868372202f955d66a83d131ee26bd73ea9adf454
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_from_tgsi.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "tgsi/tgsi_dump.h"
24 #include "tgsi/tgsi_scan.h"
25 #include "tgsi/tgsi_util.h"
26
27 #include <set>
28
29 #include "codegen/nv50_ir.h"
30 #include "codegen/nv50_ir_util.h"
31 #include "codegen/nv50_ir_build_util.h"
32
33 namespace tgsi {
34
35 class Source;
36
37 static nv50_ir::operation translateOpcode(uint opcode);
38 static nv50_ir::DataFile translateFile(uint file);
39 static nv50_ir::TexTarget translateTexture(uint texTarg);
40 static nv50_ir::SVSemantic translateSysVal(uint sysval);
41 static nv50_ir::CacheMode translateCacheMode(uint qualifier);
42
43 class Instruction
44 {
45 public:
46 Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
47
48 class SrcRegister
49 {
50 public:
51 SrcRegister(const struct tgsi_full_src_register *src)
52 : reg(src->Register),
53 fsr(src)
54 { }
55
56 SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
57
58 SrcRegister(const struct tgsi_ind_register& ind)
59 : reg(tgsi_util_get_src_from_ind(&ind)),
60 fsr(NULL)
61 { }
62
63 struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
64 {
65 struct tgsi_src_register reg;
66 memset(&reg, 0, sizeof(reg));
67 reg.Index = off.Index;
68 reg.File = off.File;
69 reg.SwizzleX = off.SwizzleX;
70 reg.SwizzleY = off.SwizzleY;
71 reg.SwizzleZ = off.SwizzleZ;
72 return reg;
73 }
74
75 SrcRegister(const struct tgsi_texture_offset& off) :
76 reg(offsetToSrc(off)),
77 fsr(NULL)
78 { }
79
80 uint getFile() const { return reg.File; }
81
82 bool is2D() const { return reg.Dimension; }
83
84 bool isIndirect(int dim) const
85 {
86 return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
87 }
88
89 int getIndex(int dim) const
90 {
91 return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
92 }
93
94 int getSwizzle(int chan) const
95 {
96 return tgsi_util_get_src_register_swizzle(&reg, chan);
97 }
98
99 int getArrayId() const
100 {
101 if (isIndirect(0))
102 return fsr->Indirect.ArrayID;
103 return 0;
104 }
105
106 nv50_ir::Modifier getMod(int chan) const;
107
108 SrcRegister getIndirect(int dim) const
109 {
110 assert(fsr && isIndirect(dim));
111 if (dim)
112 return SrcRegister(fsr->DimIndirect);
113 return SrcRegister(fsr->Indirect);
114 }
115
116 uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
117 {
118 assert(reg.File == TGSI_FILE_IMMEDIATE);
119 assert(!reg.Absolute);
120 assert(!reg.Negate);
121 return info->immd.data[reg.Index * 4 + getSwizzle(c)];
122 }
123
124 private:
125 const struct tgsi_src_register reg;
126 const struct tgsi_full_src_register *fsr;
127 };
128
129 class DstRegister
130 {
131 public:
132 DstRegister(const struct tgsi_full_dst_register *dst)
133 : reg(dst->Register),
134 fdr(dst)
135 { }
136
137 DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
138
139 uint getFile() const { return reg.File; }
140
141 bool is2D() const { return reg.Dimension; }
142
143 bool isIndirect(int dim) const
144 {
145 return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
146 }
147
148 int getIndex(int dim) const
149 {
150 return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
151 }
152
153 unsigned int getMask() const { return reg.WriteMask; }
154
155 bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
156
157 SrcRegister getIndirect(int dim) const
158 {
159 assert(fdr && isIndirect(dim));
160 if (dim)
161 return SrcRegister(fdr->DimIndirect);
162 return SrcRegister(fdr->Indirect);
163 }
164
165 int getArrayId() const
166 {
167 if (isIndirect(0))
168 return fdr->Indirect.ArrayID;
169 return 0;
170 }
171
172 private:
173 const struct tgsi_dst_register reg;
174 const struct tgsi_full_dst_register *fdr;
175 };
176
177 inline uint getOpcode() const { return insn->Instruction.Opcode; }
178
179 unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
180 unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
181
182 // mask of used components of source s
183 unsigned int srcMask(unsigned int s) const;
184
185 SrcRegister getSrc(unsigned int s) const
186 {
187 assert(s < srcCount());
188 return SrcRegister(&insn->Src[s]);
189 }
190
191 DstRegister getDst(unsigned int d) const
192 {
193 assert(d < dstCount());
194 return DstRegister(&insn->Dst[d]);
195 }
196
197 SrcRegister getTexOffset(unsigned int i) const
198 {
199 assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
200 return SrcRegister(insn->TexOffsets[i]);
201 }
202
203 unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
204
205 bool checkDstSrcAliasing() const;
206
207 inline nv50_ir::operation getOP() const {
208 return translateOpcode(getOpcode()); }
209
210 nv50_ir::DataType inferSrcType() const;
211 nv50_ir::DataType inferDstType() const;
212
213 nv50_ir::CondCode getSetCond() const;
214
215 nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
216
217 nv50_ir::CacheMode getCacheMode() const {
218 if (!insn->Instruction.Memory)
219 return nv50_ir::CACHE_CA;
220 return translateCacheMode(insn->Memory.Qualifier);
221 }
222
223 inline uint getLabel() { return insn->Label.Label; }
224
225 unsigned getSaturate() const { return insn->Instruction.Saturate; }
226
227 void print() const
228 {
229 tgsi_dump_instruction(insn, 1);
230 }
231
232 private:
233 const struct tgsi_full_instruction *insn;
234 };
235
236 unsigned int Instruction::srcMask(unsigned int s) const
237 {
238 unsigned int mask = insn->Dst[0].Register.WriteMask;
239
240 switch (insn->Instruction.Opcode) {
241 case TGSI_OPCODE_COS:
242 case TGSI_OPCODE_SIN:
243 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
244 case TGSI_OPCODE_DP2:
245 return 0x3;
246 case TGSI_OPCODE_DP3:
247 return 0x7;
248 case TGSI_OPCODE_DP4:
249 case TGSI_OPCODE_DPH:
250 case TGSI_OPCODE_KILL_IF: /* WriteMask ignored */
251 return 0xf;
252 case TGSI_OPCODE_DST:
253 return mask & (s ? 0xa : 0x6);
254 case TGSI_OPCODE_EX2:
255 case TGSI_OPCODE_EXP:
256 case TGSI_OPCODE_LG2:
257 case TGSI_OPCODE_LOG:
258 case TGSI_OPCODE_POW:
259 case TGSI_OPCODE_RCP:
260 case TGSI_OPCODE_RSQ:
261 case TGSI_OPCODE_SCS:
262 return 0x1;
263 case TGSI_OPCODE_IF:
264 case TGSI_OPCODE_UIF:
265 return 0x1;
266 case TGSI_OPCODE_LIT:
267 return 0xb;
268 case TGSI_OPCODE_TEX2:
269 case TGSI_OPCODE_TXB2:
270 case TGSI_OPCODE_TXL2:
271 return (s == 0) ? 0xf : 0x3;
272 case TGSI_OPCODE_TEX:
273 case TGSI_OPCODE_TXB:
274 case TGSI_OPCODE_TXD:
275 case TGSI_OPCODE_TXL:
276 case TGSI_OPCODE_TXP:
277 case TGSI_OPCODE_LODQ:
278 {
279 const struct tgsi_instruction_texture *tex = &insn->Texture;
280
281 assert(insn->Instruction.Texture);
282
283 mask = 0x7;
284 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
285 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
286 mask |= 0x8; /* bias, lod or proj */
287
288 switch (tex->Texture) {
289 case TGSI_TEXTURE_1D:
290 mask &= 0x9;
291 break;
292 case TGSI_TEXTURE_SHADOW1D:
293 mask &= 0xd;
294 break;
295 case TGSI_TEXTURE_1D_ARRAY:
296 case TGSI_TEXTURE_2D:
297 case TGSI_TEXTURE_RECT:
298 mask &= 0xb;
299 break;
300 case TGSI_TEXTURE_CUBE_ARRAY:
301 case TGSI_TEXTURE_SHADOW2D_ARRAY:
302 case TGSI_TEXTURE_SHADOWCUBE:
303 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
304 mask |= 0x8;
305 break;
306 default:
307 break;
308 }
309 }
310 return mask;
311 case TGSI_OPCODE_XPD:
312 {
313 unsigned int x = 0;
314 if (mask & 1) x |= 0x6;
315 if (mask & 2) x |= 0x5;
316 if (mask & 4) x |= 0x3;
317 return x;
318 }
319 case TGSI_OPCODE_D2I:
320 case TGSI_OPCODE_D2U:
321 case TGSI_OPCODE_D2F:
322 case TGSI_OPCODE_DSLT:
323 case TGSI_OPCODE_DSGE:
324 case TGSI_OPCODE_DSEQ:
325 case TGSI_OPCODE_DSNE:
326 switch (util_bitcount(mask)) {
327 case 1: return 0x3;
328 case 2: return 0xf;
329 default:
330 assert(!"unexpected mask");
331 return 0xf;
332 }
333 case TGSI_OPCODE_I2D:
334 case TGSI_OPCODE_U2D:
335 case TGSI_OPCODE_F2D: {
336 unsigned int x = 0;
337 if ((mask & 0x3) == 0x3)
338 x |= 1;
339 if ((mask & 0xc) == 0xc)
340 x |= 2;
341 return x;
342 }
343 case TGSI_OPCODE_PK2H:
344 return 0x3;
345 case TGSI_OPCODE_UP2H:
346 return 0x1;
347 default:
348 break;
349 }
350
351 return mask;
352 }
353
354 nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
355 {
356 nv50_ir::Modifier m(0);
357
358 if (reg.Absolute)
359 m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
360 if (reg.Negate)
361 m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
362 return m;
363 }
364
365 static nv50_ir::DataFile translateFile(uint file)
366 {
367 switch (file) {
368 case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST;
369 case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT;
370 case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT;
371 case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR;
372 case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS;
373 case TGSI_FILE_PREDICATE: return nv50_ir::FILE_PREDICATE;
374 case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE;
375 case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE;
376 case TGSI_FILE_BUFFER: return nv50_ir::FILE_MEMORY_GLOBAL;
377 case TGSI_FILE_MEMORY: return nv50_ir::FILE_MEMORY_GLOBAL;
378 case TGSI_FILE_SAMPLER:
379 case TGSI_FILE_NULL:
380 default:
381 return nv50_ir::FILE_NULL;
382 }
383 }
384
385 static nv50_ir::SVSemantic translateSysVal(uint sysval)
386 {
387 switch (sysval) {
388 case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE;
389 case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE;
390 case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID;
391 case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
392 case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID;
393 case TGSI_SEMANTIC_GRID_SIZE: return nv50_ir::SV_NCTAID;
394 case TGSI_SEMANTIC_BLOCK_ID: return nv50_ir::SV_CTAID;
395 case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID;
396 case TGSI_SEMANTIC_THREAD_ID: return nv50_ir::SV_TID;
397 case TGSI_SEMANTIC_SAMPLEID: return nv50_ir::SV_SAMPLE_INDEX;
398 case TGSI_SEMANTIC_SAMPLEPOS: return nv50_ir::SV_SAMPLE_POS;
399 case TGSI_SEMANTIC_SAMPLEMASK: return nv50_ir::SV_SAMPLE_MASK;
400 case TGSI_SEMANTIC_INVOCATIONID: return nv50_ir::SV_INVOCATION_ID;
401 case TGSI_SEMANTIC_TESSCOORD: return nv50_ir::SV_TESS_COORD;
402 case TGSI_SEMANTIC_TESSOUTER: return nv50_ir::SV_TESS_OUTER;
403 case TGSI_SEMANTIC_TESSINNER: return nv50_ir::SV_TESS_INNER;
404 case TGSI_SEMANTIC_VERTICESIN: return nv50_ir::SV_VERTEX_COUNT;
405 case TGSI_SEMANTIC_HELPER_INVOCATION: return nv50_ir::SV_THREAD_KILL;
406 case TGSI_SEMANTIC_BASEVERTEX: return nv50_ir::SV_BASEVERTEX;
407 case TGSI_SEMANTIC_BASEINSTANCE: return nv50_ir::SV_BASEINSTANCE;
408 case TGSI_SEMANTIC_DRAWID: return nv50_ir::SV_DRAWID;
409 default:
410 assert(0);
411 return nv50_ir::SV_CLOCK;
412 }
413 }
414
415 #define NV50_IR_TEX_TARG_CASE(a, b) \
416 case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
417
418 static nv50_ir::TexTarget translateTexture(uint tex)
419 {
420 switch (tex) {
421 NV50_IR_TEX_TARG_CASE(1D, 1D);
422 NV50_IR_TEX_TARG_CASE(2D, 2D);
423 NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS);
424 NV50_IR_TEX_TARG_CASE(3D, 3D);
425 NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
426 NV50_IR_TEX_TARG_CASE(RECT, RECT);
427 NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
428 NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
429 NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY);
430 NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY);
431 NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
432 NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
433 NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
434 NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
435 NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
436 NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
437 NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW);
438 NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
439
440 case TGSI_TEXTURE_UNKNOWN:
441 default:
442 assert(!"invalid texture target");
443 return nv50_ir::TEX_TARGET_2D;
444 }
445 }
446
447 static nv50_ir::CacheMode translateCacheMode(uint qualifier)
448 {
449 if (qualifier & TGSI_MEMORY_VOLATILE)
450 return nv50_ir::CACHE_CV;
451 if (qualifier & TGSI_MEMORY_COHERENT)
452 return nv50_ir::CACHE_CG;
453 return nv50_ir::CACHE_CA;
454 }
455
456 nv50_ir::DataType Instruction::inferSrcType() const
457 {
458 switch (getOpcode()) {
459 case TGSI_OPCODE_UIF:
460 case TGSI_OPCODE_AND:
461 case TGSI_OPCODE_OR:
462 case TGSI_OPCODE_XOR:
