947d97be7f10fa819544aff2984acc699701d0ba
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_from_tgsi.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "tgsi/tgsi_dump.h"
24 #include "tgsi/tgsi_scan.h"
25 #include "tgsi/tgsi_util.h"
26
27 #include <set>
28
29 #include "codegen/nv50_ir.h"
30 #include "codegen/nv50_ir_util.h"
31 #include "codegen/nv50_ir_build_util.h"
32
33 namespace tgsi {
34
35 class Source;
36
37 static nv50_ir::operation translateOpcode(uint opcode);
38 static nv50_ir::DataFile translateFile(uint file);
39 static nv50_ir::TexTarget translateTexture(uint texTarg);
40 static nv50_ir::SVSemantic translateSysVal(uint sysval);
41 static nv50_ir::CacheMode translateCacheMode(uint qualifier);
42
43 class Instruction
44 {
45 public:
46 Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
47
48 class SrcRegister
49 {
50 public:
51 SrcRegister(const struct tgsi_full_src_register *src)
52 : reg(src->Register),
53 fsr(src)
54 { }
55
56 SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
57
58 SrcRegister(const struct tgsi_ind_register& ind)
59 : reg(tgsi_util_get_src_from_ind(&ind)),
60 fsr(NULL)
61 { }
62
63 struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
64 {
65 struct tgsi_src_register reg;
66 memset(&reg, 0, sizeof(reg));
67 reg.Index = off.Index;
68 reg.File = off.File;
69 reg.SwizzleX = off.SwizzleX;
70 reg.SwizzleY = off.SwizzleY;
71 reg.SwizzleZ = off.SwizzleZ;
72 return reg;
73 }
74
75 SrcRegister(const struct tgsi_texture_offset& off) :
76 reg(offsetToSrc(off)),
77 fsr(NULL)
78 { }
79
80 uint getFile() const { return reg.File; }
81
82 bool is2D() const { return reg.Dimension; }
83
84 bool isIndirect(int dim) const
85 {
86 return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
87 }
88
89 int getIndex(int dim) const
90 {
91 return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
92 }
93
94 int getSwizzle(int chan) const
95 {
96 return tgsi_util_get_src_register_swizzle(&reg, chan);
97 }
98
99 int getArrayId() const
100 {
101 if (isIndirect(0))
102 return fsr->Indirect.ArrayID;
103 return 0;
104 }
105
106 nv50_ir::Modifier getMod(int chan) const;
107
108 SrcRegister getIndirect(int dim) const
109 {
110 assert(fsr && isIndirect(dim));
111 if (dim)
112 return SrcRegister(fsr->DimIndirect);
113 return SrcRegister(fsr->Indirect);
114 }
115
116 uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
117 {
118 assert(reg.File == TGSI_FILE_IMMEDIATE);
119 assert(!reg.Absolute);
120 assert(!reg.Negate);
121 return info->immd.data[reg.Index * 4 + getSwizzle(c)];
122 }
123
124 private:
125 const struct tgsi_src_register reg;
126 const struct tgsi_full_src_register *fsr;
127 };
128
129 class DstRegister
130 {
131 public:
132 DstRegister(const struct tgsi_full_dst_register *dst)
133 : reg(dst->Register),
134 fdr(dst)
135 { }
136
137 DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
138
139 uint getFile() const { return reg.File; }
140
141 bool is2D() const { return reg.Dimension; }
142
143 bool isIndirect(int dim) const
144 {
145 return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
146 }
147
148 int getIndex(int dim) const
149 {
150 return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
151 }
152
153 unsigned int getMask() const { return reg.WriteMask; }
154
155 bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
156
157 SrcRegister getIndirect(int dim) const
158 {
159 assert(fdr && isIndirect(dim));
160 if (dim)
161 return SrcRegister(fdr->DimIndirect);
162 return SrcRegister(fdr->Indirect);
163 }
164
165 int getArrayId() const
166 {
167 if (isIndirect(0))
168 return fdr->Indirect.ArrayID;
169 return 0;
170 }
171
172 private:
173 const struct tgsi_dst_register reg;
174 const struct tgsi_full_dst_register *fdr;
175 };
176
177 inline uint getOpcode() const { return insn->Instruction.Opcode; }
