5454f042078b88b4ec6a58abf85097857c18ca56
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_from_tgsi.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "tgsi/tgsi_dump.h"
24 #include "tgsi/tgsi_scan.h"
25 #include "tgsi/tgsi_util.h"
26
27 #include <set>
28
29 #include "codegen/nv50_ir.h"
30 #include "codegen/nv50_ir_util.h"
31 #include "codegen/nv50_ir_build_util.h"
32
33 namespace tgsi {
34
35 class Source;
36
37 static nv50_ir::operation translateOpcode(uint opcode);
38 static nv50_ir::DataFile translateFile(uint file);
39 static nv50_ir::TexTarget translateTexture(uint texTarg);
40 static nv50_ir::SVSemantic translateSysVal(uint sysval);
41
42 class Instruction
43 {
44 public:
45 Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
46
47 class SrcRegister
48 {
49 public:
50 SrcRegister(const struct tgsi_full_src_register *src)
51 : reg(src->Register),
52 fsr(src)
53 { }
54
55 SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
56
57 SrcRegister(const struct tgsi_ind_register& ind)
58 : reg(tgsi_util_get_src_from_ind(&ind)),
59 fsr(NULL)
60 { }
61
62 struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
63 {
64 struct tgsi_src_register reg;
65 memset(&reg, 0, sizeof(reg));
66 reg.Index = off.Index;
67 reg.File = off.File;
68 reg.SwizzleX = off.SwizzleX;
69 reg.SwizzleY = off.SwizzleY;
70 reg.SwizzleZ = off.SwizzleZ;
71 return reg;
72 }
73
74 SrcRegister(const struct tgsi_texture_offset& off) :
75 reg(offsetToSrc(off)),
76 fsr(NULL)
77 { }
78
79 uint getFile() const { return reg.File; }
80
81 bool is2D() const { return reg.Dimension; }
82
83 bool isIndirect(int dim) const
84 {
85 return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
86 }
87
88 int getIndex(int dim) const
89 {
90 return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
91 }
92
93 int getSwizzle(int chan) const
94 {
95 return tgsi_util_get_src_register_swizzle(&reg, chan);
96 }
97
98 int getArrayId() const
99 {
100 if (isIndirect(0))
101 return fsr->Indirect.ArrayID;
102 return 0;
103 }
104
105 nv50_ir::Modifier getMod(int chan) const;
106
107 SrcRegister getIndirect(int dim) const
108 {
109 assert(fsr && isIndirect(dim));
110 if (dim)
111 return SrcRegister(fsr->DimIndirect);
112 return SrcRegister(fsr->Indirect);
113 }
114
115 uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
116 {
117 assert(reg.File == TGSI_FILE_IMMEDIATE);
118 assert(!reg.Absolute);
119 assert(!reg.Negate);
120 return info->immd.data[reg.Index * 4 + getSwizzle(c)];
121 }
122
123 private:
124 const struct tgsi_src_register reg;
125 const struct tgsi_full_src_register *fsr;
126 };
127
128 class DstRegister
129 {
130 public:
131 DstRegister(const struct tgsi_full_dst_register *dst)
132 : reg(dst->Register),
133 fdr(dst)
134 { }
135
136 DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
137
138 uint getFile() const { return reg.File; }
139
140 bool is2D() const { return reg.Dimension; }
141
142 bool isIndirect(int dim) const
143 {
144 return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
145 }
146
147 int getIndex(int dim) const
148 {
149 return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
150 }
151
152 unsigned int getMask() const { return reg.WriteMask; }
153
154 bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
155
156 SrcRegister getIndirect(int dim) const
157 {
158 assert(fdr && isIndirect(dim));
159 if (dim)
160 return SrcRegister(fdr->DimIndirect);
161 return SrcRegister(fdr->Indirect);
162 }
163
164 int getArrayId() const
165 {
166 if (isIndirect(0))
167 return fdr->Indirect.ArrayID;
168 return 0;
169 }
170
171 private:
172 const struct tgsi_dst_register reg;
173 const struct tgsi_full_dst_register *fdr;
174 };
175
176 inline uint getOpcode() const { return insn->Instruction.Opcode; }
177
178 unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
179 unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
180
181 // mask of used components of source s
182 unsigned int srcMask(unsigned int s) const;
183
184 SrcRegister getSrc(unsigned int s) const
185 {
186 assert(s < srcCount());
187 return SrcRegister(&insn->Src[s]);
188 }
189
190 DstRegister getDst(unsigned int d) const
191 {
192 assert(d < dstCount());
193 return DstRegister(&insn->Dst[d]);
194 }
195
196 SrcRegister getTexOffset(unsigned int i) const
197 {
198 assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
199 return SrcRegister(insn->TexOffsets[i]);
200 }
201
202 unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
203
204 bool checkDstSrcAliasing() const;
205
206 inline nv50_ir::operation getOP() const {
207 return translateOpcode(getOpcode()); }
208
209 nv50_ir::DataType inferSrcType() const;
210 nv50_ir::DataType inferDstType() const;
211
212 nv50_ir::CondCode getSetCond() const;
213
214 nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
215
216 inline uint getLabel() { return insn->Label.Label; }
217
218 unsigned getSaturate() const { return insn->Instruction.Saturate; }
219
220 void print() const
221 {
222 tgsi_dump_instruction(insn, 1);
223 }
224
225 private:
226 const struct tgsi_full_instruction *insn;
227 };
228
229 unsigned int Instruction::srcMask(unsigned int s) const
230 {
231 unsigned int mask = insn->Dst[0].Register.WriteMask;
232
233 switch (insn->Instruction.Opcode) {
234 case TGSI_OPCODE_COS:
235 case TGSI_OPCODE_SIN:
236 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
237 case TGSI_OPCODE_DP2:
238 return 0x3;
239 case TGSI_OPCODE_DP3:
240 return 0x7;
241 case TGSI_OPCODE_DP4:
242 case TGSI_OPCODE_DPH:
243 case TGSI_OPCODE_KILL_IF: /* WriteMask ignored */
244 return 0xf;
245 case TGSI_OPCODE_DST:
246 return mask & (s ? 0xa : 0x6);
247 case TGSI_OPCODE_EX2:
248 case TGSI_OPCODE_EXP:
249 case TGSI_OPCODE_LG2:
250 case TGSI_OPCODE_LOG:
251 case TGSI_OPCODE_POW:
252 case TGSI_OPCODE_RCP:
253 case TGSI_OPCODE_RSQ:
254 case TGSI_OPCODE_SCS:
255 return 0x1;
256 case TGSI_OPCODE_IF:
257 case TGSI_OPCODE_UIF:
258 return 0x1;
259 case TGSI_OPCODE_LIT:
260 return 0xb;
261 case TGSI_OPCODE_TEX2:
262 case TGSI_OPCODE_TXB2:
263 case TGSI_OPCODE_TXL2:
264 return (s == 0) ? 0xf : 0x3;
265 case TGSI_OPCODE_TEX:
266 case TGSI_OPCODE_TXB:
267 case TGSI_OPCODE_TXD:
268 case TGSI_OPCODE_TXL:
269 case TGSI_OPCODE_TXP:
270 case TGSI_OPCODE_LODQ:
271 {
272 const struct tgsi_instruction_texture *tex = &insn->Texture;
273
274 assert(insn->Instruction.Texture);
275
276 mask = 0x7;
277 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
278 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
279 mask |= 0x8; /* bias, lod or proj */
280
281 switch (tex->Texture) {
282 case TGSI_TEXTURE_1D:
283 mask &= 0x9;
284 break;
285 case TGSI_TEXTURE_SHADOW1D:
286 mask &= 0xd;
287 break;
288 case TGSI_TEXTURE_1D_ARRAY:
289 case TGSI_TEXTURE_2D:
290 case TGSI_TEXTURE_RECT:
291 mask &= 0xb;
292 break;
293 case TGSI_TEXTURE_CUBE_ARRAY:
294 case TGSI_TEXTURE_SHADOW2D_ARRAY:
295 case TGSI_TEXTURE_SHADOWCUBE:
296 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
297 mask |= 0x8;
298 break;
299 default:
300 break;
301 }
302 }
303 return mask;
304 case TGSI_OPCODE_XPD:
305 {
306 unsigned int x = 0;
307 if (mask & 1) x |= 0x6;
308 if (mask & 2) x |= 0x5;
309 if (mask & 4) x |= 0x3;
310 return x;
311 }
312 case TGSI_OPCODE_D2I:
313 case TGSI_OPCODE_D2U:
314 case TGSI_OPCODE_D2F:
315 case TGSI_OPCODE_DSLT:
316 case TGSI_OPCODE_DSGE:
317 case TGSI_OPCODE_DSEQ:
318 case TGSI_OPCODE_DSNE:
319 switch (util_bitcount(mask)) {
320 case 1: return 0x3;
321 case 2: return 0xf;
322 default:
323 assert(!"unexpected mask");
324 return 0xf;
325 }
326 case TGSI_OPCODE_I2D:
327 case TGSI_OPCODE_U2D:
328 case TGSI_OPCODE_F2D: {
329 unsigned int x = 0;
330 if ((mask & 0x3) == 0x3)
331 x |= 1;
332 if ((mask & 0xc) == 0xc)
333 x |= 2;
334 return x;
335 }
336 case TGSI_OPCODE_PK2H:
337 return 0x3;
338 case TGSI_OPCODE_UP2H:
339 return 0x1;
340 default:
341 break;
342 }
343
344 return mask;
345 }
346
347 nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
348 {
349 nv50_ir::Modifier m(0);
350
351 if (reg.Absolute)
352 m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
353 if (reg.Negate)
354 m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
355 return m;
356 }
357
358 static nv50_ir::DataFile translateFile(uint file)
359 {
360 switch (file) {
361 case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST;
362 case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT;
363 case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT;
364 case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR;
365 case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS;
366 case TGSI_FILE_PREDICATE: return nv50_ir::FILE_PREDICATE;
367 case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE;
368 case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE;
369 //case TGSI_FILE_RESOURCE: return nv50_ir::FILE_MEMORY_GLOBAL;
370 case TGSI_FILE_SAMPLER:
371 case TGSI_FILE_NULL:
372 default:
373 return nv50_ir::FILE_NULL;
374 }
375 }
376
377 static nv50_ir::SVSemantic translateSysVal(uint sysval)
378 {
379 switch (sysval) {
380 case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE;
381 case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE;
382 case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID;
383 case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
384 case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID;
385 case TGSI_SEMANTIC_GRID_SIZE: return nv50_ir::SV_NCTAID;
386 case TGSI_SEMANTIC_BLOCK_ID: return nv50_ir::SV_CTAID;
387 case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID;
388 case TGSI_SEMANTIC_THREAD_ID: return nv50_ir::SV_TID;
389 case TGSI_SEMANTIC_SAMPLEID: return nv50_ir::SV_SAMPLE_INDEX;
390 case TGSI_SEMANTIC_SAMPLEPOS: return nv50_ir::SV_SAMPLE_POS;
391 case TGSI_SEMANTIC_SAMPLEMASK: return nv50_ir::SV_SAMPLE_MASK;
392 case TGSI_SEMANTIC_INVOCATIONID: return nv50_ir::SV_INVOCATION_ID;
393 case TGSI_SEMANTIC_TESSCOORD: return nv50_ir::SV_TESS_COORD;
394 case TGSI_SEMANTIC_TESSOUTER: return nv50_ir::SV_TESS_OUTER;
395 case TGSI_SEMANTIC_TESSINNER: return nv50_ir::SV_TESS_INNER;
396 case TGSI_SEMANTIC_VERTICESIN: return nv50_ir::SV_VERTEX_COUNT;
397 case TGSI_SEMANTIC_HELPER_INVOCATION: return nv50_ir::SV_THREAD_KILL;
398 case TGSI_SEMANTIC_BASEVERTEX: return nv50_ir::SV_BASEVERTEX;
399 case TGSI_SEMANTIC_BASEINSTANCE: return nv50_ir::SV_BASEINSTANCE;
400 case TGSI_SEMANTIC_DRAWID: return nv50_ir::SV_DRAWID;
401 default:
402 assert(0);
403 return nv50_ir::SV_CLOCK;
404 }
405 }
406
407 #define NV50_IR_TEX_TARG_CASE(a, b) \
408 case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
409
410 static nv50_ir::TexTarget translateTexture(uint tex)
411 {
412 switch (tex) {
413 NV50_IR_TEX_TARG_CASE(1D, 1D);
414 NV50_IR_TEX_TARG_CASE(2D, 2D);
415 NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS);
416 NV50_IR_TEX_TARG_CASE(3D, 3D);
417 NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
418 NV50_IR_TEX_TARG_CASE(RECT, RECT);
419 NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
420 NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
421 NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY);
422 NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY);
423 NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
424 NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
425 NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
426 NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
427 NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
428 NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
429 NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW);
430 NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
431
432 case TGSI_TEXTURE_UNKNOWN:
433 default:
434 assert(!"invalid texture target");
435 return nv50_ir::TEX_TARGET_2D;
436 }
437 }
438
439 nv50_ir::DataType Instruction::inferSrcType() const
440 {
441 switch (getOpcode()) {
442 case TGSI_OPCODE_UIF:
443 case TGSI_OPCODE_AND:
444 case TGSI_OPCODE_OR:
445 case TGSI_OPCODE_XOR:
446 case TGSI_OPCODE_NOT:
447 case TGSI_OPCODE_SHL:
448 case TGSI_OPCODE_U2F:
449 case TGSI_OPCODE_U2D:
450 case TGSI_OPCODE_UADD:
451 case TGSI_OPCODE_UDIV:
452 case TGSI_OPCODE_UMOD:
453 case TGSI_OPCODE_UMAD:
454 case TGSI_OPCODE_UMUL:
455 case TGSI_OPCODE_UMUL_HI:
456 case TGSI_OPCODE_UMAX:
457 case TGSI_OPCODE_UMIN:
458 case TGSI_OPCODE_USEQ:
459 case TGSI_OPCODE_USGE:
460 case TGSI_OPCODE_USLT:
461 case TGSI_OPCODE_USNE:
462 case TGSI_OPCODE_USHR:
463 case TGSI_OPCODE_ATOMUADD:
464 case TGSI_OPCODE_ATOMXCHG:
465 case TGSI_OPCODE_ATOMCAS:
466 case TGSI_OPCODE_ATOMAND:
467 case TGSI_OPCODE_ATOMOR:
468 case TGSI_OPCODE_ATOMXOR:
469 case TGSI_OPCODE_ATOMUMIN:
470 case TGSI_OPCODE_ATOMUMAX:
471 case TGSI_OPCODE_UBFE:
472 case TGSI_OPCODE_UMSB:
473 case TGSI_OPCODE_UP2H:
474 return nv50_ir::TYPE_U32;
475 case TGSI_OPCODE_I2F:
476 case TGSI_OPCODE_I2D:
477 case TGSI_OPCODE_IDIV:
478 case TGSI_OPCODE_IMUL_HI:
479 case TGSI_OPCODE_IMAX:
480 case TGSI_OPCODE_IMIN:
481 case TGSI_OPCODE_IABS:
482 case TGSI_OPCODE_INEG:
483 case TGSI_OPCODE_ISGE:
484 case TGSI_OPCODE_ISHR:
485 case TGSI_OPCODE_ISLT:
486 case TGSI_OPCODE_ISSG:
487 case TGSI_OPCODE_SAD: // not sure about SAD, but no one has a float version
488 case TGSI_OPCODE_MOD:
489 case TGSI_OPCODE_UARL:
490 case TGSI_OPCODE_ATOMIMIN:
491 case TGSI_OPCODE_ATOMIMAX:
492 case TGSI_OPCODE_IBFE:
493 case TGSI_OPCODE_IMSB:
494 return nv50_ir::TYPE_S32;
495 case TGSI_OPCODE_D2F:
496 case TGSI_OPCODE_D2I:
497 case TGSI_OPCODE_D2U:
498 case TGSI_OPCODE_DABS:
499 case TGSI_OPCODE_DNEG:
500 case TGSI_OPCODE_DADD:
501 case TGSI_OPCODE_DMUL:
502 case TGSI_OPCODE_DMAX:
503 case TGSI_OPCODE_DMIN:
504 case TGSI_OPCODE_DSLT:
505 case TGSI_OPCODE_DSGE:
506 case TGSI_OPCODE_DSEQ:
507 case TGSI_OPCODE_DSNE:
508 case TGSI_OPCODE_DRCP:
509 case TGSI_OPCODE_DSQRT:
510 case TGSI_OPCODE_DMAD:
511 case TGSI_OPCODE_DFRAC:
512 case TGSI_OPCODE_DRSQ:
513 case TGSI_OPCODE_DTRUNC:
514 case TGSI_OPCODE_DCEIL:
515 case TGSI_OPCODE_DFLR:
516 case TGSI_OPCODE_DROUND:
517 return nv50_ir::TYPE_F64;
518 default:
519 return nv50_ir::TYPE_F32;
520 }
521 }
522
523 nv50_ir::DataType Instruction::inferDstType() const
524 {
525 switch (getOpcode()) {
526 case TGSI_OPCODE_D2U:
527 case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
528 case TGSI_OPCODE_D2I:
529 case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
530 case TGSI_OPCODE_FSEQ:
531 case TGSI_OPCODE_FSGE:
532 case TGSI_OPCODE_FSLT:
533 case TGSI_OPCODE_FSNE:
534 case TGSI_OPCODE_DSEQ:
535 case TGSI_OPCODE_DSGE:
536 case TGSI_OPCODE_DSLT:
537 case TGSI_OPCODE_DSNE:
538 case TGSI_OPCODE_PK2H:
539 return nv50_ir::TYPE_U32;
540 case TGSI_OPCODE_I2F:
541 case TGSI_OPCODE_U2F:
542 case TGSI_OPCODE_D2F:
543 case TGSI_OPCODE_UP2H:
544 return nv50_ir::TYPE_F32;
545 case TGSI_OPCODE_I2D:
546 case TGSI_OPCODE_U2D:
547 case TGSI_OPCODE_F2D:
548 return nv50_ir::TYPE_F64;
549 default:
550 return inferSrcType();
551 }
552 }
553
554 nv50_ir::CondCode Instruction::getSetCond() const
555 {
556 using namespace nv50_ir;
557
558 switch (getOpcode()) {
559 case TGSI_OPCODE_SLT:
560 case TGSI_OPCODE_ISLT:
561 case TGSI_OPCODE_USLT:
562 case TGSI_OPCODE_FSLT:
563 case TGSI_OPCODE_DSLT:
564 return CC_LT;
565 case TGSI_OPCODE_SLE:
566 return CC_LE;
567 case TGSI_OPCODE_SGE:
568 case TGSI_OPCODE_ISGE:
569 case TGSI_OPCODE_USGE:
570 case TGSI_OPCODE_FSGE:
571 case TGSI_OPCODE_DSGE:
572 return CC_GE;
573 case TGSI_OPCODE_SGT:
574 return CC_GT;
575 case TGSI_OPCODE_SEQ:
576 case TGSI_OPCODE_USEQ:
577 case TGSI_OPCODE_FSEQ:
578 case TGSI_OPCODE_DSEQ:
579 return CC_EQ;
580 case TGSI_OPCODE_SNE:
581 case TGSI_OPCODE_FSNE:
582 case TGSI_OPCODE_DSNE:
583 return CC_NEU;
584 case TGSI_OPCODE_USNE:
585 return CC_NE;
586 default:
587 return CC_ALWAYS;
588 }
589 }
590
591 #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
592
593 static nv50_ir::operation translateOpcode(uint opcode)
594 {
595 switch (opcode) {
596 NV50_IR_OPCODE_CASE(ARL, SHL);
597 NV50_IR_OPCODE_CASE(MOV, MOV);
598
599 NV50_IR_OPCODE_CASE(RCP, RCP);
600 NV50_IR_OPCODE_CASE(RSQ, RSQ);
601
602 NV50_IR_OPCODE_CASE(MUL, MUL);
603 NV50_IR_OPCODE_CASE(ADD, ADD);
604
605 NV50_IR_OPCODE_CASE(MIN, MIN);
606 NV50_IR_OPCODE_CASE(MAX, MAX);
607 NV50_IR_OPCODE_CASE(SLT, SET);
608 NV50_IR_OPCODE_CASE(SGE, SET);
609 NV50_IR_OPCODE_CASE(MAD, MAD);
610 NV50_IR_OPCODE_CASE(SUB, SUB);
611
612 NV50_IR_OPCODE_CASE(FLR, FLOOR);
613 NV50_IR_OPCODE_CASE(ROUND, CVT);
614 NV50_IR_OPCODE_CASE(EX2, EX2);
615 NV50_IR_OPCODE_CASE(LG2, LG2);
616 NV50_IR_OPCODE_CASE(POW, POW);
617
618 NV50_IR_OPCODE_CASE(ABS, ABS);
619
620 NV50_IR_OPCODE_CASE(COS, COS);
621 NV50_IR_OPCODE_CASE(DDX, DFDX);
622 NV50_IR_OPCODE_CASE(DDX_FINE, DFDX);
623 NV50_IR_OPCODE_CASE(DDY, DFDY);
624 NV50_IR_OPCODE_CASE(DDY_FINE, DFDY);
625 NV50_IR_OPCODE_CASE(KILL, DISCARD);
626
627 NV50_IR_OPCODE_CASE(SEQ, SET);
628 NV50_IR_OPCODE_CASE(SGT, SET);
629 NV50_IR_OPCODE_CASE(SIN, SIN);
630 NV50_IR_OPCODE_CASE(SLE, SET);
631 NV50_IR_OPCODE_CASE(SNE, SET);
632 NV50_IR_OPCODE_CASE(TEX, TEX);
633 NV50_IR_OPCODE_CASE(TXD, TXD);
634 NV50_IR_OPCODE_CASE(TXP, TEX);
635
636 NV50_IR_OPCODE_CASE(CAL, CALL);
637 NV50_IR_OPCODE_CASE(RET, RET);
638 NV50_IR_OPCODE_CASE(CMP, SLCT);
639
640 NV50_IR_OPCODE_CASE(TXB, TXB);
641
642 NV50_IR_OPCODE_CASE(DIV, DIV);
643
644 NV50_IR_OPCODE_CASE(TXL, TXL);
645
646 NV50_IR_OPCODE_CASE(CEIL, CEIL);
647 NV50_IR_OPCODE_CASE(I2F, CVT);
648 NV50_IR_OPCODE_CASE(NOT, NOT);
649 NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
650 NV50_IR_OPCODE_CASE(SHL, SHL);
651
652 NV50_IR_OPCODE_CASE(AND, AND);
653 NV50_IR_OPCODE_CASE(OR, OR);
654 NV50_IR_OPCODE_CASE(MOD, MOD);
655 NV50_IR_OPCODE_CASE(XOR, XOR);
656 NV50_IR_OPCODE_CASE(SAD, SAD);
657 NV50_IR_OPCODE_CASE(TXF, TXF);
658 NV50_IR_OPCODE_CASE(TXQ, TXQ);
659 NV50_IR_OPCODE_CASE(TXQS, TXQ);
660 NV50_IR_OPCODE_CASE(TG4, TXG);
661 NV50_IR_OPCODE_CASE(LODQ, TXLQ);
662
663 NV50_IR_OPCODE_CASE(EMIT, EMIT);
664 NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
665
666 NV50_IR_OPCODE_CASE(KILL_IF, DISCARD);
667
668 NV50_IR_OPCODE_CASE(F2I, CVT);
669 NV50_IR_OPCODE_CASE(FSEQ, SET);
670 NV50_IR_OPCODE_CASE(FSGE, SET);
671 NV50_IR_OPCODE_CASE(FSLT, SET);
672 NV50_IR_OPCODE_CASE(FSNE, SET);
673 NV50_IR_OPCODE_CASE(IDIV, DIV);
674 NV50_IR_OPCODE_CASE(IMAX, MAX);
675 NV50_IR_OPCODE_CASE(IMIN, MIN);
676 NV50_IR_OPCODE_CASE(IABS, ABS);
677 NV50_IR_OPCODE_CASE(INEG, NEG);
678 NV50_IR_OPCODE_CASE(ISGE, SET);
679 NV50_IR_OPCODE_CASE(ISHR, SHR);
680 NV50_IR_OPCODE_CASE(ISLT, SET);
681 NV50_IR_OPCODE_CASE(F2U, CVT);
682 NV50_IR_OPCODE_CASE(U2F, CVT);
683 NV50_IR_OPCODE_CASE(UADD, ADD);
684 NV50_IR_OPCODE_CASE(UDIV, DIV);
685 NV50_IR_OPCODE_CASE(UMAD, MAD);
686 NV50_IR_OPCODE_CASE(UMAX, MAX);
687 NV50_IR_OPCODE_CASE(UMIN, MIN);
688 NV50_IR_OPCODE_CASE(UMOD, MOD);
689 NV50_IR_OPCODE_CASE(UMUL, MUL);
690 NV50_IR_OPCODE_CASE(USEQ, SET);
691 NV50_IR_OPCODE_CASE(USGE, SET);
692 NV50_IR_OPCODE_CASE(USHR, SHR);
693 NV50_IR_OPCODE_CASE(USLT, SET);
694 NV50_IR_OPCODE_CASE(USNE, SET);
695
696 NV50_IR_OPCODE_CASE(DABS, ABS);
697 NV50_IR_OPCODE_CASE(DNEG, NEG);
698 NV50_IR_OPCODE_CASE(DADD, ADD);
699 NV50_IR_OPCODE_CASE(DMUL, MUL);
700 NV50_IR_OPCODE_CASE(DMAX, MAX);
701 NV50_IR_OPCODE_CASE(DMIN, MIN);
702 NV50_IR_OPCODE_CASE(DSLT, SET);
703 NV50_IR_OPCODE_CASE(DSGE, SET);
704 NV50_IR_OPCODE_CASE(DSEQ, SET);
705 NV50_IR_OPCODE_CASE(DSNE, SET);
706 NV50_IR_OPCODE_CASE(DRCP, RCP);
707 NV50_IR_OPCODE_CASE(DSQRT, SQRT);
708 NV50_IR_OPCODE_CASE(DMAD, MAD);
709 NV50_IR_OPCODE_CASE(D2I, CVT);
710 NV50_IR_OPCODE_CASE(D2U, CVT);
711 NV50_IR_OPCODE_CASE(I2D, CVT);
712 NV50_IR_OPCODE_CASE(U2D, CVT);
713 NV50_IR_OPCODE_CASE(DRSQ, RSQ);
714 NV50_IR_OPCODE_CASE(DTRUNC, TRUNC);
715 NV50_IR_OPCODE_CASE(DCEIL, CEIL);
716 NV50_IR_OPCODE_CASE(DFLR, FLOOR);
717 NV50_IR_OPCODE_CASE(DROUND, CVT);
718
719 NV50_IR_OPCODE_CASE(IMUL_HI, MUL);
720 NV50_IR_OPCODE_CASE(UMUL_HI, MUL);
721
722 NV50_IR_OPCODE_CASE(SAMPLE, TEX);
723 NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
724 NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
725 NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
726 NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
727 NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
728 NV50_IR_OPCODE_CASE(SAMPLE_I, TXF);
729 NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF);
730 NV50_IR_OPCODE_CASE(GATHER4, TXG);
731 NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
732
733 NV50_IR_OPCODE_CASE(ATOMUADD, ATOM);
734 NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM);
735 NV50_IR_OPCODE_CASE(ATOMCAS, ATOM);
736 NV50_IR_OPCODE_CASE(ATOMAND, ATOM);
737 NV50_IR_OPCODE_CASE(ATOMOR, ATOM);
738 NV50_IR_OPCODE_CASE(ATOMXOR, ATOM);
739 NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM);
740 NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM);
741 NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM);
742 NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM);
743
744 NV50_IR_OPCODE_CASE(TEX2, TEX);
745 NV50_IR_OPCODE_CASE(TXB2, TXB);
746 NV50_IR_OPCODE_CASE(TXL2, TXL);
747
748 NV50_IR_OPCODE_CASE(IBFE, EXTBF);
749 NV50_IR_OPCODE_CASE(UBFE, EXTBF);
750 NV50_IR_OPCODE_CASE(BFI, INSBF);
751 NV50_IR_OPCODE_CASE(BREV, EXTBF);
752 NV50_IR_OPCODE_CASE(POPC, POPCNT);
753 NV50_IR_OPCODE_CASE(LSB, BFIND);
754 NV50_IR_OPCODE_CASE(IMSB, BFIND);
755 NV50_IR_OPCODE_CASE(UMSB, BFIND);
756
757 NV50_IR_OPCODE_CASE(END, EXIT);
758
759 default:
760 return nv50_ir::OP_NOP;
761 }
762 }
763
764 static uint16_t opcodeToSubOp(uint opcode)
765 {
766 switch (opcode) {
767 case TGSI_OPCODE_LFENCE: return NV50_IR_SUBOP_MEMBAR(L, GL);
768 case TGSI_OPCODE_SFENCE: return NV50_IR_SUBOP_MEMBAR(S, GL);
769 case TGSI_OPCODE_MFENCE: return NV50_IR_SUBOP_MEMBAR(M, GL);
770 case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD;
771 case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH;
772 case TGSI_OPCODE_ATOMCAS: return NV50_IR_SUBOP_ATOM_CAS;
773 case TGSI_OPCODE_ATOMAND: return NV50_IR_SUBOP_ATOM_AND;
774 case TGSI_OPCODE_ATOMOR: return NV50_IR_SUBOP_ATOM_OR;
775 case TGSI_OPCODE_ATOMXOR: return NV50_IR_SUBOP_ATOM_XOR;
776 case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN;
777 case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN;
778 case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX;
779 case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX;
780 case TGSI_OPCODE_IMUL_HI:
781 case TGSI_OPCODE_UMUL_HI:
782 return NV50_IR_SUBOP_MUL_HIGH;
783 default:
784 return 0;
785 }
786 }
787
788 bool Instruction::checkDstSrcAliasing() const
789 {
790 if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
791 return false;
792
793 for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
794 if (insn->Src[s].Register.File == TGSI_FILE_NULL)
795 break;
796 if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
797 insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
798 return true;
799 }
800 return false;
801 }
802
803 class Source
804 {
805 public:
806 Source(struct nv50_ir_prog_info *);
807 ~Source();
808
809 public:
810 bool scanSource();
811 unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
812
813 public:
814 struct tgsi_shader_info scan;
815 struct tgsi_full_instruction *insns;
816 const struct tgsi_token *tokens;
817 struct nv50_ir_prog_info *info;
818
819 nv50_ir::DynArray tempArrays;
820 nv50_ir::DynArray immdArrays;
821
822 typedef nv50_ir::BuildUtil::Location Location;
823 // these registers are per-subroutine, cannot be used for parameter passing
824 std::set<Location> locals;
825
826 std::set<int> indirectTempArrays;
827 std::vector<int> tempArrayId;
828
829 int clipVertexOutput;
830
831 struct TextureView {
832 uint8_t target; // TGSI_TEXTURE_*
833 };
834 std::vector<TextureView> textureViews;
835
836 struct Resource {
837 uint8_t target; // TGSI_TEXTURE_*
838 bool raw;
839 uint8_t slot; // $surface index
840 };
841 std::vector<Resource> resources;
842
843 private:
844 int inferSysValDirection(unsigned sn) const;
845 bool scanDeclaration(const struct tgsi_full_declaration *);
846 bool scanInstruction(const struct tgsi_full_instruction *);
847 void scanProperty(const struct tgsi_full_property *);
848 void scanImmediate(const struct tgsi_full_immediate *);
849