463 case TGSI_OPCODE_NOT:
464 case TGSI_OPCODE_SHL:
465 case TGSI_OPCODE_U2F:
466 case TGSI_OPCODE_U2D:
467 case TGSI_OPCODE_UADD:
468 case TGSI_OPCODE_UDIV:
469 case TGSI_OPCODE_UMOD:
470 case TGSI_OPCODE_UMAD:
471 case TGSI_OPCODE_UMUL:
472 case TGSI_OPCODE_UMUL_HI:
473 case TGSI_OPCODE_UMAX:
474 case TGSI_OPCODE_UMIN:
475 case TGSI_OPCODE_USEQ:
476 case TGSI_OPCODE_USGE:
477 case TGSI_OPCODE_USLT:
478 case TGSI_OPCODE_USNE:
479 case TGSI_OPCODE_USHR:
480 case TGSI_OPCODE_ATOMUADD:
481 case TGSI_OPCODE_ATOMXCHG:
482 case TGSI_OPCODE_ATOMCAS:
483 case TGSI_OPCODE_ATOMAND:
484 case TGSI_OPCODE_ATOMOR:
485 case TGSI_OPCODE_ATOMXOR:
486 case TGSI_OPCODE_ATOMUMIN:
487 case TGSI_OPCODE_ATOMUMAX:
488 case TGSI_OPCODE_UBFE:
489 case TGSI_OPCODE_UMSB:
490 case TGSI_OPCODE_UP2H:
491 return nv50_ir::TYPE_U32;
492 case TGSI_OPCODE_I2F:
493 case TGSI_OPCODE_I2D:
494 case TGSI_OPCODE_IDIV:
495 case TGSI_OPCODE_IMUL_HI:
496 case TGSI_OPCODE_IMAX:
497 case TGSI_OPCODE_IMIN:
498 case TGSI_OPCODE_IABS:
499 case TGSI_OPCODE_INEG:
500 case TGSI_OPCODE_ISGE:
501 case TGSI_OPCODE_ISHR:
502 case TGSI_OPCODE_ISLT:
503 case TGSI_OPCODE_ISSG:
504 case TGSI_OPCODE_SAD: // not sure about SAD, but no one has a float version
505 case TGSI_OPCODE_MOD:
506 case TGSI_OPCODE_UARL:
507 case TGSI_OPCODE_ATOMIMIN:
508 case TGSI_OPCODE_ATOMIMAX:
509 case TGSI_OPCODE_IBFE:
510 case TGSI_OPCODE_IMSB:
511 return nv50_ir::TYPE_S32;
512 case TGSI_OPCODE_D2F:
513 case TGSI_OPCODE_D2I:
514 case TGSI_OPCODE_D2U:
515 case TGSI_OPCODE_DABS:
516 case TGSI_OPCODE_DNEG:
517 case TGSI_OPCODE_DADD:
518 case TGSI_OPCODE_DMUL:
519 case TGSI_OPCODE_DMAX:
520 case TGSI_OPCODE_DMIN:
521 case TGSI_OPCODE_DSLT:
522 case TGSI_OPCODE_DSGE:
523 case TGSI_OPCODE_DSEQ:
524 case TGSI_OPCODE_DSNE:
525 case TGSI_OPCODE_DRCP:
526 case TGSI_OPCODE_DSQRT:
527 case TGSI_OPCODE_DMAD:
528 case TGSI_OPCODE_DFRAC:
529 case TGSI_OPCODE_DRSQ:
530 case TGSI_OPCODE_DTRUNC:
531 case TGSI_OPCODE_DCEIL:
532 case TGSI_OPCODE_DFLR:
533 case TGSI_OPCODE_DROUND:
534 return nv50_ir::TYPE_F64;
535 default:
536 return nv50_ir::TYPE_F32;
537 }
538 }
539
540 nv50_ir::DataType Instruction::inferDstType() const
541 {
542 switch (getOpcode()) {
543 case TGSI_OPCODE_D2U:
544 case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
545 case TGSI_OPCODE_D2I:
546 case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
547 case TGSI_OPCODE_FSEQ:
548 case TGSI_OPCODE_FSGE:
549 case TGSI_OPCODE_FSLT:
550 case TGSI_OPCODE_FSNE:
551 case TGSI_OPCODE_DSEQ:
552 case TGSI_OPCODE_DSGE:
553 case TGSI_OPCODE_DSLT:
554 case TGSI_OPCODE_DSNE:
555 case TGSI_OPCODE_PK2H:
556 return nv50_ir::TYPE_U32;
557 case TGSI_OPCODE_I2F:
558 case TGSI_OPCODE_U2F:
559 case TGSI_OPCODE_D2F:
560 case TGSI_OPCODE_UP2H:
561 return nv50_ir::TYPE_F32;
562 case TGSI_OPCODE_I2D:
563 case TGSI_OPCODE_U2D:
564 case TGSI_OPCODE_F2D:
565 return nv50_ir::TYPE_F64;
566 default:
567 return inferSrcType();
568 }
569 }
570
571 nv50_ir::CondCode Instruction::getSetCond() const
572 {
573 using namespace nv50_ir;
574
575 switch (getOpcode()) {
576 case TGSI_OPCODE_SLT:
577 case TGSI_OPCODE_ISLT:
578 case TGSI_OPCODE_USLT:
579 case TGSI_OPCODE_FSLT:
580 case TGSI_OPCODE_DSLT:
581 return CC_LT;
582 case TGSI_OPCODE_SLE:
583 return CC_LE;
584 case TGSI_OPCODE_SGE:
585 case TGSI_OPCODE_ISGE:
586 case TGSI_OPCODE_USGE:
587 case TGSI_OPCODE_FSGE:
588 case TGSI_OPCODE_DSGE:
589 return CC_GE;
590 case TGSI_OPCODE_SGT:
591 return CC_GT;
592 case TGSI_OPCODE_SEQ:
593 case TGSI_OPCODE_USEQ:
594 case TGSI_OPCODE_FSEQ:
595 case TGSI_OPCODE_DSEQ:
596 return CC_EQ;
597 case TGSI_OPCODE_SNE:
598 case TGSI_OPCODE_FSNE:
599 case TGSI_OPCODE_DSNE:
600 return CC_NEU;
601 case TGSI_OPCODE_USNE:
602 return CC_NE;
603 default:
604 return CC_ALWAYS;
605 }
606 }
607
608 #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
609
610 static nv50_ir::operation translateOpcode(uint opcode)
611 {
612 switch (opcode) {
613 NV50_IR_OPCODE_CASE(ARL, SHL);
614 NV50_IR_OPCODE_CASE(MOV, MOV);
615
616 NV50_IR_OPCODE_CASE(RCP, RCP);
617 NV50_IR_OPCODE_CASE(RSQ, RSQ);
618
619 NV50_IR_OPCODE_CASE(MUL, MUL);
620 NV50_IR_OPCODE_CASE(ADD, ADD);
621
622 NV50_IR_OPCODE_CASE(MIN, MIN);
623 NV50_IR_OPCODE_CASE(MAX, MAX);
624 NV50_IR_OPCODE_CASE(SLT, SET);
625 NV50_IR_OPCODE_CASE(SGE, SET);
626 NV50_IR_OPCODE_CASE(MAD, MAD);
627 NV50_IR_OPCODE_CASE(SUB, SUB);
628
629 NV50_IR_OPCODE_CASE(FLR, FLOOR);
630 NV50_IR_OPCODE_CASE(ROUND, CVT);
631 NV50_IR_OPCODE_CASE(EX2, EX2);
632 NV50_IR_OPCODE_CASE(LG2, LG2);
633 NV50_IR_OPCODE_CASE(POW, POW);
634
635 NV50_IR_OPCODE_CASE(ABS, ABS);
636
637 NV50_IR_OPCODE_CASE(COS, COS);
638 NV50_IR_OPCODE_CASE(DDX, DFDX);
639 NV50_IR_OPCODE_CASE(DDX_FINE, DFDX);
640 NV50_IR_OPCODE_CASE(DDY, DFDY);
641 NV50_IR_OPCODE_CASE(DDY_FINE, DFDY);
642 NV50_IR_OPCODE_CASE(KILL, DISCARD);
643
644 NV50_IR_OPCODE_CASE(SEQ, SET);
645 NV50_IR_OPCODE_CASE(SGT, SET);
646 NV50_IR_OPCODE_CASE(SIN, SIN);
647 NV50_IR_OPCODE_CASE(SLE, SET);
648 NV50_IR_OPCODE_CASE(SNE, SET);
649 NV50_IR_OPCODE_CASE(TEX, TEX);
650 NV50_IR_OPCODE_CASE(TXD, TXD);
651 NV50_IR_OPCODE_CASE(TXP, TEX);
652
653 NV50_IR_OPCODE_CASE(CAL, CALL);
654 NV50_IR_OPCODE_CASE(RET, RET);
655 NV50_IR_OPCODE_CASE(CMP, SLCT);
656
657 NV50_IR_OPCODE_CASE(TXB, TXB);
658
659 NV50_IR_OPCODE_CASE(DIV, DIV);
660
661 NV50_IR_OPCODE_CASE(TXL, TXL);
662
663 NV50_IR_OPCODE_CASE(CEIL, CEIL);
664 NV50_IR_OPCODE_CASE(I2F, CVT);
665 NV50_IR_OPCODE_CASE(NOT, NOT);
666 NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
667 NV50_IR_OPCODE_CASE(SHL, SHL);
668
669 NV50_IR_OPCODE_CASE(AND, AND);
670 NV50_IR_OPCODE_CASE(OR, OR);
671 NV50_IR_OPCODE_CASE(MOD, MOD);
672 NV50_IR_OPCODE_CASE(XOR, XOR);
673 NV50_IR_OPCODE_CASE(SAD, SAD);
674 NV50_IR_OPCODE_CASE(TXF, TXF);
675 NV50_IR_OPCODE_CASE(TXQ, TXQ);
676 NV50_IR_OPCODE_CASE(TXQS, TXQ);
677 NV50_IR_OPCODE_CASE(TG4, TXG);
678 NV50_IR_OPCODE_CASE(LODQ, TXLQ);
679
680 NV50_IR_OPCODE_CASE(EMIT, EMIT);
681 NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
682
683 NV50_IR_OPCODE_CASE(KILL_IF, DISCARD);
684
685 NV50_IR_OPCODE_CASE(F2I, CVT);
686 NV50_IR_OPCODE_CASE(FSEQ, SET);
687 NV50_IR_OPCODE_CASE(FSGE, SET);
688 NV50_IR_OPCODE_CASE(FSLT, SET);
689 NV50_IR_OPCODE_CASE(FSNE, SET);
690 NV50_IR_OPCODE_CASE(IDIV, DIV);
691 NV50_IR_OPCODE_CASE(IMAX, MAX);
692 NV50_IR_OPCODE_CASE(IMIN, MIN);
693 NV50_IR_OPCODE_CASE(IABS, ABS);
694 NV50_IR_OPCODE_CASE(INEG, NEG);
695 NV50_IR_OPCODE_CASE(ISGE, SET);
696 NV50_IR_OPCODE_CASE(ISHR, SHR);
697 NV50_IR_OPCODE_CASE(ISLT, SET);
698 NV50_IR_OPCODE_CASE(F2U, CVT);
699 NV50_IR_OPCODE_CASE(U2F, CVT);
700 NV50_IR_OPCODE_CASE(UADD, ADD);
701 NV50_IR_OPCODE_CASE(UDIV, DIV);
702 NV50_IR_OPCODE_CASE(UMAD, MAD);
703 NV50_IR_OPCODE_CASE(UMAX, MAX);
704 NV50_IR_OPCODE_CASE(UMIN, MIN);
705 NV50_IR_OPCODE_CASE(UMOD, MOD);
706 NV50_IR_OPCODE_CASE(UMUL, MUL);
707 NV50_IR_OPCODE_CASE(USEQ, SET);
708 NV50_IR_OPCODE_CASE(USGE, SET);
709 NV50_IR_OPCODE_CASE(USHR, SHR);
710 NV50_IR_OPCODE_CASE(USLT, SET);
711 NV50_IR_OPCODE_CASE(USNE, SET);
712
713 NV50_IR_OPCODE_CASE(DABS, ABS);
714 NV50_IR_OPCODE_CASE(DNEG, NEG);
715 NV50_IR_OPCODE_CASE(DADD, ADD);
716 NV50_IR_OPCODE_CASE(DMUL, MUL);
717 NV50_IR_OPCODE_CASE(DMAX, MAX);
718 NV50_IR_OPCODE_CASE(DMIN, MIN);
719 NV50_IR_OPCODE_CASE(DSLT, SET);
720 NV50_IR_OPCODE_CASE(DSGE, SET);
721 NV50_IR_OPCODE_CASE(DSEQ, SET);
722 NV50_IR_OPCODE_CASE(DSNE, SET);
723 NV50_IR_OPCODE_CASE(DRCP, RCP);
724 NV50_IR_OPCODE_CASE(DSQRT, SQRT);
725 NV50_IR_OPCODE_CASE(DMAD, MAD);
726 NV50_IR_OPCODE_CASE(D2I, CVT);
727 NV50_IR_OPCODE_CASE(D2U, CVT);
728 NV50_IR_OPCODE_CASE(I2D, CVT);
729 NV50_IR_OPCODE_CASE(U2D, CVT);
730 NV50_IR_OPCODE_CASE(DRSQ, RSQ);
731 NV50_IR_OPCODE_CASE(DTRUNC, TRUNC);
732 NV50_IR_OPCODE_CASE(DCEIL, CEIL);
733 NV50_IR_OPCODE_CASE(DFLR, FLOOR);
734 NV50_IR_OPCODE_CASE(DROUND, CVT);
735
736 NV50_IR_OPCODE_CASE(IMUL_HI, MUL);
737 NV50_IR_OPCODE_CASE(UMUL_HI, MUL);
738
739 NV50_IR_OPCODE_CASE(SAMPLE, TEX);
740 NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
741 NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
742 NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
743 NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
744 NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
745 NV50_IR_OPCODE_CASE(SAMPLE_I, TXF);
746 NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF);
747 NV50_IR_OPCODE_CASE(GATHER4, TXG);
748 NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
749
750 NV50_IR_OPCODE_CASE(ATOMUADD, ATOM);
751 NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM);
752 NV50_IR_OPCODE_CASE(ATOMCAS, ATOM);
753 NV50_IR_OPCODE_CASE(ATOMAND, ATOM);
754 NV50_IR_OPCODE_CASE(ATOMOR, ATOM);
755 NV50_IR_OPCODE_CASE(ATOMXOR, ATOM);
756 NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM);
757 NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM);
758 NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM);
759 NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM);
760
761 NV50_IR_OPCODE_CASE(TEX2, TEX);
762 NV50_IR_OPCODE_CASE(TXB2, TXB);
763 NV50_IR_OPCODE_CASE(TXL2, TXL);
764
765 NV50_IR_OPCODE_CASE(IBFE, EXTBF);
766 NV50_IR_OPCODE_CASE(UBFE, EXTBF);
767 NV50_IR_OPCODE_CASE(BFI, INSBF);
768 NV50_IR_OPCODE_CASE(BREV, EXTBF);
769 NV50_IR_OPCODE_CASE(POPC, POPCNT);
770 NV50_IR_OPCODE_CASE(LSB, BFIND);
771 NV50_IR_OPCODE_CASE(IMSB, BFIND);
772 NV50_IR_OPCODE_CASE(UMSB, BFIND);
773
774 NV50_IR_OPCODE_CASE(END, EXIT);
775
776 default:
777 return nv50_ir::OP_NOP;
778 }
779 }
780
781 static uint16_t opcodeToSubOp(uint opcode)
782 {
783 switch (opcode) {
784 case TGSI_OPCODE_LFENCE: return NV50_IR_SUBOP_MEMBAR(L, GL);
785 case TGSI_OPCODE_SFENCE: return NV50_IR_SUBOP_MEMBAR(S, GL);
786 case TGSI_OPCODE_MFENCE: return NV50_IR_SUBOP_MEMBAR(M, GL);
787 case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD;
788 case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH;
789 case TGSI_OPCODE_ATOMCAS: return NV50_IR_SUBOP_ATOM_CAS;
790 case TGSI_OPCODE_ATOMAND: return NV50_IR_SUBOP_ATOM_AND;
791 case TGSI_OPCODE_ATOMOR: return NV50_IR_SUBOP_ATOM_OR;
792 case TGSI_OPCODE_ATOMXOR: return NV50_IR_SUBOP_ATOM_XOR;
793 case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN;
794 case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN;
795 case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX;
796 case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX;
797 case TGSI_OPCODE_IMUL_HI:
798 case TGSI_OPCODE_UMUL_HI:
799 return NV50_IR_SUBOP_MUL_HIGH;
800 default:
801 return 0;
802 }
803 }
804
805 bool Instruction::checkDstSrcAliasing() const
806 {
807 if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
808 return false;
809
810 for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
811 if (insn->Src[s].Register.File == TGSI_FILE_NULL)
812 break;
813 if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
814 insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
815 return true;
816 }
817 return false;
818 }
819
820 class Source
821 {
822 public:
823 Source(struct nv50_ir_prog_info *);
824 ~Source();
825
826 public:
827 bool scanSource();
828 unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
829
830 public:
831 struct tgsi_shader_info scan;
832 struct tgsi_full_instruction *insns;
833 const struct tgsi_token *tokens;
834 struct nv50_ir_prog_info *info;
835
836 nv50_ir::DynArray tempArrays;
837 nv50_ir::DynArray immdArrays;
838
839 typedef nv50_ir::BuildUtil::Location Location;
840 // these registers are per-subroutine, cannot be used for parameter passing
841 std::set<Location> locals;
842
843 std::set<int> indirectTempArrays;
844 std::map<int, int> indirectTempOffsets;
845 std::map<int, std::pair<int, int> > tempArrayInfo;
846 std::vector<int> tempArrayId;
847
848 int clipVertexOutput;
849
850 struct TextureView {
851 uint8_t target; // TGSI_TEXTURE_*
852 };
853 std::vector<TextureView> textureViews;
854
855 struct Resource {
856 uint8_t target; // TGSI_TEXTURE_*
857 bool raw;
858 uint8_t slot; // $surface index
859 };
860 std::vector<Resource> resources;
861
862 struct MemoryFile {
863 bool shared;
864 };
865 std::vector<MemoryFile> memoryFiles;
866
867 private:
868 int inferSysValDirection(unsigned sn) const;
869 bool scanDeclaration(const struct tgsi_full_declaration *);
870 bool scanInstruction(const struct tgsi_full_instruction *);
871 void scanProperty(const struct tgsi_full_property *);
872 void scanImmediate(const struct tgsi_full_immediate *);
873
874 inline bool isEdgeFlagPassthrough(const Instruction&) const;
875 };
876
877 Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