178
179 unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
180 unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
181
182 // mask of used components of source s
183 unsigned int srcMask(unsigned int s) const;
184
185 SrcRegister getSrc(unsigned int s) const
186 {
187 assert(s < srcCount());
188 return SrcRegister(&insn->Src[s]);
189 }
190
191 DstRegister getDst(unsigned int d) const
192 {
193 assert(d < dstCount());
194 return DstRegister(&insn->Dst[d]);
195 }
196
197 SrcRegister getTexOffset(unsigned int i) const
198 {
199 assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
200 return SrcRegister(insn->TexOffsets[i]);
201 }
202
203 unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
204
205 bool checkDstSrcAliasing() const;
206
207 inline nv50_ir::operation getOP() const {
208 return translateOpcode(getOpcode()); }
209
210 nv50_ir::DataType inferSrcType() const;
211 nv50_ir::DataType inferDstType() const;
212
213 nv50_ir::CondCode getSetCond() const;
214
215 nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
216
217 nv50_ir::CacheMode getCacheMode() const {
218 if (!insn->Instruction.Memory)
219 return nv50_ir::CACHE_CA;
220 return translateCacheMode(insn->Memory.Qualifier);
221 }
222
223 inline uint getLabel() { return insn->Label.Label; }
224
225 unsigned getSaturate() const { return insn->Instruction.Saturate; }
226
227 void print() const
228 {
229 tgsi_dump_instruction(insn, 1);
230 }
231
232 private:
233 const struct tgsi_full_instruction *insn;
234 };
235
236 unsigned int Instruction::srcMask(unsigned int s) const
237 {
238 unsigned int mask = insn->Dst[0].Register.WriteMask;
239
240 switch (insn->Instruction.Opcode) {
241 case TGSI_OPCODE_COS:
242 case TGSI_OPCODE_SIN:
243 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
244 case TGSI_OPCODE_DP2:
245 return 0x3;
246 case TGSI_OPCODE_DP3:
247 return 0x7;
248 case TGSI_OPCODE_DP4:
249 case TGSI_OPCODE_DPH:
250 case TGSI_OPCODE_KILL_IF: /* WriteMask ignored */
251 return 0xf;
252 case TGSI_OPCODE_DST:
253 return mask & (s ? 0xa : 0x6);
254 case TGSI_OPCODE_EX2:
255 case TGSI_OPCODE_EXP:
256 case TGSI_OPCODE_LG2:
257 case TGSI_OPCODE_LOG:
258 case TGSI_OPCODE_POW:
259 case TGSI_OPCODE_RCP:
260 case TGSI_OPCODE_RSQ:
261 case TGSI_OPCODE_SCS:
262 return 0x1;
263 case TGSI_OPCODE_IF:
264 case TGSI_OPCODE_UIF:
265 return 0x1;
266 case TGSI_OPCODE_LIT:
267 return 0xb;
268 case TGSI_OPCODE_TEX2:
269 case TGSI_OPCODE_TXB2:
270 case TGSI_OPCODE_TXL2:
271 return (s == 0) ? 0xf : 0x3;
272 case TGSI_OPCODE_TEX:
273 case TGSI_OPCODE_TXB:
274 case TGSI_OPCODE_TXD:
275 case TGSI_OPCODE_TXL:
276 case TGSI_OPCODE_TXP:
277 case TGSI_OPCODE_LODQ:
278 {
279 const struct tgsi_instruction_texture *tex = &insn->Texture;
280
281 assert(insn->Instruction.Texture);
282
283 mask = 0x7;
284 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
285 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
286 mask |= 0x8; /* bias, lod or proj */
287
288 switch (tex->Texture) {
289 case TGSI_TEXTURE_1D:
290 mask &= 0x9;
291 break;
292 case TGSI_TEXTURE_SHADOW1D:
293 mask &= 0xd;
294 break;
295 case TGSI_TEXTURE_1D_ARRAY:
296 case TGSI_TEXTURE_2D:
297 case TGSI_TEXTURE_RECT:
298 mask &= 0xb;
299 break;
300 case TGSI_TEXTURE_CUBE_ARRAY:
301 case TGSI_TEXTURE_SHADOW2D_ARRAY:
302 case TGSI_TEXTURE_SHADOWCUBE:
303 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
304 mask |= 0x8;
305 break;
306 default:
307 break;
308 }
309 }
310 return mask;
311 case TGSI_OPCODE_XPD:
312 {
313 unsigned int x = 0;
314 if (mask & 1) x |= 0x6;
315 if (mask & 2) x |= 0x5;
316 if (mask & 4) x |= 0x3;
317 return x;
318 }
319 case TGSI_OPCODE_D2I:
320 case TGSI_OPCODE_D2U:
321 case TGSI_OPCODE_D2F:
322 case TGSI_OPCODE_DSLT:
323 case TGSI_OPCODE_DSGE:
324 case TGSI_OPCODE_DSEQ:
325 case TGSI_OPCODE_DSNE:
326 switch (util_bitcount(mask)) {
327 case 1: return 0x3;
328 case 2: return 0xf;
329 default:
330 assert(!"unexpected mask");
331 return 0xf;
332 }
333 case TGSI_OPCODE_I2D:
334 case TGSI_OPCODE_U2D:
335 case TGSI_OPCODE_F2D: {
336 unsigned int x = 0;
337 if ((mask & 0x3) == 0x3)
338 x |= 1;
339 if ((mask & 0xc) == 0xc)
340 x |= 2;
341 return x;
342 }
343 case TGSI_OPCODE_PK2H:
344 return 0x3;
345 case TGSI_OPCODE_UP2H:
346 return 0x1;
347 default:
348 break;
349 }
350
351 return mask;
352 }
353
354 nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
355 {
356 nv50_ir::Modifier m(0);
357
358 if (reg.Absolute)
359 m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
360 if (reg.Negate)
361 m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
362 return m;
363 }
364
365 static nv50_ir::DataFile translateFile(uint file)
366 {
367 switch (file) {
368 case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST;
369 case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT;
370 case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT;
371 case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR;
372 case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS;
373 case TGSI_FILE_PREDICATE: return nv50_ir::FILE_PREDICATE;
374 case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE;
375 case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE;
376 case TGSI_FILE_BUFFER: return nv50_ir::FILE_MEMORY_GLOBAL;
377 case TGSI_FILE_SAMPLER:
378 case TGSI_FILE_NULL:
379 default:
380 return nv50_ir::FILE_NULL;
381 }
382 }
383
384 static nv50_ir::SVSemantic translateSysVal(uint sysval)
385 {
386 switch (sysval) {
387 case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE;
388 case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE;
389 case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID;
390 case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
391 case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID;
392 case TGSI_SEMANTIC_GRID_SIZE: return nv50_ir::SV_NCTAID;
393 case TGSI_SEMANTIC_BLOCK_ID: return nv50_ir::SV_CTAID;
394 case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID;
395 case TGSI_SEMANTIC_THREAD_ID: return nv50_ir::SV_TID;
396 case TGSI_SEMANTIC_SAMPLEID: return nv50_ir::SV_SAMPLE_INDEX;
397 case TGSI_SEMANTIC_SAMPLEPOS: return nv50_ir::SV_SAMPLE_POS;
398 case TGSI_SEMANTIC_SAMPLEMASK: return nv50_ir::SV_SAMPLE_MASK;
399 case TGSI_SEMANTIC_INVOCATIONID: return nv50_ir::SV_INVOCATION_ID;
400 case TGSI_SEMANTIC_TESSCOORD: return nv50_ir::SV_TESS_COORD;
401 case TGSI_SEMANTIC_TESSOUTER: return nv50_ir::SV_TESS_OUTER;
402 case TGSI_SEMANTIC_TESSINNER: return nv50_ir::SV_TESS_INNER;
403 case TGSI_SEMANTIC_VERTICESIN: return nv50_ir::SV_VERTEX_COUNT;
404 case TGSI_SEMANTIC_HELPER_INVOCATION: return nv50_ir::SV_THREAD_KILL;
405 case TGSI_SEMANTIC_BASEVERTEX: return nv50_ir::SV_BASEVERTEX;
406 case TGSI_SEMANTIC_BASEINSTANCE: return nv50_ir::SV_BASEINSTANCE;
407 case TGSI_SEMANTIC_DRAWID: return nv50_ir::SV_DRAWID;
408 default:
409 assert(0);
410 return nv50_ir::SV_CLOCK;
411 }
412 }
413
414 #define NV50_IR_TEX_TARG_CASE(a, b) \
415 case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
416
417 static nv50_ir::TexTarget translateTexture(uint tex)
418 {
419 switch (tex) {
420 NV50_IR_TEX_TARG_CASE(1D, 1D);
421 NV50_IR_TEX_TARG_CASE(2D, 2D);
422 NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS);
423 NV50_IR_TEX_TARG_CASE(3D, 3D);
424 NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
425 NV50_IR_TEX_TARG_CASE(RECT, RECT);
426 NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
427 NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
428 NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY);
429 NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY);