850 inline bool isEdgeFlagPassthrough(const Instruction&) const;
851 };
852
853 Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
854 {
855 tokens = (const struct tgsi_token *)info->bin.source;
856
857 if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
858 tgsi_dump(tokens, 0);
859 }
860
861 Source::~Source()
862 {
863 if (insns)
864 FREE(insns);
865
866 if (info->immd.data)
867 FREE(info->immd.data);
868 if (info->immd.type)
869 FREE(info->immd.type);
870 }
871
872 bool Source::scanSource()
873 {
874 unsigned insnCount = 0;
875 struct tgsi_parse_context parse;
876
877 tgsi_scan_shader(tokens, &scan);
878
879 insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
880 sizeof(insns[0]));
881 if (!insns)
882 return false;
883
884 clipVertexOutput = -1;
885
886 textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1);
887 //resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1);
888 tempArrayId.resize(scan.file_max[TGSI_FILE_TEMPORARY] + 1);
889
890 info->immd.bufSize = 0;
891
892 info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
893 info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
894 info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
895
896 if (info->type == PIPE_SHADER_FRAGMENT) {
897 info->prop.fp.writesDepth = scan.writes_z;
898 info->prop.fp.usesDiscard = scan.uses_kill;
899 } else
900 if (info->type == PIPE_SHADER_GEOMETRY) {
901 info->prop.gp.instanceCount = 1; // default value
902 }
903
904 info->io.viewportId = -1;
905
906 info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
907 info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
908
909 tgsi_parse_init(&parse, tokens);
910 while (!tgsi_parse_end_of_tokens(&parse)) {
911 tgsi_parse_token(&parse);
912
913 switch (parse.FullToken.Token.Type) {
914 case TGSI_TOKEN_TYPE_IMMEDIATE:
915 scanImmediate(&parse.FullToken.FullImmediate);
916 break;
917 case TGSI_TOKEN_TYPE_DECLARATION:
918 scanDeclaration(&parse.FullToken.FullDeclaration);
919 break;
920 case TGSI_TOKEN_TYPE_INSTRUCTION:
921 insns[insnCount++] = parse.FullToken.FullInstruction;
922 scanInstruction(&parse.FullToken.FullInstruction);
923 break;
924 case TGSI_TOKEN_TYPE_PROPERTY:
925 scanProperty(&parse.FullToken.FullProperty);
926 break;
927 default:
928 INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
929 break;
930 }
931 }
932 tgsi_parse_free(&parse);
933
934 // TODO: Compute based on relevant array sizes
935 if (indirectTempArrays.size())
936 info->bin.tlsSpace += (scan.file_max[TGSI_FILE_TEMPORARY] + 1) * 16;
937
938 if (info->io.genUserClip > 0) {
939 info->io.clipDistances = info->io.genUserClip;
940
941 const unsigned int nOut = (info->io.genUserClip + 3) / 4;
942
943 for (unsigned int n = 0; n < nOut; ++n) {
944 unsigned int i = info->numOutputs++;
945 info->out[i].id = i;
946 info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
947 info->out[i].si = n;
948 info->out[i].mask = ((1 << info->io.clipDistances) - 1) >> (n * 4);
949 }
950 }
951
952 return info->assignSlots(info) == 0;
953 }
954
955 void Source::scanProperty(const struct tgsi_full_property *prop)
956 {
957 switch (prop->Property.PropertyName) {
958 case TGSI_PROPERTY_GS_OUTPUT_PRIM:
959 info->prop.gp.outputPrim = prop->u[0].Data;
960 break;
961 case TGSI_PROPERTY_GS_INPUT_PRIM:
962 info->prop.gp.inputPrim = prop->u[0].Data;
963 break;
964 case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
965 info->prop.gp.maxVertices = prop->u[0].Data;
966 break;
967 case TGSI_PROPERTY_GS_INVOCATIONS:
968 info->prop.gp.instanceCount = prop->u[0].Data;
969 break;
970 case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
971 info->prop.fp.separateFragData = true;
972 break;
973 case TGSI_PROPERTY_FS_COORD_ORIGIN:
974 case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
975 // we don't care
976 break;
977 case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
978 info->io.genUserClip = -1;
979 break;
980 case TGSI_PROPERTY_TCS_VERTICES_OUT:
981 info->prop.tp.outputPatchSize = prop->u[0].Data;
982 break;
983 case TGSI_PROPERTY_TES_PRIM_MODE:
984 info->prop.tp.domain = prop->u[0].Data;
985 break;
986 case TGSI_PROPERTY_TES_SPACING:
987 info->prop.tp.partitioning = prop->u[0].Data;
988 break;
989 case TGSI_PROPERTY_TES_VERTEX_ORDER_CW:
990 info->prop.tp.winding = prop->u[0].Data;
991 break;
992 case TGSI_PROPERTY_TES_POINT_MODE:
993 if (prop->u[0].Data)
994 info->prop.tp.outputPrim = PIPE_PRIM_POINTS;
995 else
996 info->prop.tp.outputPrim = PIPE_PRIM_TRIANGLES; /* anything but points */
997 break;
998 case TGSI_PROPERTY_NUM_CLIPDIST_ENABLED:
999 info->io.clipDistances = prop->u[0].Data;
1000 break;
1001 case TGSI_PROPERTY_NUM_CULLDIST_ENABLED:
1002 info->io.cullDistances = prop->u[0].Data;
1003 break;
1004 default:
1005 INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
1006 break;
1007 }
1008 }
1009
1010 void Source::scanImmediate(const struct tgsi_full_immediate *imm)
1011 {
1012 const unsigned n = info->immd.count++;
1013
1014 assert(n < scan.immediate_count);
1015
1016 for (int c = 0; c < 4; ++c)
1017 info->immd.data[n * 4 + c] = imm->u[c].Uint;
1018
1019 info->immd.type[n] = imm->Immediate.DataType;
1020 }
1021
1022 int Source::inferSysValDirection(unsigned sn) const
1023 {
1024 switch (sn) {
1025 case TGSI_SEMANTIC_INSTANCEID:
1026 case TGSI_SEMANTIC_VERTEXID:
1027 return 1;
1028 case TGSI_SEMANTIC_LAYER:
1029 #if 0
1030 case TGSI_SEMANTIC_VIEWPORTINDEX:
1031 return 0;
1032 #endif
1033 case TGSI_SEMANTIC_PRIMID:
1034 return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
1035 default:
1036 return 0;
1037 }
1038 }
1039
1040 bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
1041 {
1042 unsigned i, c;
1043 unsigned sn = TGSI_SEMANTIC_GENERIC;
1044 unsigned si = 0;
1045 const unsigned first = decl->Range.First, last = decl->Range.Last;
1046 const int arrayId = decl->Array.ArrayID;
1047
1048 if (decl->Declaration.Semantic) {
1049 sn = decl->Semantic.Name;
1050 si = decl->Semantic.Index;
1051 }
1052
1053 if (decl->Declaration.Local) {
1054 for (i = first; i <= last; ++i) {
1055 for (c = 0; c < 4; ++c) {
1056 locals.insert(
1057 Location(decl->Declaration.File, decl->Dim.Index2D, i, c));
1058 }
1059 }
1060 }
1061
1062 switch (decl->Declaration.File) {
1063 case TGSI_FILE_INPUT:
1064 if (info->type == PIPE_SHADER_VERTEX) {
1065 // all vertex attributes are equal
1066 for (i = first; i <= last; ++i) {
1067 info->in[i].sn = TGSI_SEMANTIC_GENERIC;
1068 info->in[i].si = i;
1069 }
1070 } else {
1071 for (i = first; i <= last; ++i, ++si) {
1072 info->in[i].id = i;
1073 info->in[i].sn = sn;
1074 info->in[i].si = si;
1075 if (info->type == PIPE_SHADER_FRAGMENT) {
1076 // translate interpolation mode
1077 switch (decl->Interp.Interpolate) {
1078 case TGSI_INTERPOLATE_CONSTANT:
1079 info->in[i].flat = 1;
1080 break;
1081 case TGSI_INTERPOLATE_COLOR:
1082 info->in[i].sc = 1;
1083 break;
1084 case TGSI_INTERPOLATE_LINEAR:
1085 info->in[i].linear = 1;
1086 break;
1087 default:
1088 break;
1089 }
1090 if (decl->Interp.Location)
1091 info->in[i].centroid = 1;
1092 }
1093
1094 if (sn == TGSI_SEMANTIC_PATCH)
1095 info->in[i].patch = 1;
1096 if (sn == TGSI_SEMANTIC_PATCH)
1097 info->numPatchConstants = MAX2(info->numPatchConstants, si + 1);
1098 }
1099 }
1100 break;
1101 case TGSI_FILE_OUTPUT:
1102 for (i = first; i <= last; ++i, ++si) {
1103 switch (sn) {
1104 case TGSI_SEMANTIC_POSITION:
1105 if (info->type == PIPE_SHADER_FRAGMENT)
1106 info->io.fragDepth = i;
1107 else
1108 if (clipVertexOutput < 0)
1109 clipVertexOutput = i;
1110 break;
1111 case TGSI_SEMANTIC_COLOR:
1112 if (info->type == PIPE_SHADER_FRAGMENT)
1113 info->prop.fp.numColourResults++;
1114 break;
1115 case TGSI_SEMANTIC_EDGEFLAG:
1116 info->io.edgeFlagOut = i;
1117 break;
1118 case TGSI_SEMANTIC_CLIPVERTEX:
1119 clipVertexOutput = i;
1120 break;
1121 case TGSI_SEMANTIC_CLIPDIST:
1122 info->io.genUserClip = -1;
1123 break;
1124 case TGSI_SEMANTIC_SAMPLEMASK:
1125 info->io.sampleMask = i;
1126 break;
1127 case TGSI_SEMANTIC_VIEWPORT_INDEX:
1128 info->io.viewportId = i;
1129 break;
1130 case TGSI_SEMANTIC_PATCH:
1131 info->numPatchConstants = MAX2(info->numPatchConstants, si + 1);
1132 /* fallthrough */
1133 case TGSI_SEMANTIC_TESSOUTER:
1134 case TGSI_SEMANTIC_TESSINNER:
1135 info->out[i].patch = 1;
1136 break;
1137 default:
1138 break;
1139 }
1140 info->out[i].id = i;
1141 info->out[i].sn = sn;
1142 info->out[i].si = si;
1143 }
1144 break;
1145 case TGSI_FILE_SYSTEM_VALUE:
1146 switch (sn) {
1147 case TGSI_SEMANTIC_INSTANCEID:
1148 info->io.instanceId = first;
1149 break;
1150 case TGSI_SEMANTIC_VERTEXID:
1151 info->io.vertexId = first;
1152 break;
1153 case TGSI_SEMANTIC_SAMPLEID:
1154 case TGSI_SEMANTIC_SAMPLEPOS:
1155 info->prop.fp.sampleInterp = 1;
1156 break;
1157 case TGSI_SEMANTIC_BASEVERTEX:
1158 case TGSI_SEMANTIC_BASEINSTANCE:
1159 case TGSI_SEMANTIC_DRAWID:
1160 info->prop.vp.usesDrawParameters = true;
1161 break;
1162 default:
1163 break;
1164 }
1165 for (i = first; i <= last; ++i, ++si) {
1166 info->sv[i].sn = sn;
1167 info->sv[i].si = si;
1168 info->sv[i].input = inferSysValDirection(sn);
1169
1170 switch (sn) {
1171 case TGSI_SEMANTIC_TESSOUTER:
1172 case TGSI_SEMANTIC_TESSINNER:
1173 info->sv[i].patch = 1;
1174 break;
1175 }
1176 }
1177 break;
1178 /*
1179 case TGSI_FILE_RESOURCE:
1180 for (i = first; i <= last; ++i) {
1181 resources[i].target = decl->Resource.Resource;
1182 resources[i].raw = decl->Resource.Raw;
1183 resources[i].slot = i;
1184 }
1185 break;
1186 */
1187 case TGSI_FILE_SAMPLER_VIEW:
1188 for (i = first; i <= last; ++i)
1189 textureViews[i].target = decl->SamplerView.Resource;
1190 break;
1191 case TGSI_FILE_TEMPORARY:
1192 for (i = first; i <= last; ++i)
1193 tempArrayId[i] = arrayId;
1194 break;
1195 case TGSI_FILE_NULL:
1196 case TGSI_FILE_ADDRESS:
1197 case TGSI_FILE_CONSTANT:
1198 case TGSI_FILE_IMMEDIATE:
1199 case TGSI_FILE_PREDICATE:
1200 case TGSI_FILE_SAMPLER:
1201 break;
1202 default:
1203 ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
1204 return false;
1205 }
1206 return true;
1207 }
1208
1209 inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
1210 {
1211 return insn.getOpcode() == TGSI_OPCODE_MOV &&
1212 insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
1213 insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
1214 }
1215
1216 bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
1217 {
1218 Instruction insn(inst);
1219
1220 if (insn.getOpcode() == TGSI_OPCODE_BARRIER)
1221 info->numBarriers = 1;
1222
1223 if (insn.dstCount()) {
1224 if (insn.getDst(0).getFile() == TGSI_FILE_OUTPUT) {
1225 Instruction::DstRegister dst = insn.getDst(0);
1226
1227 if (dst.isIndirect(0))
1228 for (unsigned i = 0; i < info->numOutputs; ++i)
1229 info->out[i].mask = 0xf;
1230 else
1231 info->out[dst.getIndex(0)].mask |= dst.getMask();
1232
1233 if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE ||
1234 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID ||
1235 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_LAYER ||
1236 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_VIEWPORT_INDEX ||
1237 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG)
1238 info->out[dst.getIndex(0)].mask &= 1;
1239
1240 if (isEdgeFlagPassthrough(insn))
1241 info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
1242 } else
1243 if (insn.getDst(0).getFile() == TGSI_FILE_TEMPORARY) {
1244 if (insn.getDst(0).isIndirect(0))
1245 indirectTempArrays.insert(insn.getDst(0).getArrayId());
1246 }
1247 }
1248
1249 for (unsigned s = 0; s < insn.srcCount(); ++s) {
1250 Instruction::SrcRegister src = insn.getSrc(s);
1251 if (src.getFile() == TGSI_FILE_TEMPORARY) {
1252 if (src.isIndirect(0))
1253 indirectTempArrays.insert(src.getArrayId());
1254 } else
1255 /*
1256 if (src.getFile() == TGSI_FILE_RESOURCE) {
1257 if (src.getIndex(0) == TGSI_RESOURCE_GLOBAL)
1258 info->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ?
1259 0x1 : 0x2;
1260 } else
1261 */
1262 if (src.getFile() == TGSI_FILE_OUTPUT) {
1263 if (src.isIndirect(0)) {
1264 // We don't know which one is accessed, just mark everything for
1265 // reading. This is an extremely unlikely occurrence.
