSrc(int s, int c);
1171 Value *acquireDst(int d, int c);
1172 void storeDst(int d, int c, Value *);
1173
1174 Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1175 void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1176 Value *val, Value *ptr);
1177
1178 Value *applySrcMod(Value *, int s, int c);
1179
1180 Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1181 Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1182 Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1183
1184 bool handleInstruction(const struct tgsi_full_instruction *);
1185 void exportOutputs();
1186 inline Subroutine *getSubroutine(unsigned ip);
1187 inline Subroutine *getSubroutine(Function *);
1188 inline bool isEndOfSubroutine(uint ip);
1189
1190 void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1191
1192 // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1193 void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1194 void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1195 void handleTXF(Value *dst0[4], int R, int L_M);
1196 void handleTXQ(Value *dst0[4], enum TexQuery);
1197 void handleLIT(Value *dst0[4]);
1198 void handleUserClipPlanes();
1199
1200 Symbol *getResourceBase(int r);
1201 void getResourceCoords(std::vector<Value *>&, int r, int s);
1202
1203 void handleLOAD(Value *dst0[4]);
1204 void handleSTORE();
1205 void handleATOM(Value *dst0[4], DataType, uint16_t subOp);
1206
1207 void handleINTERP(Value *dst0[4]);
1208
1209 Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1210
1211 void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1212
1213 Value *buildDot(int dim);
1214
1215 class BindArgumentsPass : public Pass {
1216 public:
1217 BindArgumentsPass(Converter &conv) : conv(conv) { }
1218
1219 private:
1220 Converter &conv;
1221 Subroutine *sub;
1222
1223 inline const Location *getValueLocation(Subroutine *, Value *);
1224
1225 template<typename T> inline void
1226 updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1227 T (Function::*proto));
1228
1229 template<typename T> inline void
1230 updatePrototype(BitSet *set, void (Function::*updateSet)(),
1231 T (Function::*proto));
1232
1233 protected:
1234 bool visit(Function *);
1235 bool visit(BasicBlock *bb) { return false; }
1236 };
1237
1238 private:
1239 const struct tgsi::Source *code;
1240 const struct nv50_ir_prog_info *info;
1241
1242 struct {
1243 std::map<unsigned, Subroutine> map;
1244 Subroutine *cur;
1245 } sub;
1246
1247 uint ip; // instruction pointer
1248
1249 tgsi::Instruction tgsi;
1250
1251 DataType dstTy;
1252 DataType srcTy;
1253
1254 DataArray tData; // TGSI_FILE_TEMPORARY
1255 DataArray aData; // TGSI_FILE_ADDRESS
1256 DataArray pData; // TGSI_FILE_PREDICATE
1257 DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1258
1259 Value *zero;
1260 Value *fragCoord[4];
1261 Value *clipVtx[4];
1262
1263 Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1264 uint8_t vtxBaseValid;
1265
1266 Stack condBBs; // fork BB, then else clause BB
1267 Stack joinBBs; // fork BB, for inserting join ops on ENDIF
1268 Stack loopBBs; // loop headers
1269 Stack breakBBs; // end of / after loop
1270
1271 Value *viewport;
1272 };
1273
1274 Symbol *
1275 Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1276 {
1277 const int swz = src.getSwizzle(c);
1278
1279 return makeSym(src.getFile(),
1280 src.is2D() ? src.getIndex(1) : 0,
1281 src.isIndirect(0) ? -1 : src.getIndex(0), swz,
1282 src.getIndex(0) * 16 + swz * 4);
1283 }
1284
1285 Symbol *
1286 Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1287 {
1288 return makeSym(dst.getFile(),
1289 dst.is2D() ? dst.getIndex(1) : 0,
1290 dst.isIndirect(0) ? -1 : dst.getIndex(0), c,
1291 dst.getIndex(0) * 16 + c * 4);
1292 }
1293
1294 Symbol *
1295 Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1296 {
1297 Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1298
1299 sym->reg.fileIndex = fileIdx;
1300
1301 if (idx >= 0) {
1302 if (sym->reg.file == FILE_SHADER_INPUT)
1303 sym->setOffset(info->in[idx].slot[c] * 4);
1304 else
1305 if (sym->reg.file == FILE_SHADER_OUTPUT)
1306 sym->setOffset(info->out[idx].slot[c] * 4);
1307 else
1308 if (sym->reg.file == FILE_SYSTEM_VALUE)
1309 sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
1310 else
1311 sym->setOffset(address);
1312 } else {
1313 sym->setOffset(address);
1314 }
1315 return sym;
1316 }
1317
1318 static inline uint8_t
1319 translateInterpMode(const struct nv50_ir_varying *var, operation& op)
1320 {
1321 uint8_t mode = NV50_IR_INTERP_PERSPECTIVE;
1322
1323 if (var->flat)
1324 mode = NV50_IR_INTERP_FLAT;
1325 else
1326 if (var->linear)
1327 mode = NV50_IR_INTERP_LINEAR;
1328 else
1329 if (var->sc)
1330 mode = NV50_IR_INTERP_SC;
1331
1332 op = (mode == NV50_IR_INTERP_PERSPECTIVE || mode == NV50_IR_INTERP_SC)
1333 ? OP_PINTERP : OP_LINTERP;
1334
1335 if (var->centroid)
1336 mode |= NV50_IR_INTERP_CENTROID;
1337
1338 return mode;
1339 }
1340
1341 Value *
1342 Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1343 {
1344 operation op;
1345
1346 // XXX: no way to know interpolation mode if we don't know what's accessed
1347 const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
1348 src.getIndex(0)], op);
1349
1350 Instruction *insn = new_Instruction(func, op, TYPE_F32);
1351
1352 insn->setDef(0, getScratch());
1353 insn->setSrc(0, srcToSym(src, c));
1354 if (op == OP_PINTERP)
1355 insn->setSrc(1, fragCoord[3]);
1356 if (ptr)
1357 insn->setIndirect(0, 0, ptr);
1358
1359 insn->setInterpolate(mode);
1360
1361 bb->insertTail(insn);
1362 return insn->getDef(0);
1363 }
1364
1365 Value *
1366 Converter::applySrcMod(Value *val, int s, int c)
1367 {
1368 Modifier m = tgsi.getSrc(s).getMod(c);
1369 DataType ty = tgsi.inferSrcType();
1370
1371 if (m & Modifier(NV50_IR_MOD_ABS))
1372 val = mkOp1v(OP_ABS, ty, getScratch(), val);
1373
1374 if (m & Modifier(NV50_IR_MOD_NEG))
1375 val = mkOp1v(OP_NEG, ty, getScratch(), val);
1376
1377 return val;
1378 }
1379
1380 Value *
1381 Converter::getVertexBase(int s)
1382 {
1383 assert(s < 5);
1384 if (!(vtxBaseValid & (1 << s))) {
1385 const int index = tgsi.getSrc(s).getIndex(1);
1386 Value *rel = NULL;
1387 if (tgsi.getSrc(s).isIndirect(1))
1388 rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1389 vtxBaseValid |= 1 << s;
1390 vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1391 mkImm(index), rel);
1392 }
1393 return vtxBase[s];
1394 }
1395
1396 Value *
1397 Converter::fetchSrc(int s, int c)
1398 {
1399 Value *res;
1400 Value *ptr = NULL, *dimRel = NULL;
1401
1402 tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1403
1404 if (src.isIndirect(0))
1405 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1406
1407 if (src.is2D()) {
1408 switch (src.getFile()) {
1409 case TGSI_FILE_INPUT:
1410 dimRel = getVertexBase(s);
1411 break;
1412 case TGSI_FILE_CONSTANT:
1413 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1414 if (src.isIndirect(1))
1415 dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1416 break;
1417 default:
1418 break;
1419 }
1420 }
1421
1422 res = fetchSrc(src, c, ptr);
1423
1424 if (dimRel)
1425 res->getInsn()->setIndirect(0, 1, dimRel);
1426
1427 return applySrcMod(res, s, c);
1428 }
1429
1430 Converter::DataArray *
1431 Converter::getArrayForFile(unsigned file, int idx)
1432 {
1433 switch (file) {
1434 case TGSI_FILE_TEMPORARY:
1435 return &tData;
1436 case TGSI_FILE_PREDICATE:
1437 return &pData;
1438 case TGSI_FILE_ADDRESS:
1439 return &aData;
1440 case TGSI_FILE_OUTPUT:
1441 assert(prog->getType() == Program::TYPE_FRAGMENT);
1442 return &oData;
1443 default:
1444 assert(!"invalid/unhandled TGSI source file");
1445 return NULL;
1446 }
1447 }
1448
1449 Value *
1450 Converter::shiftAddress(Value *index)
1451 {
1452 if (!index)
1453 return NULL;
1454 return mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), index, mkImm(4));
1455 }
1456
1457 Value *
1458 Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1459 {
1460 const int idx2d = src.is2D() ? src.getIndex(1) : 0;
1461 const int idx = src.getIndex(0);
1462 const int swz = src.getSwizzle(c);
1463
1464 switch (src.getFile()) {
1465 case TGSI_FILE_IMMEDIATE:
1466 assert(!ptr);
1467 return loadImm(NULL, info->immd.data[idx * 4 + swz]);
1468 case TGSI_FILE_CONSTANT:
1469 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1470 case TGSI_FILE_INPUT:
1471 if (prog->getType() == Program::TYPE_FRAGMENT) {
1472 // don't load masked inputs, won't be assigned a slot
1473 if (!ptr && !(info->in[idx].mask & (1 << swz)))
1474 return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
1475 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_FACE)
1476 return mkOp1v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_FACE, 0));
1477 return interpolate(src, c, shiftAddress(ptr));
1478 } else
1479 if (prog->getType() == Program::TYPE_GEOMETRY) {
1480 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_PRIMID)
1481 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_PRIMITIVE_ID, 0));
1482 // XXX: This is going to be a problem with scalar arrays, i.e. when
1483 // we cannot assume that the address is given in units of vec4.