430 NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
431 NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
432 NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
433 NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
434 NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
435 NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
436 NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW);
437 NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
438
439 case TGSI_TEXTURE_UNKNOWN:
440 default:
441 assert(!"invalid texture target");
442 return nv50_ir::TEX_TARGET_2D;
443 }
444 }
445
446 static nv50_ir::CacheMode translateCacheMode(uint qualifier)
447 {
448 if (qualifier & TGSI_MEMORY_VOLATILE)
449 return nv50_ir::CACHE_CV;
450 if (qualifier & TGSI_MEMORY_COHERENT)
451 return nv50_ir::CACHE_CG;
452 return nv50_ir::CACHE_CA;
453 }
454
455 nv50_ir::DataType Instruction::inferSrcType() const
456 {
457 switch (getOpcode()) {
458 case TGSI_OPCODE_UIF:
459 case TGSI_OPCODE_AND:
460 case TGSI_OPCODE_OR:
461 case TGSI_OPCODE_XOR:
462 case TGSI_OPCODE_NOT:
463 case TGSI_OPCODE_SHL:
464 case TGSI_OPCODE_U2F:
465 case TGSI_OPCODE_U2D:
466 case TGSI_OPCODE_UADD:
467 case TGSI_OPCODE_UDIV:
468 case TGSI_OPCODE_UMOD:
469 case TGSI_OPCODE_UMAD:
470 case TGSI_OPCODE_UMUL:
471 case TGSI_OPCODE_UMUL_HI:
472 case TGSI_OPCODE_UMAX:
473 case TGSI_OPCODE_UMIN:
474 case TGSI_OPCODE_USEQ:
475 case TGSI_OPCODE_USGE:
476 case TGSI_OPCODE_USLT:
477 case TGSI_OPCODE_USNE:
478 case TGSI_OPCODE_USHR:
479 case TGSI_OPCODE_ATOMUADD:
480 case TGSI_OPCODE_ATOMXCHG:
481 case TGSI_OPCODE_ATOMCAS:
482 case TGSI_OPCODE_ATOMAND:
483 case TGSI_OPCODE_ATOMOR:
484 case TGSI_OPCODE_ATOMXOR:
485 case TGSI_OPCODE_ATOMUMIN:
486 case TGSI_OPCODE_ATOMUMAX:
487 case TGSI_OPCODE_UBFE:
488 case TGSI_OPCODE_UMSB:
489 case TGSI_OPCODE_UP2H:
490 return nv50_ir::TYPE_U32;
491 case TGSI_OPCODE_I2F:
492 case TGSI_OPCODE_I2D:
493 case TGSI_OPCODE_IDIV:
494 case TGSI_OPCODE_IMUL_HI:
495 case TGSI_OPCODE_IMAX:
496 case TGSI_OPCODE_IMIN:
497 case TGSI_OPCODE_IABS:
498 case TGSI_OPCODE_INEG:
499 case TGSI_OPCODE_ISGE:
500 case TGSI_OPCODE_ISHR:
501 case TGSI_OPCODE_ISLT:
502 case TGSI_OPCODE_ISSG:
503 case TGSI_OPCODE_SAD: // not sure about SAD, but no one has a float version
504 case TGSI_OPCODE_MOD:
505 case TGSI_OPCODE_UARL:
506 case TGSI_OPCODE_ATOMIMIN:
507 case TGSI_OPCODE_ATOMIMAX:
508 case TGSI_OPCODE_IBFE:
509 case TGSI_OPCODE_IMSB:
510 return nv50_ir::TYPE_S32;
511 case TGSI_OPCODE_D2F:
512 case TGSI_OPCODE_D2I:
513 case TGSI_OPCODE_D2U:
514 case TGSI_OPCODE_DABS:
515 case TGSI_OPCODE_DNEG:
516 case TGSI_OPCODE_DADD:
517 case TGSI_OPCODE_DMUL:
518 case TGSI_OPCODE_DMAX:
519 case TGSI_OPCODE_DMIN:
520 case TGSI_OPCODE_DSLT:
521 case TGSI_OPCODE_DSGE:
522 case TGSI_OPCODE_DSEQ:
523 case TGSI_OPCODE_DSNE:
524 case TGSI_OPCODE_DRCP:
525 case TGSI_OPCODE_DSQRT:
526 case TGSI_OPCODE_DMAD:
527 case TGSI_OPCODE_DFRAC:
528 case TGSI_OPCODE_DRSQ:
529 case TGSI_OPCODE_DTRUNC:
530 case TGSI_OPCODE_DCEIL:
531 case TGSI_OPCODE_DFLR:
532 case TGSI_OPCODE_DROUND:
533 return nv50_ir::TYPE_F64;
534 default:
535 return nv50_ir::TYPE_F32;
536 }
537 }
538
539 nv50_ir::DataType Instruction::inferDstType() const
540 {
541 switch (getOpcode()) {
542 case TGSI_OPCODE_D2U:
543 case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
544 case TGSI_OPCODE_D2I:
545 case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
546 case TGSI_OPCODE_FSEQ:
547 case TGSI_OPCODE_FSGE:
548 case TGSI_OPCODE_FSLT:
549 case TGSI_OPCODE_FSNE:
550 case TGSI_OPCODE_DSEQ:
551 case TGSI_OPCODE_DSGE:
552 case TGSI_OPCODE_DSLT:
553 case TGSI_OPCODE_DSNE:
554 case TGSI_OPCODE_PK2H:
555 return nv50_ir::TYPE_U32;
556 case TGSI_OPCODE_I2F:
557 case TGSI_OPCODE_U2F:
558 case TGSI_OPCODE_D2F:
559 case TGSI_OPCODE_UP2H:
560 return nv50_ir::TYPE_F32;
561 case TGSI_OPCODE_I2D:
562 case TGSI_OPCODE_U2D:
563 case TGSI_OPCODE_F2D:
564 return nv50_ir::TYPE_F64;
565 default:
566 return inferSrcType();
567 }
568 }
569
570 nv50_ir::CondCode Instruction::getSetCond() const
571 {
572 using namespace nv50_ir;
573
574 switch (getOpcode()) {
575 case TGSI_OPCODE_SLT:
576 case TGSI_OPCODE_ISLT:
577 case TGSI_OPCODE_USLT:
578 case TGSI_OPCODE_FSLT:
579 case TGSI_OPCODE_DSLT:
580 return CC_LT;
581 case TGSI_OPCODE_SLE:
582 return CC_LE;
583 case TGSI_OPCODE_SGE:
584 case TGSI_OPCODE_ISGE:
585 case TGSI_OPCODE_USGE:
586 case TGSI_OPCODE_FSGE:
587 case TGSI_OPCODE_DSGE:
588 return CC_GE;
589 case TGSI_OPCODE_SGT:
590 return CC_GT;
591 case TGSI_OPCODE_SEQ:
592 case TGSI_OPCODE_USEQ:
593 case TGSI_OPCODE_FSEQ:
594 case TGSI_OPCODE_DSEQ:
595 return CC_EQ;
596 case TGSI_OPCODE_SNE:
597 case TGSI_OPCODE_FSNE:
598 case TGSI_OPCODE_DSNE:
599 return CC_NEU;
600 case TGSI_OPCODE_USNE:
601 return CC_NE;
602 default:
603 return CC_ALWAYS;
604 }
605 }
606
607 #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
608
609 static nv50_ir::operation translateOpcode(uint opcode)
610 {
611 switch (opcode) {
612 NV50_IR_OPCODE_CASE(ARL, SHL);
613 NV50_IR_OPCODE_CASE(MOV, MOV);
614
615 NV50_IR_OPCODE_CASE(RCP, RCP);
616 NV50_IR_OPCODE_CASE(RSQ, RSQ);
617
618 NV50_IR_OPCODE_CASE(MUL, MUL);
619 NV50_IR_OPCODE_CASE(ADD, ADD);
620
621 NV50_IR_OPCODE_CASE(MIN, MIN);
622 NV50_IR_OPCODE_CASE(MAX, MAX);
623 NV50_IR_OPCODE_CASE(SLT, SET);
624 NV50_IR_OPCODE_CASE(SGE, SET);
625 NV50_IR_OPCODE_CASE(MAD, MAD);
626 NV50_IR_OPCODE_CASE(SUB, SUB);
627
628 NV50_IR_OPCODE_CASE(FLR, FLOOR);
629 NV50_IR_OPCODE_CASE(ROUND, CVT);
630 NV50_IR_OPCODE_CASE(EX2, EX2);
631 NV50_IR_OPCODE_CASE(LG2, LG2);
632 NV50_IR_OPCODE_CASE(POW, POW);
633
634 NV50_IR_OPCODE_CASE(ABS, ABS);
635
636 NV50_IR_OPCODE_CASE(COS, COS);
637 NV50_IR_OPCODE_CASE(DDX, DFDX);
638 NV50_IR_OPCODE_CASE(DDX_FINE, DFDX);
639 NV50_IR_OPCODE_CASE(DDY, DFDY);
640 NV50_IR_OPCODE_CASE(DDY_FINE, DFDY);
641 NV50_IR_OPCODE_CASE(KILL, DISCARD);
642
643 NV50_IR_OPCODE_CASE(SEQ, SET);
644 NV50_IR_OPCODE_CASE(SGT, SET);
645 NV50_IR_OPCODE_CASE(SIN, SIN);
646 NV50_IR_OPCODE_CASE(SLE, SET);
647 NV50_IR_OPCODE_CASE(SNE, SET);
648 NV50_IR_OPCODE_CASE(TEX, TEX);
649 NV50_IR_OPCODE_CASE(TXD, TXD);
650 NV50_IR_OPCODE_CASE(TXP, TEX);
651
652 NV50_IR_OPCODE_CASE(CAL, CALL);
653 NV50_IR_OPCODE_CASE(RET, RET);
654 NV50_IR_OPCODE_CASE(CMP, SLCT);
655
656 NV50_IR_OPCODE_CASE(TXB, TXB);
657
658 NV50_IR_OPCODE_CASE(DIV, DIV);
659
660 NV50_IR_OPCODE_CASE(TXL, TXL);
661
662 NV50_IR_OPCODE_CASE(CEIL, CEIL);
663 NV50_IR_OPCODE_CASE(I2F, CVT);
664 NV50_IR_OPCODE_CASE(NOT, NOT);
665 NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
666 NV50_IR_OPCODE_CASE(SHL, SHL);
667
668 NV50_IR_OPCODE_CASE(AND, AND);
669 NV50_IR_OPCODE_CASE(OR, OR);
670 NV50_IR_OPCODE_CASE(MOD, MOD);
671 NV50_IR_OPCODE_CASE(XOR, XOR);
672 NV50_IR_OPCODE_CASE(SAD, SAD);
673 NV50_IR_OPCODE_CASE(TXF, TXF);
674 NV50_IR_OPCODE_CASE(TXQ, TXQ);
675 NV50_IR_OPCODE_CASE(TXQS, TXQ);
676 NV50_IR_OPCODE_CASE(TG4, TXG);
677 NV50_IR_OPCODE_CASE(LODQ, TXLQ);
678
679 NV50_IR_OPCODE_CASE(EMIT, EMIT);
680 NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
681
682 NV50_IR_OPCODE_CASE(KILL_IF, DISCARD);
683
684 NV50_IR_OPCODE_CASE(F2I, CVT);
685 NV50_IR_OPCODE_CASE(FSEQ, SET);
686 NV50_IR_OPCODE_CASE(FSGE, SET);
687 NV50_IR_OPCODE_CASE(FSLT, SET);
688 NV50_IR_OPCODE_CASE(FSNE, SET);
689 NV50_IR_OPCODE_CASE(IDIV, DIV);
690 NV50_IR_OPCODE_CASE(IMAX, MAX);
691 NV50_IR_OPCODE_CASE(IMIN, MIN);
692 NV50_IR_OPCODE_CASE(IABS, ABS);
693 NV50_IR_OPCODE_CASE(INEG, NEG);
694 NV50_IR_OPCODE_CASE(ISGE, SET);
695 NV50_IR_OPCODE_CASE(ISHR, SHR);
696 NV50_IR_OPCODE_CASE(ISLT, SET);