1266 for (unsigned i = 0; i < info->numOutputs; ++i)
1267 info->out[i].oread = 1;
1268 } else {
1269 info->out[src.getIndex(0)].oread = 1;
1270 }
1271 }
1272 if (src.getFile() != TGSI_FILE_INPUT)
1273 continue;
1274 unsigned mask = insn.srcMask(s);
1275
1276 if (src.isIndirect(0)) {
1277 for (unsigned i = 0; i < info->numInputs; ++i)
1278 info->in[i].mask = 0xf;
1279 } else {
1280 const int i = src.getIndex(0);
1281 for (unsigned c = 0; c < 4; ++c) {
1282 if (!(mask & (1 << c)))
1283 continue;
1284 int k = src.getSwizzle(c);
1285 if (k <= TGSI_SWIZZLE_W)
1286 info->in[i].mask |= 1 << k;
1287 }
1288 switch (info->in[i].sn) {
1289 case TGSI_SEMANTIC_PSIZE:
1290 case TGSI_SEMANTIC_PRIMID:
1291 case TGSI_SEMANTIC_FOG:
1292 info->in[i].mask &= 0x1;
1293 break;
1294 case TGSI_SEMANTIC_PCOORD:
1295 info->in[i].mask &= 0x3;
1296 break;
1297 default:
1298 break;
1299 }
1300 }
1301 }
1302 return true;
1303 }
1304
1305 nv50_ir::TexInstruction::Target
1306 Instruction::getTexture(const tgsi::Source *code, int s) const
1307 {
1308 // XXX: indirect access
1309 unsigned int r;
1310
1311 switch (getSrc(s).getFile()) {
1312 /*
1313 case TGSI_FILE_RESOURCE:
1314 r = getSrc(s).getIndex(0);
1315 return translateTexture(code->resources.at(r).target);
1316 */
1317 case TGSI_FILE_SAMPLER_VIEW:
1318 r = getSrc(s).getIndex(0);
1319 return translateTexture(code->textureViews.at(r).target);
1320 default:
1321 return translateTexture(insn->Texture.Texture);
1322 }
1323 }
1324
1325 } // namespace tgsi
1326
1327 namespace {
1328
1329 using namespace nv50_ir;
1330
1331 class Converter : public BuildUtil
1332 {
1333 public:
1334 Converter(Program *, const tgsi::Source *);
1335 ~Converter();
1336
1337 bool run();
1338
1339 private:
1340 struct Subroutine
1341 {
1342 Subroutine(Function *f) : f(f) { }
1343 Function *f;
1344 ValueMap values;
1345 };
1346
1347 Value *shiftAddress(Value *);
1348 Value *getVertexBase(int s);
1349 Value *getOutputBase(int s);
1350 DataArray *getArrayForFile(unsigned file, int idx);
1351 Value *fetchSrc(int s, int c);
1352 Value *acquireDst(int d, int c);
1353 void storeDst(int d, int c, Value *);
1354
1355 Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1356 void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1357 Value *val, Value *ptr);
1358
1359 Value *applySrcMod(Value *, int s, int c);
1360
1361 Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1362 Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1363 Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1364
1365 bool handleInstruction(const struct tgsi_full_instruction *);
1366 void exportOutputs();
1367 inline Subroutine *getSubroutine(unsigned ip);
1368 inline Subroutine *getSubroutine(Function *);
1369 inline bool isEndOfSubroutine(uint ip);
1370
1371 void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1372
1373 // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1374 void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1375 void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1376 void handleTXF(Value *dst0[4], int R, int L_M);
1377 void handleTXQ(Value *dst0[4], enum TexQuery, int R);
1378 void handleLIT(Value *dst0[4]);
1379 void handleUserClipPlanes();
1380
1381 Symbol *getResourceBase(int r);
1382 void getResourceCoords(std::vector<Value *>&, int r, int s);
1383
1384 void handleLOAD(Value *dst0[4]);
1385 void handleSTORE();
1386 void handleATOM(Value *dst0[4], DataType, uint16_t subOp);
1387
1388 void handleINTERP(Value *dst0[4]);
1389
1390 uint8_t translateInterpMode(const struct nv50_ir_varying *var,
1391 operation& op);
1392 Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1393
1394 void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1395
1396 Value *buildDot(int dim);
1397
1398 class BindArgumentsPass : public Pass {
1399 public:
1400 BindArgumentsPass(Converter &conv) : conv(conv) { }
1401
1402 private:
1403 Converter &conv;
1404 Subroutine *sub;
1405
1406 inline const Location *getValueLocation(Subroutine *, Value *);
1407
1408 template<typename T> inline void
1409 updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1410 T (Function::*proto));
1411
1412 template<typename T> inline void
1413 updatePrototype(BitSet *set, void (Function::*updateSet)(),
1414 T (Function::*proto));
1415
1416 protected:
1417 bool visit(Function *);
1418 bool visit(BasicBlock *bb) { return false; }
1419 };
1420
1421 private:
1422 const tgsi::Source *code;
1423 const struct nv50_ir_prog_info *info;
1424
1425 struct {
1426 std::map<unsigned, Subroutine> map;
1427 Subroutine *cur;
1428 } sub;
1429
1430 uint ip; // instruction pointer
1431
1432 tgsi::Instruction tgsi;
1433
1434 DataType dstTy;
1435 DataType srcTy;
1436
1437 DataArray tData; // TGSI_FILE_TEMPORARY
1438 DataArray lData; // TGSI_FILE_TEMPORARY, for indirect arrays
1439 DataArray aData; // TGSI_FILE_ADDRESS
1440 DataArray pData; // TGSI_FILE_PREDICATE
1441 DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1442
1443 Value *zero;
1444 Value *fragCoord[4];
1445 Value *clipVtx[4];
1446
1447 Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1448 uint8_t vtxBaseValid;
1449
1450 Value *outBase; // base address of vertex out patch (for TCP)
1451
1452 Stack condBBs; // fork BB, then else clause BB
1453 Stack joinBBs; // fork BB, for inserting join ops on ENDIF
1454 Stack loopBBs; // loop headers
1455 Stack breakBBs; // end of / after loop
1456
1457 Value *viewport;
1458 };
1459
1460 Symbol *
1461 Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1462 {
1463 const int swz = src.getSwizzle(c);
1464
1465 /* TODO: Use Array ID when it's available for the index */
1466 return makeSym(src.getFile(),
1467 src.is2D() ? src.getIndex(1) : 0,
1468 src.getIndex(0), swz,
1469 src.getIndex(0) * 16 + swz * 4);
1470 }
1471
1472 Symbol *
1473 Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1474 {
1475 /* TODO: Use Array ID when it's available for the index */
1476 return makeSym(dst.getFile(),
1477 dst.is2D() ? dst.getIndex(1) : 0,
1478 dst.getIndex(0), c,
1479 dst.getIndex(0) * 16 + c * 4);
1480 }
1481
1482 Symbol *
1483 Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1484 {
1485 Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1486
1487 sym->reg.fileIndex = fileIdx;
1488
1489 if (idx >= 0) {
1490 if (sym->reg.file == FILE_SHADER_INPUT)
1491 sym->setOffset(info->in[idx].slot[c] * 4);
1492 else
1493 if (sym->reg.file == FILE_SHADER_OUTPUT)
1494 sym->setOffset(info->out[idx].slot[c] * 4);
1495 else
1496 if (sym->reg.file == FILE_SYSTEM_VALUE)
1497 sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
1498 else
1499 sym->setOffset(address);
1500 } else {
1501 sym->setOffset(address);
1502 }
1503 return sym;
1504 }
1505
1506 uint8_t
1507 Converter::translateInterpMode(const struct nv50_ir_varying *var, operation& op)
1508 {
1509 uint8_t mode = NV50_IR_INTERP_PERSPECTIVE;
1510
1511 if (var->flat)
1512 mode = NV50_IR_INTERP_FLAT;
1513 else
1514 if (var->linear)
1515 mode = NV50_IR_INTERP_LINEAR;
1516 else
1517 if (var->sc)
1518 mode = NV50_IR_INTERP_SC;
1519
1520 op = (mode == NV50_IR_INTERP_PERSPECTIVE || mode == NV50_IR_INTERP_SC)
1521 ? OP_PINTERP : OP_LINTERP;
1522
1523 if (var->centroid || info->prop.fp.sampleInterp)
1524 mode |= NV50_IR_INTERP_CENTROID;
1525
1526 return mode;
1527 }
1528
1529 Value *
1530 Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1531 {
1532 operation op;
1533
1534 // XXX: no way to know interpolation mode if we don't know what's accessed
1535 const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
1536 src.getIndex(0)], op);
1537
1538 Instruction *insn = new_Instruction(func, op, TYPE_F32);
1539
1540 insn->setDef(0, getScratch());
1541 insn->setSrc(0, srcToSym(src, c));
1542 if (op == OP_PINTERP)
1543 insn->setSrc(1, fragCoord[3]);
1544 if (ptr)
1545 insn->setIndirect(0, 0, ptr);
1546
1547 insn->setInterpolate(mode);
1548
1549 bb->insertTail(insn);
1550 return insn->getDef(0);
1551 }
1552
1553 Value *
1554 Converter::applySrcMod(Value *val, int s, int c)
1555 {
1556 Modifier m = tgsi.getSrc(s).getMod(c);
1557 DataType ty = tgsi.inferSrcType();
1558
1559 if (m & Modifier(NV50_IR_MOD_ABS))
1560 val = mkOp1v(OP_ABS, ty, getScratch(), val);
1561
1562 if (m & Modifier(NV50_IR_MOD_NEG))
1563 val = mkOp1v(OP_NEG, ty, getScratch(), val);
1564
1565 return val;
1566 }
1567
1568 Value *
1569 Converter::getVertexBase(int s)
1570 {
1571 assert(s < 5);
1572 if (!(vtxBaseValid & (1 << s))) {
1573 const int index = tgsi.getSrc(s).getIndex(1);
1574 Value *rel = NULL;
1575 if (tgsi.getSrc(s).isIndirect(1))
1576 rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1577 vtxBaseValid |= 1 << s;
1578 vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1579 mkImm(index), rel);
1580 }
1581 return vtxBase[s];
1582 }
1583
1584 Value *
1585 Converter::getOutputBase(int s)
1586 {
1587 assert(s < 5);
1588 if (!(vtxBaseValid & (1 << s))) {
1589 Value *offset = loadImm(NULL, tgsi.getSrc(s).getIndex(1));
1590 if (tgsi.getSrc(s).isIndirect(1))
1591 offset = mkOp2v(OP_ADD, TYPE_U32, getSSA(),
1592 fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL),
1593 offset);
1594 vtxBaseValid |= 1 << s;
1595 vtxBase[s] = mkOp2v(OP_ADD, TYPE_U32, getSSA(), outBase, offset);
1596 }
1597 return vtxBase[s];
1598 }
1599
1600 Value *
1601 Converter::fetchSrc(int s, int c)
1602 {
1603 Value *res;
1604 Value *ptr = NULL, *dimRel = NULL;
1605
1606 tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1607
1608 if (src.isIndirect(0))
1609 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1610
1611 if (src.is2D()) {
1612 switch (src.getFile()) {
1613 case TGSI_FILE_OUTPUT:
1614 dimRel = getOutputBase(s);
1615 break;
1616 case TGSI_FILE_INPUT:
1617 dimRel = getVertexBase(s);
1618 break;
1619 case TGSI_FILE_CONSTANT:
1620 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1621 if (src.isIndirect(1))
1622 dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1623 break;
1624 default:
1625 break;
1626 }
1627 }
1628
1629 res = fetchSrc(src, c, ptr);
1630
1631 if (dimRel)
1632 res->getInsn()->setIndirect(0, 1, dimRel);
1633
1634 return applySrcMod(res, s, c);
1635 }
1636
1637 Converter::DataArray *
1638 Converter::getArrayForFile(unsigned file, int idx)
1639 {
1640 switch (file) {
1641 case TGSI_FILE_TEMPORARY:
1642 return idx == 0 ? &tData : &lData;
1643 case TGSI_FILE_PREDICATE:
1644 return &pData;
1645 case TGSI_FILE_ADDRESS:
1646 return &aData;
1647 case TGSI_FILE_OUTPUT:
1648 assert(prog->getType() == Program::TYPE_FRAGMENT);
1649 return &oData;
1650 default:
1651 assert(!"invalid/unhandled TGSI source file");
1652 return NULL;
1653 }
1654 }
1655
1656 Value *
1657 Converter::shiftAddress(Value *index)
1658 {
1659 if (!index)
1660 return NULL;
1661 return mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), index, mkImm(4));
1662 }
1663
1664 Value *
1665 Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1666 {
1667 int idx2d = src.is2D() ? src.getIndex(1) : 0;
1668 const int idx = src.getIndex(0);
1669 const int swz = src.getSwizzle(c);
1670 Instruction *ld;
1671
1672 switch (src.getFile()) {
1673 case TGSI_FILE_IMMEDIATE:
1674 assert(!ptr);
1675 return loadImm(NULL, info->immd.data[idx * 4 + swz]);
1676 case TGSI_FILE_CONSTANT:
1677 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1678 case TGSI_FILE_INPUT:
1679 if (prog->getType() == Program::TYPE_FRAGMENT) {
1680 // don't load masked inputs, won't be assigned a slot
1681 if (!ptr && !(info->in[idx].mask & (1 << swz)))
1682 return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
1683 return interpolate(src, c, shiftAddress(ptr));
1684 } else
1685 if (prog->getType() == Program::TYPE_GEOMETRY) {
1686 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_PRIMID)
1687 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_PRIMITIVE_ID, 0));
1688 // XXX: This is going to be a problem with scalar arrays, i.e. when
1689 // we cannot assume that the address is given in units of vec4.