1484 //
1485 // nv50 and nvc0 need different things here, so let the lowering
1486 // passes decide what to do with the address
1487 if (ptr)
1488 return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
1489 }
1490 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1491 case TGSI_FILE_OUTPUT:
1492 assert(!"load from output file");
1493 return NULL;
1494 case TGSI_FILE_SYSTEM_VALUE:
1495 assert(!ptr);
1496 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
1497 default:
1498 return getArrayForFile(src.getFile(), idx2d)->load(
1499 sub.cur->values, idx, swz, shiftAddress(ptr));
1500 }
1501 }
1502
1503 Value *
1504 Converter::acquireDst(int d, int c)
1505 {
1506 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1507 const unsigned f = dst.getFile();
1508 const int idx = dst.getIndex(0);
1509 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1510
1511 if (dst.isMasked(c) || f == TGSI_FILE_RESOURCE)
1512 return NULL;
1513
1514 if (dst.isIndirect(0) ||
1515 f == TGSI_FILE_SYSTEM_VALUE ||
1516 (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
1517 return getScratch();
1518
1519 return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
1520 }
1521
1522 void
1523 Converter::storeDst(int d, int c, Value *val)
1524 {
1525 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1526
1527 switch (tgsi.getSaturate()) {
1528 case TGSI_SAT_NONE:
1529 break;
1530 case TGSI_SAT_ZERO_ONE:
1531 mkOp1(OP_SAT, dstTy, val, val);
1532 break;
1533 case TGSI_SAT_MINUS_PLUS_ONE:
1534 mkOp2(OP_MAX, dstTy, val, val, mkImm(-1.0f));
1535 mkOp2(OP_MIN, dstTy, val, val, mkImm(+1.0f));
1536 break;
1537 default:
1538 assert(!"invalid saturation mode");
1539 break;
1540 }
1541
1542 Value *ptr = NULL;
1543 if (dst.isIndirect(0))
1544 ptr = shiftAddress(fetchSrc(dst.getIndirect(0), 0, NULL));
1545
1546 if (info->io.genUserClip > 0 &&
1547 dst.getFile() == TGSI_FILE_OUTPUT &&
1548 !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
1549 mkMov(clipVtx[c], val);
1550 val = clipVtx[c];
1551 }
1552
1553 storeDst(dst, c, val, ptr);
1554 }
1555
1556 void
1557 Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
1558 Value *val, Value *ptr)
1559 {
1560 const unsigned f = dst.getFile();
1561 const int idx = dst.getIndex(0);
1562 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1563
1564 if (f == TGSI_FILE_SYSTEM_VALUE) {
1565 assert(!ptr);
1566 mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
1567 } else
1568 if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
1569
1570 if (ptr || (info->out[idx].mask & (1 << c))) {
1571 /* Save the viewport index into a scratch register so that it can be
1572 exported at EMIT time */
1573 if (info->out[idx].sn == TGSI_SEMANTIC_VIEWPORT_INDEX &&
1574 viewport != NULL)
1575 mkOp1(OP_MOV, TYPE_U32, viewport, val);
1576 else
1577 mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val);
1578 }
1579 } else
1580 if (f == TGSI_FILE_TEMPORARY ||
1581 f == TGSI_FILE_PREDICATE ||
1582 f == TGSI_FILE_ADDRESS ||
1583 f == TGSI_FILE_OUTPUT) {
1584 getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
1585 } else {
1586 assert(!"invalid dst file");
1587 }
1588 }
1589
1590 #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
1591 for (chan = 0; chan < 4; ++chan) \
1592 if (!inst.getDst(d).isMasked(chan))
1593
1594 Value *
1595 Converter::buildDot(int dim)
1596 {
1597 assert(dim > 0);
1598
1599 Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
1600 Value *dotp = getScratch();
1601
1602 mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1);
1603
1604 for (int c = 1; c < dim; ++c) {
1605 src0 = fetchSrc(0, c);
1606 src1 = fetchSrc(1, c);
1607 mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp);
1608 }
1609 return dotp;
1610 }
1611
1612 void
1613 Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
1614 {
1615 FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
1616 join->fixed = 1;
1617 conv->insertHead(join);
1618
1619 fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
1620 fork->insertBefore(fork->getExit(), fork->joinAt);
1621 }
1622
1623 void
1624 Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
1625 {
1626 unsigned rIdx = 0, sIdx = 0;
1627
1628 if (R >= 0)
1629 rIdx = tgsi.getSrc(R).getIndex(0);
1630 if (S >= 0)
1631 sIdx = tgsi.getSrc(S).getIndex(0);
1632
1633 tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
1634
1635 if (tgsi.getSrc(R).isIndirect(0)) {
1636 tex->tex.rIndirectSrc = s;
1637 tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
1638 }
1639 if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
1640 tex->tex.sIndirectSrc = s;
1641 tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
1642 }
1643 }
1644
1645 void
1646 Converter::handleTXQ(Value *dst0[4], enum TexQuery query)
1647 {
1648 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1649 tex->tex.query = query;
1650 unsigned int c, d;
1651
1652 for (d = 0, c = 0; c < 4; ++c) {
1653 if (!dst0[c])
1654 continue;
1655 tex->tex.mask |= 1 << c;
1656 tex->setDef(d++, dst0[c]);
1657 }
1658 tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
1659
1660 setTexRS(tex, c, 1, -1);
1661
1662 bb->insertTail(tex);
1663 }
1664
1665 void
1666 Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
1667 {
1668 Value *proj = fetchSrc(0, 3);
1669 Instruction *insn = proj->getUniqueInsn();
1670 int c;
1671
1672 if (insn->op == OP_PINTERP) {
1673 bb->insertTail(insn = cloneForward(func, insn));
1674 insn->op = OP_LINTERP;
1675 insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
1676 insn->setSrc(1, NULL);
1677 proj = insn->getDef(0);
1678 }
1679 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
1680
1681 for (c = 0; c < 4; ++c) {
1682 if (!(mask & (1 << c)))
1683 continue;
1684 if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
1685 continue;
1686 mask &= ~(1 << c);
1687
1688 bb->insertTail(insn = cloneForward(func, insn));
1689 insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
1690 insn->setSrc(1, proj);
1691 dst[c] = insn->getDef(0);
1692 }
1693 if (!mask)
1694 return;
1695
1696 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
1697
1698 for (c = 0; c < 4; ++c)
1699 if (mask & (1 << c))
1700 dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
1701 }
1702
1703 // order of nv50 ir sources: x y z layer lod/bias shadow
1704 // order of TGSI TEX sources: x y z layer shadow lod/bias
1705 // lowering will finally set the hw specific order (like array first on nvc0)
1706 void
1707 Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
1708 {
1709 Value *val;
1710 Value *arg[4], *src[8];
1711 Value *lod = NULL, *shd = NULL;
1712 unsigned int s, c, d;
1713 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1714
1715 TexInstruction::Target tgt = tgsi.getTexture(code, R);
1716
1717 for (s = 0; s < tgt.getArgCount(); ++s)
1718 arg[s] = src[s] = fetchSrc(0, s);
1719
1720 if (texi->op == OP_TXL || texi->op == OP_TXB)
1721 lod = fetchSrc(L >> 4, L & 3);
1722
1723 if (C == 0x0f)