878 {
879 tokens = (const struct tgsi_token *)info->bin.source;
880
881 if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
882 tgsi_dump(tokens, 0);
883 }
884
885 Source::~Source()
886 {
887 if (insns)
888 FREE(insns);
889
890 if (info->immd.data)
891 FREE(info->immd.data);
892 if (info->immd.type)
893 FREE(info->immd.type);
894 }
895
896 bool Source::scanSource()
897 {
898 unsigned insnCount = 0;
899 struct tgsi_parse_context parse;
900
901 tgsi_scan_shader(tokens, &scan);
902
903 insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
904 sizeof(insns[0]));
905 if (!insns)
906 return false;
907
908 clipVertexOutput = -1;
909
910 textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1);
911 //resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1);
912 tempArrayId.resize(scan.file_max[TGSI_FILE_TEMPORARY] + 1);
913 memoryFiles.resize(scan.file_max[TGSI_FILE_MEMORY] + 1);
914
915 info->immd.bufSize = 0;
916
917 info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
918 info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
919 info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
920
921 if (info->type == PIPE_SHADER_FRAGMENT) {
922 info->prop.fp.writesDepth = scan.writes_z;
923 info->prop.fp.usesDiscard = scan.uses_kill;
924 } else
925 if (info->type == PIPE_SHADER_GEOMETRY) {
926 info->prop.gp.instanceCount = 1; // default value
927 }
928
929 info->io.viewportId = -1;
930
931 info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
932 info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
933
934 tgsi_parse_init(&parse, tokens);
935 while (!tgsi_parse_end_of_tokens(&parse)) {
936 tgsi_parse_token(&parse);
937
938 switch (parse.FullToken.Token.Type) {
939 case TGSI_TOKEN_TYPE_IMMEDIATE:
940 scanImmediate(&parse.FullToken.FullImmediate);
941 break;
942 case TGSI_TOKEN_TYPE_DECLARATION:
943 scanDeclaration(&parse.FullToken.FullDeclaration);
944 break;
945 case TGSI_TOKEN_TYPE_INSTRUCTION:
946 insns[insnCount++] = parse.FullToken.FullInstruction;
947 scanInstruction(&parse.FullToken.FullInstruction);
948 break;
949 case TGSI_TOKEN_TYPE_PROPERTY:
950 scanProperty(&parse.FullToken.FullProperty);
951 break;
952 default:
953 INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
954 break;
955 }
956 }
957 tgsi_parse_free(&parse);
958
959 if (indirectTempArrays.size()) {
960 int tempBase = 0;
961 for (std::set<int>::const_iterator it = indirectTempArrays.begin();
962 it != indirectTempArrays.end(); ++it) {
963 std::pair<int, int>& info = tempArrayInfo[*it];
964 indirectTempOffsets.insert(std::make_pair(*it, tempBase - info.first));
965 tempBase += info.second;
966 }
967 info->bin.tlsSpace += tempBase * 16;
968 }
969
970 if (info->io.genUserClip > 0) {
971 info->io.clipDistances = info->io.genUserClip;
972
973 const unsigned int nOut = (info->io.genUserClip + 3) / 4;
974
975 for (unsigned int n = 0; n < nOut; ++n) {
976 unsigned int i = info->numOutputs++;
977 info->out[i].id = i;
978 info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
979 info->out[i].si = n;
980 info->out[i].mask = ((1 << info->io.clipDistances) - 1) >> (n * 4);
981 }
982 }
983
984 return info->assignSlots(info) == 0;
985 }
986
987 void Source::scanProperty(const struct tgsi_full_property *prop)
988 {
989 switch (prop->Property.PropertyName) {
990 case TGSI_PROPERTY_GS_OUTPUT_PRIM:
991 info->prop.gp.outputPrim = prop->u[0].Data;
992 break;
993 case TGSI_PROPERTY_GS_INPUT_PRIM:
994 info->prop.gp.inputPrim = prop->u[0].Data;
995 break;
996 case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
997 info->prop.gp.maxVertices = prop->u[0].Data;
998 break;
999 case TGSI_PROPERTY_GS_INVOCATIONS:
1000 info->prop.gp.instanceCount = prop->u[0].Data;
1001 break;
1002 case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
1003 info->prop.fp.separateFragData = true;
1004 break;
1005 case TGSI_PROPERTY_FS_COORD_ORIGIN:
1006 case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
1007 // we don't care
1008 break;
1009 case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
1010 info->io.genUserClip = -1;
1011 break;
1012 case TGSI_PROPERTY_TCS_VERTICES_OUT:
1013 info->prop.tp.outputPatchSize = prop->u[0].Data;
1014 break;
1015 case TGSI_PROPERTY_TES_PRIM_MODE:
1016 info->prop.tp.domain = prop->u[0].Data;
1017 break;
1018 case TGSI_PROPERTY_TES_SPACING:
1019 info->prop.tp.partitioning = prop->u[0].Data;
1020 break;
1021 case TGSI_PROPERTY_TES_VERTEX_ORDER_CW:
1022 info->prop.tp.winding = prop->u[0].Data;
1023 break;
1024 case TGSI_PROPERTY_TES_POINT_MODE:
1025 if (prop->u[0].Data)
1026 info->prop.tp.outputPrim = PIPE_PRIM_POINTS;
1027 else
1028 info->prop.tp.outputPrim = PIPE_PRIM_TRIANGLES; /* anything but points */
1029 break;
1030 case TGSI_PROPERTY_NUM_CLIPDIST_ENABLED:
1031 info->io.clipDistances = prop->u[0].Data;
1032 break;
1033 case TGSI_PROPERTY_NUM_CULLDIST_ENABLED:
1034 info->io.cullDistances = prop->u[0].Data;
1035 break;
1036 default:
1037 INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
1038 break;
1039 }
1040 }
1041
1042 void Source::scanImmediate(const struct tgsi_full_immediate *imm)
1043 {
1044 const unsigned n = info->immd.count++;
1045
1046 assert(n < scan.immediate_count);
1047
1048 for (int c = 0; c < 4; ++c)
1049 info->immd.data[n * 4 + c] = imm->u[c].Uint;
1050
1051 info->immd.type[n] = imm->Immediate.DataType;
1052 }
1053
1054 int Source::inferSysValDirection(unsigned sn) const
1055 {
1056 switch (sn) {
1057 case TGSI_SEMANTIC_INSTANCEID:
1058 case TGSI_SEMANTIC_VERTEXID:
1059 return 1;
1060 case TGSI_SEMANTIC_LAYER:
1061 #if 0
1062 case TGSI_SEMANTIC_VIEWPORTINDEX:
1063 return 0;
1064 #endif
1065 case TGSI_SEMANTIC_PRIMID:
1066 return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
1067 default:
1068 return 0;
1069 }
1070 }
1071
1072 bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
1073 {
1074 unsigned i, c;
1075 unsigned sn = TGSI_SEMANTIC_GENERIC;
1076 unsigned si = 0;
1077 const unsigned first = decl->Range.First, last = decl->Range.Last;
1078 const int arrayId = decl->Array.ArrayID;
1079
1080 if (decl->Declaration.Semantic) {
1081 sn = decl->Semantic.Name;
1082 si = decl->Semantic.Index;
1083 }
1084
1085 if (decl->Declaration.Local) {
1086 for (i = first; i <= last; ++i) {
1087 for (c = 0; c < 4; ++c) {
1088 locals.insert(
1089 Location(decl->Declaration.File, decl->Dim.Index2D, i, c));
1090 }
1091 }
1092 }
1093
1094 switch (decl->Declaration.File) {
1095 case TGSI_FILE_INPUT:
1096 if (info->type == PIPE_SHADER_VERTEX) {
1097 // all vertex attributes are equal
1098 for (i = first; i <= last; ++i) {
1099 info->in[i].sn = TGSI_SEMANTIC_GENERIC;
1100 info->in[i].si = i;
1101 }
1102 } else {
1103 for (i = first; i <= last; ++i, ++si) {
1104 info->in[i].id = i;
1105 info->in[i].sn = sn;
1106 info->in[i].si = si;
1107 if (info->type == PIPE_SHADER_FRAGMENT) {
1108 // translate interpolation mode
1109 switch (decl->Interp.Interpolate) {
1110 case TGSI_INTERPOLATE_CONSTANT:
1111 info->in[i].flat = 1;
1112 break;
1113 case TGSI_INTERPOLATE_COLOR:
1114 info->in[i].sc = 1;
1115 break;
1116 case TGSI_INTERPOLATE_LINEAR:
1117 info->in[i].linear = 1;
1118 break;
1119 default:
1120 break;
1121 }
1122 if (decl->Interp.Location)
1123 info->in[i].centroid = 1;
1124 }
1125
1126 if (sn == TGSI_SEMANTIC_PATCH)
1127 info->in[i].patch = 1;
1128 if (sn == TGSI_SEMANTIC_PATCH)
1129 info->numPatchConstants = MAX2(info->numPatchConstants, si + 1);
1130 }
1131 }
1132 break;
1133 case TGSI_FILE_OUTPUT:
1134 for (i = first; i <= last; ++i, ++si) {
1135 switch (sn) {
1136 case TGSI_SEMANTIC_POSITION:
1137 if (info->type == PIPE_SHADER_FRAGMENT)
1138 info->io.fragDepth = i;
1139 else
1140 if (clipVertexOutput < 0)
1141 clipVertexOutput = i;
1142 break;
1143 case TGSI_SEMANTIC_COLOR:
1144 if (info->type == PIPE_SHADER_FRAGMENT)
1145 info->prop.fp.numColourResults++;
1146 break;
1147 case TGSI_SEMANTIC_EDGEFLAG:
1148 info->io.edgeFlagOut = i;
1149 break;
1150 case TGSI_SEMANTIC_CLIPVERTEX:
1151 clipVertexOutput = i;
1152 break;
1153 case TGSI_SEMANTIC_CLIPDIST:
1154 info->io.genUserClip = -1;
1155 break;
1156 case TGSI_SEMANTIC_SAMPLEMASK:
1157 info->io.sampleMask = i;
1158 break;
1159 case TGSI_SEMANTIC_VIEWPORT_INDEX:
1160 info->io.viewportId = i;
1161 break;
1162 case TGSI_SEMANTIC_PATCH:
1163 info->numPatchConstants = MAX2(info->numPatchConstants, si + 1);
1164 /* fallthrough */
1165 case TGSI_SEMANTIC_TESSOUTER:
1166 case TGSI_SEMANTIC_TESSINNER:
1167 info->out[i].patch = 1;
1168 break;
1169 default:
1170 break;
1171 }
1172 info->out[i].id = i;
1173 info->out[i].sn = sn;
1174 info->out[i].si = si;
1175 }
1176 break;
1177 case TGSI_FILE_SYSTEM_VALUE:
1178 switch (sn) {
1179 case TGSI_SEMANTIC_INSTANCEID:
1180 info->io.instanceId = first;
1181 break;
1182 case TGSI_SEMANTIC_VERTEXID:
1183 info->io.vertexId = first;
1184 break;
1185 case TGSI_SEMANTIC_BASEVERTEX:
1186 case TGSI_SEMANTIC_BASEINSTANCE:
1187 case TGSI_SEMANTIC_DRAWID:
1188 info->prop.vp.usesDrawParameters = true;
1189 break;
1190 default:
1191 break;
1192 }
1193 for (i = first; i <= last; ++i, ++si) {
1194 info->sv[i].sn = sn;
1195 info->sv[i].si = si;
1196 info->sv[i].input = inferSysValDirection(sn);
1197
1198 switch (sn) {
1199 case TGSI_SEMANTIC_TESSOUTER:
1200 case TGSI_SEMANTIC_TESSINNER:
1201 info->sv[i].patch = 1;
1202 break;
1203 }
1204 }
1205 break;
1206 /*
1207 case TGSI_FILE_RESOURCE:
1208 for (i = first; i <= last; ++i) {
1209 resources[i].target = decl->Resource.Resource;
1210 resources[i].raw = decl->Resource.Raw;
1211 resources[i].slot = i;
1212 }
1213 break;
1214 */
1215 case TGSI_FILE_SAMPLER_VIEW:
1216 for (i = first; i <= last; ++i)
1217 textureViews[i].target = decl->SamplerView.Resource;
1218 break;
1219 case TGSI_FILE_MEMORY:
1220 for (i = first; i <= last; ++i)
1221 memoryFiles[i].shared = decl->Declaration.Shared;
1222 break;
1223 case TGSI_FILE_NULL:
1224 case TGSI_FILE_TEMPORARY:
1225 for (i = first; i <= last; ++i)
1226 tempArrayId[i] = arrayId;
1227 if (arrayId)
1228 tempArrayInfo.insert(std::make_pair(arrayId, std::make_pair(
1229 first, last - first + 1)));
1230 break;
1231 case TGSI_FILE_ADDRESS:
1232 case TGSI_FILE_CONSTANT:
1233 case TGSI_FILE_IMMEDIATE:
1234 case TGSI_FILE_PREDICATE:
1235 case TGSI_FILE_SAMPLER:
1236 case TGSI_FILE_BUFFER:
1237 break;
1238 default:
1239 ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
1240 return false;
1241 }
1242 return true;
1243 }
1244
1245 inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
1246 {
1247 return insn.getOpcode() == TGSI_OPCODE_MOV &&
1248 insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
1249 insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
1250 }
1251
1252 bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
1253 {
1254 Instruction insn(inst);
1255
1256 if (insn.getOpcode() == TGSI_OPCODE_BARRIER)
1257 info->numBarriers = 1;
1258
1259 if (insn.dstCount()) {
1260 if (insn.getDst(0).getFile() == TGSI_FILE_OUTPUT) {
1261 Instruction::DstRegister dst = insn.getDst(0);
1262
1263 if (dst.isIndirect(0))
1264 for (unsigned i = 0; i < info->numOutputs; ++i)
1265 info->out[i].mask = 0xf;
1266 else
1267 info->out[dst.getIndex(0)].mask |= dst.getMask();
1268
1269 if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE ||
1270 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID ||
1271 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_LAYER ||
1272 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_VIEWPORT_INDEX ||
1273 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG)
1274 info->out[dst.getIndex(0)].mask &= 1;
1275
1276 if (isEdgeFlagPassthrough(insn))
1277 info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
1278 } else
1279 if (insn.getDst(0).getFile() == TGSI_FILE_TEMPORARY) {
1280 if (insn.getDst(0).isIndirect(0))
1281 indirectTempArrays.insert(insn.getDst(0).getArrayId());
1282 } else
1283 if (insn.getDst(0).getFile() == TGSI_FILE_BUFFER) {
1284 info->io.globalAccess |= 0x2;
1285 }
1286 }
1287
1288 for (unsigned s = 0; s < insn.srcCount(); ++s) {
1289 Instruction::SrcRegister src = insn.getSrc(s);
1290 if (src.getFile() == TGSI_FILE_TEMPORARY) {
1291 if (src.isIndirect(0))
1292 indirectTempArrays.insert(src.getArrayId());
1293 } else
1294 if (src.getFile() == TGSI_FILE_BUFFER) {
1295 info->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ?
1296 0x1 : 0x2;
1297 } else
1298 if (src.getFile() == TGSI_FILE_OUTPUT) {
1299 if (src.isIndirect(0)) {
1300 // We don't know which one is accessed, just mark everything for
1301 // reading. This is an extremely unlikely occurrence.