1690 //
1691 // nv50 and nvc0 need different things here, so let the lowering
1692 // passes decide what to do with the address
1693 if (ptr)
1694 return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
1695 }
1696 ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr));
1697 ld->perPatch = info->in[idx].patch;
1698 return ld->getDef(0);
1699 case TGSI_FILE_OUTPUT:
1700 assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
1701 ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr));
1702 ld->perPatch = info->out[idx].patch;
1703 return ld->getDef(0);
1704 case TGSI_FILE_SYSTEM_VALUE:
1705 assert(!ptr);
1706 ld = mkOp1(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
1707 ld->perPatch = info->sv[idx].patch;
1708 return ld->getDef(0);
1709 case TGSI_FILE_TEMPORARY: {
1710 int arrayid = src.getArrayId();
1711 if (!arrayid)
1712 arrayid = code->tempArrayId[idx];
1713 idx2d = (code->indirectTempArrays.find(arrayid) !=
1714 code->indirectTempArrays.end());
1715 }
1716 /* fallthrough */
1717 default:
1718 return getArrayForFile(src.getFile(), idx2d)->load(
1719 sub.cur->values, idx, swz, shiftAddress(ptr));
1720 }
1721 }
1722
1723 Value *
1724 Converter::acquireDst(int d, int c)
1725 {
1726 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1727 const unsigned f = dst.getFile();
1728 const int idx = dst.getIndex(0);
1729 int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1730
1731 if (dst.isMasked(c)/* || f == TGSI_FILE_RESOURCE*/)
1732 return NULL;
1733
1734 if (dst.isIndirect(0) ||
1735 f == TGSI_FILE_SYSTEM_VALUE ||
1736 (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
1737 return getScratch();
1738
1739 if (f == TGSI_FILE_TEMPORARY)
1740 idx2d = code->indirectTempArrays.find(code->tempArrayId[idx]) !=
1741 code->indirectTempArrays.end();
1742
1743 return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
1744 }
1745
1746 void
1747 Converter::storeDst(int d, int c, Value *val)
1748 {
1749 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1750
1751 if (tgsi.getSaturate()) {
1752 mkOp1(OP_SAT, dstTy, val, val);
1753 }
1754
1755 Value *ptr = NULL;
1756 if (dst.isIndirect(0))
1757 ptr = shiftAddress(fetchSrc(dst.getIndirect(0), 0, NULL));
1758
1759 if (info->io.genUserClip > 0 &&
1760 dst.getFile() == TGSI_FILE_OUTPUT &&
1761 !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
1762 mkMov(clipVtx[c], val);
1763 val = clipVtx[c];
1764 }
1765
1766 storeDst(dst, c, val, ptr);
1767 }
1768
1769 void
1770 Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
1771 Value *val, Value *ptr)
1772 {
1773 const unsigned f = dst.getFile();
1774 const int idx = dst.getIndex(0);
1775 int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1776
1777 if (f == TGSI_FILE_SYSTEM_VALUE) {
1778 assert(!ptr);
1779 mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
1780 } else
1781 if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
1782
1783 if (ptr || (info->out[idx].mask & (1 << c))) {
1784 /* Save the viewport index into a scratch register so that it can be
1785 exported at EMIT time */
1786 if (info->out[idx].sn == TGSI_SEMANTIC_VIEWPORT_INDEX &&
1787 viewport != NULL)
1788 mkOp1(OP_MOV, TYPE_U32, viewport, val);
1789 else
1790 mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val)->perPatch =
1791 info->out[idx].patch;
1792 }
1793 } else
1794 if (f == TGSI_FILE_TEMPORARY ||
1795 f == TGSI_FILE_PREDICATE ||
1796 f == TGSI_FILE_ADDRESS ||
1797 f == TGSI_FILE_OUTPUT) {
1798 if (f == TGSI_FILE_TEMPORARY)
1799 idx2d = code->indirectTempArrays.find(code->tempArrayId[idx]) !=
1800 code->indirectTempArrays.end();
1801
1802 getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
1803 } else {
1804 assert(!"invalid dst file");
1805 }
1806 }
1807
1808 #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
1809 for (chan = 0; chan < 4; ++chan) \
1810 if (!inst.getDst(d).isMasked(chan))
1811
1812 Value *
1813 Converter::buildDot(int dim)
1814 {
1815 assert(dim > 0);
1816
1817 Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
1818 Value *dotp = getScratch();
1819
1820 mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1);
1821
1822 for (int c = 1; c < dim; ++c) {
1823 src0 = fetchSrc(0, c);
1824 src1 = fetchSrc(1, c);
1825 mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp);
1826 }
1827 return dotp;
1828 }
1829
1830 void
1831 Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
1832 {
1833 FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
1834 join->fixed = 1;
1835 conv->insertHead(join);
1836
1837 assert(!fork->joinAt);
1838 fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
1839 fork->insertBefore(fork->getExit(), fork->joinAt);
1840 }
1841
1842 void
1843 Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
1844 {
1845 unsigned rIdx = 0, sIdx = 0;
1846
1847 if (R >= 0)
1848 rIdx = tgsi.getSrc(R).getIndex(0);
1849 if (S >= 0)
1850 sIdx = tgsi.getSrc(S).getIndex(0);
1851
1852 tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
1853
1854 if (tgsi.getSrc(R).isIndirect(0)) {
1855 tex->tex.rIndirectSrc = s;
1856 tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
1857 }
1858 if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
1859 tex->tex.sIndirectSrc = s;
1860 tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
1861 }
1862 }
1863
1864 void
1865 Converter::handleTXQ(Value *dst0[4], enum TexQuery query, int R)
1866 {
1867 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1868 tex->tex.query = query;
1869 unsigned int c, d;
1870
1871 for (d = 0, c = 0; c < 4; ++c) {
1872 if (!dst0[c])
1873 continue;
1874 tex->tex.mask |= 1 << c;
1875 tex->setDef(d++, dst0[c]);
1876 }
1877 if (query == TXQ_DIMS)
1878 tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
1879 else
1880 tex->setSrc((c = 0), zero);
1881
1882 setTexRS(tex, ++c, R, -1);
1883
1884 bb->insertTail(tex);
1885 }
1886
1887 void
1888 Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
1889 {
1890 Value *proj = fetchSrc(0, 3);
1891 Instruction *insn = proj->getUniqueInsn();
1892 int c;
1893
1894 if (insn->op == OP_PINTERP) {
1895 bb->insertTail(insn = cloneForward(func, insn));
1896 insn->op = OP_LINTERP;
1897 insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
1898 insn->setSrc(1, NULL);
1899 proj = insn->getDef(0);
1900 }
1901 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
1902
1903 for (c = 0; c < 4; ++c) {
1904 if (!(mask & (1 << c)))
1905 continue;
1906 if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
1907 continue;
1908 mask &= ~(1 << c);
1909
1910 bb->insertTail(insn = cloneForward(func, insn));
1911 insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
1912 insn->setSrc(1, proj);
1913 dst[c] = insn->getDef(0);
1914 }
1915 if (!mask)
1916 return;
1917
1918 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
1919
1920 for (c = 0; c < 4; ++c)
1921 if (mask & (1 << c))
1922 dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
1923 }
1924
1925 // order of nv50 ir sources: x y z layer lod/bias shadow
1926 // order of TGSI TEX sources: x y z layer shadow lod/bias
1927 // lowering will finally set the hw specific order (like array first on nvc0)
1928 void
1929 Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
1930 {
1931 Value *val;
1932 Value *arg[4], *src[8];
1933 Value *lod = NULL, *shd = NULL;
1934 unsigned int s, c, d;
1935 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1936
1937 TexInstruction::Target tgt = tgsi.getTexture(code, R);
1938
1939 for (s = 0; s < tgt.getArgCount(); ++s)
1940 arg[s] = src[s] = fetchSrc(0, s);
1941
1942 if (texi->op == OP_TXL || texi->op == OP_TXB)
1943 lod = fetchSrc(L >> 4, L & 3);
1944
1945 if (C == 0x0f)
1946 C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
1947
1948 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 &&
1949 tgt == TEX_TARGET_CUBE_ARRAY_SHADOW)
1950 shd = fetchSrc(1, 0);
1951 else if (tgt.isShadow())
1952 shd = fetchSrc(C >> 4, C & 3);
1953
1954 if (texi->op == OP_TXD) {
1955 for (c = 0; c < tgt.getDim() + tgt.isCube(); ++c) {
1956 texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
1957 texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
1958 }
1959 }
1960
1961 // cube textures don't care about projection value, it's divided out
1962 if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
1963 unsigned int n = tgt.getDim();
1964 if (shd) {
1965 arg[n] = shd;
1966 ++n;
1967 assert(tgt.getDim() == tgt.getArgCount());
1968 }
1969 loadProjTexCoords(src, arg, (1 << n) - 1);
1970 if (shd)
1971 shd = src[n - 1];
1972 }
1973
1974 if (tgt.isCube()) {
1975 for (c = 0; c < 3; ++c)
1976 src[c] = mkOp1v(OP_ABS, TYPE_F32, getSSA(), arg[c]);
1977 val = getScratch();
1978 mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1979 mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1980 mkOp1(OP_RCP, TYPE_F32, val, val);
1981 for (c = 0; c < 3; ++c)
1982 src[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), arg[c], val);
1983 }
1984
1985 for (c = 0, d = 0; c < 4; ++c) {
1986 if (dst[c]) {
1987 texi->setDef(d++, dst[c]);
1988 texi->tex.mask |= 1 << c;
1989 } else {
1990 // NOTE: maybe hook up def too, for CSE
1991 }
1992 }
1993 for (s = 0; s < tgt.getArgCount(); ++s)
1994 texi->setSrc(s, src[s]);
1995 if (lod)
1996 texi->setSrc(s++, lod);
1997 if (shd)
1998 texi->setSrc(s++, shd);
1999
2000 setTexRS(texi, s, R, S);
2001
2002 if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
2003 texi->tex.levelZero = true;
2004 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 && !tgt.isShadow())
2005 texi->tex.gatherComp = tgsi.getSrc(1).getValueU32(0, info);
2006
2007 texi->tex.useOffsets = tgsi.getNumTexOffsets();
2008 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
2009 for (c = 0; c < 3; ++c) {
2010 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
2011 texi->offset[s][c].setInsn(texi);
2012 }
2013 }
2014
2015 bb->insertTail(texi);
2016 }
2017
2018 // 1st source: xyz = coordinates, w = lod/sample
2019 // 2nd source: offset
2020 void
2021 Converter::handleTXF(Value *dst[4], int R, int L_M)
2022 {
2023 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
2024 int ms;
2025 unsigned int c, d, s;
2026
2027 texi->tex.target = tgsi.getTexture(code, R);
2028
2029 ms = texi->tex.target.isMS() ? 1 : 0;
2030 texi->tex.levelZero = ms; /* MS textures don't have mip-maps */
2031
2032 for (c = 0, d = 0; c < 4; ++c) {
2033 if (dst[c]) {
2034 texi->setDef(d++, dst[c]);
2035 texi->tex.mask |= 1 << c;
2036 }
2037 }
2038 for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c)
2039 texi->setSrc(c, fetchSrc(0, c));
2040 texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms
2041
2042 setTexRS(texi, c, R, -1);
2043
2044 texi->tex.useOffsets = tgsi.getNumTexOffsets();
2045 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
2046 for (c = 0; c < 3; ++c) {
2047 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
2048 texi->offset[s][c].setInsn(texi);
2049 }
2050 }
2051
2052 bb->insertTail(texi);
2053 }
2054
2055 void
2056 Converter::handleLIT(Value *dst0[4])
2057 {
2058 Value *val0 = NULL;
2059 unsigned int mask = tgsi.getDst(0).getMask();
2060
2061 if (mask & (1 << 0))
2062 loadImm(dst0[0], 1.0f);
2063
2064 if (mask & (1 << 3))
2065 loadImm(dst0[3], 1.0f);
2066
2067 if (mask & (3 << 1)) {
2068 val0 = getScratch();
2069 mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
2070 if (mask & (1 << 1))
2071 mkMov(dst0[1], val0);
2072 }
2073
2074 if (mask & (1 << 2)) {
2075 Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
2076 Value *val1 = getScratch(), *val3 = getScratch();
2077
2078 Value *pos128 = loadImm(NULL, +127.999999f);
2079 Value *neg128 = loadImm(NULL, -127.999999f);
2080
2081 mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
2082 mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
2083 mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
2084 mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
2085
2086 mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], TYPE_F32, val3, zero, val0);
2087 }
2088 }
2089
2090 static inline bool
2091 isResourceSpecial(const int r)
2092 {
2093 return (r == TGSI_RESOURCE_GLOBAL ||
2094 r == TGSI_RESOURCE_LOCAL ||
2095 r == TGSI_RESOURCE_PRIVATE ||
2096 r == TGSI_RESOURCE_INPUT);
2097 }
2098
2099 static inline bool
2100 isResourceRaw(const tgsi::Source *code, const int r)
2101 {
2102 return isResourceSpecial(r) || code->resources[r].raw;
2103 }
2104
2105 static inline nv50_ir::TexTarget
2106 getResourceTarget(const tgsi::Source *code, int r)
2107 {
2108 if (isResourceSpecial(r))
2109 return nv50_ir::TEX_TARGET_BUFFER;
2110 return tgsi::translateTexture(code->resources.at(r).target);
2111 }
2112
2113 Symbol *
2114 Converter::getResourceBase(const int r)
2115 {
2116 Symbol *sym = NULL;
2117
2118 switch (r) {
2119 case TGSI_RESOURCE_GLOBAL:
2120 sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL, 15);
2121 break;
2122 case TGSI_RESOURCE_LOCAL:
2123 assert(prog->getType() == Program::TYPE_COMPUTE);
2124 sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32,
2125 info->prop.cp.sharedOffset);
2126 break;
2127 case TGSI_RESOURCE_PRIVATE:
2128 sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32,
2129 info->bin.tlsSpace);
2130 break;
2131 case TGSI_RESOURCE_INPUT:
2132 assert(prog->getType() == Program::TYPE_COMPUTE);
2133 sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32,
2134 info->prop.cp.inputOffset);
2135 break;
2136 default:
2137 sym = new_Symbol(prog,
2138 nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot);
2139 break;
2140 }
2141 return sym;
2142 }
2143
2144 void
2145 Converter::getResourceCoords(std::vector<Value *> &coords, int r, int s)
2146 {
2147 const int arg =
2148 TexInstruction::Target(getResourceTarget(code, r)).getArgCount();
2149
2150 for (int c = 0; c < arg; ++c)
2151 coords.push_back(fetchSrc(s, c));
2152
2153 // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk
2154 if (r == TGSI_RESOURCE_LOCAL ||
2155 r == TGSI_RESOURCE_PRIVATE ||
2156 r == TGSI_RESOURCE_INPUT)
2157 coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS),
2158 coords[0]);
2159 }
2160
2161 static inline int
2162 partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask)
2163 {
2164 int n = 0;
2165
2166 while (mask) {
2167 if (mask & 1) {
2168 size[n]++;
2169 } else {
2170 if (size[n])
2171 comp[n = 1] = size[0] + 1;
2172 else
2173 comp[n]++;
2174 }
2175 mask >>= 1;
2176 }
2177 if (size[0] == 3) {
2178 n = 1;
2179 size[0] = (comp[0] == 1) ? 1 : 2;
2180 size[1] = 3 - size[0];
2181 comp[1] = comp[0] + size[0];
2182 }
2183 return n + 1;
2184 }
2185
2186 // For raw loads, granularity is 4 byte.
2187 // Usage of the texture read mask on OP_SULDP is not allowed.
2188 void
2189 Converter::handleLOAD(Value *dst0[4])
2190 {
2191 const int r = tgsi.getSrc(0).getIndex(0);
2192 int c;
2193 std::vector<Value *> off, src, ldv, def;
2194
2195 getResourceCoords(off, r, 1);
2196
2197 if (isResourceRaw(code, r)) {
2198 uint8_t mask = 0;
2199 uint8_t comp[2] = { 0, 0 };
2200 uint8_t size[2] = { 0, 0 };
2201
2202 Symbol *base = getResourceBase(r);
2203
2204 // determine the base and size of the at most 2 load ops
2205 for (c = 0; c < 4; ++c)
2206 if (!tgsi.getDst(0).isMasked(c))
2207 mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X);
2208
2209 int n = partitionLoadStore(comp, size, mask);
2210
2211 src = off;
2212
2213 def.resize(4); // index by component, the ones we need will be non-NULL
2214 for (c = 0; c < 4; ++c) {
2215 if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c))
2216 def[c] = dst0[c];
2217 else
2218 if (mask & (1 << c))
2219 def[c] = getScratch();
2220 }
2221
2222 const bool useLd = isResourceSpecial(r) ||
2223 (info->io.nv50styleSurfaces &&
2224 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2225
2226 for (int i = 0; i < n; ++i) {
2227 ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]);
2228
2229 if (comp[i]) // adjust x component of source address if necessary
2230 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2231 off[0], mkImm(comp[i] * 4));
2232 else
2233 src[0] = off[0];
2234
2235 if (useLd) {
2236 Instruction *ld =
2237 mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]);
2238 for (size_t c = 1; c < ldv.size(); ++c)
2239 ld->setDef(c, ldv[c]);
2240 } else {
2241 mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot,
2242 0, ldv, src)->dType = typeOfSize(size[i] * 4);
2243 }
2244 }
2245 } else {
2246 def.resize(4);
2247 for (c = 0; c < 4; ++c) {
2248 if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
2249 def[c] = getScratch();
2250 else
2251 def[c] = dst0[c];
2252 }
2253
2254 mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0,
2255 def, off);
2256 }
2257 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2258 if (dst0[c] != def[c])
2259 mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
2260 }
2261
2262 // For formatted stores, the write mask on OP_SUSTP can be used.