1724 C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
1725
1726 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 &&
1727 tgt == TEX_TARGET_CUBE_ARRAY_SHADOW)
1728 shd = fetchSrc(1, 0);
1729 else if (tgt.isShadow())
1730 shd = fetchSrc(C >> 4, C & 3);
1731
1732 if (texi->op == OP_TXD) {
1733 for (c = 0; c < tgt.getDim(); ++c) {
1734 texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
1735 texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
1736 }
1737 }
1738
1739 // cube textures don't care about projection value, it's divided out
1740 if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
1741 unsigned int n = tgt.getDim();
1742 if (shd) {
1743 arg[n] = shd;
1744 ++n;
1745 assert(tgt.getDim() == tgt.getArgCount());
1746 }
1747 loadProjTexCoords(src, arg, (1 << n) - 1);
1748 if (shd)
1749 shd = src[n - 1];
1750 }
1751
1752 if (tgt.isCube()) {
1753 for (c = 0; c < 3; ++c)
1754 src[c] = mkOp1v(OP_ABS, TYPE_F32, getSSA(), arg[c]);
1755 val = getScratch();
1756 mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1757 mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1758 mkOp1(OP_RCP, TYPE_F32, val, val);
1759 for (c = 0; c < 3; ++c)
1760 src[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), arg[c], val);
1761 }
1762
1763 for (c = 0, d = 0; c < 4; ++c) {
1764 if (dst[c]) {
1765 texi->setDef(d++, dst[c]);
1766 texi->tex.mask |= 1 << c;
1767 } else {
1768 // NOTE: maybe hook up def too, for CSE
1769 }
1770 }
1771 for (s = 0; s < tgt.getArgCount(); ++s)
1772 texi->setSrc(s, src[s]);
1773 if (lod)
1774 texi->setSrc(s++, lod);
1775 if (shd)
1776 texi->setSrc(s++, shd);
1777
1778 setTexRS(texi, s, R, S);
1779
1780 if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
1781 texi->tex.levelZero = true;
1782 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 && !tgt.isShadow())
1783 texi->tex.gatherComp = tgsi.getSrc(1).getValueU32(0, info);
1784
1785 texi->tex.useOffsets = tgsi.getNumTexOffsets();
1786 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1787 for (c = 0; c < 3; ++c) {
1788 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
1789 texi->offset[s][c].setInsn(texi);
1790 }
1791 }
1792
1793 bb->insertTail(texi);
1794 }
1795
1796 // 1st source: xyz = coordinates, w = lod/sample
1797 // 2nd source: offset
1798 void
1799 Converter::handleTXF(Value *dst[4], int R, int L_M)
1800 {
1801 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1802 int ms;
1803 unsigned int c, d, s;
1804
1805 texi->tex.target = tgsi.getTexture(code, R);
1806
1807 ms = texi->tex.target.isMS() ? 1 : 0;
1808 texi->tex.levelZero = ms; /* MS textures don't have mip-maps */
1809
1810 for (c = 0, d = 0; c < 4; ++c) {
1811 if (dst[c]) {
1812 texi->setDef(d++, dst[c]);
1813 texi->tex.mask |= 1 << c;
1814 }
1815 }
1816 for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c)
1817 texi->setSrc(c, fetchSrc(0, c));
1818 texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms
1819
1820 setTexRS(texi, c, R, -1);
1821
1822 texi->tex.useOffsets = tgsi.getNumTexOffsets();
1823 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1824 for (c = 0; c < 3; ++c) {
1825 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
1826 texi->offset[s][c].setInsn(texi);
1827 }
1828 }
1829
1830 bb->insertTail(texi);
1831 }
1832
1833 void
1834 Converter::handleLIT(Value *dst0[4])
1835 {
1836 Value *val0 = NULL;
1837 unsigned int mask = tgsi.getDst(0).getMask();
1838
1839 if (mask & (1 << 0))
1840 loadImm(dst0[0], 1.0f);
1841
1842 if (mask & (1 << 3))
1843 loadImm(dst0[3], 1.0f);
1844
1845 if (mask & (3 << 1)) {
1846 val0 = getScratch();
1847 mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
1848 if (mask & (1 << 1))
1849 mkMov(dst0[1], val0);
1850 }
1851
1852 if (mask & (1 << 2)) {
1853 Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
1854 Value *val1 = getScratch(), *val3 = getScratch();
1855
1856 Value *pos128 = loadImm(NULL, +127.999999f);
1857 Value *neg128 = loadImm(NULL, -127.999999f);
1858
1859 mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
1860 mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
1861 mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
1862 mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
1863
1864 mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], TYPE_F32, val3, zero, val0);
1865 }
1866 }
1867
1868 static inline bool
1869 isResourceSpecial(const int r)
1870 {
1871 return (r == TGSI_RESOURCE_GLOBAL ||
1872 r == TGSI_RESOURCE_LOCAL ||
1873 r == TGSI_RESOURCE_PRIVATE ||
1874 r == TGSI_RESOURCE_INPUT);
1875 }
1876
1877 static inline bool
1878 isResourceRaw(const struct tgsi::Source *code, const int r)
1879 {
1880 return isResourceSpecial(r) || code->resources[r].raw;
1881 }
1882
1883 static inline nv50_ir::TexTarget
1884 getResourceTarget(const struct tgsi::Source *code, int r)
1885 {
1886 if (isResourceSpecial(r))
1887 return nv50_ir::TEX_TARGET_BUFFER;
1888 return tgsi::translateTexture(code->resources.at(r).target);
1889 }
1890
1891 Symbol *
1892 Converter::getResourceBase(const int r)
1893 {
1894 Symbol *sym = NULL;
1895
1896 switch (r) {
1897 case TGSI_RESOURCE_GLOBAL:
1898 sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL, 15);
1899 break;
1900 case TGSI_RESOURCE_LOCAL:
1901 assert(prog->getType() == Program::TYPE_COMPUTE);
1902 sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32,
1903 info->prop.cp.sharedOffset);
1904 break;
1905 case TGSI_RESOURCE_PRIVATE:
1906 sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32,
1907 info->bin.tlsSpace);
1908 break;
1909 case TGSI_RESOURCE_INPUT:
1910 assert(prog->getType() == Program::TYPE_COMPUTE);
1911 sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32,
1912 info->prop.cp.inputOffset);
1913 break;
1914 default:
1915 sym = new_Symbol(prog,
1916 nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot);
1917 break;
1918 }
1919 return sym;
1920 }
1921
1922 void
1923 Converter::getResourceCoords(std::vector<Value *> &coords, int r, int s)
1924 {
1925 const int arg =
1926 TexInstruction::Target(getResourceTarget(code, r)).getArgCount();
1927
1928 for (int c = 0; c < arg; ++c)
1929 coords.push_back(fetchSrc(s, c));
1930
1931 // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk
1932 if (r == TGSI_RESOURCE_LOCAL ||
1933 r == TGSI_RESOURCE_PRIVATE ||
1934 r == TGSI_RESOURCE_INPUT)
1935 coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS),
1936 coords[0]);
1937 }
1938
1939 static inline int
1940 partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask)
1941 {
1942 int n = 0;
1943
1944 while (mask) {
1945 if (mask & 1) {
1946 size[n]++;
1947 } else {
1948 if (size[n])
1949 comp[n = 1] = size[0] + 1;
1950 else
1951 comp[n]++;
1952 }
1953 mask >>= 1;
1954 }
1955 if (size[0] == 3) {
1956 n = 1;
1957 size[0] = (comp[0] == 1) ? 1 : 2;
1958 size[1] = 3 - size[0];
1959 comp[1] = comp[0] + size[0];
1960 }
1961 return n + 1;
1962 }
1963
1964 // For raw loads, granularity is 4 byte.