1302 for (unsigned i = 0; i < info->numOutputs; ++i)
1303 info->out[i].oread = 1;
1304 } else {
1305 info->out[src.getIndex(0)].oread = 1;
1306 }
1307 }
1308 if (src.getFile() != TGSI_FILE_INPUT)
1309 continue;
1310 unsigned mask = insn.srcMask(s);
1311
1312 if (src.isIndirect(0)) {
1313 for (unsigned i = 0; i < info->numInputs; ++i)
1314 info->in[i].mask = 0xf;
1315 } else {
1316 const int i = src.getIndex(0);
1317 for (unsigned c = 0; c < 4; ++c) {
1318 if (!(mask & (1 << c)))
1319 continue;
1320 int k = src.getSwizzle(c);
1321 if (k <= TGSI_SWIZZLE_W)
1322 info->in[i].mask |= 1 << k;
1323 }
1324 switch (info->in[i].sn) {
1325 case TGSI_SEMANTIC_PSIZE:
1326 case TGSI_SEMANTIC_PRIMID:
1327 case TGSI_SEMANTIC_FOG:
1328 info->in[i].mask &= 0x1;
1329 break;
1330 case TGSI_SEMANTIC_PCOORD:
1331 info->in[i].mask &= 0x3;
1332 break;
1333 default:
1334 break;
1335 }
1336 }
1337 }
1338 return true;
1339 }
1340
1341 nv50_ir::TexInstruction::Target
1342 Instruction::getTexture(const tgsi::Source *code, int s) const
1343 {
1344 // XXX: indirect access
1345 unsigned int r;
1346
1347 switch (getSrc(s).getFile()) {
1348 /*
1349 case TGSI_FILE_RESOURCE:
1350 r = getSrc(s).getIndex(0);
1351 return translateTexture(code->resources.at(r).target);
1352 */
1353 case TGSI_FILE_SAMPLER_VIEW:
1354 r = getSrc(s).getIndex(0);
1355 return translateTexture(code->textureViews.at(r).target);
1356 default:
1357 return translateTexture(insn->Texture.Texture);
1358 }
1359 }
1360
1361 } // namespace tgsi
1362
1363 namespace {
1364
1365 using namespace nv50_ir;
1366
1367 class Converter : public BuildUtil
1368 {
1369 public:
1370 Converter(Program *, const tgsi::Source *);
1371 ~Converter();
1372
1373 bool run();
1374
1375 private:
1376 struct Subroutine
1377 {
1378 Subroutine(Function *f) : f(f) { }
1379 Function *f;
1380 ValueMap values;
1381 };
1382
1383 Value *shiftAddress(Value *);
1384 Value *getVertexBase(int s);
1385 Value *getOutputBase(int s);
1386 DataArray *getArrayForFile(unsigned file, int idx);
1387 Value *fetchSrc(int s, int c);
1388 Value *acquireDst(int d, int c);
1389 void storeDst(int d, int c, Value *);
1390
1391 Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1392 void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1393 Value *val, Value *ptr);
1394
1395 void adjustTempIndex(int arrayId, int &idx, int &idx2d) const;
1396 Value *applySrcMod(Value *, int s, int c);
1397
1398 Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1399 Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1400 Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1401
1402 bool handleInstruction(const struct tgsi_full_instruction *);
1403 void exportOutputs();
1404 inline Subroutine *getSubroutine(unsigned ip);
1405 inline Subroutine *getSubroutine(Function *);
1406 inline bool isEndOfSubroutine(uint ip);
1407
1408 void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1409
1410 // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1411 void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1412 void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1413 void handleTXF(Value *dst0[4], int R, int L_M);
1414 void handleTXQ(Value *dst0[4], enum TexQuery, int R);
1415 void handleLIT(Value *dst0[4]);
1416 void handleUserClipPlanes();
1417
1418 Symbol *getResourceBase(int r);
1419 void getResourceCoords(std::vector<Value *>&, int r, int s);
1420
1421 void handleLOAD(Value *dst0[4]);
1422 void handleSTORE();
1423 void handleATOM(Value *dst0[4], DataType, uint16_t subOp);
1424
1425 void handleINTERP(Value *dst0[4]);
1426
1427 uint8_t translateInterpMode(const struct nv50_ir_varying *var,
1428 operation& op);
1429 Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1430
1431 void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1432
1433 Value *buildDot(int dim);
1434
1435 class BindArgumentsPass : public Pass {
1436 public:
1437 BindArgumentsPass(Converter &conv) : conv(conv) { }
1438
1439 private:
1440 Converter &conv;
1441 Subroutine *sub;
1442
1443 inline const Location *getValueLocation(Subroutine *, Value *);
1444
1445 template<typename T> inline void
1446 updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1447 T (Function::*proto));
1448
1449 template<typename T> inline void
1450 updatePrototype(BitSet *set, void (Function::*updateSet)(),
1451 T (Function::*proto));
1452
1453 protected:
1454 bool visit(Function *);
1455 bool visit(BasicBlock *bb) { return false; }
1456 };
1457
1458 private:
1459 const tgsi::Source *code;
1460 const struct nv50_ir_prog_info *info;
1461
1462 struct {
1463 std::map<unsigned, Subroutine> map;
1464 Subroutine *cur;
1465 } sub;
1466
1467 uint ip; // instruction pointer
1468
1469 tgsi::Instruction tgsi;
1470
1471 DataType dstTy;
1472 DataType srcTy;
1473
1474 DataArray tData; // TGSI_FILE_TEMPORARY
1475 DataArray lData; // TGSI_FILE_TEMPORARY, for indirect arrays
1476 DataArray aData; // TGSI_FILE_ADDRESS
1477 DataArray pData; // TGSI_FILE_PREDICATE
1478 DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1479
1480 Value *zero;
1481 Value *fragCoord[4];
1482 Value *clipVtx[4];
1483
1484 Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1485 uint8_t vtxBaseValid;
1486
1487 Value *outBase; // base address of vertex out patch (for TCP)
1488
1489 Stack condBBs; // fork BB, then else clause BB
1490 Stack joinBBs; // fork BB, for inserting join ops on ENDIF
1491 Stack loopBBs; // loop headers
1492 Stack breakBBs; // end of / after loop
1493
1494 Value *viewport;
1495 };
1496
1497 Symbol *
1498 Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1499 {
1500 const int swz = src.getSwizzle(c);
1501
1502 /* TODO: Use Array ID when it's available for the index */
1503 return makeSym(src.getFile(),
1504 src.is2D() ? src.getIndex(1) : 0,
1505 src.getIndex(0), swz,
1506 src.getIndex(0) * 16 + swz * 4);
1507 }
1508
1509 Symbol *
1510 Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1511 {
1512 /* TODO: Use Array ID when it's available for the index */
1513 return makeSym(dst.getFile(),
1514 dst.is2D() ? dst.getIndex(1) : 0,
1515 dst.getIndex(0), c,
1516 dst.getIndex(0) * 16 + c * 4);
1517 }
1518
1519 Symbol *
1520 Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1521 {
1522 Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1523
1524 sym->reg.fileIndex = fileIdx;
1525
1526 if (tgsiFile == TGSI_FILE_MEMORY && code->memoryFiles[fileIdx].shared)
1527 sym->setFile(FILE_MEMORY_SHARED);
1528
1529 if (idx >= 0) {
1530 if (sym->reg.file == FILE_SHADER_INPUT)
1531 sym->setOffset(info->in[idx].slot[c] * 4);
1532 else
1533 if (sym->reg.file == FILE_SHADER_OUTPUT)
1534 sym->setOffset(info->out[idx].slot[c] * 4);
1535 else
1536 if (sym->reg.file == FILE_SYSTEM_VALUE)
1537 sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
1538 else
1539 sym->setOffset(address);
1540 } else {
1541 sym->setOffset(address);
1542 }
1543 return sym;
1544 }
1545
1546 uint8_t
1547 Converter::translateInterpMode(const struct nv50_ir_varying *var, operation& op)
1548 {
1549 uint8_t mode = NV50_IR_INTERP_PERSPECTIVE;
1550
1551 if (var->flat)
1552 mode = NV50_IR_INTERP_FLAT;
1553 else
1554 if (var->linear)
1555 mode = NV50_IR_INTERP_LINEAR;
1556 else
1557 if (var->sc)
1558 mode = NV50_IR_INTERP_SC;
1559
1560 op = (mode == NV50_IR_INTERP_PERSPECTIVE || mode == NV50_IR_INTERP_SC)
1561 ? OP_PINTERP : OP_LINTERP;
1562
1563 if (var->centroid)
1564 mode |= NV50_IR_INTERP_CENTROID;
1565
1566 return mode;
1567 }
1568
1569 Value *
1570 Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1571 {
1572 operation op;
1573
1574 // XXX: no way to know interpolation mode if we don't know what's accessed
1575 const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
1576 src.getIndex(0)], op);
1577
1578 Instruction *insn = new_Instruction(func, op, TYPE_F32);
1579
1580 insn->setDef(0, getScratch());
1581 insn->setSrc(0, srcToSym(src, c));
1582 if (op == OP_PINTERP)
1583 insn->setSrc(1, fragCoord[3]);
1584 if (ptr)
1585 insn->setIndirect(0, 0, ptr);
1586
1587 insn->setInterpolate(mode);
1588
1589 bb->insertTail(insn);
1590 return insn->getDef(0);
1591 }
1592
1593 Value *
1594 Converter::applySrcMod(Value *val, int s, int c)
1595 {
1596 Modifier m = tgsi.getSrc(s).getMod(c);
1597 DataType ty = tgsi.inferSrcType();
1598
1599 if (m & Modifier(NV50_IR_MOD_ABS))
1600 val = mkOp1v(OP_ABS, ty, getScratch(), val);
1601
1602 if (m & Modifier(NV50_IR_MOD_NEG))
1603 val = mkOp1v(OP_NEG, ty, getScratch(), val);
1604
1605 return val;
1606 }
1607
1608 Value *
1609 Converter::getVertexBase(int s)
1610 {
1611 assert(s < 5);
1612 if (!(vtxBaseValid & (1 << s))) {
1613 const int index = tgsi.getSrc(s).getIndex(1);
1614 Value *rel = NULL;
1615 if (tgsi.getSrc(s).isIndirect(1))
1616 rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1617 vtxBaseValid |= 1 << s;
1618 vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1619 mkImm(index), rel);
1620 }
1621 return vtxBase[s];
1622 }
1623
1624 Value *
1625 Converter::getOutputBase(int s)
1626 {
1627 assert(s < 5);
1628 if (!(vtxBaseValid & (1 << s))) {
1629 Value *offset = loadImm(NULL, tgsi.getSrc(s).getIndex(1));
1630 if (tgsi.getSrc(s).isIndirect(1))
1631 offset = mkOp2v(OP_ADD, TYPE_U32, getSSA(),
1632 fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL),
1633 offset);
1634 vtxBaseValid |= 1 << s;
1635 vtxBase[s] = mkOp2v(OP_ADD, TYPE_U32, getSSA(), outBase, offset);
1636 }
1637 return vtxBase[s];
1638 }
1639
1640 Value *
1641 Converter::fetchSrc(int s, int c)
1642 {
1643 Value *res;
1644 Value *ptr = NULL, *dimRel = NULL;
1645
1646 tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1647
1648 if (src.isIndirect(0))
1649 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1650
1651 if (src.is2D()) {
1652 switch (src.getFile()) {
1653 case TGSI_FILE_OUTPUT:
1654 dimRel = getOutputBase(s);
1655 break;
1656 case TGSI_FILE_INPUT:
1657 dimRel = getVertexBase(s);
1658 break;
1659 case TGSI_FILE_CONSTANT:
1660 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1661 if (src.isIndirect(1))
1662 dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1663 break;
1664 default:
1665 break;
1666 }
1667 }
1668
1669 res = fetchSrc(src, c, ptr);
1670
1671 if (dimRel)
1672 res->getInsn()->setIndirect(0, 1, dimRel);
1673
1674 return applySrcMod(res, s, c);
1675 }
1676
1677 Converter::DataArray *
1678 Converter::getArrayForFile(unsigned file, int idx)
1679 {
1680 switch (file) {
1681 case TGSI_FILE_TEMPORARY:
1682 return idx == 0 ? &tData : &lData;
1683 case TGSI_FILE_PREDICATE:
1684 return &pData;
1685 case TGSI_FILE_ADDRESS:
1686 return &aData;
1687 case TGSI_FILE_OUTPUT:
1688 assert(prog->getType() == Program::TYPE_FRAGMENT);
1689 return &oData;
1690 default:
1691 assert(!"invalid/unhandled TGSI source file");
1692 return NULL;
1693 }
1694 }
1695
1696 Value *
1697 Converter::shiftAddress(Value *index)
1698 {
1699 if (!index)
1700 return NULL;
1701 return mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), index, mkImm(4));
1702 }
1703
1704 void
1705 Converter::adjustTempIndex(int arrayId, int &idx, int &idx2d) const
1706 {
1707 std::map<int, int>::const_iterator it =
1708 code->indirectTempOffsets.find(arrayId);
1709 if (it == code->indirectTempOffsets.end())
1710 return;
1711
1712 idx2d = 1;
1713 idx += it->second;
1714 }
1715
1716 Value *
1717 Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1718 {
1719 int idx2d = src.is2D() ? src.getIndex(1) : 0;
1720 int idx = src.getIndex(0);
1721 const int swz = src.getSwizzle(c);
1722 Instruction *ld;
1723
1724 switch (src.getFile()) {
1725 case TGSI_FILE_IMMEDIATE:
1726 assert(!ptr);
1727 return loadImm(NULL, info->immd.data[idx * 4 + swz]);
1728 case TGSI_FILE_CONSTANT:
1729 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1730 case TGSI_FILE_INPUT:
1731 if (prog->getType() == Program::TYPE_FRAGMENT) {
1732 // don't load masked inputs, won't be assigned a slot
1733 if (!ptr && !(info->in[idx].mask & (1 << swz)))
1734 return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
1735 return interpolate(src, c, shiftAddress(ptr));
1736 } else
1737 if (prog->getType() == Program::TYPE_GEOMETRY) {
1738 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_PRIMID)
1739 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_PRIMITIVE_ID, 0));
1740 // XXX: This is going to be a problem with scalar arrays, i.e. when
1741 // we cannot assume that the address is given in units of vec4.