2263 // Raw stores have to be split.
2264 void
2265 Converter::handleSTORE()
2266 {
2267 const int r = tgsi.getDst(0).getIndex(0);
2268 int c;
2269 std::vector<Value *> off, src, dummy;
2270
2271 getResourceCoords(off, r, 0);
2272 src = off;
2273 const int s = src.size();
2274
2275 if (isResourceRaw(code, r)) {
2276 uint8_t comp[2] = { 0, 0 };
2277 uint8_t size[2] = { 0, 0 };
2278
2279 int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask());
2280
2281 Symbol *base = getResourceBase(r);
2282
2283 const bool useSt = isResourceSpecial(r) ||
2284 (info->io.nv50styleSurfaces &&
2285 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2286
2287 for (int i = 0; i < n; ++i) {
2288 if (comp[i]) // adjust x component of source address if necessary
2289 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2290 off[0], mkImm(comp[i] * 4));
2291 else
2292 src[0] = off[0];
2293
2294 const DataType stTy = typeOfSize(size[i] * 4);
2295
2296 if (useSt) {
2297 Instruction *st =
2298 mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i]));
2299 for (c = 1; c < size[i]; ++c)
2300 st->setSrc(1 + c, fetchSrc(1, comp[i] + c));
2301 st->setIndirect(0, 0, src[0]);
2302 } else {
2303 // attach values to be stored
2304 src.resize(s + size[i]);
2305 for (c = 0; c < size[i]; ++c)
2306 src[s + c] = fetchSrc(1, comp[i] + c);
2307 mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot,
2308 0, dummy, src)->setType(stTy);
2309 }
2310 }
2311 } else {
2312 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2313 src.push_back(fetchSrc(1, c));
2314
2315 mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0,
2316 dummy, src)->tex.mask = tgsi.getDst(0).getMask();
2317 }
2318 }
2319
2320 // XXX: These only work on resources with the single-component u32/s32 formats.
2321 // Therefore the result is replicated. This might not be intended by TGSI, but
2322 // operating on more than 1 component would produce undefined results because
2323 // they do not exist.
2324 void
2325 Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp)
2326 {
2327 const int r = tgsi.getSrc(0).getIndex(0);
2328 std::vector<Value *> srcv;
2329 std::vector<Value *> defv;
2330 LValue *dst = getScratch();
2331
2332 getResourceCoords(srcv, r, 1);
2333
2334 if (isResourceSpecial(r)) {
2335 assert(r != TGSI_RESOURCE_INPUT);
2336 Instruction *insn;
2337 insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0));
2338 insn->subOp = subOp;
2339 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2340 insn->setSrc(2, fetchSrc(3, 0));
2341 insn->setIndirect(0, 0, srcv.at(0));
2342 } else {
2343 operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP;
2344 TexTarget targ = getResourceTarget(code, r);
2345 int idx = code->resources[r].slot;
2346 defv.push_back(dst);
2347 srcv.push_back(fetchSrc(2, 0));
2348 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2349 srcv.push_back(fetchSrc(3, 0));
2350 TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv);
2351 tex->subOp = subOp;
2352 tex->tex.mask = 1;
2353 tex->setType(ty);
2354 }
2355
2356 for (int c = 0; c < 4; ++c)
2357 if (dst0[c])
2358 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2359 }
2360
2361 void
2362 Converter::handleINTERP(Value *dst[4])
2363 {
2364 // Check whether the input is linear. All other attributes ignored.
2365 Instruction *insn;
2366 Value *offset = NULL, *ptr = NULL, *w = NULL;
2367 bool linear;
2368 operation op;
2369 int c, mode;
2370
2371 tgsi::Instruction::SrcRegister src = tgsi.getSrc(0);
2372 assert(src.getFile() == TGSI_FILE_INPUT);
2373
2374 if (src.isIndirect(0))
2375 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
2376
2377 // XXX: no way to know interp mode if we don't know the index
2378 linear = info->in[ptr ? 0 : src.getIndex(0)].linear;
2379 if (linear) {
2380 op = OP_LINTERP;
2381 mode = NV50_IR_INTERP_LINEAR;
2382 } else {
2383 op = OP_PINTERP;
2384 mode = NV50_IR_INTERP_PERSPECTIVE;
2385 }
2386
2387 switch (tgsi.getOpcode()) {
2388 case TGSI_OPCODE_INTERP_CENTROID:
2389 mode |= NV50_IR_INTERP_CENTROID;
2390 break;
2391 case TGSI_OPCODE_INTERP_SAMPLE:
2392 insn = mkOp1(OP_PIXLD, TYPE_U32, (offset = getScratch()), fetchSrc(1, 0));
2393 insn->subOp = NV50_IR_SUBOP_PIXLD_OFFSET;
2394 mode |= NV50_IR_INTERP_OFFSET;
2395 break;
2396 case TGSI_OPCODE_INTERP_OFFSET: {
2397 // The input in src1.xy is float, but we need a single 32-bit value
2398 // where the upper and lower 16 bits are encoded in S0.12 format. We need
2399 // to clamp the input coordinates to (-0.5, 0.4375), multiply by 4096,
2400 // and then convert to s32.
2401 Value *offs[2];
2402 for (c = 0; c < 2; c++) {
2403 offs[c] = fetchSrc(1, c);
2404 mkOp2(OP_MIN, TYPE_F32, offs[c], offs[c], loadImm(NULL, 0.4375f));
2405 mkOp2(OP_MAX, TYPE_F32, offs[c], offs[c], loadImm(NULL, -0.5f));
2406 mkOp2(OP_MUL, TYPE_F32, offs[c], offs[c], loadImm(NULL, 4096.0f));
2407 mkCvt(OP_CVT, TYPE_S32, offs[c], TYPE_F32, offs[c]);
2408 }
2409 offset = mkOp3v(OP_INSBF, TYPE_U32, getScratch(),
2410 offs[1], mkImm(0x1010), offs[0]);
2411 mode |= NV50_IR_INTERP_OFFSET;
2412 break;
2413 }
2414 }
2415
2416 if (op == OP_PINTERP) {
2417 if (offset) {
2418 w = mkOp2v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_POSITION, 3), offset);
2419 mkOp1(OP_RCP, TYPE_F32, w, w);
2420 } else {
2421 w = fragCoord[3];
2422 }
2423 }
2424
2425
2426 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2427 insn = mkOp1(op, TYPE_F32, dst[c], srcToSym(src, c));
2428 if (op == OP_PINTERP)
2429 insn->setSrc(1, w);
2430 if (ptr)
2431 insn->setIndirect(0, 0, ptr);
2432 if (offset)
2433 insn->setSrc(op == OP_PINTERP ? 2 : 1, offset);
2434
2435 insn->setInterpolate(mode);
2436 }
2437 }
2438
2439 Converter::Subroutine *
2440 Converter::getSubroutine(unsigned ip)
2441 {
2442 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2443
2444 if (it == sub.map.end())
2445 it = sub.map.insert(std::make_pair(
2446 ip, Subroutine(new Function(prog, "SUB", ip)))).first;
2447
2448 return &it->second;
2449 }
2450
2451 Converter::Subroutine *
2452 Converter::getSubroutine(Function *f)
2453 {
2454 unsigned ip = f->getLabel();
2455 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2456
2457 if (it == sub.map.end())
2458 it = sub.map.insert(std::make_pair(ip, Subroutine(f))).first;
2459
2460 return &it->second;
2461 }
2462
2463 bool
2464 Converter::isEndOfSubroutine(uint ip)
2465 {
2466 assert(ip < code->scan.num_instructions);
2467 tgsi::Instruction insn(&code->insns[ip]);
2468 return (insn.getOpcode() == TGSI_OPCODE_END ||
2469 insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
2470 // does END occur at end of main or the very end ?
2471 insn.getOpcode() == TGSI_OPCODE_BGNSUB);
2472 }
2473
2474 bool
2475 Converter::handleInstruction(const struct tgsi_full_instruction *insn)
2476 {
2477 Instruction *geni;
2478
2479 Value *dst0[4], *rDst0[4];
2480 Value *src0, *src1, *src2, *src3;
2481 Value *val0, *val1;
2482 int c;
2483
2484 tgsi = tgsi::Instruction(insn);
2485
2486 bool useScratchDst = tgsi.checkDstSrcAliasing();
2487
2488 operation op = tgsi.getOP();
2489 dstTy = tgsi.inferDstType();
2490 srcTy = tgsi.inferSrcType();
2491
2492 unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
2493
2494 if (tgsi.dstCount()) {
2495 for (c = 0; c < 4; ++c) {
2496 rDst0[c] = acquireDst(0, c);
2497 dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
2498 }
2499 }
2500
2501 switch (tgsi.getOpcode()) {
2502 case TGSI_OPCODE_ADD:
2503 case TGSI_OPCODE_UADD:
2504 case TGSI_OPCODE_AND:
2505 case TGSI_OPCODE_DIV:
2506 case TGSI_OPCODE_IDIV:
2507 case TGSI_OPCODE_UDIV:
2508 case TGSI_OPCODE_MAX:
2509 case TGSI_OPCODE_MIN:
2510 case TGSI_OPCODE_IMAX:
2511 case TGSI_OPCODE_IMIN:
2512 case TGSI_OPCODE_UMAX:
2513 case TGSI_OPCODE_UMIN:
2514 case TGSI_OPCODE_MOD:
2515 case TGSI_OPCODE_UMOD:
2516 case TGSI_OPCODE_MUL:
2517 case TGSI_OPCODE_UMUL:
2518 case TGSI_OPCODE_IMUL_HI:
2519 case TGSI_OPCODE_UMUL_HI:
2520 case TGSI_OPCODE_OR:
2521 case TGSI_OPCODE_SHL:
2522 case TGSI_OPCODE_ISHR:
2523 case TGSI_OPCODE_USHR:
2524 case TGSI_OPCODE_SUB:
2525 case TGSI_OPCODE_XOR:
2526 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2527 src0 = fetchSrc(0, c);
2528 src1 = fetchSrc(1, c);
2529 geni = mkOp2(op, dstTy, dst0[c], src0, src1);
2530 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2531 }
2532 break;
2533 case TGSI_OPCODE_MAD:
2534 case TGSI_OPCODE_UMAD:
2535 case TGSI_OPCODE_SAD:
2536 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2537 src0 = fetchSrc(0, c);
2538 src1 = fetchSrc(1, c);
2539 src2 = fetchSrc(2, c);
2540 mkOp3(op, dstTy, dst0[c], src0, src1, src2);
2541 }
2542 break;
2543 case TGSI_OPCODE_MOV:
2544 case TGSI_OPCODE_ABS:
2545 case TGSI_OPCODE_CEIL:
2546 case TGSI_OPCODE_FLR:
2547 case TGSI_OPCODE_TRUNC:
2548 case TGSI_OPCODE_RCP:
2549 case TGSI_OPCODE_IABS:
2550 case TGSI_OPCODE_INEG:
2551 case TGSI_OPCODE_NOT:
2552 case TGSI_OPCODE_DDX:
2553 case TGSI_OPCODE_DDY:
2554 case TGSI_OPCODE_DDX_FINE:
2555 case TGSI_OPCODE_DDY_FINE:
2556 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2557 mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
2558 break;
2559 case TGSI_OPCODE_RSQ:
2560 src0 = fetchSrc(0, 0);
2561 val0 = getScratch();
2562 mkOp1(OP_ABS, TYPE_F32, val0, src0);
2563 mkOp1(OP_RSQ, TYPE_F32, val0, val0);
2564 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2565 mkMov(dst0[c], val0);
2566 break;
2567 case TGSI_OPCODE_ARL:
2568 case TGSI_OPCODE_ARR:
2569 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2570 const RoundMode rnd =
2571 tgsi.getOpcode() == TGSI_OPCODE_ARR ? ROUND_N : ROUND_M;
2572 src0 = fetchSrc(0, c);
2573 mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = rnd;
2574 }
2575 break;
2576 case TGSI_OPCODE_UARL:
2577 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2578 mkOp1(OP_MOV, TYPE_U32, dst0[c], fetchSrc(0, c));
2579 break;
2580 case TGSI_OPCODE_POW:
2581 val0 = mkOp2v(op, TYPE_F32, getScratch(), fetchSrc(0, 0), fetchSrc(1, 0));
2582 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2583 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2584 break;
2585 case TGSI_OPCODE_EX2:
2586 case TGSI_OPCODE_LG2:
2587 val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
2588 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2589 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2590 break;
2591 case TGSI_OPCODE_COS:
2592 case TGSI_OPCODE_SIN:
2593 val0 = getScratch();
2594 if (mask & 7) {
2595 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
2596 mkOp1(op, TYPE_F32, val0, val0);
2597 for (c = 0; c < 3; ++c)
2598 if (dst0[c])
2599 mkMov(dst0[c], val0);
2600 }
2601 if (dst0[3]) {
2602 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
2603 mkOp1(op, TYPE_F32, dst0[3], val0);
2604 }
2605 break;
2606 case TGSI_OPCODE_SCS:
2607 if (mask & 3) {
2608 val0 = mkOp1v(OP_PRESIN, TYPE_F32, getSSA(), fetchSrc(0, 0));
2609 if (dst0[0])
2610 mkOp1(OP_COS, TYPE_F32, dst0[0], val0);
2611 if (dst0[1])
2612 mkOp1(OP_SIN, TYPE_F32, dst0[1], val0);
2613 }
2614 if (dst0[2])
2615 loadImm(dst0[2], 0.0f);
2616 if (dst0[3])
2617 loadImm(dst0[3], 1.0f);
2618 break;
2619 case TGSI_OPCODE_EXP:
2620 src0 = fetchSrc(0, 0);
2621 val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