1965 // Usage of the texture read mask on OP_SULDP is not allowed.
1966 void
1967 Converter::handleLOAD(Value *dst0[4])
1968 {
1969 const int r = tgsi.getSrc(0).getIndex(0);
1970 int c;
1971 std::vector<Value *> off, src, ldv, def;
1972
1973 getResourceCoords(off, r, 1);
1974
1975 if (isResourceRaw(code, r)) {
1976 uint8_t mask = 0;
1977 uint8_t comp[2] = { 0, 0 };
1978 uint8_t size[2] = { 0, 0 };
1979
1980 Symbol *base = getResourceBase(r);
1981
1982 // determine the base and size of the at most 2 load ops
1983 for (c = 0; c < 4; ++c)
1984 if (!tgsi.getDst(0).isMasked(c))
1985 mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X);
1986
1987 int n = partitionLoadStore(comp, size, mask);
1988
1989 src = off;
1990
1991 def.resize(4); // index by component, the ones we need will be non-NULL
1992 for (c = 0; c < 4; ++c) {
1993 if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c))
1994 def[c] = dst0[c];
1995 else
1996 if (mask & (1 << c))
1997 def[c] = getScratch();
1998 }
1999
2000 const bool useLd = isResourceSpecial(r) ||
2001 (info->io.nv50styleSurfaces &&
2002 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2003
2004 for (int i = 0; i < n; ++i) {
2005 ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]);
2006
2007 if (comp[i]) // adjust x component of source address if necessary
2008 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2009 off[0], mkImm(comp[i] * 4));
2010 else
2011 src[0] = off[0];
2012
2013 if (useLd) {
2014 Instruction *ld =
2015 mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]);
2016 for (size_t c = 1; c < ldv.size(); ++c)
2017 ld->setDef(c, ldv[c]);
2018 } else {
2019 mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot,
2020 0, ldv, src)->dType = typeOfSize(size[i] * 4);
2021 }
2022 }
2023 } else {
2024 def.resize(4);
2025 for (c = 0; c < 4; ++c) {
2026 if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
2027 def[c] = getScratch();
2028 else
2029 def[c] = dst0[c];
2030 }
2031
2032 mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0,
2033 def, off);
2034 }
2035 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2036 if (dst0[c] != def[c])
2037 mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
2038 }
2039
2040 // For formatted stores, the write mask on OP_SUSTP can be used.
2041 // Raw stores have to be split.
2042 void
2043 Converter::handleSTORE()
2044 {
2045 const int r = tgsi.getDst(0).getIndex(0);
2046 int c;
2047 std::vector<Value *> off, src, dummy;
2048
2049 getResourceCoords(off, r, 0);
2050 src = off;
2051 const int s = src.size();
2052
2053 if (isResourceRaw(code, r)) {
2054 uint8_t comp[2] = { 0, 0 };
2055 uint8_t size[2] = { 0, 0 };
2056
2057 int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask());
2058
2059 Symbol *base = getResourceBase(r);
2060
2061 const bool useSt = isResourceSpecial(r) ||
2062 (info->io.nv50styleSurfaces &&
2063 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2064
2065 for (int i = 0; i < n; ++i) {
2066 if (comp[i]) // adjust x component of source address if necessary
2067 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2068 off[0], mkImm(comp[i] * 4));
2069 else
2070 src[0] = off[0];
2071
2072 const DataType stTy = typeOfSize(size[i] * 4);
2073
2074 if (useSt) {
2075 Instruction *st =
2076 mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i]));
2077 for (c = 1; c < size[i]; ++c)
2078 st->setSrc(1 + c, fetchSrc(1, comp[i] + c));
2079 st->setIndirect(0, 0, src[0]);
2080 } else {
2081 // attach values to be stored
2082 src.resize(s + size[i]);
2083 for (c = 0; c < size[i]; ++c)
2084 src[s + c] = fetchSrc(1, comp[i] + c);
2085 mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot,
2086 0, dummy, src)->setType(stTy);
2087 }
2088 }
2089 } else {
2090 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2091 src.push_back(fetchSrc(1, c));
2092
2093 mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0,
2094 dummy, src)->tex.mask = tgsi.getDst(0).getMask();
2095 }
2096 }
2097
2098 // XXX: These only work on resources with the single-component u32/s32 formats.
2099 // Therefore the result is replicated. This might not be intended by TGSI, but
2100 // operating on more than 1 component would produce undefined results because
2101 // they do not exist.
2102 void
2103 Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp)
2104 {
2105 const int r = tgsi.getSrc(0).getIndex(0);
2106 std::vector<Value *> srcv;
2107 std::vector<Value *> defv;
2108 LValue *dst = getScratch();
2109
2110 getResourceCoords(srcv, r, 1);
2111
2112 if (isResourceSpecial(r)) {
2113 assert(r != TGSI_RESOURCE_INPUT);
2114 Instruction *insn;
2115 insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0));
2116 insn->subOp = subOp;
2117 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2118 insn->setSrc(2, fetchSrc(3, 0));
2119 insn->setIndirect(0, 0, srcv.at(0));
2120 } else {
2121 operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP;
2122 TexTarget targ = getResourceTarget(code, r);
2123 int idx = code->resources[r].slot;
2124 defv.push_back(dst);
2125 srcv.push_back(fetchSrc(2, 0));
2126 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2127 srcv.push_back(fetchSrc(3, 0));
2128 TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv);
2129 tex->subOp = subOp;
2130 tex->tex.mask = 1;
2131 tex->setType(ty);
2132 }
2133
2134 for (int c = 0; c < 4; ++c)
2135 if (dst0[c])
2136 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2137 }
2138
2139 void
2140 Converter::handleINTERP(Value *dst[4])
2141 {
2142 // Check whether the input is linear. All other attributes ignored.
2143 Instruction *insn;
2144 Value *offset = NULL, *ptr = NULL, *w = NULL;
2145 bool linear;
2146 operation op;
2147 int c, mode;
2148
2149 tgsi::Instruction::SrcRegister src = tgsi.getSrc(0);
2150 assert(src.getFile() == TGSI_FILE_INPUT);
2151
2152 if (src.isIndirect(0))
2153 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
2154
2155 // XXX: no way to know interp mode if we don't know the index
2156 linear = info->in[ptr ? 0 : src.getIndex(0)].linear;
2157 if (linear) {
2158 op = OP_LINTERP;
2159 mode = NV50_IR_INTERP_LINEAR;
2160 } else {
2161 op = OP_PINTERP;
2162 mode = NV50_IR_INTERP_PERSPECTIVE;
2163 }
2164
2165 switch (tgsi.getOpcode()) {
2166 case TGSI_OPCODE_INTERP_CENTROID:
2167 mode |= NV50_IR_INTERP_CENTROID;
2168 break;
2169 case TGSI_OPCODE_INTERP_SAMPLE:
2170 insn = mkOp1(OP_PIXLD, TYPE_U32, (offset = getScratch()), fetchSrc(1, 0));
2171 insn->subOp = NV50_IR_SUBOP_PIXLD_OFFSET;
2172 mode |= NV50_IR_INTERP_OFFSET;
2173 break;
2174 case TGSI_OPCODE_INTERP_OFFSET: {
2175 // The input in src1.xy is float, but we need a single 32-bit value
2176 // where the upper and lower 16 bits are encoded in S0.12 format. We need
2177 // to clamp the input coordinates to (-0.5, 0.4375), multiply by 4096,
2178 // and then convert to s32.