697 NV50_IR_OPCODE_CASE(F2U, CVT);
698 NV50_IR_OPCODE_CASE(U2F, CVT);
699 NV50_IR_OPCODE_CASE(UADD, ADD);
700 NV50_IR_OPCODE_CASE(UDIV, DIV);
701 NV50_IR_OPCODE_CASE(UMAD, MAD);
702 NV50_IR_OPCODE_CASE(UMAX, MAX);
703 NV50_IR_OPCODE_CASE(UMIN, MIN);
704 NV50_IR_OPCODE_CASE(UMOD, MOD);
705 NV50_IR_OPCODE_CASE(UMUL, MUL);
706 NV50_IR_OPCODE_CASE(USEQ, SET);
707 NV50_IR_OPCODE_CASE(USGE, SET);
708 NV50_IR_OPCODE_CASE(USHR, SHR);
709 NV50_IR_OPCODE_CASE(USLT, SET);
710 NV50_IR_OPCODE_CASE(USNE, SET);
711
712 NV50_IR_OPCODE_CASE(DABS, ABS);
713 NV50_IR_OPCODE_CASE(DNEG, NEG);
714 NV50_IR_OPCODE_CASE(DADD, ADD);
715 NV50_IR_OPCODE_CASE(DMUL, MUL);
716 NV50_IR_OPCODE_CASE(DMAX, MAX);
717 NV50_IR_OPCODE_CASE(DMIN, MIN);
718 NV50_IR_OPCODE_CASE(DSLT, SET);
719 NV50_IR_OPCODE_CASE(DSGE, SET);
720 NV50_IR_OPCODE_CASE(DSEQ, SET);
721 NV50_IR_OPCODE_CASE(DSNE, SET);
722 NV50_IR_OPCODE_CASE(DRCP, RCP);
723 NV50_IR_OPCODE_CASE(DSQRT, SQRT);
724 NV50_IR_OPCODE_CASE(DMAD, MAD);
725 NV50_IR_OPCODE_CASE(D2I, CVT);
726 NV50_IR_OPCODE_CASE(D2U, CVT);
727 NV50_IR_OPCODE_CASE(I2D, CVT);
728 NV50_IR_OPCODE_CASE(U2D, CVT);
729 NV50_IR_OPCODE_CASE(DRSQ, RSQ);
730 NV50_IR_OPCODE_CASE(DTRUNC, TRUNC);
731 NV50_IR_OPCODE_CASE(DCEIL, CEIL);
732 NV50_IR_OPCODE_CASE(DFLR, FLOOR);
733 NV50_IR_OPCODE_CASE(DROUND, CVT);
734
735 NV50_IR_OPCODE_CASE(IMUL_HI, MUL);
736 NV50_IR_OPCODE_CASE(UMUL_HI, MUL);
737
738 NV50_IR_OPCODE_CASE(SAMPLE, TEX);
739 NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
740 NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
741 NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
742 NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
743 NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
744 NV50_IR_OPCODE_CASE(SAMPLE_I, TXF);
745 NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF);
746 NV50_IR_OPCODE_CASE(GATHER4, TXG);
747 NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
748
749 NV50_IR_OPCODE_CASE(ATOMUADD, ATOM);
750 NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM);
751 NV50_IR_OPCODE_CASE(ATOMCAS, ATOM);
752 NV50_IR_OPCODE_CASE(ATOMAND, ATOM);
753 NV50_IR_OPCODE_CASE(ATOMOR, ATOM);
754 NV50_IR_OPCODE_CASE(ATOMXOR, ATOM);
755 NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM);
756 NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM);
757 NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM);
758 NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM);
759
760 NV50_IR_OPCODE_CASE(TEX2, TEX);
761 NV50_IR_OPCODE_CASE(TXB2, TXB);
762 NV50_IR_OPCODE_CASE(TXL2, TXL);
763
764 NV50_IR_OPCODE_CASE(IBFE, EXTBF);
765 NV50_IR_OPCODE_CASE(UBFE, EXTBF);
766 NV50_IR_OPCODE_CASE(BFI, INSBF);
767 NV50_IR_OPCODE_CASE(BREV, EXTBF);
768 NV50_IR_OPCODE_CASE(POPC, POPCNT);
769 NV50_IR_OPCODE_CASE(LSB, BFIND);
770 NV50_IR_OPCODE_CASE(IMSB, BFIND);
771 NV50_IR_OPCODE_CASE(UMSB, BFIND);
772
773 NV50_IR_OPCODE_CASE(END, EXIT);
774
775 default:
776 return nv50_ir::OP_NOP;
777 }
778 }
779
780 static uint16_t opcodeToSubOp(uint opcode)
781 {
782 switch (opcode) {
783 case TGSI_OPCODE_LFENCE: return NV50_IR_SUBOP_MEMBAR(L, GL);
784 case TGSI_OPCODE_SFENCE: return NV50_IR_SUBOP_MEMBAR(S, GL);
785 case TGSI_OPCODE_MFENCE: return NV50_IR_SUBOP_MEMBAR(M, GL);
786 case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD;
787 case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH;
788 case TGSI_OPCODE_ATOMCAS: return NV50_IR_SUBOP_ATOM_CAS;
789 case TGSI_OPCODE_ATOMAND: return NV50_IR_SUBOP_ATOM_AND;
790 case TGSI_OPCODE_ATOMOR: return NV50_IR_SUBOP_ATOM_OR;
791 case TGSI_OPCODE_ATOMXOR: return NV50_IR_SUBOP_ATOM_XOR;
792 case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN;
793 case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN;
794 case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX;