1742 //
1743 // nv50 and nvc0 need different things here, so let the lowering
1744 // passes decide what to do with the address
1745 if (ptr)
1746 return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
1747 }
1748 ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr));
1749 ld->perPatch = info->in[idx].patch;
1750 return ld->getDef(0);
1751 case TGSI_FILE_OUTPUT:
1752 assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
1753 ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr));
1754 ld->perPatch = info->out[idx].patch;
1755 return ld->getDef(0);
1756 case TGSI_FILE_SYSTEM_VALUE:
1757 assert(!ptr);
1758 ld = mkOp1(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
1759 ld->perPatch = info->sv[idx].patch;
1760 return ld->getDef(0);
1761 case TGSI_FILE_TEMPORARY: {
1762 int arrayid = src.getArrayId();
1763 if (!arrayid)
1764 arrayid = code->tempArrayId[idx];
1765 adjustTempIndex(arrayid, idx, idx2d);
1766 }
1767 /* fallthrough */
1768 default:
1769 return getArrayForFile(src.getFile(), idx2d)->load(
1770 sub.cur->values, idx, swz, shiftAddress(ptr));
1771 }
1772 }
1773
1774 Value *
1775 Converter::acquireDst(int d, int c)
1776 {
1777 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1778 const unsigned f = dst.getFile();
1779 int idx = dst.getIndex(0);
1780 int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1781
1782 if (dst.isMasked(c) || f == TGSI_FILE_BUFFER || f == TGSI_FILE_MEMORY)
1783 return NULL;
1784
1785 if (dst.isIndirect(0) ||
1786 f == TGSI_FILE_SYSTEM_VALUE ||
1787 (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
1788 return getScratch();
1789
1790 if (f == TGSI_FILE_TEMPORARY) {
1791 int arrayid = dst.getArrayId();
1792 if (!arrayid)
1793 arrayid = code->tempArrayId[idx];
1794 adjustTempIndex(arrayid, idx, idx2d);
1795 }
1796
1797 return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
1798 }
1799
1800 void
1801 Converter::storeDst(int d, int c, Value *val)
1802 {
1803 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1804
1805 if (tgsi.getSaturate()) {
1806 mkOp1(OP_SAT, dstTy, val, val);
1807 }
1808
1809 Value *ptr = NULL;
1810 if (dst.isIndirect(0))
1811 ptr = shiftAddress(fetchSrc(dst.getIndirect(0), 0, NULL));
1812
1813 if (info->io.genUserClip > 0 &&
1814 dst.getFile() == TGSI_FILE_OUTPUT &&
1815 !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
1816 mkMov(clipVtx[c], val);
1817 val = clipVtx[c];
1818 }
1819
1820 storeDst(dst, c, val, ptr);
1821 }
1822
1823 void
1824 Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
1825 Value *val, Value *ptr)
1826 {
1827 const unsigned f = dst.getFile();
1828 int idx = dst.getIndex(0);
1829 int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1830
1831 if (f == TGSI_FILE_SYSTEM_VALUE) {
1832 assert(!ptr);
1833 mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
1834 } else
1835 if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
1836
1837 if (ptr || (info->out[idx].mask & (1 << c))) {
1838 /* Save the viewport index into a scratch register so that it can be
1839 exported at EMIT time */
1840 if (info->out[idx].sn == TGSI_SEMANTIC_VIEWPORT_INDEX &&
1841 viewport != NULL)
1842 mkOp1(OP_MOV, TYPE_U32, viewport, val);
1843 else
1844 mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val)->perPatch =
1845 info->out[idx].patch;
1846 }
1847 } else
1848 if (f == TGSI_FILE_TEMPORARY ||
1849 f == TGSI_FILE_PREDICATE ||
1850 f == TGSI_FILE_ADDRESS ||
1851 f == TGSI_FILE_OUTPUT) {
1852 if (f == TGSI_FILE_TEMPORARY) {
1853 int arrayid = dst.getArrayId();
1854 if (!arrayid)
1855 arrayid = code->tempArrayId[idx];
1856 adjustTempIndex(arrayid, idx, idx2d);
1857 }
1858
1859 getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
1860 } else {
1861 assert(!"invalid dst file");
1862 }
1863 }
1864
1865 #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
1866 for (chan = 0; chan < 4; ++chan) \
1867 if (!inst.getDst(d).isMasked(chan))
1868
1869 Value *
1870 Converter::buildDot(int dim)
1871 {
1872 assert(dim > 0);
1873
1874 Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
1875 Value *dotp = getScratch();
1876
1877 mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1);
1878
1879 for (int c = 1; c < dim; ++c) {
1880 src0 = fetchSrc(0, c);
1881 src1 = fetchSrc(1, c);
1882 mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp);
1883 }
1884 return dotp;
1885 }
1886
1887 void
1888 Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
1889 {
1890 FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
1891 join->fixed = 1;
1892 conv->insertHead(join);
1893
1894 assert(!fork->joinAt);
1895 fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
1896 fork->insertBefore(fork->getExit(), fork->joinAt);
1897 }
1898
1899 void
1900 Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
1901 {
1902 unsigned rIdx = 0, sIdx = 0;
1903
1904 if (R >= 0)
1905 rIdx = tgsi.getSrc(R).getIndex(0);
1906 if (S >= 0)
1907 sIdx = tgsi.getSrc(S).getIndex(0);
1908
1909 tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
1910
1911 if (tgsi.getSrc(R).isIndirect(0)) {
1912 tex->tex.rIndirectSrc = s;
1913 tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
1914 }
1915 if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
1916 tex->tex.sIndirectSrc = s;
1917 tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
1918 }
1919 }
1920
1921 void
1922 Converter::handleTXQ(Value *dst0[4], enum TexQuery query, int R)
1923 {
1924 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1925 tex->tex.query = query;
1926 unsigned int c, d;
1927
1928 for (d = 0, c = 0; c < 4; ++c) {
1929 if (!dst0[c])
1930 continue;
1931 tex->tex.mask |= 1 << c;
1932 tex->setDef(d++, dst0[c]);
1933 }
1934 if (query == TXQ_DIMS)
1935 tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
1936 else
1937 tex->setSrc((c = 0), zero);
1938
1939 setTexRS(tex, ++c, R, -1);
1940
1941 bb->insertTail(tex);
1942 }
1943
1944 void
1945 Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
1946 {
1947 Value *proj = fetchSrc(0, 3);
1948 Instruction *insn = proj->getUniqueInsn();
1949 int c;
1950
1951 if (insn->op == OP_PINTERP) {
1952 bb->insertTail(insn = cloneForward(func, insn));
1953 insn->op = OP_LINTERP;
1954 insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
1955 insn->setSrc(1, NULL);
1956 proj = insn->getDef(0);
1957 }
1958 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
1959
1960 for (c = 0; c < 4; ++c) {
1961 if (!(mask & (1 << c)))
1962 continue;
1963 if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
1964 continue;
1965 mask &= ~(1 << c);
1966
1967 bb->insertTail(insn = cloneForward(func, insn));
1968 insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
1969 insn->setSrc(1, proj);
1970 dst[c] = insn->getDef(0);
1971 }
1972 if (!mask)
1973 return;
1974
1975 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
1976
1977 for (c = 0; c < 4; ++c)
1978 if (mask & (1 << c))
1979 dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
1980 }
1981
1982 // order of nv50 ir sources: x y z layer lod/bias shadow
1983 // order of TGSI TEX sources: x y z layer shadow lod/bias
1984 // lowering will finally set the hw specific order (like array first on nvc0)
1985 void
1986 Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
1987 {
1988 Value *val;
1989 Value *arg[4], *src[8];
1990 Value *lod = NULL, *shd = NULL;
1991 unsigned int s, c, d;
1992 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1993
1994 TexInstruction::Target tgt = tgsi.getTexture(code, R);
1995
1996 for (s = 0; s < tgt.getArgCount(); ++s)
1997 arg[s] = src[s] = fetchSrc(0, s);
1998
1999 if (texi->op == OP_TXL || texi->op == OP_TXB)
2000 lod = fetchSrc(L >> 4, L & 3);
2001
2002 if (C == 0x0f)
2003 C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
2004
2005 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 &&
2006 tgt == TEX_TARGET_CUBE_ARRAY_SHADOW)
2007 shd = fetchSrc(1, 0);
2008 else if (tgt.isShadow())
2009 shd = fetchSrc(C >> 4, C & 3);
2010
2011 if (texi->op == OP_TXD) {
2012 for (c = 0; c < tgt.getDim() + tgt.isCube(); ++c) {
2013 texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
2014 texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
2015 }
2016 }
2017
2018 // cube textures don't care about projection value, it's divided out
2019 if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
2020 unsigned int n = tgt.getDim();
2021 if (shd) {
2022 arg[n] = shd;
2023 ++n;
2024 assert(tgt.getDim() == tgt.getArgCount());
2025 }
2026 loadProjTexCoords(src, arg, (1 << n) - 1);
2027 if (shd)
2028 shd = src[n - 1];
2029 }
2030
2031 if (tgt.isCube()) {
2032 for (c = 0; c < 3; ++c)
2033 src[c] = mkOp1v(OP_ABS, TYPE_F32, getSSA(), arg[c]);
2034 val = getScratch();
2035 mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
2036 mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
2037 mkOp1(OP_RCP, TYPE_F32, val, val);
2038 for (c = 0; c < 3; ++c)
2039 src[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), arg[c], val);
2040 }
2041
2042 for (c = 0, d = 0; c < 4; ++c) {
2043 if (dst[c]) {
2044 texi->setDef(d++, dst[c]);
2045 texi->tex.mask |= 1 << c;
2046 } else {
2047 // NOTE: maybe hook up def too, for CSE
2048 }
2049 }
2050 for (s = 0; s < tgt.getArgCount(); ++s)
2051 texi->setSrc(s, src[s]);
2052 if (lod)
2053 texi->setSrc(s++, lod);
2054 if (shd)
2055 texi->setSrc(s++, shd);
2056
2057 setTexRS(texi, s, R, S);
2058
2059 if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
2060 texi->tex.levelZero = true;
2061 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 && !tgt.isShadow())
2062 texi->tex.gatherComp = tgsi.getSrc(1).getValueU32(0, info);
2063
2064 texi->tex.useOffsets = tgsi.getNumTexOffsets();
2065 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
2066 for (c = 0; c < 3; ++c) {
2067 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
2068 texi->offset[s][c].setInsn(texi);
2069 }
2070 }
2071
2072 bb->insertTail(texi);
2073 }
2074
2075 // 1st source: xyz = coordinates, w = lod/sample
2076 // 2nd source: offset
2077 void
2078 Converter::handleTXF(Value *dst[4], int R, int L_M)
2079 {
2080 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
2081 int ms;
2082 unsigned int c, d, s;
2083
2084 texi->tex.target = tgsi.getTexture(code, R);
2085
2086 ms = texi->tex.target.isMS() ? 1 : 0;
2087 texi->tex.levelZero = ms; /* MS textures don't have mip-maps */
2088
2089 for (c = 0, d = 0; c < 4; ++c) {
2090 if (dst[c]) {
2091 texi->setDef(d++, dst[c]);
2092 texi->tex.mask |= 1 << c;
2093 }
2094 }
2095 for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c)
2096 texi->setSrc(c, fetchSrc(0, c));
2097 texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms
2098
2099 setTexRS(texi, c, R, -1);
2100
2101 texi->tex.useOffsets = tgsi.getNumTexOffsets();
2102 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
2103 for (c = 0; c < 3; ++c) {
2104 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
2105 texi->offset[s][c].setInsn(texi);
2106 }
2107 }
2108
2109 bb->insertTail(texi);
2110 }
2111
2112 void
2113 Converter::handleLIT(Value *dst0[4])
2114 {
2115 Value *val0 = NULL;
2116 unsigned int mask = tgsi.getDst(0).getMask();
2117
2118 if (mask & (1 << 0))
2119 loadImm(dst0[0], 1.0f);
2120
2121 if (mask & (1 << 3))
2122 loadImm(dst0[3], 1.0f);
2123
2124 if (mask & (3 << 1)) {
2125 val0 = getScratch();
2126 mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
2127 if (mask & (1 << 1))
2128 mkMov(dst0[1], val0);
2129 }
2130
2131 if (mask & (1 << 2)) {
2132 Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
2133 Value *val1 = getScratch(), *val3 = getScratch();
2134
2135 Value *pos128 = loadImm(NULL, +127.999999f);
2136 Value *neg128 = loadImm(NULL, -127.999999f);
2137
2138 mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
2139 mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
2140 mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
2141 mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
2142
2143 mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], TYPE_F32, val3, zero, val0);
2144 }
2145 }
2146
2147 static inline bool
2148 isResourceSpecial(const int r)
2149 {
2150 return (r == TGSI_RESOURCE_GLOBAL ||
2151 r == TGSI_RESOURCE_LOCAL ||
2152 r == TGSI_RESOURCE_PRIVATE ||
2153 r == TGSI_RESOURCE_INPUT);
2154 }
2155
2156 static inline bool
2157 isResourceRaw(const tgsi::Source *code, const int r)
2158 {
2159 return isResourceSpecial(r) || code->resources[r].raw;
2160 }
2161
2162 static inline nv50_ir::TexTarget
2163 getResourceTarget(const tgsi::Source *code, int r)
2164 {
2165 if (isResourceSpecial(r))
2166 return nv50_ir::TEX_TARGET_BUFFER;
2167 return tgsi::translateTexture(code->resources.at(r).target);
2168 }
2169
2170 Symbol *
2171 Converter::getResourceBase(const int r)
2172 {
2173 Symbol *sym = NULL;
2174
2175 switch (r) {
2176 case TGSI_RESOURCE_GLOBAL:
2177 sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL, 15);
2178 break;
2179 case TGSI_RESOURCE_LOCAL:
2180 assert(prog->getType() == Program::TYPE_COMPUTE);
2181 sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32,
2182 info->prop.cp.sharedOffset);
2183 break;
2184 case TGSI_RESOURCE_PRIVATE:
2185 sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32,
2186 info->bin.tlsSpace);
2187 break;
2188 case TGSI_RESOURCE_INPUT:
2189 assert(prog->getType() == Program::TYPE_COMPUTE);
2190 sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32,
2191 info->prop.cp.inputOffset);
2192 break;
2193 default:
2194 sym = new_Symbol(prog,
2195 nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot);
2196 break;
2197 }
2198 return sym;
2199 }
2200
2201 void
2202 Converter::getResourceCoords(std::vector<Value *> &coords, int r, int s)
2203 {
2204 const int arg =
2205 TexInstruction::Target(getResourceTarget(code, r)).getArgCount();
2206
2207 for (int c = 0; c < arg; ++c)
2208 coords.push_back(fetchSrc(s, c));
2209
2210 // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk
2211 if (r == TGSI_RESOURCE_LOCAL ||
2212 r == TGSI_RESOURCE_PRIVATE ||
2213 r == TGSI_RESOURCE_INPUT)
2214 coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS),
2215 coords[0]);
2216 }
2217
2218 static inline int
2219 partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask)
2220 {
2221 int n = 0;
2222
2223 while (mask) {
2224 if (mask & 1) {
2225 size[n]++;
2226 } else {
2227 if (size[n])
2228 comp[n = 1] = size[0] + 1;
2229 else
2230 comp[n]++;
2231 }
2232 mask >>= 1;
2233 }
2234 if (size[0] == 3) {
2235 n = 1;
2236 size[0] = (comp[0] == 1) ? 1 : 2;
2237 size[1] = 3 - size[0];
2238 comp[1] = comp[0] + size[0];
2239 }
2240 return n + 1;
2241 }
2242
2243 // For raw loads, granularity is 4 byte.
2244 // Usage of the texture read mask on OP_SULDP is not allowed.
2245 void
2246 Converter::handleLOAD(Value *dst0[4])
2247 {
2248 const int r = tgsi.getSrc(0).getIndex(0);
2249 int c;
2250 std::vector<Value *> off, src, ldv, def;
2251
2252 if (tgsi.getSrc(0).getFile() == TGSI_FILE_BUFFER ||
2253 tgsi.getSrc(0).getFile() == TGSI_FILE_MEMORY) {
2254 for (c = 0; c < 4; ++c) {
2255 if (!dst0[c])
2256 continue;
2257
2258 Value *off = fetchSrc(1, c);
2259 Symbol *sym;
2260 if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE) {
2261 off = NULL;
2262 sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c,
2263 tgsi.getSrc(1).getValueU32(0, info) + 4 * c);
2264 } else {
2265 sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c, 4 * c);
2266 }
2267
2268 Instruction *ld = mkLoad(TYPE_U32, dst0[c], sym, off);
2269 ld->cache = tgsi.getCacheMode();
2270 if (tgsi.getSrc(0).isIndirect(0))
2271 ld->setIndirect(0, 1, fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0));
2272 }
2273 return;
2274 }
2275
2276 getResourceCoords(off, r, 1);
2277
2278 if (isResourceRaw(code, r)) {
2279 uint8_t mask = 0;
2280 uint8_t comp[2] = { 0, 0 };
2281 uint8_t size[2] = { 0, 0 };
2282
2283 Symbol *base = getResourceBase(r);
2284
2285 // determine the base and size of the at most 2 load ops
2286 for (c = 0; c < 4; ++c)
2287 if (!tgsi.getDst(0).isMasked(c))
2288 mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X);
2289
2290 int n = partitionLoadStore(comp, size, mask);
2291
2292 src = off;
2293
2294 def.resize(4); // index by component, the ones we need will be non-NULL
2295 for (c = 0; c < 4; ++c) {
2296 if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c))
2297 def[c] = dst0[c];
2298 else
2299 if (mask & (1 << c))
2300 def[c] = getScratch();
2301 }
2302
2303 const bool useLd = isResourceSpecial(r) ||
2304 (info->io.nv50styleSurfaces &&
2305 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2306
2307 for (int i = 0; i < n; ++i) {
2308 ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]);
2309
2310 if (comp[i]) // adjust x component of source address if necessary
2311 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2312 off[0], mkImm(comp[i] * 4));
2313 else
2314 src[0] = off[0];
2315
2316 if (useLd) {
2317 Instruction *ld =
2318 mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]);
2319 for (size_t c = 1; c < ldv.size(); ++c)
2320 ld->setDef(c, ldv[c]);
2321 } else {
2322 mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot,
2323 0, ldv, src)->dType = typeOfSize(size[i] * 4);
2324 }
2325 }
2326 } else {
2327 def.resize(4);
2328 for (c = 0; c < 4; ++c) {
2329 if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
2330 def[c] = getScratch();
2331 else
2332 def[c] = dst0[c];
2333 }
2334
2335 mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0,
2336 def, off);
2337 }
2338 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2339 if (dst0[c] != def[c])
2340 mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
2341 }
2342
2343 // For formatted stores, the write mask on OP_SUSTP can be used.
2344 // Raw stores have to be split.