2179 Value *offs[2];
2180 for (c = 0; c < 2; c++) {
2181 offs[c] = fetchSrc(1, c);
2182 mkOp2(OP_MIN, TYPE_F32, offs[c], offs[c], loadImm(NULL, 0.4375f));
2183 mkOp2(OP_MAX, TYPE_F32, offs[c], offs[c], loadImm(NULL, -0.5f));
2184 mkOp2(OP_MUL, TYPE_F32, offs[c], offs[c], loadImm(NULL, 4096.0f));
2185 mkCvt(OP_CVT, TYPE_S32, offs[c], TYPE_F32, offs[c]);
2186 }
2187 offset = mkOp3v(OP_INSBF, TYPE_U32, getScratch(),
2188 offs[1], mkImm(0x1010), offs[0]);
2189 mode |= NV50_IR_INTERP_OFFSET;
2190 break;
2191 }
2192 }
2193
2194 if (op == OP_PINTERP) {
2195 if (offset) {
2196 w = mkOp2v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_POSITION, 3), offset);
2197 mkOp1(OP_RCP, TYPE_F32, w, w);
2198 } else {
2199 w = fragCoord[3];
2200 }
2201 }
2202
2203
2204 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2205 insn = mkOp1(op, TYPE_F32, dst[c], srcToSym(src, c));
2206 if (op == OP_PINTERP)
2207 insn->setSrc(1, w);
2208 if (ptr)
2209 insn->setIndirect(0, 0, ptr);
2210 if (offset)
2211 insn->setSrc(op == OP_PINTERP ? 2 : 1, offset);
2212
2213 insn->setInterpolate(mode);
2214 }
2215 }
2216
2217 Converter::Subroutine *
2218 Converter::getSubroutine(unsigned ip)
2219 {
2220 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2221
2222 if (it == sub.map.end())
2223 it = sub.map.insert(std::make_pair(
2224 ip, Subroutine(new Function(prog, "SUB", ip)))).first;
2225
2226 return &it->second;
2227 }
2228
2229 Converter::Subroutine *
2230 Converter::getSubroutine(Function *f)
2231 {
2232 unsigned ip = f->getLabel();
2233 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2234
2235 if (it == sub.map.end())
2236 it = sub.map.insert(std::make_pair(ip, Subroutine(f))).first;
2237
2238 return &it->second;
2239 }
2240
2241 bool
2242 Converter::isEndOfSubroutine(uint ip)
2243 {
2244 assert(ip < code->scan.num_instructions);
2245 tgsi::Instruction insn(&code->insns[ip]);
2246 return (insn.getOpcode() == TGSI_OPCODE_END ||
2247 insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
2248 // does END occur at end of main or the very end ?
2249 insn.getOpcode() == TGSI_OPCODE_BGNSUB);
2250 }
2251
2252 bool
2253 Converter::handleInstruction(const struct tgsi_full_instruction *insn)
2254 {
2255 Instruction *geni;
2256
2257 Value *dst0[4], *rDst0[4];
2258 Value *src0, *src1, *src2, *src3;
2259 Value *val0, *val1;
2260 int c;
2261
2262 tgsi = tgsi::Instruction(insn);
2263
2264 bool useScratchDst = tgsi.checkDstSrcAliasing();
2265
2266 operation op = tgsi.getOP();
2267 dstTy = tgsi.inferDstType();
2268 srcTy = tgsi.inferSrcType();
2269
2270 unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
2271
2272 if (tgsi.dstCount()) {
2273 for (c = 0; c < 4; ++c) {
2274 rDst0[c] = acquireDst(0, c);
2275 dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
2276 }
2277 }
2278
2279 switch (tgsi.getOpcode()) {
2280 case TGSI_OPCODE_ADD:
2281 case TGSI_OPCODE_UADD:
2282 case TGSI_OPCODE_AND:
2283 case TGSI_OPCODE_DIV:
2284 case TGSI_OPCODE_IDIV:
2285 case TGSI_OPCODE_UDIV:
2286 case TGSI_OPCODE_MAX:
2287 case TGSI_OPCODE_MIN:
2288 case TGSI_OPCODE_IMAX:
2289 case TGSI_OPCODE_IMIN:
2290 case TGSI_OPCODE_UMAX:
2291 case TGSI_OPCODE_UMIN:
2292 case TGSI_OPCODE_MOD:
2293 case TGSI_OPCODE_UMOD:
2294 case TGSI_OPCODE_MUL:
2295 case TGSI_OPCODE_UMUL:
2296 case TGSI_OPCODE_IMUL_HI:
2297 case TGSI_OPCODE_UMUL_HI:
2298 case TGSI_OPCODE_OR:
2299 case TGSI_OPCODE_SHL:
2300 case TGSI_OPCODE_ISHR:
2301 case TGSI_OPCODE_USHR:
2302 case TGSI_OPCODE_SUB:
2303 case TGSI_OPCODE_XOR:
2304 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2305 src0 = fetchSrc(0, c);
2306 src1 = fetchSrc(1, c);
2307 geni = mkOp2(op, dstTy, dst0[c], src0, src1);
2308 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2309 }
2310 break;
2311 case TGSI_OPCODE_MAD:
2312 case TGSI_OPCODE_UMAD:
2313 case TGSI_OPCODE_SAD:
2314 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2315 src0 = fetchSrc(0, c);
2316 src1 = fetchSrc(1, c);
2317 src2 = fetchSrc(2, c);
2318 mkOp3(op, dstTy, dst0[c], src0, src1, src2);
2319 }
2320 break;
2321 case TGSI_OPCODE_MOV:
2322 case TGSI_OPCODE_ABS:
2323 case TGSI_OPCODE_CEIL:
2324 case TGSI_OPCODE_FLR:
2325 case TGSI_OPCODE_TRUNC:
2326 case TGSI_OPCODE_RCP:
2327 case TGSI_OPCODE_IABS:
2328 case TGSI_OPCODE_INEG:
2329 case TGSI_OPCODE_NOT:
2330 case TGSI_OPCODE_DDX:
2331 case TGSI_OPCODE_DDY:
2332 case TGSI_OPCODE_DDX_FINE:
2333 case TGSI_OPCODE_DDY_FINE:
2334 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2335 mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
2336 break;
2337 case TGSI_OPCODE_RSQ:
2338 src0 = fetchSrc(0, 0);
2339 val0 = getScratch();
2340 mkOp1(OP_ABS, TYPE_F32, val0, src0);
2341 mkOp1(OP_RSQ, TYPE_F32, val0, val0);
2342 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2343 mkMov(dst0[c], val0);
2344 break;
2345 case TGSI_OPCODE_ARL:
2346 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2347 src0 = fetchSrc(0, c);
2348 mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = ROUND_M;
2349 }
2350 break;
2351 case TGSI_OPCODE_UARL:
2352 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2353 mkOp1(OP_MOV, TYPE_U32, dst0[c], fetchSrc(0, c));
2354 break;
2355 case TGSI_OPCODE_POW:
2356 val0 = mkOp2v(op, TYPE_F32, getScratch(), fetchSrc(0, 0), fetchSrc(1, 0));
2357 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2358 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2359 break;
2360 case TGSI_OPCODE_EX2:
2361 case TGSI_OPCODE_LG2:
2362 val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
2363 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2364 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2365 break;
2366 case TGSI_OPCODE_COS:
2367 case TGSI_OPCODE_SIN:
2368 val0 = getScratch();
2369 if (mask & 7) {
2370 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
2371 mkOp1(op, TYPE_F32, val0, val0);
2372 for (c = 0; c < 3; ++c)
2373 if (dst0[c])
2374 mkMov(dst0[c], val0);
2375 }
2376 if (dst0[3]) {
2377 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
2378 mkOp1(op, TYPE_F32, dst0[3], val0);
2379 }
2380 break;
2381 case TGSI_OPCODE_SCS:
2382 if (mask & 3) {
2383 val0 = mkOp1v(OP_PRESIN, TYPE_F32, getSSA(), fetchSrc(0, 0));
2384 if (dst0[0])
2385 mkOp1(OP_COS, TYPE_F32, dst0[0], val0);
2386 if (dst0[1])
2387 mkOp1(OP_SIN, TYPE_F32, dst0[1], val0);
2388 }
2389 if (dst0[2])
2390 loadImm(dst0[2], 0.0f);
2391 if (dst0[3])
2392 loadImm(dst0[3], 1.0f);
2393 break;
2394 case TGSI_OPCODE_EXP:
2395 src0 = fetchSrc(0, 0);
2396 val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
2397 if (dst0[1])
2398 mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
2399 if (dst0[0])
2400 mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
2401 if (dst0[2])
2402 mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
2403 if (dst0[3])
2404 loadImm(dst0[3], 1.0f);
2405 break;
2406 case TGSI_OPCODE_LOG:
2407 src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
2408 val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
2409 if (dst0[0] || dst0[1])
2410 val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
2411 if (dst0[1]) {