795 case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX;
796 case TGSI_OPCODE_IMUL_HI:
797 case TGSI_OPCODE_UMUL_HI:
798 return NV50_IR_SUBOP_MUL_HIGH;
799 default:
800 return 0;
801 }
802 }
803
804 bool Instruction::checkDstSrcAliasing() const
805 {
806 if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
807 return false;
808
809 for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
810 if (insn->Src[s].Register.File == TGSI_FILE_NULL)
811 break;
812 if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
813 insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
814 return true;
815 }
816 return false;
817 }
818
819 class Source
820 {
821 public:
822 Source(struct nv50_ir_prog_info *);
823 ~Source();
824
825 public:
826 bool scanSource();
827 unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
828
829 public:
830 struct tgsi_shader_info scan;
831 struct tgsi_full_instruction *insns;
832 const struct tgsi_token *tokens;
833 struct nv50_ir_prog_info *info;
834
835 nv50_ir::DynArray tempArrays;
836 nv50_ir::DynArray immdArrays;
837
838 typedef nv50_ir::BuildUtil::Location Location;
839 // these registers are per-subroutine, cannot be used for parameter passing
840 std::set<Location> locals;
841
842 std::set<int> indirectTempArrays;
843 std::map<int, int> indirectTempOffsets;
844 std::map<int, std::pair<int, int> > tempArrayInfo;
845 std::vector<int> tempArrayId;
846
847 int clipVertexOutput;
848
849 struct TextureView {
850 uint8_t target; // TGSI_TEXTURE_*
851 };
852 std::vector<TextureView> textureViews;
853
854 struct Resource {
855 uint8_t target; // TGSI_TEXTURE_*
856 bool raw;
857 uint8_t slot; // $surface index
858 };
859 std::vector<Resource> resources;
860
861 private:
862 int inferSysValDirection(unsigned sn) const;
863 bool scanDeclaration(const struct tgsi_full_declaration *);
864 bool scanInstruction(const struct tgsi_full_instruction *);
865 void scanProperty(const struct tgsi_full_property *);
866 void scanImmediate(const struct tgsi_full_immediate *);
867
868 inline bool isEdgeFlagPassthrough(const Instruction&) const;
869 };
870
871 Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
872 {
873 tokens = (const struct tgsi_token *)info->bin.source;
874
875 if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
876 tgsi_dump(tokens, 0);
877 }
878
879 Source::~Source()
880 {
881 if (insns)
882 FREE(insns);
883
884 if (info->immd.data)
885 FREE(info->immd.data);
886 if (info->immd.type)
887 FREE(info->immd.type);
888 }
889
890 bool Source::scanSource()
891 {
892 unsigned insnCount = 0;
893 struct tgsi_parse_context parse;
894
895 tgsi_scan_shader(tokens, &scan);
896
897 insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
898 sizeof(insns[0]));
899 if (!insns)
900 return false;
901
902 clipVertexOutput = -1;
903
904 textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1);
905 //resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1);
906 tempArrayId.resize(scan.file_max[TGSI_FILE_TEMPORARY] + 1);
907
908 info->immd.bufSize = 0;
909
910 info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
911 info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
912 info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
913
914 if (info->type == PIPE_SHADER_FRAGMENT) {
915 info->prop.fp.writesDepth = scan.writes_z;
916 info->prop.fp.usesDiscard = scan.uses_kill;
917 } else
918 if (info->type == PIPE_SHADER_GEOMETRY) {
919 info->prop.gp.instanceCount = 1; // default value
920 }
921
922 info->io.viewportId = -1;
923
924 info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
925 info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
926
927 tgsi_parse_init(&parse, tokens);
928 while (!tgsi_parse_end_of_tokens(&parse)) {
929 tgsi_parse_token(&parse);
930