2345 void
2346 Converter::handleSTORE()
2347 {
2348 const int r = tgsi.getDst(0).getIndex(0);
2349 int c;
2350 std::vector<Value *> off, src, dummy;
2351
2352 if (tgsi.getDst(0).getFile() == TGSI_FILE_BUFFER ||
2353 tgsi.getDst(0).getFile() == TGSI_FILE_MEMORY) {
2354 for (c = 0; c < 4; ++c) {
2355 if (!(tgsi.getDst(0).getMask() & (1 << c)))
2356 continue;
2357
2358 Symbol *sym;
2359 Value *off;
2360 if (tgsi.getSrc(0).getFile() == TGSI_FILE_IMMEDIATE) {
2361 off = NULL;
2362 sym = makeSym(tgsi.getDst(0).getFile(), r, -1, c,
2363 tgsi.getSrc(0).getValueU32(0, info) + 4 * c);
2364 } else {
2365 off = fetchSrc(0, 0);
2366 sym = makeSym(tgsi.getDst(0).getFile(), r, -1, c, 4 * c);
2367 }
2368
2369 Instruction *st = mkStore(OP_STORE, TYPE_U32, sym, off, fetchSrc(1, c));
2370 st->cache = tgsi.getCacheMode();
2371 if (tgsi.getDst(0).isIndirect(0))
2372 st->setIndirect(0, 1, fetchSrc(tgsi.getDst(0).getIndirect(0), 0, 0));
2373 }
2374 return;
2375 }
2376
2377 getResourceCoords(off, r, 0);
2378 src = off;
2379 const int s = src.size();
2380
2381 if (isResourceRaw(code, r)) {
2382 uint8_t comp[2] = { 0, 0 };
2383 uint8_t size[2] = { 0, 0 };
2384
2385 int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask());
2386
2387 Symbol *base = getResourceBase(r);
2388
2389 const bool useSt = isResourceSpecial(r) ||
2390 (info->io.nv50styleSurfaces &&
2391 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2392
2393 for (int i = 0; i < n; ++i) {
2394 if (comp[i]) // adjust x component of source address if necessary
2395 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2396 off[0], mkImm(comp[i] * 4));
2397 else
2398 src[0] = off[0];
2399
2400 const DataType stTy = typeOfSize(size[i] * 4);
2401
2402 if (useSt) {
2403 Instruction *st =
2404 mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i]));
2405 for (c = 1; c < size[i]; ++c)
2406 st->setSrc(1 + c, fetchSrc(1, comp[i] + c));
2407 st->setIndirect(0, 0, src[0]);
2408 } else {
2409 // attach values to be stored
2410 src.resize(s + size[i]);
2411 for (c = 0; c < size[i]; ++c)
2412 src[s + c] = fetchSrc(1, comp[i] + c);
2413 mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot,
2414 0, dummy, src)->setType(stTy);
2415 }
2416 }
2417 } else {
2418 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2419 src.push_back(fetchSrc(1, c));
2420
2421 mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0,
2422 dummy, src)->tex.mask = tgsi.getDst(0).getMask();
2423 }
2424 }
2425
2426 // XXX: These only work on resources with the single-component u32/s32 formats.
2427 // Therefore the result is replicated. This might not be intended by TGSI, but
2428 // operating on more than 1 component would produce undefined results because
2429 // they do not exist.
2430 void
2431 Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp)
2432 {
2433 const int r = tgsi.getSrc(0).getIndex(0);
2434 std::vector<Value *> srcv;
2435 std::vector<Value *> defv;
2436 LValue *dst = getScratch();
2437
2438 if (tgsi.getSrc(0).getFile() == TGSI_FILE_BUFFER ||
2439 tgsi.getSrc(0).getFile() == TGSI_FILE_MEMORY) {
2440 for (int c = 0; c < 4; ++c) {
2441 if (!dst0[c])
2442 continue;
2443
2444 Instruction *insn;
2445 Value *off = fetchSrc(1, c), *off2 = NULL;
2446 Value *sym;
2447 if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE)
2448 sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c,
2449 tgsi.getSrc(1).getValueU32(c, info));
2450 else
2451 sym = makeSym(tgsi.getSrc(0).getFile(), r, -1, c, 0);
2452 if (tgsi.getSrc(0).isIndirect(0))
2453 off2 = fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0);
2454 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2455 insn = mkOp3(OP_ATOM, ty, dst, sym, fetchSrc(2, c), fetchSrc(3, c));
2456 else
2457 insn = mkOp2(OP_ATOM, ty, dst, sym, fetchSrc(2, c));
2458 if (tgsi.getSrc(1).getFile() != TGSI_FILE_IMMEDIATE)
2459 insn->setIndirect(0, 0, off);
2460 if (off2)
2461 insn->setIndirect(0, 1, off2);
2462 insn->subOp = subOp;
2463 }
2464 for (int c = 0; c < 4; ++c)
2465 if (dst0[c])
2466 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2467 return;
2468 }
2469
2470
2471 getResourceCoords(srcv, r, 1);
2472
2473 if (isResourceSpecial(r)) {
2474 assert(r != TGSI_RESOURCE_INPUT);
2475 Instruction *insn;
2476 insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0));
2477 insn->subOp = subOp;
2478 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2479 insn->setSrc(2, fetchSrc(3, 0));
2480 insn->setIndirect(0, 0, srcv.at(0));
2481 } else {
2482 operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP;
2483 TexTarget targ = getResourceTarget(code, r);
2484 int idx = code->resources[r].slot;
2485 defv.push_back(dst);
2486 srcv.push_back(fetchSrc(2, 0));
2487 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2488 srcv.push_back(fetchSrc(3, 0));
2489 TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv);
2490 tex->subOp = subOp;
2491 tex->tex.mask = 1;
2492 tex->setType(ty);
2493 }
2494
2495 for (int c = 0; c < 4; ++c)
2496 if (dst0[c])
2497 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2498 }
2499
2500 void
2501 Converter::handleINTERP(Value *dst[4])
2502 {
2503 // Check whether the input is linear. All other attributes ignored.
2504 Instruction *insn;
2505 Value *offset = NULL, *ptr = NULL, *w = NULL;
2506 bool linear;
2507 operation op;
2508 int c, mode;
2509
2510 tgsi::Instruction::SrcRegister src = tgsi.getSrc(0);
2511 assert(src.getFile() == TGSI_FILE_INPUT);
2512
2513 if (src.isIndirect(0))
2514 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
2515
2516 // XXX: no way to know interp mode if we don't know the index
2517 linear = info->in[ptr ? 0 : src.getIndex(0)].linear;
2518 if (linear) {
2519 op = OP_LINTERP;
2520 mode = NV50_IR_INTERP_LINEAR;
2521 } else {
2522 op = OP_PINTERP;
2523 mode = NV50_IR_INTERP_PERSPECTIVE;
2524 }
2525
2526 switch (tgsi.getOpcode()) {
2527 case TGSI_OPCODE_INTERP_CENTROID:
2528 mode |= NV50_IR_INTERP_CENTROID;
2529 break;
2530 case TGSI_OPCODE_INTERP_SAMPLE:
2531 insn = mkOp1(OP_PIXLD, TYPE_U32, (offset = getScratch()), fetchSrc(1, 0));
2532 insn->subOp = NV50_IR_SUBOP_PIXLD_OFFSET;
2533 mode |= NV50_IR_INTERP_OFFSET;
2534 break;
2535 case TGSI_OPCODE_INTERP_OFFSET: {
2536 // The input in src1.xy is float, but we need a single 32-bit value
2537 // where the upper and lower 16 bits are encoded in S0.12 format. We need
2538 // to clamp the input coordinates to (-0.5, 0.4375), multiply by 4096,
2539 // and then convert to s32.
2540 Value *offs[2];
2541 for (c = 0; c < 2; c++) {
2542 offs[c] = fetchSrc(1, c);
2543 mkOp2(OP_MIN, TYPE_F32, offs[c], offs[c], loadImm(NULL, 0.4375f));
2544 mkOp2(OP_MAX, TYPE_F32, offs[c], offs[c], loadImm(NULL, -0.5f));
2545 mkOp2(OP_MUL, TYPE_F32, offs[c], offs[c], loadImm(NULL, 4096.0f));
2546 mkCvt(OP_CVT, TYPE_S32, offs[c], TYPE_F32, offs[c]);
2547 }
2548 offset = mkOp3v(OP_INSBF, TYPE_U32, getScratch(),
2549 offs[1], mkImm(0x1010), offs[0]);
2550 mode |= NV50_IR_INTERP_OFFSET;
2551 break;
2552 }
2553 }
2554
2555 if (op == OP_PINTERP) {
2556 if (offset) {
2557 w = mkOp2v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_POSITION, 3), offset);
2558 mkOp1(OP_RCP, TYPE_F32, w, w);
2559 } else {
2560 w = fragCoord[3];
2561 }
2562 }
2563
2564
2565 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2566 insn = mkOp1(op, TYPE_F32, dst[c], srcToSym(src, c));
2567 if (op == OP_PINTERP)
2568 insn->setSrc(1, w);
2569 if (ptr)
2570 insn->setIndirect(0, 0, ptr);
2571 if (offset)
2572 insn->setSrc(op == OP_PINTERP ? 2 : 1, offset);
2573
2574 insn->setInterpolate(mode);
2575 }
2576 }
2577
2578 Converter::Subroutine *
2579 Converter::getSubroutine(unsigned ip)
2580 {
2581 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2582
2583 if (it == sub.map.end())
2584 it = sub.map.insert(std::make_pair(
2585 ip, Subroutine(new Function(prog, "SUB", ip)))).first;
2586
2587 return &it->second;
2588 }
2589
2590 Converter::Subroutine *
2591 Converter::getSubroutine(Function *f)
2592 {
2593 unsigned ip = f->getLabel();
2594 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2595
2596 if (it == sub.map.end())
2597 it = sub.map.insert(std::make_pair(ip, Subroutine(f))).first;
2598
2599 return &it->second;
2600 }
2601
2602 bool
2603 Converter::isEndOfSubroutine(uint ip)
2604 {
2605 assert(ip < code->scan.num_instructions);
2606 tgsi::Instruction insn(&code->insns[ip]);
2607 return (insn.getOpcode() == TGSI_OPCODE_END ||
2608 insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
2609 // does END occur at end of main or the very end ?
2610 insn.getOpcode() == TGSI_OPCODE_BGNSUB);
2611 }
2612
2613 bool
2614 Converter::handleInstruction(const struct tgsi_full_instruction *insn)
2615 {
2616 Instruction *geni;
2617
2618 Value *dst0[4], *rDst0[4];
2619 Value *src0, *src1, *src2, *src3;
2620 Value *val0, *val1;
2621 int c;
2622
2623 tgsi = tgsi::Instruction(insn);
2624
2625 bool useScratchDst = tgsi.checkDstSrcAliasing();
2626
2627 operation op = tgsi.getOP();
2628 dstTy = tgsi.inferDstType();
2629 srcTy = tgsi.inferSrcType();
2630
2631 unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
2632
2633 if (tgsi.dstCount()) {
2634 for (c = 0; c < 4; ++c) {
2635 rDst0[c] = acquireDst(0, c);
2636 dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
2637 }
2638 }
2639
2640 switch (tgsi.getOpcode()) {
2641 case TGSI_OPCODE_ADD:
2642 case TGSI_OPCODE_UADD:
2643 case TGSI_OPCODE_AND:
2644 case TGSI_OPCODE_DIV:
2645 case TGSI_OPCODE_IDIV:
2646 case TGSI_OPCODE_UDIV:
2647 case TGSI_OPCODE_MAX:
2648 case TGSI_OPCODE_MIN:
2649 case TGSI_OPCODE_IMAX:
2650 case TGSI_OPCODE_IMIN:
2651 case TGSI_OPCODE_UMAX:
2652 case TGSI_OPCODE_UMIN:
2653 case TGSI_OPCODE_MOD:
2654 case TGSI_OPCODE_UMOD:
2655 case TGSI_OPCODE_MUL:
2656 case TGSI_OPCODE_UMUL:
2657 case TGSI_OPCODE_IMUL_HI:
2658 case TGSI_OPCODE_UMUL_HI:
2659 case TGSI_OPCODE_OR:
2660 case TGSI_OPCODE_SHL:
2661 case TGSI_OPCODE_ISHR:
2662 case TGSI_OPCODE_USHR:
2663 case TGSI_OPCODE_SUB:
2664 case TGSI_OPCODE_XOR:
2665 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2666 src0 = fetchSrc(0, c);
2667 src1 = fetchSrc(1, c);
2668 geni = mkOp2(op, dstTy, dst0[c], src0, src1);
2669 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2670 }
2671 break;
2672 case TGSI_OPCODE_MAD:
2673 case TGSI_OPCODE_UMAD:
2674 case TGSI_OPCODE_SAD:
2675 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2676 src0 = fetchSrc(0, c);
2677 src1 = fetchSrc(1, c);
2678 src2 = fetchSrc(2, c);
2679 mkOp3(op, dstTy, dst0[c], src0, src1, src2);
2680 }
2681 break;
2682 case TGSI_OPCODE_MOV:
2683 case TGSI_OPCODE_ABS:
2684 case TGSI_OPCODE_CEIL:
2685 case TGSI_OPCODE_FLR:
2686 case TGSI_OPCODE_TRUNC:
2687 case TGSI_OPCODE_RCP:
2688 case TGSI_OPCODE_IABS:
2689 case TGSI_OPCODE_INEG:
2690 case TGSI_OPCODE_NOT:
2691 case TGSI_OPCODE_DDX:
2692 case TGSI_OPCODE_DDY:
2693 case TGSI_OPCODE_DDX_FINE:
2694 case TGSI_OPCODE_DDY_FINE:
2695 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2696 mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
2697 break;
2698 case TGSI_OPCODE_RSQ:
2699 src0 = fetchSrc(0, 0);
2700 val0 = getScratch();
2701 mkOp1(OP_ABS, TYPE_F32, val0, src0);
2702 mkOp1(OP_RSQ, TYPE_F32, val0, val0);
2703 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2704 mkMov(dst0[c], val0);
2705 break;
2706 case TGSI_OPCODE_ARL:
2707 case TGSI_OPCODE_ARR:
2708 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2709 const RoundMode rnd =
2710 tgsi.getOpcode() == TGSI_OPCODE_ARR ? ROUND_N : ROUND_M;
2711 src0 = fetchSrc(0, c);
2712 mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = rnd;
2713 }
2714 break;
2715 case TGSI_OPCODE_UARL:
2716 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2717 mkOp1(OP_MOV, TYPE_U32, dst0[c], fetchSrc(0, c));
2718 break;
2719 case TGSI_OPCODE_POW:
2720 val0 = mkOp2v(op, TYPE_F32, getScratch(), fetchSrc(0, 0), fetchSrc(1, 0));
2721 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2722 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2723 break;
2724 case TGSI_OPCODE_EX2:
2725 case TGSI_OPCODE_LG2:
2726 val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