2412 mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
2413 mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
2414 mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0);
2415 }
2416 if (dst0[3])
2417 loadImm(dst0[3], 1.0f);
2418 break;
2419 case TGSI_OPCODE_DP2:
2420 val0 = buildDot(2);
2421 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2422 mkMov(dst0[c], val0);
2423 break;
2424 case TGSI_OPCODE_DP3:
2425 val0 = buildDot(3);
2426 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2427 mkMov(dst0[c], val0);
2428 break;
2429 case TGSI_OPCODE_DP4:
2430 val0 = buildDot(4);
2431 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2432 mkMov(dst0[c], val0);
2433 break;
2434 case TGSI_OPCODE_DPH:
2435 val0 = buildDot(3);
2436 src1 = fetchSrc(1, 3);
2437 mkOp2(OP_ADD, TYPE_F32, val0, val0, src1);
2438 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2439 mkMov(dst0[c], val0);
2440 break;
2441 case TGSI_OPCODE_DST:
2442 if (dst0[0])
2443 loadImm(dst0[0], 1.0f);
2444 if (dst0[1]) {
2445 src0 = fetchSrc(0, 1);
2446 src1 = fetchSrc(1, 1);
2447 mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1);
2448 }
2449 if (dst0[2])
2450 mkMov(dst0[2], fetchSrc(0, 2));
2451 if (dst0[3])
2452 mkMov(dst0[3], fetchSrc(1, 3));
2453 break;
2454 case TGSI_OPCODE_LRP:
2455 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2456 src0 = fetchSrc(0, c);
2457 src1 = fetchSrc(1, c);
2458 src2 = fetchSrc(2, c);
2459 mkOp3(OP_MAD, TYPE_F32, dst0[c],
2460 mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2);
2461 }
2462 break;
2463 case TGSI_OPCODE_LIT:
2464 handleLIT(dst0);
2465 break;
2466 case TGSI_OPCODE_XPD:
2467 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2468 if (c < 3) {
2469 val0 = getSSA();
2470 src0 = fetchSrc(1, (c + 1) % 3);
2471 src1 = fetchSrc(0, (c + 2) % 3);
2472 mkOp2(OP_MUL, TYPE_F32, val0, src0, src1);
2473 mkOp1(OP_NEG, TYPE_F32, val0, val0);
2474
2475 src0 = fetchSrc(0, (c + 1) % 3);
2476 src1 = fetchSrc(1, (c + 2) % 3);
2477 mkOp3(OP_MAD, TYPE_F32, dst0[c], src0, src1, val0);
2478 } else {
2479 loadImm(dst0[c], 1.0f);
2480 }
2481 }
2482 break;
2483 case TGSI_OPCODE_ISSG:
2484 case TGSI_OPCODE_SSG:
2485 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2486 src0 = fetchSrc(0, c);
2487 val0 = getScratch();
2488 val1 = getScratch();
2489 mkCmp(OP_SET, CC_GT, srcTy, val0, srcTy, src0, zero);
2490 mkCmp(OP_SET, CC_LT, srcTy, val1, srcTy, src0, zero);
2491 if (srcTy == TYPE_F32)
2492 mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
2493 else
2494 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
2495 }
2496 break;
2497 case TGSI_OPCODE_UCMP:
2498 case TGSI_OPCODE_CMP:
2499 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2500 src0 = fetchSrc(0, c);
2501 src1 = fetchSrc(1, c);
2502 src2 = fetchSrc(2, c);
2503 if (src1 == src2)
2504 mkMov(dst0[c], src1);
2505 else
2506 mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
2507 srcTy, dst0[c], srcTy, src1, src2, src0);
2508 }
2509 break;
2510 case TGSI_OPCODE_FRC:
2511 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2512 src0 = fetchSrc(0, c);
2513 val0 = getScratch();
2514 mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
2515 mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
2516 }
2517 break;
2518 case TGSI_OPCODE_ROUND:
2519 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2520 mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
2521 ->rnd = ROUND_NI;
2522 break;
2523 case TGSI_OPCODE_CLAMP:
2524 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2525 src0 = fetchSrc(0, c);
2526 src1 = fetchSrc(1, c);
2527 src2 = fetchSrc(2, c);
2528 val0 = getScratch();
2529 mkOp2(OP_MIN, TYPE_F32, val0, src0, src1);
2530 mkOp2(OP_MAX, TYPE_F32, dst0[c], val0, src2);
2531 }
2532 break;
2533 case TGSI_OPCODE_SLT:
2534 case TGSI_OPCODE_SGE:
2535 case TGSI_OPCODE_SEQ:
2536 case TGSI_OPCODE_SFL:
2537 case TGSI_OPCODE_SGT:
2538 case TGSI_OPCODE_SLE:
2539 case TGSI_OPCODE_SNE:
2540 case TGSI_OPCODE_STR:
2541 case TGSI_OPCODE_FSEQ:
2542 case TGSI_OPCODE_FSGE:
2543 case TGSI_OPCODE_FSLT:
2544 case TGSI_OPCODE_FSNE:
2545 case TGSI_OPCODE_ISGE:
2546 case TGSI_OPCODE_ISLT:
2547 case TGSI_OPCODE_USEQ:
2548 case TGSI_OPCODE_USGE:
2549 case TGSI_OPCODE_USLT:
2550 case TGSI_OPCODE_USNE:
2551 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2552 src0 = fetchSrc(0, c);
2553 src1 = fetchSrc(1, c);
2554 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
2555 }
2556 break;
2557 case TGSI_OPCODE_KILL_IF:
2558 val0 = new_LValue(func, FILE_PREDICATE);
2559 mask = 0;
2560 for (c = 0; c < 4; ++c) {
2561 const int s = tgsi.getSrc(0).getSwizzle(c);
2562 if (mask & (1 << s))
2563 continue;
2564 mask |= 1 << s;
2565 mkCmp(OP_SET, CC_LT, TYPE_F32, val0, TYPE_F32, fetchSrc(0, c), zero);
2566 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
2567 }
2568 break;
2569 case TGSI_OPCODE_KILL:
2570 mkOp(OP_DISCARD, TYPE_NONE, NULL);
2571 break;
2572 case TGSI_OPCODE_TEX:
2573 case TGSI_OPCODE_TXB:
2574 case TGSI_OPCODE_TXL:
2575 case TGSI_OPCODE_TXP:
2576 case TGSI_OPCODE_LODQ:
2577 // R S L C Dx Dy
2578 handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
2579 break;
2580 case TGSI_OPCODE_TXD:
2581 handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
2582 break;
2583 case TGSI_OPCODE_TG4:
2584 handleTEX(dst0, 2, 2, 0x03, 0x0f, 0x00, 0x00);
2585 break;
2586 case TGSI_OPCODE_TEX2:
2587 handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00);
2588 break;
2589 case TGSI_OPCODE_TXB2:
2590 case TGSI_OPCODE_TXL2:
2591 handleTEX(dst0, 2, 2, 0x10, 0x0f, 0x00, 0x00);
2592 break;
2593 case TGSI_OPCODE_SAMPLE:
2594 case TGSI_OPCODE_SAMPLE_B:
2595 case TGSI_OPCODE_SAMPLE_D:
2596 case TGSI_OPCODE_SAMPLE_L:
2597 case TGSI_OPCODE_SAMPLE_C:
2598 case TGSI_OPCODE_SAMPLE_C_LZ:
2599 handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40);
2600 break;
2601 case TGSI_OPCODE_TXF:
2602 handleTXF(dst0, 1, 0x03);
2603 break;
2604 case TGSI_OPCODE_SAMPLE_I:
2605 handleTXF(dst0, 1, 0x03);
2606 break;
2607 case TGSI_OPCODE_SAMPLE_I_MS:
2608 handleTXF(dst0, 1, 0x20);
2609 break;
2610 case TGSI_OPCODE_TXQ:
2611 case TGSI_OPCODE_SVIEWINFO:
2612 handleTXQ(dst0, TXQ_DIMS);
2613 break;
2614 case TGSI_OPCODE_F2I:
2615 case TGSI_OPCODE_F2U:
2616 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2617 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
2618 break;
2619 case TGSI_OPCODE_I2F:
2620 case TGSI_OPCODE_U2F:
2621 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2622 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
2623 break;
2624 case TGSI_OPCODE_EMIT:
2625 /* export the saved viewport index */
2626 if (viewport != NULL) {
2627 Symbol *vpSym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_U32,
2628 info->out[info->io.viewportId].slot[0] * 4);
2629 mkStore(OP_EXPORT, TYPE_U32, vpSym, NULL, viewport);
2630 }
2631 /* fallthrough */
2632 case TGSI_OPCODE_ENDPRIM:
2633 {
2634 // get vertex stream (must be immediate)
2635 unsigned int stream = tgsi.getSrc(0).getValueU32(0, info);
2636 if (stream && op == OP_RESTART)
2637 break;
2638 src0 = mkImm(stream);