2622 if (dst0[1])
2623 mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
2624 if (dst0[0])
2625 mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
2626 if (dst0[2])
2627 mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
2628 if (dst0[3])
2629 loadImm(dst0[3], 1.0f);
2630 break;
2631 case TGSI_OPCODE_LOG:
2632 src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
2633 val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
2634 if (dst0[0] || dst0[1])
2635 val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
2636 if (dst0[1]) {
2637 mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
2638 mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
2639 mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0);
2640 }
2641 if (dst0[3])
2642 loadImm(dst0[3], 1.0f);
2643 break;
2644 case TGSI_OPCODE_DP2:
2645 val0 = buildDot(2);
2646 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2647 mkMov(dst0[c], val0);
2648 break;
2649 case TGSI_OPCODE_DP3:
2650 val0 = buildDot(3);
2651 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2652 mkMov(dst0[c], val0);
2653 break;
2654 case TGSI_OPCODE_DP4:
2655 val0 = buildDot(4);
2656 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2657 mkMov(dst0[c], val0);
2658 break;
2659 case TGSI_OPCODE_DPH:
2660 val0 = buildDot(3);
2661 src1 = fetchSrc(1, 3);
2662 mkOp2(OP_ADD, TYPE_F32, val0, val0, src1);
2663 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2664 mkMov(dst0[c], val0);
2665 break;
2666 case TGSI_OPCODE_DST:
2667 if (dst0[0])
2668 loadImm(dst0[0], 1.0f);
2669 if (dst0[1]) {
2670 src0 = fetchSrc(0, 1);
2671 src1 = fetchSrc(1, 1);
2672 mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1);
2673 }
2674 if (dst0[2])
2675 mkMov(dst0[2], fetchSrc(0, 2));
2676 if (dst0[3])
2677 mkMov(dst0[3], fetchSrc(1, 3));
2678 break;
2679 case TGSI_OPCODE_LRP:
2680 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2681 src0 = fetchSrc(0, c);
2682 src1 = fetchSrc(1, c);
2683 src2 = fetchSrc(2, c);
2684 mkOp3(OP_MAD, TYPE_F32, dst0[c],
2685 mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2);
2686 }
2687 break;
2688 case TGSI_OPCODE_LIT:
2689 handleLIT(dst0);
2690 break;
2691 case TGSI_OPCODE_XPD:
2692 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2693 if (c < 3) {
2694 val0 = getSSA();
2695 src0 = fetchSrc(1, (c + 1) % 3);
2696 src1 = fetchSrc(0, (c + 2) % 3);
2697 mkOp2(OP_MUL, TYPE_F32, val0, src0, src1);
2698 mkOp1(OP_NEG, TYPE_F32, val0, val0);
2699
2700 src0 = fetchSrc(0, (c + 1) % 3);
2701 src1 = fetchSrc(1, (c + 2) % 3);
2702 mkOp3(OP_MAD, TYPE_F32, dst0[c], src0, src1, val0);
2703 } else {
2704 loadImm(dst0[c], 1.0f);
2705 }
2706 }
2707 break;
2708 case TGSI_OPCODE_ISSG:
2709 case TGSI_OPCODE_SSG:
2710 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2711 src0 = fetchSrc(0, c);
2712 val0 = getScratch();
2713 val1 = getScratch();
2714 mkCmp(OP_SET, CC_GT, srcTy, val0, srcTy, src0, zero);
2715 mkCmp(OP_SET, CC_LT, srcTy, val1, srcTy, src0, zero);
2716 if (srcTy == TYPE_F32)
2717 mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
2718 else
2719 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
2720 }
2721 break;
2722 case TGSI_OPCODE_UCMP:
2723 srcTy = TYPE_U32;
2724 /* fallthrough */
2725 case TGSI_OPCODE_CMP:
2726 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2727 src0 = fetchSrc(0, c);
2728 src1 = fetchSrc(1, c);
2729 src2 = fetchSrc(2, c);
2730 if (src1 == src2)
2731 mkMov(dst0[c], src1);
2732 else
2733 mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
2734 srcTy, dst0[c], srcTy, src1, src2, src0);
2735 }
2736 break;
2737 case TGSI_OPCODE_FRC:
2738 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2739 src0 = fetchSrc(0, c);
2740 val0 = getScratch();
2741 mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
2742 mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
2743 }
2744 break;
2745 case TGSI_OPCODE_ROUND:
2746 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2747 mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
2748 ->rnd = ROUND_NI;
2749 break;
2750 case TGSI_OPCODE_CLAMP:
2751 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2752 src0 = fetchSrc(0, c);
2753 src1 = fetchSrc(1, c);
2754 src2 = fetchSrc(2, c);
2755 val0 = getScratch();
2756 mkOp2(OP_MIN, TYPE_F32, val0, src0, src1);
2757 mkOp2(OP_MAX, TYPE_F32, dst0[c], val0, src2);
2758 }
2759 break;
2760 case TGSI_OPCODE_SLT:
2761 case TGSI_OPCODE_SGE:
2762 case TGSI_OPCODE_SEQ:
2763 case TGSI_OPCODE_SGT:
2764 case TGSI_OPCODE_SLE:
2765 case TGSI_OPCODE_SNE:
2766 case TGSI_OPCODE_FSEQ:
2767 case TGSI_OPCODE_FSGE:
2768 case TGSI_OPCODE_FSLT:
2769 case TGSI_OPCODE_FSNE:
2770 case TGSI_OPCODE_ISGE:
2771 case TGSI_OPCODE_ISLT:
2772 case TGSI_OPCODE_USEQ:
2773 case TGSI_OPCODE_USGE:
2774 case TGSI_OPCODE_USLT:
2775 case TGSI_OPCODE_USNE:
2776 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2777 src0 = fetchSrc(0, c);
2778 src1 = fetchSrc(1, c);
2779 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
2780 }
2781 break;
2782 case TGSI_OPCODE_KILL_IF:
2783 val0 = new_LValue(func, FILE_PREDICATE);
2784 mask = 0;
2785 for (c = 0; c < 4; ++c) {
2786 const int s = tgsi.getSrc(0).getSwizzle(c);
2787 if (mask & (1 << s))
2788 continue;
2789 mask |= 1 << s;
2790 mkCmp(OP_SET, CC_LT, TYPE_F32, val0, TYPE_F32, fetchSrc(0, c), zero);
2791 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
2792 }
2793 break;
2794 case TGSI_OPCODE_KILL:
2795 mkOp(OP_DISCARD, TYPE_NONE, NULL);
2796 break;
2797 case TGSI_OPCODE_TEX:
2798 case TGSI_OPCODE_TXB:
2799 case TGSI_OPCODE_TXL:
2800 case TGSI_OPCODE_TXP:
2801 case TGSI_OPCODE_LODQ:
2802 // R S L C Dx Dy
2803 handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
2804 break;
2805 case TGSI_OPCODE_TXD:
2806 handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
2807 break;
2808 case TGSI_OPCODE_TG4:
2809 handleTEX(dst0, 2, 2, 0x03, 0x0f, 0x00, 0x00);
2810 break;
2811 case TGSI_OPCODE_TEX2:
2812 handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00);
2813 break;
2814 case TGSI_OPCODE_TXB2:
2815 case TGSI_OPCODE_TXL2:
2816 handleTEX(dst0, 2, 2, 0x10, 0x0f, 0x00, 0x00);
2817 break;
2818 case TGSI_OPCODE_SAMPLE:
2819 case TGSI_OPCODE_SAMPLE_B:
2820 case TGSI_OPCODE_SAMPLE_D:
2821 case TGSI_OPCODE_SAMPLE_L:
2822 case TGSI_OPCODE_SAMPLE_C:
2823 case TGSI_OPCODE_SAMPLE_C_LZ:
2824 handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40);
2825 break;
2826 case TGSI_OPCODE_TXF:
2827 handleTXF(dst0, 1, 0x03);
2828 break;
2829 case TGSI_OPCODE_SAMPLE_I:
2830 handleTXF(dst0, 1, 0x03);
2831 break;
2832 case TGSI_OPCODE_SAMPLE_I_MS:
2833 handleTXF(dst0, 1, 0x20);
2834 break;
2835 case TGSI_OPCODE_TXQ:
2836 case TGSI_OPCODE_SVIEWINFO:
2837 handleTXQ(dst0, TXQ_DIMS, 1);
2838 break;
2839 case TGSI_OPCODE_TXQS:
2840 // The TXQ_TYPE query returns samples in its 3rd arg, but we need it to
2841 // be in .x
2842 dst0[1] = dst0[2] = dst0[3] = NULL;
2843 std::swap(dst0[0], dst0[2]);
2844 handleTXQ(dst0, TXQ_TYPE, 0);
2845 std::swap(dst0[0], dst0[2]);
2846 break;
2847 case TGSI_OPCODE_F2I:
2848 case TGSI_OPCODE_F2U:
2849 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2850 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
2851 break;
2852 case TGSI_OPCODE_I2F:
2853 case TGSI_OPCODE_U2F:
2854 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2855 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
2856 break;
2857 case TGSI_OPCODE_PK2H:
2858 val0 = getScratch();
2859 val1 = getScratch();
2860 mkCvt(OP_CVT, TYPE_F16, val0, TYPE_F32, fetchSrc(0, 0));
2861 mkCvt(OP_CVT, TYPE_F16, val1, TYPE_F32, fetchSrc(0, 1));
2862 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2863 mkOp3(OP_INSBF, TYPE_U32, dst0[c], val1, mkImm(0x1010), val0);
2864 break;
2865 case TGSI_OPCODE_UP2H:
2866 src0 = fetchSrc(0, 0);
2867 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2868 geni = mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F16, src0);
2869 geni->subOp = c & 1;
2870 }
2871 break;
2872 case TGSI_OPCODE_EMIT:
2873 /* export the saved viewport index */
2874 if (viewport != NULL) {
2875 Symbol *vpSym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_U32,
2876 info->out[info->io.viewportId].slot[0] * 4);
2877 mkStore(OP_EXPORT, TYPE_U32, vpSym, NULL, viewport);
2878 }
2879 /* fallthrough */
2880 case TGSI_OPCODE_ENDPRIM:
2881 {
2882 // get vertex stream (must be immediate)
2883 unsigned int stream = tgsi.getSrc(0).getValueU32(0, info);
2884 if (stream && op == OP_RESTART)
2885 break;
2886 src0 = mkImm(stream);
2887 mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
2888 break;
2889 }
2890 case TGSI_OPCODE_IF:
2891 case TGSI_OPCODE_UIF:
2892 {
2893 BasicBlock *ifBB = new BasicBlock(func);
2894
2895 bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
2896 condBBs.push(bb);
2897 joinBBs.push(bb);
2898
2899 mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy);
2900
2901 setPosition(ifBB, true);
2902 }
2903 break;
2904 case TGSI_OPCODE_ELSE:
2905 {
2906 BasicBlock *elseBB = new BasicBlock(func);
2907 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2908
2909 forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
2910 condBBs.push(bb);
2911
2912 forkBB->getExit()->asFlow()->target.bb = elseBB;
2913 if (!bb->isTerminated())
2914 mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
2915
2916 setPosition(elseBB, true);
2917 }
2918 break;
2919 case TGSI_OPCODE_ENDIF:
2920 {
2921 BasicBlock *convBB = new BasicBlock(func);
2922 BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2923 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
2924
2925 if (!bb->isTerminated()) {
2926 // we only want join if none of the clauses ended with CONT/BREAK/RET
2927 if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
2928 insertConvergenceOps(convBB, forkBB);
2929 mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
2930 bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2931 }
2932
2933 if (prevBB->getExit()->op == OP_BRA) {
2934 prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2935 prevBB->getExit()->asFlow()->target.bb = convBB;
2936 }
2937 setPosition(convBB, true);
2938 }
2939 break;
2940 case TGSI_OPCODE_BGNLOOP:
2941 {
2942 BasicBlock *lbgnBB = new BasicBlock(func);
2943 BasicBlock *lbrkBB = new BasicBlock(func);
2944
2945 loopBBs.push(lbgnBB);
2946 breakBBs.push(lbrkBB);
2947 if (loopBBs.getSize() > func->loopNestingBound)
2948 func->loopNestingBound++;
2949
2950 mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
2951
2952 bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
2953 setPosition(lbgnBB, true);
2954 mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
2955 }
2956 break;
2957 case TGSI_OPCODE_ENDLOOP:
2958 {
2959 BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
2960
2961 if (!bb->isTerminated()) {
2962 mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
2963 bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
2964 }
2965 setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
2966
2967 // If the loop never breaks (e.g. only has RET's inside), then there
2968 // will be no way to get to the break bb. However BGNLOOP will have
2969 // already made a PREBREAK to it, so it must be in the CFG.