2727 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2728 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2729 break;
2730 case TGSI_OPCODE_COS:
2731 case TGSI_OPCODE_SIN:
2732 val0 = getScratch();
2733 if (mask & 7) {
2734 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
2735 mkOp1(op, TYPE_F32, val0, val0);
2736 for (c = 0; c < 3; ++c)
2737 if (dst0[c])
2738 mkMov(dst0[c], val0);
2739 }
2740 if (dst0[3]) {
2741 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
2742 mkOp1(op, TYPE_F32, dst0[3], val0);
2743 }
2744 break;
2745 case TGSI_OPCODE_SCS:
2746 if (mask & 3) {
2747 val0 = mkOp1v(OP_PRESIN, TYPE_F32, getSSA(), fetchSrc(0, 0));
2748 if (dst0[0])
2749 mkOp1(OP_COS, TYPE_F32, dst0[0], val0);
2750 if (dst0[1])
2751 mkOp1(OP_SIN, TYPE_F32, dst0[1], val0);
2752 }
2753 if (dst0[2])
2754 loadImm(dst0[2], 0.0f);
2755 if (dst0[3])
2756 loadImm(dst0[3], 1.0f);
2757 break;
2758 case TGSI_OPCODE_EXP:
2759 src0 = fetchSrc(0, 0);
2760 val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
2761 if (dst0[1])
2762 mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
2763 if (dst0[0])
2764 mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
2765 if (dst0[2])
2766 mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
2767 if (dst0[3])
2768 loadImm(dst0[3], 1.0f);
2769 break;
2770 case TGSI_OPCODE_LOG:
2771 src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
2772 val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
2773 if (dst0[0] || dst0[1])
2774 val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
2775 if (dst0[1]) {
2776 mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
2777 mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
2778 mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0);
2779 }
2780 if (dst0[3])
2781 loadImm(dst0[3], 1.0f);
2782 break;
2783 case TGSI_OPCODE_DP2:
2784 val0 = buildDot(2);
2785 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2786 mkMov(dst0[c], val0);
2787 break;
2788 case TGSI_OPCODE_DP3:
2789 val0 = buildDot(3);
2790 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2791 mkMov(dst0[c], val0);
2792 break;
2793 case TGSI_OPCODE_DP4:
2794 val0 = buildDot(4);
2795 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2796 mkMov(dst0[c], val0);
2797 break;
2798 case TGSI_OPCODE_DPH:
2799 val0 = buildDot(3);
2800 src1 = fetchSrc(1, 3);
2801 mkOp2(OP_ADD, TYPE_F32, val0, val0, src1);
2802 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2803 mkMov(dst0[c], val0);
2804 break;
2805 case TGSI_OPCODE_DST:
2806 if (dst0[0])
2807 loadImm(dst0[0], 1.0f);
2808 if (dst0[1]) {
2809 src0 = fetchSrc(0, 1);
2810 src1 = fetchSrc(1, 1);
2811 mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1);
2812 }
2813 if (dst0[2])
2814 mkMov(dst0[2], fetchSrc(0, 2));
2815 if (dst0[3])
2816 mkMov(dst0[3], fetchSrc(1, 3));
2817 break;
2818 case TGSI_OPCODE_LRP:
2819 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2820 src0 = fetchSrc(0, c);
2821 src1 = fetchSrc(1, c);
2822 src2 = fetchSrc(2, c);
2823 mkOp3(OP_MAD, TYPE_F32, dst0[c],
2824 mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2);
2825 }
2826 break;
2827 case TGSI_OPCODE_LIT:
2828 handleLIT(dst0);
2829 break;
2830 case TGSI_OPCODE_XPD:
2831 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2832 if (c < 3) {
2833 val0 = getSSA();
2834 src0 = fetchSrc(1, (c + 1) % 3);
2835 src1 = fetchSrc(0, (c + 2) % 3);
2836 mkOp2(OP_MUL, TYPE_F32, val0, src0, src1);
2837 mkOp1(OP_NEG, TYPE_F32, val0, val0);
2838
2839 src0 = fetchSrc(0, (c + 1) % 3);
2840 src1 = fetchSrc(1, (c + 2) % 3);
2841 mkOp3(OP_MAD, TYPE_F32, dst0[c], src0, src1, val0);
2842 } else {
2843 loadImm(dst0[c], 1.0f);
2844 }
2845 }
2846 break;
2847 case TGSI_OPCODE_ISSG:
2848 case TGSI_OPCODE_SSG:
2849 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2850 src0 = fetchSrc(0, c);
2851 val0 = getScratch();
2852 val1 = getScratch();
2853 mkCmp(OP_SET, CC_GT, srcTy, val0, srcTy, src0, zero);
2854 mkCmp(OP_SET, CC_LT, srcTy, val1, srcTy, src0, zero);
2855 if (srcTy == TYPE_F32)
2856 mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
2857 else
2858 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
2859 }
2860 break;
2861 case TGSI_OPCODE_UCMP:
2862 srcTy = TYPE_U32;
2863 /* fallthrough */
2864 case TGSI_OPCODE_CMP:
2865 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2866 src0 = fetchSrc(0, c);
2867 src1 = fetchSrc(1, c);
2868 src2 = fetchSrc(2, c);
2869 if (src1 == src2)
2870 mkMov(dst0[c], src1);
2871 else
2872 mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
2873 srcTy, dst0[c], srcTy, src1, src2, src0);
2874 }
2875 break;
2876 case TGSI_OPCODE_FRC:
2877 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2878 src0 = fetchSrc(0, c);
2879 val0 = getScratch();
2880 mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
2881 mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
2882 }
2883 break;
2884 case TGSI_OPCODE_ROUND:
2885 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2886 mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
2887 ->rnd = ROUND_NI;
2888 break;
2889 case TGSI_OPCODE_CLAMP:
2890 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2891 src0 = fetchSrc(0, c);
2892 src1 = fetchSrc(1, c);
2893 src2 = fetchSrc(2, c);
2894 val0 = getScratch();
2895 mkOp2(OP_MIN, TYPE_F32, val0, src0, src1);
2896 mkOp2(OP_MAX, TYPE_F32, dst0[c], val0, src2);
2897 }
2898 break;
2899 case TGSI_OPCODE_SLT:
2900 case TGSI_OPCODE_SGE:
2901 case TGSI_OPCODE_SEQ:
2902 case TGSI_OPCODE_SGT:
2903 case TGSI_OPCODE_SLE:
2904 case TGSI_OPCODE_SNE:
2905 case TGSI_OPCODE_FSEQ:
2906 case TGSI_OPCODE_FSGE:
2907 case TGSI_OPCODE_FSLT:
2908 case TGSI_OPCODE_FSNE:
2909 case TGSI_OPCODE_ISGE:
2910 case TGSI_OPCODE_ISLT:
2911 case TGSI_OPCODE_USEQ:
2912 case TGSI_OPCODE_USGE:
2913 case TGSI_OPCODE_USLT:
2914 case TGSI_OPCODE_USNE:
2915 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2916 src0 = fetchSrc(0, c);
2917 src1 = fetchSrc(1, c);
2918 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
2919 }
2920 break;
2921 case TGSI_OPCODE_KILL_IF:
2922 val0 = new_LValue(func, FILE_PREDICATE);
2923 mask = 0;
2924 for (c = 0; c < 4; ++c) {
2925 const int s = tgsi.getSrc(0).getSwizzle(c);
2926 if (mask & (1 << s))
2927 continue;
2928 mask |= 1 << s;
2929 mkCmp(OP_SET, CC_LT, TYPE_F32, val0, TYPE_F32, fetchSrc(0, c), zero);
2930 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
2931 }
2932 break;
2933 case TGSI_OPCODE_KILL:
2934 mkOp(OP_DISCARD, TYPE_NONE, NULL);
2935 break;
2936 case TGSI_OPCODE_TEX:
2937 case TGSI_OPCODE_TXB:
2938 case TGSI_OPCODE_TXL:
2939 case TGSI_OPCODE_TXP:
2940 case TGSI_OPCODE_LODQ:
2941 // R S L C Dx Dy
2942 handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
2943 break;
2944 case TGSI_OPCODE_TXD:
2945 handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
2946 break;
2947 case TGSI_OPCODE_TG4:
2948 handleTEX(dst0, 2, 2, 0x03, 0x0f, 0x00, 0x00);
2949 break;
2950 case TGSI_OPCODE_TEX2:
2951 handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00);
2952 break;
2953 case TGSI_OPCODE_TXB2:
2954 case TGSI_OPCODE_TXL2:
2955 handleTEX(dst0, 2, 2, 0x10, 0x0f, 0x00, 0x00);
2956 break;
2957 case TGSI_OPCODE_SAMPLE:
2958 case TGSI_OPCODE_SAMPLE_B:
2959 case TGSI_OPCODE_SAMPLE_D:
2960 case TGSI_OPCODE_SAMPLE_L:
2961 case TGSI_OPCODE_SAMPLE_C:
2962 case TGSI_OPCODE_SAMPLE_C_LZ:
2963 handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40);
2964 break;
2965 case TGSI_OPCODE_TXF:
2966 handleTXF(dst0, 1, 0x03);
2967 break;
2968 case TGSI_OPCODE_SAMPLE_I:
2969 handleTXF(dst0, 1, 0x03);
2970 break;
2971 case TGSI_OPCODE_SAMPLE_I_MS:
2972 handleTXF(dst0, 1, 0x20);
2973 break;
2974 case TGSI_OPCODE_TXQ:
2975 case TGSI_OPCODE_SVIEWINFO:
2976 handleTXQ(dst0, TXQ_DIMS, 1);
2977 break;
2978 case TGSI_OPCODE_TXQS:
2979 // The TXQ_TYPE query returns samples in its 3rd arg, but we need it to
2980 // be in .x
2981 dst0[1] = dst0[2] = dst0[3] = NULL;
2982 std::swap(dst0[0], dst0[2]);
2983 handleTXQ(dst0, TXQ_TYPE, 0);
2984 std::swap(dst0[0], dst0[2]);
2985 break;
2986 case TGSI_OPCODE_F2I:
2987 case TGSI_OPCODE_F2U:
2988 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2989 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
2990 break;
2991 case TGSI_OPCODE_I2F:
2992 case TGSI_OPCODE_U2F:
2993 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2994 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
2995 break;
2996 case TGSI_OPCODE_PK2H:
2997 val0 = getScratch();
2998 val1 = getScratch();
2999 mkCvt(OP_CVT, TYPE_F16, val0, TYPE_F32, fetchSrc(0, 0));
3000 mkCvt(OP_CVT, TYPE_F16, val1, TYPE_F32, fetchSrc(0, 1));
3001 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
3002 mkOp3(OP_INSBF, TYPE_U32, dst0[c], val1, mkImm(0x1010), val0);
3003 break;
3004 case TGSI_OPCODE_UP2H:
3005 src0 = fetchSrc(0, 0);
3006 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3007 geni = mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F16, src0);
3008 geni->subOp = c & 1;
3009 }
3010 break;
3011 case TGSI_OPCODE_EMIT:
3012 /* export the saved viewport index */
3013 if (viewport != NULL) {
3014 Symbol *vpSym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_U32,
3015 info->out[info->io.viewportId].slot[0] * 4);
3016 mkStore(OP_EXPORT, TYPE_U32, vpSym, NULL, viewport);
3017 }
3018 /* fallthrough */
3019 case TGSI_OPCODE_ENDPRIM:
3020 {
3021 // get vertex stream (must be immediate)
3022 unsigned int stream = tgsi.getSrc(0).getValueU32(0, info);
3023 if (stream && op == OP_RESTART)
3024 break;
3025 src0 = mkImm(stream);
3026 mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
3027 break;
3028 }
3029 case TGSI_OPCODE_IF:
3030 case TGSI_OPCODE_UIF:
3031 {
3032 BasicBlock *ifBB = new BasicBlock(func);
3033
3034 bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
3035 condBBs.push(bb);
3036 joinBBs.push(bb);
3037
3038 mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy);
3039
3040 setPosition(ifBB, true);
3041 }
3042 break;
3043 case TGSI_OPCODE_ELSE:
3044 {
3045 BasicBlock *elseBB = new BasicBlock(func);
3046 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
3047
3048 forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
3049 condBBs.push(bb);
3050
3051 forkBB->getExit()->asFlow()->target.bb = elseBB;
3052 if (!bb->isTerminated())
3053 mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
3054
3055 setPosition(elseBB, true);
3056 }
3057 break;
3058 case TGSI_OPCODE_ENDIF:
3059 {
3060 BasicBlock *convBB = new BasicBlock(func);
3061 BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
3062 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
3063
3064 if (!bb->isTerminated()) {
3065 // we only want join if none of the clauses ended with CONT/BREAK/RET
3066 if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
3067 insertConvergenceOps(convBB, forkBB);
3068 mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
3069 bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
3070 }
3071
3072 if (prevBB->getExit()->op == OP_BRA) {
3073 prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
3074 prevBB->getExit()->asFlow()->target.bb = convBB;
3075 }
3076 setPosition(convBB, true);
3077 }
3078 break;
3079 case TGSI_OPCODE_BGNLOOP:
3080 {
3081 BasicBlock *lbgnBB = new BasicBlock(func);
3082 BasicBlock *lbrkBB = new BasicBlock(func);
3083
3084 loopBBs.push(lbgnBB);
3085 breakBBs.push(lbrkBB);
3086 if (loopBBs.getSize() > func->loopNestingBound)
3087 func->loopNestingBound++;
3088
3089 mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
3090
3091 bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
3092 setPosition(lbgnBB, true);
3093 mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
3094 }
3095 break;
3096 case TGSI_OPCODE_ENDLOOP:
3097 {
3098 BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
3099
3100 if (!bb->isTerminated()) {
3101 mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
3102 bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
3103 }
3104 setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
3105
3106 // If the loop never breaks (e.g. only has RET's inside), then there
3107 // will be no way to get to the break bb. However BGNLOOP will have
3108 // already made a PREBREAK to it, so it must be in the CFG.