2639 mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
2640 break;
2641 }
2642 case TGSI_OPCODE_IF:
2643 case TGSI_OPCODE_UIF:
2644 {
2645 BasicBlock *ifBB = new BasicBlock(func);
2646
2647 bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
2648 condBBs.push(bb);
2649 joinBBs.push(bb);
2650
2651 mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy);
2652
2653 setPosition(ifBB, true);
2654 }
2655 break;
2656 case TGSI_OPCODE_ELSE:
2657 {
2658 BasicBlock *elseBB = new BasicBlock(func);
2659 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2660
2661 forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
2662 condBBs.push(bb);
2663
2664 forkBB->getExit()->asFlow()->target.bb = elseBB;
2665 if (!bb->isTerminated())
2666 mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
2667
2668 setPosition(elseBB, true);
2669 }
2670 break;
2671 case TGSI_OPCODE_ENDIF:
2672 {
2673 BasicBlock *convBB = new BasicBlock(func);
2674 BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2675 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
2676
2677 if (!bb->isTerminated()) {
2678 // we only want join if none of the clauses ended with CONT/BREAK/RET
2679 if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
2680 insertConvergenceOps(convBB, forkBB);
2681 mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
2682 bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2683 }
2684
2685 if (prevBB->getExit()->op == OP_BRA) {
2686 prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2687 prevBB->getExit()->asFlow()->target.bb = convBB;
2688 }
2689 setPosition(convBB, true);
2690 }
2691 break;
2692 case TGSI_OPCODE_BGNLOOP:
2693 {
2694 BasicBlock *lbgnBB = new BasicBlock(func);
2695 BasicBlock *lbrkBB = new BasicBlock(func);
2696
2697 loopBBs.push(lbgnBB);
2698 breakBBs.push(lbrkBB);
2699 if (loopBBs.getSize() > func->loopNestingBound)
2700 func->loopNestingBound++;
2701
2702 mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
2703
2704 bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
2705 setPosition(lbgnBB, true);
2706 mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
2707 }
2708 break;
2709 case TGSI_OPCODE_ENDLOOP:
2710 {
2711 BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
2712
2713 if (!bb->isTerminated()) {
2714 mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
2715 bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
2716 }
2717 setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
2718 }
2719 break;
2720 case TGSI_OPCODE_BRK:
2721 {
2722 if (bb->isTerminated())
2723 break;
2724 BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
2725 mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
2726 bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
2727 }
2728 break;
2729 case TGSI_OPCODE_CONT:
2730 {
2731 if (bb->isTerminated())
2732 break;
2733 BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
2734 mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
2735 contBB->explicitCont = true;
2736 bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
2737 }
2738 break;
2739 case TGSI_OPCODE_BGNSUB:
2740 {
2741 Subroutine *s = getSubroutine(ip);
2742 BasicBlock *entry = new BasicBlock(s->f);
2743 BasicBlock *leave = new BasicBlock(s->f);
2744
2745 // multiple entrypoints possible, keep the graph connected
2746 if (prog->getType() == Program::TYPE_COMPUTE)
2747 prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
2748
2749 sub.cur = s;
2750 s->f->setEntry(entry);
2751 s->f->setExit(leave);
2752 setPosition(entry, true);
2753 return true;
2754 }
2755 case TGSI_OPCODE_ENDSUB:
2756 {
2757 sub.cur = getSubroutine(prog->main);
2758 setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
2759 return true;
2760 }
2761 case TGSI_OPCODE_CAL:
2762 {
2763 Subroutine *s = getSubroutine(tgsi.getLabel());
2764 mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
2765 func->call.attach(&s->f->call, Graph::Edge::TREE);
2766 return true;
2767 }
2768 case TGSI_OPCODE_RET:
2769 {
2770 if (bb->isTerminated())
2771 return true;
2772 BasicBlock *leave = BasicBlock::get(func->cfgExit);
2773
2774 if (!isEndOfSubroutine(ip + 1)) {
2775 // insert a PRERET at the entry if this is an early return
2776 // (only needed for sharing code in the epilogue)
2777 BasicBlock *pos = getBB();
2778 setPosition(BasicBlock::get(func->cfg.getRoot()), false);
2779 mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
2780 setPosition(pos, true);
2781 }
2782 mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
2783 bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
2784 }
2785 break;
2786 case TGSI_OPCODE_END:
2787 {
2788 // attach and generate epilogue code
2789 BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
2790 bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
2791 setPosition(epilogue, true);
2792 if (prog->getType() == Program::TYPE_FRAGMENT)
2793 exportOutputs();
2794 if (info->io.genUserClip > 0)
2795 handleUserClipPlanes();
2796 mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
2797 }
2798 break;
2799 case TGSI_OPCODE_SWITCH:
2800 case TGSI_OPCODE_CASE:
2801 ERROR("switch/case opcode encountered, should have been lowered\n");
2802 abort();
2803 break;
2804 case TGSI_OPCODE_LOAD:
2805 handleLOAD(dst0);
2806 break;
2807 case TGSI_OPCODE_STORE:
2808 handleSTORE();
2809 break;
2810 case TGSI_OPCODE_BARRIER:
2811 geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
2812 geni->fixed = 1;
2813 geni->subOp = NV50_IR_SUBOP_BAR_SYNC;
2814 break;
2815 case TGSI_OPCODE_MFENCE:
2816 case TGSI_OPCODE_LFENCE:
2817 case TGSI_OPCODE_SFENCE:
2818 geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
2819 geni->fixed = 1;
2820 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2821 break;
2822 case TGSI_OPCODE_ATOMUADD:
2823 case TGSI_OPCODE_ATOMXCHG:
2824 case TGSI_OPCODE_ATOMCAS:
2825 case TGSI_OPCODE_ATOMAND:
2826 case TGSI_OPCODE_ATOMOR:
2827 case TGSI_OPCODE_ATOMXOR:
2828 case TGSI_OPCODE_ATOMUMIN:
2829 case TGSI_OPCODE_ATOMIMIN:
2830 case TGSI_OPCODE_ATOMUMAX:
2831 case TGSI_OPCODE_ATOMIMAX:
2832 handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode()));
2833 break;
2834 case TGSI_OPCODE_IBFE:
2835 case TGSI_OPCODE_UBFE:
2836 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2837 src0 = fetchSrc(0, c);
2838 src1 = fetchSrc(1, c);
2839 src2 = fetchSrc(2, c);
2840 mkOp3(OP_INSBF, TYPE_U32, src1, src2, mkImm(0x808), src1);
2841 mkOp2(OP_EXTBF, dstTy, dst0[c], src0, src1);
2842 }
2843 break;
2844 case TGSI_OPCODE_BFI:
2845 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2846 src0 = fetchSrc(0, c);
2847 src1 = fetchSrc(1, c);
2848 src2 = fetchSrc(2, c);
2849 src3 = fetchSrc(3, c);
2850 mkOp3(OP_INSBF, TYPE_U32, src2, src3, mkImm(0x808), src2);
2851 mkOp3(OP_INSBF, TYPE_U32, dst0[c], src1, src2, src0);
2852 }
2853 break;
2854 case TGSI_OPCODE_LSB:
2855 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2856 src0 = fetchSrc(0, c);
2857 geni = mkOp2(OP_EXTBF, TYPE_U32, src0, src0, mkImm(0x2000));
2858 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
2859 geni = mkOp1(OP_BFIND, TYPE_U32, dst0[c], src0);