2970 if (getBB()->cfg.incidentCount() == 0)
2971 loopBB->cfg.attach(&getBB()->cfg, Graph::Edge::TREE);
2972 }
2973 break;
2974 case TGSI_OPCODE_BRK:
2975 {
2976 if (bb->isTerminated())
2977 break;
2978 BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
2979 mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
2980 bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
2981 }
2982 break;
2983 case TGSI_OPCODE_CONT:
2984 {
2985 if (bb->isTerminated())
2986 break;
2987 BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
2988 mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
2989 contBB->explicitCont = true;
2990 bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
2991 }
2992 break;
2993 case TGSI_OPCODE_BGNSUB:
2994 {
2995 Subroutine *s = getSubroutine(ip);
2996 BasicBlock *entry = new BasicBlock(s->f);
2997 BasicBlock *leave = new BasicBlock(s->f);
2998
2999 // multiple entrypoints possible, keep the graph connected
3000 if (prog->getType() == Program::TYPE_COMPUTE)
3001 prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
3002
3003 sub.cur = s;
3004 s->f->setEntry(entry);
3005 s->f->setExit(leave);
3006 setPosition(entry, true);
3007 return true;
3008 }
3009 case TGSI_OPCODE_ENDSUB:
3010 {
3011 sub.cur = getSubroutine(prog->main);
3012 setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
3013 return true;
3014 }
3015 case TGSI_OPCODE_CAL:
3016 {
3017 Subroutine *s = getSubroutine(tgsi.getLabel());
3018 mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
3019 func->call.attach(&s->f->call, Graph::Edge::TREE);
3020 return true;
3021 }
3022 case TGSI_OPCODE_RET:
3023 {
3024 if (bb->isTerminated())
3025 return true;
3026 BasicBlock *leave = BasicBlock::get(func->cfgExit);
3027
3028 if (!isEndOfSubroutine(ip + 1)) {
3029 // insert a PRERET at the entry if this is an early return
3030 // (only needed for sharing code in the epilogue)
3031 BasicBlock *pos = getBB();
3032 setPosition(BasicBlock::get(func->cfg.getRoot()), false);
3033 mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
3034 setPosition(pos, true);
3035 }
3036 mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
3037 bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
3038 }
3039 break;
3040 case TGSI_OPCODE_END:
3041 {
3042 // attach and generate epilogue code
3043 BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
3044 bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
3045 setPosition(epilogue, true);
3046 if (prog->getType() == Program::TYPE_FRAGMENT)
3047 exportOutputs();
3048 if (info->io.genUserClip > 0)
3049 handleUserClipPlanes();
3050 mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
3051 }
3052 break;
3053 case TGSI_OPCODE_SWITCH:
3054 case TGSI_OPCODE_CASE:
3055 ERROR("switch/case opcode encountered, should have been lowered\n");
3056 abort();
3057 break;
3058 case TGSI_OPCODE_LOAD:
3059 handleLOAD(dst0);
3060 break;
3061 case TGSI_OPCODE_STORE:
3062 handleSTORE();
3063 break;
3064 case TGSI_OPCODE_BARRIER:
3065 geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
3066 geni->fixed = 1;
3067 geni->subOp = NV50_IR_SUBOP_BAR_SYNC;
3068 break;
3069 case TGSI_OPCODE_MFENCE:
3070 case TGSI_OPCODE_LFENCE:
3071 case TGSI_OPCODE_SFENCE:
3072 geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
3073 geni->fixed = 1;
3074 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
3075 break;
3076 case TGSI_OPCODE_ATOMUADD:
3077 case TGSI_OPCODE_ATOMXCHG:
3078 case TGSI_OPCODE_ATOMCAS:
3079 case TGSI_OPCODE_ATOMAND:
3080 case TGSI_OPCODE_ATOMOR:
3081 case TGSI_OPCODE_ATOMXOR:
3082 case TGSI_OPCODE_ATOMUMIN:
3083 case TGSI_OPCODE_ATOMIMIN:
3084 case TGSI_OPCODE_ATOMUMAX:
3085 case TGSI_OPCODE_ATOMIMAX:
3086 handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode()));
3087 break;
3088 case TGSI_OPCODE_IBFE:
3089 case TGSI_OPCODE_UBFE:
3090 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3091 src0 = fetchSrc(0, c);
3092 if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE &&
3093 tgsi.getSrc(2).getFile() == TGSI_FILE_IMMEDIATE) {
3094 src1 = loadImm(NULL, tgsi.getSrc(2).getValueU32(c, info) << 8 |
3095 tgsi.getSrc(1).getValueU32(c, info));
3096 } else {
3097 src1 = fetchSrc(1, c);
3098 src2 = fetchSrc(2, c);
3099 mkOp3(OP_INSBF, TYPE_U32, src1, src2, mkImm(0x808), src1);
3100 }
3101 mkOp2(OP_EXTBF, dstTy, dst0[c], src0, src1);
3102 }
3103 break;
3104 case TGSI_OPCODE_BFI:
3105 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3106 src0 = fetchSrc(0, c);
3107 src1 = fetchSrc(1, c);
3108 src2 = fetchSrc(2, c);
3109 src3 = fetchSrc(3, c);
3110 mkOp3(OP_INSBF, TYPE_U32, src2, src3, mkImm(0x808), src2);
3111 mkOp3(OP_INSBF, TYPE_U32, dst0[c], src1, src2, src0);
3112 }
3113 break;
3114 case TGSI_OPCODE_LSB:
3115 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3116 src0 = fetchSrc(0, c);
3117 geni = mkOp2(OP_EXTBF, TYPE_U32, src0, src0, mkImm(0x2000));
3118 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
3119 geni = mkOp1(OP_BFIND, TYPE_U32, dst0[c], src0);
3120 geni->subOp = NV50_IR_SUBOP_BFIND_SAMT;
3121 }
3122 break;
3123 case TGSI_OPCODE_IMSB:
3124 case TGSI_OPCODE_UMSB:
3125 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3126 src0 = fetchSrc(0, c);
3127 mkOp1(OP_BFIND, srcTy, dst0[c], src0);
3128 }
3129 break;
3130 case TGSI_OPCODE_BREV:
3131 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3132 src0 = fetchSrc(0, c);
3133 geni = mkOp2(OP_EXTBF, TYPE_U32, dst0[c], src0, mkImm(0x2000));
3134 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
3135 }
3136 break;
3137 case TGSI_OPCODE_POPC:
3138 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3139 src0 = fetchSrc(0, c);
3140 mkOp2(OP_POPCNT, TYPE_U32, dst0[c], src0, src0);
3141 }
3142 break;
3143 case TGSI_OPCODE_INTERP_CENTROID:
3144 case TGSI_OPCODE_INTERP_SAMPLE:
3145 case TGSI_OPCODE_INTERP_OFFSET:
3146 handleINTERP(dst0);
3147 break;
3148 case TGSI_OPCODE_D2I:
3149 case TGSI_OPCODE_D2U:
3150 case TGSI_OPCODE_D2F: {
3151 int pos = 0;
3152 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3153 Value *dreg = getSSA(8);
3154 src0 = fetchSrc(0, pos);
3155 src1 = fetchSrc(0, pos + 1);
3156 mkOp2(OP_MERGE, TYPE_U64, dreg, src0, src1);
3157 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, dreg);
3158 pos += 2;
3159 }
3160 break;
3161 }
3162 case TGSI_OPCODE_I2D:
3163 case TGSI_OPCODE_U2D:
3164 case TGSI_OPCODE_F2D:
3165 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3166 Value *dreg = getSSA(8);
3167 mkCvt(OP_CVT, dstTy, dreg, srcTy, fetchSrc(0, c / 2));
3168 mkSplit(&dst0[c], 4, dreg);
3169 c++;
3170 }
3171 break;
3172 case TGSI_OPCODE_DABS:
3173 case TGSI_OPCODE_DNEG:
3174 case TGSI_OPCODE_DRCP:
3175 case TGSI_OPCODE_DSQRT:
3176 case TGSI_OPCODE_DRSQ:
3177 case TGSI_OPCODE_DTRUNC:
3178 case TGSI_OPCODE_DCEIL:
3179 case TGSI_OPCODE_DFLR:
3180 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3181 src0 = getSSA(8);
3182 Value *dst = getSSA(8), *tmp[2];
3183 tmp[0] = fetchSrc(0, c);
3184 tmp[1] = fetchSrc(0, c + 1);
3185 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3186 mkOp1(op, dstTy, dst, src0);
3187 mkSplit(&dst0[c], 4, dst);
3188 c++;
3189 }
3190 break;
3191 case TGSI_OPCODE_DFRAC:
3192 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3193 src0 = getSSA(8);
3194 Value *dst = getSSA(8), *tmp[2];
3195 tmp[0] = fetchSrc(0, c);
3196 tmp[1] = fetchSrc(0, c + 1);
3197 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3198 mkOp1(OP_FLOOR, TYPE_F64, dst, src0);
3199 mkOp2(OP_SUB, TYPE_F64, dst, src0, dst);
3200 mkSplit(&dst0[c], 4, dst);
3201 c++;
3202 }
3203 break;
3204 case TGSI_OPCODE_DSLT:
3205 case TGSI_OPCODE_DSGE:
3206 case TGSI_OPCODE_DSEQ:
3207 case TGSI_OPCODE_DSNE: {
3208 int pos = 0;
3209 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3210 Value *tmp[2];
3211
3212 src0 = getSSA(8);
3213 src1 = getSSA(8);
3214 tmp[0] = fetchSrc(0, pos);
3215 tmp[1] = fetchSrc(0, pos + 1);
3216 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3217 tmp[0] = fetchSrc(1, pos);
3218 tmp[1] = fetchSrc(1, pos + 1);
3219 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3220 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
3221 pos += 2;
3222 }
3223 break;
3224 }
3225 case TGSI_OPCODE_DADD:
3226 case TGSI_OPCODE_DMUL:
3227 case TGSI_OPCODE_DMAX:
3228 case TGSI_OPCODE_DMIN:
3229 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3230 src0 = getSSA(8);
3231 src1 = getSSA(8);
3232 Value *dst = getSSA(8), *tmp[2];
3233 tmp[0] = fetchSrc(0, c);
3234 tmp[1] = fetchSrc(0, c + 1);
3235 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3236 tmp[0] = fetchSrc(1, c);
3237 tmp[1] = fetchSrc(1, c + 1);
3238 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3239 mkOp2(op, dstTy, dst, src0, src1);
3240 mkSplit(&dst0[c], 4, dst);
3241 c++;
3242 }
3243 break;
3244 case TGSI_OPCODE_DMAD:
3245 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3246 src0 = getSSA(8);
3247 src1 = getSSA(8);
3248 src2 = getSSA(8);
3249 Value *dst = getSSA(8), *tmp[2];
3250 tmp[0] = fetchSrc(0, c);
3251 tmp[1] = fetchSrc(0, c + 1);
3252 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3253 tmp[0] = fetchSrc(1, c);
3254 tmp[1] = fetchSrc(1, c + 1);
3255 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3256 tmp[0] = fetchSrc(2, c);
3257 tmp[1] = fetchSrc(2, c + 1);
3258 mkOp2(OP_MERGE, TYPE_U64, src2, tmp[0], tmp[1]);
3259 mkOp3(op, dstTy, dst, src0, src1, src2);
3260 mkSplit(&dst0[c], 4, dst);
3261 c++;
3262 }
3263 break;
3264 case TGSI_OPCODE_DROUND:
3265 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3266 src0 = getSSA(8);
3267 Value *dst = getSSA(8), *tmp[2];
3268 tmp[0] = fetchSrc(0, c);
3269 tmp[1] = fetchSrc(0, c + 1);
3270 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3271 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F64, src0)
3272 ->rnd = ROUND_NI;
3273 mkSplit(&dst0[c], 4, dst);
3274 c++;
3275 }
3276 break;
3277 case TGSI_OPCODE_DSSG:
3278 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3279 src0 = getSSA(8);
3280 Value *dst = getSSA(8), *dstF32 = getSSA(), *tmp[2];
3281 tmp[0] = fetchSrc(0, c);
3282 tmp[1] = fetchSrc(0, c + 1);
3283 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3284
3285 val0 = getScratch();
3286 val1 = getScratch();
3287 // The zero is wrong here since it's only 32-bit, but it works out in
3288 // the end since it gets replaced with $r63.
3289 mkCmp(OP_SET, CC_GT, TYPE_F32, val0, TYPE_F64, src0, zero);
3290 mkCmp(OP_SET, CC_LT, TYPE_F32, val1, TYPE_F64, src0, zero);
3291 mkOp2(OP_SUB, TYPE_F32, dstF32, val0, val1);
3292 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F32, dstF32);
3293 mkSplit(&dst0[c], 4, dst);
3294 c++;
3295 }
3296 break;
3297 default:
3298 ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
3299 assert(0);
3300 break;
3301 }
3302
3303 if (tgsi.dstCount()) {
3304 for (c = 0; c < 4; ++c) {
3305 if (!dst0[c])
3306 continue;
3307 if (dst0[c] != rDst0[c])
3308 mkMov(rDst0[c], dst0[c]);
3309 storeDst(0, c, rDst0[c]);
3310 }
3311 }
3312 vtxBaseValid = 0;
3313
3314 return true;
3315 }
3316
3317 void
3318 Converter::handleUserClipPlanes()
3319 {
3320 Value *res[8];
3321 int n, i, c;
3322
3323 for (c = 0; c < 4; ++c) {
3324 for (i = 0; i < info->io.genUserClip; ++i) {
3325 Symbol *sym = mkSymbol(FILE_MEMORY_CONST, info->io.auxCBSlot,
3326 TYPE_F32, info->io.ucpBase + i * 16 + c * 4);
3327 Value *ucp = mkLoadv(TYPE_F32, sym, NULL);
3328 if (c == 0)
3329 res[i] = mkOp2v(OP_MUL, TYPE_F32, getScratch(), clipVtx[c], ucp);
3330 else
3331 mkOp3(OP_MAD, TYPE_F32, res[i], clipVtx[c], ucp, res[i]);
3332 }
3333 }
3334
3335 const int first = info->numOutputs - (info->io.genUserClip + 3) / 4;
3336
3337 for (i = 0; i < info->io.genUserClip; ++i) {
3338 n = i / 4 + first;
3339 c = i % 4;
3340 Symbol *sym =
3341 mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[n].slot[c] * 4);
3342 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, res[i]);
3343 }
3344 }
3345
3346 void
3347 Converter::exportOutputs()
3348 {
3349 for (unsigned int i = 0; i < info->numOutputs; ++i) {
3350 for (unsigned int c = 0; c < 4; ++c) {
3351 if (!oData.exists(sub.cur->values, i, c))
3352 continue;
3353 Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
3354 info->out[i].slot[c] * 4);
3355 Value *val = oData.load(sub.cur->values, i, c, NULL);
3356 if (val)
3357 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
3358 }
3359 }
3360 }
3361
3362 Converter::Converter(Program *ir, const tgsi::Source *code) : BuildUtil(ir),
3363 code(code),
3364 tgsi(NULL),
3365 tData(this), lData(this), aData(this), pData(this), oData(this)
3366 {
3367 info = code->info;
3368
3369 const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
3370 const unsigned pSize = code->fileSize(TGSI_FILE_PREDICATE);
3371 const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
3372 const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
3373
3374 tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, FILE_GPR, 0);
3375 lData.setup(TGSI_FILE_TEMPORARY, 1, 0, tSize, 4, 4, FILE_MEMORY_LOCAL, 0);
3376 pData.setup(TGSI_FILE_PREDICATE, 0, 0, pSize, 4, 4, FILE_PREDICATE, 0);
3377 aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_GPR, 0);
3378 oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
3379
3380 zero = mkImm((uint32_t)0);
3381
3382 vtxBaseValid = 0;
3383 }
3384
3385 Converter::~Converter()
3386 {
3387 }
3388
3389 inline const Converter::Location *
3390 Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v)
3391 {
3392 ValueMap::l_iterator it = s->values.l.find(v);
3393 return it == s->values.l.end() ? NULL : &it->second;
3394 }
3395
3396 template<typename T> inline void
3397 Converter::BindArgumentsPass::updateCallArgs(
3398 Instruction *i, void (Instruction::*setArg)(int, Value *),
3399 T (Function::*proto))
3400 {
3401 Function *g = i->asFlow()->target.fn;
3402 Subroutine *subg = conv.getSubroutine(g);
3403
3404 for (unsigned a = 0; a < (g->*proto).size(); ++a) {
3405 Value *v = (g->*proto)[a].get();
3406 const Converter::Location &l = *getValueLocation(subg, v);
3407 Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
3408
3409 (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
3410 }
3411 }
3412
3413 template<typename T> inline void
3414 Converter::BindArgumentsPass::updatePrototype(
3415 BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
3416 {
3417 (func->*updateSet)();
3418
3419 for (unsigned i = 0; i < set->getSize(); ++i) {
3420 Value *v = func->getLValue(i);
3421 const Converter::Location *l = getValueLocation(sub, v);
3422
3423 // only include values with a matching TGSI register
3424 if (set->test(i) && l && !conv.code->locals.count(*l))
3425 (func->*proto).push_back(v);
3426 }
3427 }
3428
3429 bool
3430 Converter::BindArgumentsPass::visit(Function *f)
3431 {
3432 sub = conv.getSubroutine(f);
3433
3434 for (ArrayList::Iterator bi = f->allBBlocks.iterator();
3435 !bi.end(); bi.next()) {
3436 for (Instruction *i = BasicBlock::get(bi)->getFirst();
3437 i; i = i->next) {
3438 if (i->op == OP_CALL && !i->asFlow()->builtin) {
3439 updateCallArgs(i, &Instruction::setSrc, &Function::ins);
3440 updateCallArgs(i, &Instruction::setDef, &Function::outs);
3441 }
3442 }
3443 }
3444
3445 if (func == prog->main && prog->getType() != Program::TYPE_COMPUTE)
3446 return true;
3447 updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
3448 &Function::buildLiveSets, &Function::ins);
3449 updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
3450 &Function::buildDefSets, &Function::outs);
3451
3452 return true;
3453 }
3454
3455 bool
3456 Converter::run()
3457 {
3458 BasicBlock *entry = new BasicBlock(prog->main);
3459 BasicBlock *leave = new BasicBlock(prog->main);
3460
3461 prog->main->setEntry(entry);
3462 prog->main->setExit(leave);
3463
3464 setPosition(entry, true);
3465 sub.cur = getSubroutine(prog->main);
3466
3467 if (info->io.genUserClip > 0) {
3468 for (int c = 0; c < 4; ++c)
3469 clipVtx[c] = getScratch();
3470 }
3471
3472 switch (prog->getType()) {
3473 case Program::TYPE_TESSELLATION_CONTROL:
3474 outBase = mkOp2v(
3475 OP_SUB, TYPE_U32, getSSA(),
3476 mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_LANEID, 0)),
3477 mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_INVOCATION_ID, 0)));
3478 break;
3479 case Program::TYPE_FRAGMENT: {
3480 Symbol *sv = mkSysVal(SV_POSITION, 3);
3481 fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
3482 mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
3483 break;
3484 }
3485 default:
3486 break;
3487 }
3488
3489 if (info->io.viewportId >= 0)
3490 viewport = getScratch();
3491 else
3492 viewport = NULL;
3493
3494 for (ip = 0; ip < code->scan.num_instructions; ++ip) {
3495 if (!handleInstruction(&code->insns[ip]))
3496 return false;
3497 }
3498
3499 if (!BindArgumentsPass(*this).run(prog))
3500 return false;
3501
3502 return true;
3503 }
3504
3505 } // unnamed namespace
3506
3507 namespace nv50_ir {
3508
3509 bool
3510 Program::makeFromTGSI(struct nv50_ir_prog_info *info)
3511 {
3512 tgsi::Source src(info);
3513 if (!src.scanSource())
3514 return false;
3515 tlsSize = info->bin.tlsSpace;
3516
3517 Converter builder(this, &src);
3518 return builder.run();
3519 }
3520
3521 } // namespace nv50_ir