3109 if (getBB()->cfg.incidentCount() == 0)
3110 loopBB->cfg.attach(&getBB()->cfg, Graph::Edge::TREE);
3111 }
3112 break;
3113 case TGSI_OPCODE_BRK:
3114 {
3115 if (bb->isTerminated())
3116 break;
3117 BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
3118 mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
3119 bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
3120 }
3121 break;
3122 case TGSI_OPCODE_CONT:
3123 {
3124 if (bb->isTerminated())
3125 break;
3126 BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
3127 mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
3128 contBB->explicitCont = true;
3129 bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
3130 }
3131 break;
3132 case TGSI_OPCODE_BGNSUB:
3133 {
3134 Subroutine *s = getSubroutine(ip);
3135 BasicBlock *entry = new BasicBlock(s->f);
3136 BasicBlock *leave = new BasicBlock(s->f);
3137
3138 // multiple entrypoints possible, keep the graph connected
3139 if (prog->getType() == Program::TYPE_COMPUTE)
3140 prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
3141
3142 sub.cur = s;
3143 s->f->setEntry(entry);
3144 s->f->setExit(leave);
3145 setPosition(entry, true);
3146 return true;
3147 }
3148 case TGSI_OPCODE_ENDSUB:
3149 {
3150 sub.cur = getSubroutine(prog->main);
3151 setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
3152 return true;
3153 }
3154 case TGSI_OPCODE_CAL:
3155 {
3156 Subroutine *s = getSubroutine(tgsi.getLabel());
3157 mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
3158 func->call.attach(&s->f->call, Graph::Edge::TREE);
3159 return true;
3160 }
3161 case TGSI_OPCODE_RET:
3162 {
3163 if (bb->isTerminated())
3164 return true;
3165 BasicBlock *leave = BasicBlock::get(func->cfgExit);
3166
3167 if (!isEndOfSubroutine(ip + 1)) {
3168 // insert a PRERET at the entry if this is an early return
3169 // (only needed for sharing code in the epilogue)
3170 BasicBlock *pos = getBB();
3171 setPosition(BasicBlock::get(func->cfg.getRoot()), false);
3172 mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
3173 setPosition(pos, true);
3174 }
3175 mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
3176 bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
3177 }
3178 break;
3179 case TGSI_OPCODE_END:
3180 {
3181 // attach and generate epilogue code
3182 BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
3183 bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
3184 setPosition(epilogue, true);
3185 if (prog->getType() == Program::TYPE_FRAGMENT)
3186 exportOutputs();
3187 if (info->io.genUserClip > 0)
3188 handleUserClipPlanes();
3189 mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
3190 }
3191 break;
3192 case TGSI_OPCODE_SWITCH:
3193 case TGSI_OPCODE_CASE:
3194 ERROR("switch/case opcode encountered, should have been lowered\n");
3195 abort();
3196 break;
3197 case TGSI_OPCODE_LOAD:
3198 handleLOAD(dst0);
3199 break;
3200 case TGSI_OPCODE_STORE:
3201 handleSTORE();
3202 break;
3203 case TGSI_OPCODE_BARRIER:
3204 geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
3205 geni->fixed = 1;
3206 geni->subOp = NV50_IR_SUBOP_BAR_SYNC;
3207 break;
3208 case TGSI_OPCODE_MFENCE:
3209 case TGSI_OPCODE_LFENCE:
3210 case TGSI_OPCODE_SFENCE:
3211 geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
3212 geni->fixed = 1;
3213 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
3214 break;
3215 case TGSI_OPCODE_MEMBAR:
3216 geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
3217 geni->fixed = 1;
3218 if (tgsi.getSrc(0).getValueU32(0, info) & TGSI_MEMBAR_THREAD_GROUP)
3219 geni->subOp = NV50_IR_SUBOP_MEMBAR(M, CTA);
3220 else
3221 geni->subOp = NV50_IR_SUBOP_MEMBAR(M, GL);
3222 break;
3223 case TGSI_OPCODE_ATOMUADD:
3224 case TGSI_OPCODE_ATOMXCHG:
3225 case TGSI_OPCODE_ATOMCAS:
3226 case TGSI_OPCODE_ATOMAND:
3227 case TGSI_OPCODE_ATOMOR:
3228 case TGSI_OPCODE_ATOMXOR:
3229 case TGSI_OPCODE_ATOMUMIN:
3230 case TGSI_OPCODE_ATOMIMIN:
3231 case TGSI_OPCODE_ATOMUMAX:
3232 case TGSI_OPCODE_ATOMIMAX:
3233 handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode()));
3234 break;
3235 case TGSI_OPCODE_RESQ:
3236 geni = mkOp1(OP_SUQ, TYPE_U32, dst0[0],
3237 makeSym(TGSI_FILE_BUFFER, tgsi.getSrc(0).getIndex(0), -1, 0, 0));
3238 if (tgsi.getSrc(0).isIndirect(0))
3239 geni->setIndirect(0, 1, fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0));
3240 break;
3241 case TGSI_OPCODE_IBFE:
3242 case TGSI_OPCODE_UBFE:
3243 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3244 src0 = fetchSrc(0, c);
3245 if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE &&
3246 tgsi.getSrc(2).getFile() == TGSI_FILE_IMMEDIATE) {
3247 src1 = loadImm(NULL, tgsi.getSrc(2).getValueU32(c, info) << 8 |
3248 tgsi.getSrc(1).getValueU32(c, info));
3249 } else {
3250 src1 = fetchSrc(1, c);
3251 src2 = fetchSrc(2, c);
3252 mkOp3(OP_INSBF, TYPE_U32, src1, src2, mkImm(0x808), src1);
3253 }
3254 mkOp2(OP_EXTBF, dstTy, dst0[c], src0, src1);
3255 }
3256 break;
3257 case TGSI_OPCODE_BFI:
3258 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3259 src0 = fetchSrc(0, c);
3260 src1 = fetchSrc(1, c);
3261 src2 = fetchSrc(2, c);
3262 src3 = fetchSrc(3, c);
3263 mkOp3(OP_INSBF, TYPE_U32, src2, src3, mkImm(0x808), src2);
3264 mkOp3(OP_INSBF, TYPE_U32, dst0[c], src1, src2, src0);
3265 }
3266 break;
3267 case TGSI_OPCODE_LSB:
3268 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3269 src0 = fetchSrc(0, c);
3270 geni = mkOp2(OP_EXTBF, TYPE_U32, src0, src0, mkImm(0x2000));
3271 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
3272 geni = mkOp1(OP_BFIND, TYPE_U32, dst0[c], src0);
3273 geni->subOp = NV50_IR_SUBOP_BFIND_SAMT;
3274 }
3275 break;
3276 case TGSI_OPCODE_IMSB:
3277 case TGSI_OPCODE_UMSB:
3278 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3279 src0 = fetchSrc(0, c);
3280 mkOp1(OP_BFIND, srcTy, dst0[c], src0);
3281 }
3282 break;
3283 case TGSI_OPCODE_BREV:
3284 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3285 src0 = fetchSrc(0, c);
3286 geni = mkOp2(OP_EXTBF, TYPE_U32, dst0[c], src0, mkImm(0x2000));
3287 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
3288 }
3289 break;
3290 case TGSI_OPCODE_POPC:
3291 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3292 src0 = fetchSrc(0, c);
3293 mkOp2(OP_POPCNT, TYPE_U32, dst0[c], src0, src0);
3294 }
3295 break;
3296 case TGSI_OPCODE_INTERP_CENTROID:
3297 case TGSI_OPCODE_INTERP_SAMPLE:
3298 case TGSI_OPCODE_INTERP_OFFSET:
3299 handleINTERP(dst0);
3300 break;
3301 case TGSI_OPCODE_D2I:
3302 case TGSI_OPCODE_D2U:
3303 case TGSI_OPCODE_D2F: {
3304 int pos = 0;
3305 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3306 Value *dreg = getSSA(8);
3307 src0 = fetchSrc(0, pos);
3308 src1 = fetchSrc(0, pos + 1);
3309 mkOp2(OP_MERGE, TYPE_U64, dreg, src0, src1);
3310 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, dreg);
3311 pos += 2;
3312 }
3313 break;
3314 }
3315 case TGSI_OPCODE_I2D:
3316 case TGSI_OPCODE_U2D:
3317 case TGSI_OPCODE_F2D:
3318 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3319 Value *dreg = getSSA(8);
3320 mkCvt(OP_CVT, dstTy, dreg, srcTy, fetchSrc(0, c / 2));
3321 mkSplit(&dst0[c], 4, dreg);
3322 c++;
3323 }
3324 break;
3325 case TGSI_OPCODE_DABS:
3326 case TGSI_OPCODE_DNEG:
3327 case TGSI_OPCODE_DRCP:
3328 case TGSI_OPCODE_DSQRT:
3329 case TGSI_OPCODE_DRSQ:
3330 case TGSI_OPCODE_DTRUNC:
3331 case TGSI_OPCODE_DCEIL:
3332 case TGSI_OPCODE_DFLR:
3333 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3334 src0 = getSSA(8);
3335 Value *dst = getSSA(8), *tmp[2];
3336 tmp[0] = fetchSrc(0, c);
3337 tmp[1] = fetchSrc(0, c + 1);
3338 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3339 mkOp1(op, dstTy, dst, src0);
3340 mkSplit(&dst0[c], 4, dst);
3341 c++;
3342 }
3343 break;
3344 case TGSI_OPCODE_DFRAC:
3345 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3346 src0 = getSSA(8);
3347 Value *dst = getSSA(8), *tmp[2];
3348 tmp[0] = fetchSrc(0, c);
3349 tmp[1] = fetchSrc(0, c + 1);
3350 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3351 mkOp1(OP_FLOOR, TYPE_F64, dst, src0);
3352 mkOp2(OP_SUB, TYPE_F64, dst, src0, dst);
3353 mkSplit(&dst0[c], 4, dst);
3354 c++;
3355 }
3356 break;
3357 case TGSI_OPCODE_DSLT:
3358 case TGSI_OPCODE_DSGE:
3359 case TGSI_OPCODE_DSEQ:
3360 case TGSI_OPCODE_DSNE: {
3361 int pos = 0;
3362 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3363 Value *tmp[2];
3364
3365 src0 = getSSA(8);
3366 src1 = getSSA(8);
3367 tmp[0] = fetchSrc(0, pos);
3368 tmp[1] = fetchSrc(0, pos + 1);
3369 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3370 tmp[0] = fetchSrc(1, pos);
3371 tmp[1] = fetchSrc(1, pos + 1);
3372 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3373 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
3374 pos += 2;
3375 }
3376 break;
3377 }
3378 case TGSI_OPCODE_DADD:
3379 case TGSI_OPCODE_DMUL:
3380 case TGSI_OPCODE_DMAX:
3381 case TGSI_OPCODE_DMIN:
3382 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3383 src0 = getSSA(8);
3384 src1 = getSSA(8);
3385 Value *dst = getSSA(8), *tmp[2];
3386 tmp[0] = fetchSrc(0, c);
3387 tmp[1] = fetchSrc(0, c + 1);
3388 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3389 tmp[0] = fetchSrc(1, c);
3390 tmp[1] = fetchSrc(1, c + 1);
3391 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3392 mkOp2(op, dstTy, dst, src0, src1);
3393 mkSplit(&dst0[c], 4, dst);
3394 c++;
3395 }
3396 break;
3397 case TGSI_OPCODE_DMAD:
3398 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3399 src0 = getSSA(8);
3400 src1 = getSSA(8);
3401 src2 = getSSA(8);
3402 Value *dst = getSSA(8), *tmp[2];
3403 tmp[0] = fetchSrc(0, c);
3404 tmp[1] = fetchSrc(0, c + 1);
3405 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3406 tmp[0] = fetchSrc(1, c);
3407 tmp[1] = fetchSrc(1, c + 1);
3408 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3409 tmp[0] = fetchSrc(2, c);
3410 tmp[1] = fetchSrc(2, c + 1);
3411 mkOp2(OP_MERGE, TYPE_U64, src2, tmp[0], tmp[1]);
3412 mkOp3(op, dstTy, dst, src0, src1, src2);
3413 mkSplit(&dst0[c], 4, dst);
3414 c++;
3415 }
3416 break;
3417 case TGSI_OPCODE_DROUND:
3418 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3419 src0 = getSSA(8);
3420 Value *dst = getSSA(8), *tmp[2];
3421 tmp[0] = fetchSrc(0, c);
3422 tmp[1] = fetchSrc(0, c + 1);
3423 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3424 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F64, src0)
3425 ->rnd = ROUND_NI;
3426 mkSplit(&dst0[c], 4, dst);
3427 c++;
3428 }
3429 break;
3430 case TGSI_OPCODE_DSSG:
3431 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3432 src0 = getSSA(8);
3433 Value *dst = getSSA(8), *dstF32 = getSSA(), *tmp[2];
3434 tmp[0] = fetchSrc(0, c);
3435 tmp[1] = fetchSrc(0, c + 1);
3436 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3437
3438 val0 = getScratch();
3439 val1 = getScratch();
3440 // The zero is wrong here since it's only 32-bit, but it works out in
3441 // the end since it gets replaced with $r63.
3442 mkCmp(OP_SET, CC_GT, TYPE_F32, val0, TYPE_F64, src0, zero);
3443 mkCmp(OP_SET, CC_LT, TYPE_F32, val1, TYPE_F64, src0, zero);
3444 mkOp2(OP_SUB, TYPE_F32, dstF32, val0, val1);
3445 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F32, dstF32);
3446 mkSplit(&dst0[c], 4, dst);
3447 c++;
3448 }
3449 break;
3450 default:
3451 ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
3452 assert(0);
3453 break;
3454 }
3455
3456 if (tgsi.dstCount()) {
3457 for (c = 0; c < 4; ++c) {
3458 if (!dst0[c])
3459 continue;
3460 if (dst0[c] != rDst0[c])
3461 mkMov(rDst0[c], dst0[c]);
3462 storeDst(0, c, rDst0[c]);
3463 }
3464 }
3465 vtxBaseValid = 0;
3466
3467 return true;
3468 }
3469
3470 void
3471 Converter::handleUserClipPlanes()
3472 {
3473 Value *res[8];
3474 int n, i, c;
3475
3476 for (c = 0; c < 4; ++c) {
3477 for (i = 0; i < info->io.genUserClip; ++i) {
3478 Symbol *sym = mkSymbol(FILE_MEMORY_CONST, info->io.auxCBSlot,
3479 TYPE_F32, info->io.ucpBase + i * 16 + c * 4);
3480 Value *ucp = mkLoadv(TYPE_F32, sym, NULL);
3481 if (c == 0)
3482 res[i] = mkOp2v(OP_MUL, TYPE_F32, getScratch(), clipVtx[c], ucp);
3483 else
3484 mkOp3(OP_MAD, TYPE_F32, res[i], clipVtx[c], ucp, res[i]);
3485 }
3486 }
3487
3488 const int first = info->numOutputs - (info->io.genUserClip + 3) / 4;
3489
3490 for (i = 0; i < info->io.genUserClip; ++i) {
3491 n = i / 4 + first;
3492 c = i % 4;
3493 Symbol *sym =
3494 mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[n].slot[c] * 4);
3495 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, res[i]);
3496 }
3497 }
3498
3499 void
3500 Converter::exportOutputs()
3501 {
3502 for (unsigned int i = 0; i < info->numOutputs; ++i) {
3503 for (unsigned int c = 0; c < 4; ++c) {
3504 if (!oData.exists(sub.cur->values, i, c))
3505 continue;
3506 Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
3507 info->out[i].slot[c] * 4);
3508 Value *val = oData.load(sub.cur->values, i, c, NULL);
3509 if (val)
3510 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
3511 }
3512 }
3513 }
3514
3515 Converter::Converter(Program *ir, const tgsi::Source *code) : BuildUtil(ir),
3516 code(code),
3517 tgsi(NULL),
3518 tData(this), lData(this), aData(this), pData(this), oData(this)
3519 {
3520 info = code->info;
3521
3522 const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
3523 const unsigned pSize = code->fileSize(TGSI_FILE_PREDICATE);
3524 const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
3525 const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
3526
3527 tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, FILE_GPR, 0);
3528 lData.setup(TGSI_FILE_TEMPORARY, 1, 0, tSize, 4, 4, FILE_MEMORY_LOCAL, 0);
3529 pData.setup(TGSI_FILE_PREDICATE, 0, 0, pSize, 4, 4, FILE_PREDICATE, 0);
3530 aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_GPR, 0);
3531 oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
3532
3533 zero = mkImm((uint32_t)0);
3534
3535 vtxBaseValid = 0;
3536 }
3537
3538 Converter::~Converter()
3539 {
3540 }
3541
3542 inline const Converter::Location *
3543 Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v)
3544 {
3545 ValueMap::l_iterator it = s->values.l.find(v);
3546 return it == s->values.l.end() ? NULL : &it->second;
3547 }
3548
3549 template<typename T> inline void
3550 Converter::BindArgumentsPass::updateCallArgs(
3551 Instruction *i, void (Instruction::*setArg)(int, Value *),
3552 T (Function::*proto))
3553 {
3554 Function *g = i->asFlow()->target.fn;
3555 Subroutine *subg = conv.getSubroutine(g);
3556
3557 for (unsigned a = 0; a < (g->*proto).size(); ++a) {
3558 Value *v = (g->*proto)[a].get();
3559 const Converter::Location &l = *getValueLocation(subg, v);
3560 Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
3561
3562 (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
3563 }
3564 }
3565
3566 template<typename T> inline void
3567 Converter::BindArgumentsPass::updatePrototype(
3568 BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
3569 {
3570 (func->*updateSet)();
3571
3572 for (unsigned i = 0; i < set->getSize(); ++i) {
3573 Value *v = func->getLValue(i);
3574 const Converter::Location *l = getValueLocation(sub, v);
3575
3576 // only include values with a matching TGSI register
3577 if (set->test(i) && l && !conv.code->locals.count(*l))
3578 (func->*proto).push_back(v);
3579 }
3580 }
3581
3582 bool
3583 Converter::BindArgumentsPass::visit(Function *f)
3584 {
3585 sub = conv.getSubroutine(f);
3586
3587 for (ArrayList::Iterator bi = f->allBBlocks.iterator();
3588 !bi.end(); bi.next()) {
3589 for (Instruction *i = BasicBlock::get(bi)->getFirst();
3590 i; i = i->next) {
3591 if (i->op == OP_CALL && !i->asFlow()->builtin) {
3592 updateCallArgs(i, &Instruction::setSrc, &Function::ins);
3593 updateCallArgs(i, &Instruction::setDef, &Function::outs);
3594 }
3595 }
3596 }
3597
3598 if (func == prog->main && prog->getType() != Program::TYPE_COMPUTE)
3599 return true;
3600 updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
3601 &Function::buildLiveSets, &Function::ins);
3602 updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
3603 &Function::buildDefSets, &Function::outs);
3604
3605 return true;
3606 }
3607
3608 bool
3609 Converter::run()
3610 {
3611 BasicBlock *entry = new BasicBlock(prog->main);
3612 BasicBlock *leave = new BasicBlock(prog->main);
3613
3614 prog->main->setEntry(entry);
3615 prog->main->setExit(leave);
3616
3617 setPosition(entry, true);
3618 sub.cur = getSubroutine(prog->main);
3619
3620 if (info->io.genUserClip > 0) {
3621 for (int c = 0; c < 4; ++c)
3622 clipVtx[c] = getScratch();
3623 }
3624
3625 switch (prog->getType()) {
3626 case Program::TYPE_TESSELLATION_CONTROL:
3627 outBase = mkOp2v(
3628 OP_SUB, TYPE_U32, getSSA(),
3629 mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_LANEID, 0)),
3630 mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_INVOCATION_ID, 0)));
3631 break;
3632 case Program::TYPE_FRAGMENT: {
3633 Symbol *sv = mkSysVal(SV_POSITION, 3);
3634 fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
3635 mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
3636 break;
3637 }
3638 default:
3639 break;
3640 }
3641
3642 if (info->io.viewportId >= 0)
3643 viewport = getScratch();
3644 else
3645 viewport = NULL;
3646
3647 for (ip = 0; ip < code->scan.num_instructions; ++ip) {
3648 if (!handleInstruction(&code->insns[ip]))
3649 return false;
3650 }
3651
3652 if (!BindArgumentsPass(*this).run(prog))
3653 return false;
3654
3655 return true;
3656 }
3657
3658 } // unnamed namespace
3659
3660 namespace nv50_ir {
3661
3662 bool
3663 Program::makeFromTGSI(struct nv50_ir_prog_info *info)
3664 {
3665 tgsi::Source src(info);
3666 if (!src.scanSource())
3667 return false;
3668 tlsSize = info->bin.tlsSpace;
3669
3670 Converter builder(this, &src);
3671 return builder.run();
3672 }
3673
3674 } // namespace nv50_ir