2860 geni->subOp = NV50_IR_SUBOP_BFIND_SAMT;
2861 }
2862 break;
2863 case TGSI_OPCODE_IMSB:
2864 case TGSI_OPCODE_UMSB:
2865 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2866 src0 = fetchSrc(0, c);
2867 mkOp1(OP_BFIND, srcTy, dst0[c], src0);
2868 }
2869 break;
2870 case TGSI_OPCODE_BREV:
2871 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2872 src0 = fetchSrc(0, c);
2873 geni = mkOp2(OP_EXTBF, TYPE_U32, dst0[c], src0, mkImm(0x2000));
2874 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
2875 }
2876 break;
2877 case TGSI_OPCODE_POPC:
2878 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2879 src0 = fetchSrc(0, c);
2880 mkOp2(OP_POPCNT, TYPE_U32, dst0[c], src0, src0);
2881 }
2882 break;
2883 case TGSI_OPCODE_INTERP_CENTROID:
2884 case TGSI_OPCODE_INTERP_SAMPLE:
2885 case TGSI_OPCODE_INTERP_OFFSET:
2886 handleINTERP(dst0);
2887 break;
2888 default:
2889 ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
2890 assert(0);
2891 break;
2892 }
2893
2894 if (tgsi.dstCount()) {
2895 for (c = 0; c < 4; ++c) {
2896 if (!dst0[c])
2897 continue;
2898 if (dst0[c] != rDst0[c])
2899 mkMov(rDst0[c], dst0[c]);
2900 storeDst(0, c, rDst0[c]);
2901 }
2902 }
2903 vtxBaseValid = 0;
2904
2905 return true;
2906 }
2907
2908 void
2909 Converter::handleUserClipPlanes()
2910 {
2911 Value *res[8];
2912 int n, i, c;
2913
2914 for (c = 0; c < 4; ++c) {
2915 for (i = 0; i < info->io.genUserClip; ++i) {
2916 Symbol *sym = mkSymbol(FILE_MEMORY_CONST, info->io.ucpCBSlot,
2917 TYPE_F32, info->io.ucpBase + i * 16 + c * 4);
2918 Value *ucp = mkLoadv(TYPE_F32, sym, NULL);
2919 if (c == 0)
2920 res[i] = mkOp2v(OP_MUL, TYPE_F32, getScratch(), clipVtx[c], ucp);
2921 else
2922 mkOp3(OP_MAD, TYPE_F32, res[i], clipVtx[c], ucp, res[i]);
2923 }
2924 }
2925
2926 const int first = info->numOutputs - (info->io.genUserClip + 3) / 4;
2927
2928 for (i = 0; i < info->io.genUserClip; ++i) {
2929 n = i / 4 + first;
2930 c = i % 4;
2931 Symbol *sym =
2932 mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[n].slot[c] * 4);
2933 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, res[i]);
2934 }
2935 }
2936
2937 void
2938 Converter::exportOutputs()
2939 {
2940 for (unsigned int i = 0; i < info->numOutputs; ++i) {
2941 for (unsigned int c = 0; c < 4; ++c) {
2942 if (!oData.exists(sub.cur->values, i, c))
2943 continue;
2944 Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
2945 info->out[i].slot[c] * 4);
2946 Value *val = oData.load(sub.cur->values, i, c, NULL);
2947 if (val)
2948 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
2949 }
2950 }
2951 }
2952
2953 Converter::Converter(Program *ir, const tgsi::Source *code) : BuildUtil(ir),
2954 code(code),
2955 tgsi(NULL),
2956 tData(this), aData(this), pData(this), oData(this)
2957 {
2958 info = code->info;
2959
2960 const DataFile tFile = code->mainTempsInLMem ? FILE_MEMORY_LOCAL : FILE_GPR;
2961
2962 const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
2963 const unsigned pSize = code->fileSize(TGSI_FILE_PREDICATE);
2964 const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
2965 const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
2966
2967 tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, tFile, 0);
2968 pData.setup(TGSI_FILE_PREDICATE, 0, 0, pSize, 4, 4, FILE_PREDICATE, 0);
2969 aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_GPR, 0);
2970 oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
2971
2972 zero = mkImm((uint32_t)0);
2973
2974 vtxBaseValid = 0;
2975 }
2976
2977 Converter::~Converter()
2978 {
2979 }
2980
2981 inline const Converter::Location *
2982 Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v)
2983 {
2984 ValueMap::l_iterator it = s->values.l.find(v);
2985 return it == s->values.l.end() ? NULL : &it->second;
2986 }
2987
2988 template<typename T> inline void
2989 Converter::BindArgumentsPass::updateCallArgs(
2990 Instruction *i, void (Instruction::*setArg)(int, Value *),
2991 T (Function::*proto))
2992 {
2993 Function *g = i->asFlow()->target.fn;
2994 Subroutine *subg = conv.getSubroutine(g);
2995
2996 for (unsigned a = 0; a < (g->*proto).size(); ++a) {
2997 Value *v = (g->*proto)[a].get();
2998 const Converter::Location &l = *getValueLocation(subg, v);
2999 Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
3000
3001 (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
3002 }
3003 }
3004
3005 template<typename T> inline void
3006 Converter::BindArgumentsPass::updatePrototype(
3007 BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
3008 {
3009 (func->*updateSet)();
3010
3011 for (unsigned i = 0; i < set->getSize(); ++i) {
3012 Value *v = func->getLValue(i);
3013 const Converter::Location *l = getValueLocation(sub, v);
3014
3015 // only include values with a matching TGSI register
3016 if (set->test(i) && l && !conv.code->locals.count(*l))
3017 (func->*proto).push_back(v);
3018 }
3019 }
3020
3021 bool
3022 Converter::BindArgumentsPass::visit(Function *f)
3023 {
3024 sub = conv.getSubroutine(f);
3025
3026 for (ArrayList::Iterator bi = f->allBBlocks.iterator();
3027 !bi.end(); bi.next()) {
3028 for (Instruction *i = BasicBlock::get(bi)->getFirst();
3029 i; i = i->next) {
3030 if (i->op == OP_CALL && !i->asFlow()->builtin) {
3031 updateCallArgs(i, &Instruction::setSrc, &Function::ins);
3032 updateCallArgs(i, &Instruction::setDef, &Function::outs);
3033 }
3034 }
3035 }
3036
3037 if (func == prog->main && prog->getType() != Program::TYPE_COMPUTE)
3038 return true;
3039 updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
3040 &Function::buildLiveSets, &Function::ins);
3041 updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
3042 &Function::buildDefSets, &Function::outs);
3043
3044 return true;
3045 }
3046
3047 bool
3048 Converter::run()
3049 {
3050 BasicBlock *entry = new BasicBlock(prog->main);
3051 BasicBlock *leave = new BasicBlock(prog->main);
3052
3053 prog->main->setEntry(entry);
3054 prog->main->setExit(leave);
3055
3056 setPosition(entry, true);
3057 sub.cur = getSubroutine(prog->main);
3058
3059 if (info->io.genUserClip > 0) {
3060 for (int c = 0; c < 4; ++c)
3061 clipVtx[c] = getScratch();
3062 }
3063
3064 if (prog->getType() == Program::TYPE_FRAGMENT) {
3065 Symbol *sv = mkSysVal(SV_POSITION, 3);
3066 fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
3067 mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
3068 }
3069
3070 if (info->io.viewportId >= 0)
3071 viewport = getScratch();
3072 else
3073 viewport = NULL;
3074
3075 for (ip = 0; ip < code->scan.num_instructions; ++ip) {
3076 if (!handleInstruction(&code->insns[ip]))
3077 return false;
3078 }
3079
3080 if (!BindArgumentsPass(*this).run(prog))
3081 return false;
3082
3083 return true;
3084 }
3085
3086 } // unnamed namespace
3087
3088 namespace nv50_ir {
3089
3090 bool
3091 Program::makeFromTGSI(struct nv50_ir_prog_info *info)
3092 {
3093 tgsi::Source src(info);
3094 if (!src.scanSource())
3095 return false;
3096 tlsSize = info->bin.tlsSpace;
3097
3098 Converter builder(this, &src);
3099 return builder.run();
3100 }
3101
3102 } // namespace nv50_ir