931 switch (parse.FullToken.Token.Type) {
932 case TGSI_TOKEN_TYPE_IMMEDIATE:
933 scanImmediate(&parse.FullToken.FullImmediate);
934 break;
935 case TGSI_TOKEN_TYPE_DECLARATION:
936 scanDeclaration(&parse.FullToken.FullDeclaration);
937 break;
938 case TGSI_TOKEN_TYPE_INSTRUCTION:
939 insns[insnCount++] = parse.FullToken.FullInstruction;
940 scanInstruction(&parse.FullToken.FullInstruction);
941 break;
942 case TGSI_TOKEN_TYPE_PROPERTY:
943 scanProperty(&parse.FullToken.FullProperty);
944 break;
945 default:
946 INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
947 break;
948 }
949 }
950 tgsi_parse_free(&parse);
951
952 if (indirectTempArrays.size()) {
953 int tempBase = 0;
954 for (std::set<int>::const_iterator it = indirectTempArrays.begin();
955 it != indirectTempArrays.end(); ++it) {
956 std::pair<int, int>& info = tempArrayInfo[*it];
957 indirectTempOffsets.insert(std::make_pair(*it, tempBase - info.first));
958 tempBase += info.second;
959 }
960 info->bin.tlsSpace += tempBase * 16;
961 }
962
963 if (info->io.genUserClip > 0) {
964 info->io.clipDistances = info->io.genUserClip;
965
966 const unsigned int nOut = (info->io.genUserClip + 3) / 4;
967
968 for (unsigned int n = 0; n < nOut; ++n) {
969 unsigned int i = info->numOutputs++;
970 info->out[i].id = i;
971 info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
972 info->out[i].si = n;
973 info->out[i].mask = ((1 << info->io.clipDistances) - 1) >> (n * 4);
974 }
975 }
976
977 return info->assignSlots(info) == 0;
978 }
979
980 void Source::scanProperty(const struct tgsi_full_property *prop)
981 {
982 switch (prop->Property.PropertyName) {
983 case TGSI_PROPERTY_GS_OUTPUT_PRIM:
984 info->prop.gp.outputPrim = prop->u[0].Data;
985 break;
986 case TGSI_PROPERTY_GS_INPUT_PRIM:
987 info->prop.gp.inputPrim = prop->u[0].Data;
988 break;
989 case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
990 info->prop.gp.maxVertices = prop->u[0].Data;
991 break;
992 case TGSI_PROPERTY_GS_INVOCATIONS:
993 info->prop.gp.instanceCount = prop->u[0].Data;
994 break;
995 case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
996 info->prop.fp.separateFragData = true;
997 break;
998 case TGSI_PROPERTY_FS_COORD_ORIGIN:
999 case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
1000 // we don't care
1001 break;
1002 case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
1003 info->io.genUserClip = -1;
1004 break;
1005 case TGSI_PROPERTY_TCS_VERTICES_OUT:
1006 info->prop.tp.outputPatchSize = prop->u[0].Data;
1007 break;
1008 case TGSI_PROPERTY_TES_PRIM_MODE:
1009 info->prop.tp.domain = prop->u[0].Data;
1010 break;
1011 case TGSI_PROPERTY_TES_SPACING:
1012 info->prop.tp.partitioning = prop->u[0].Data;
1013 break;
1014 case TGSI_PROPERTY_TES_VERTEX_ORDER_CW:
1015 info->prop.tp.winding = prop->u[0].Data;
1016 break;
1017 case TGSI_PROPERTY_TES_POINT_MODE:
1018 if (prop->u[0].Data)
1019 info->prop.tp.outputPrim = PIPE_PRIM_POINTS;
1020 else
1021 info->prop.tp.outputPrim = PIPE_PRIM_TRIANGLES; /* anything but points */
1022 break;
1023 case TGSI_PROPERTY_NUM_CLIPDIST_ENABLED:
1024 info->io.clipDistances = prop->u[0].Data;
1025 break;
1026 case TGSI_PROPERTY_NUM_CULLDIST_ENABLED:
1027 info->io.cullDistances = prop->u[0].Data;
1028 break;
1029 default:
1030 INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
1031 break;
1032 }
1033 }
1034
1035 void Source::scanImmediate(const struct tgsi_full_immediate *imm)
1036 {
1037 const unsigned n = info->immd.count++;
1038
1039 assert(n < scan.immediate_count);
1040
1041 for (int c = 0; c < 4; ++c)
1042 info->immd.data[n * 4 + c] = imm->u[c].Uint;
1043
1044 info->immd.type[n] = imm->Immediate.DataType;
1045 }
1046
1047 int Source::inferSysValDirection(unsigned sn) const
1048 {
1049 switch (sn) {
1050 case TGSI_SEMANTIC_INSTANCEID:
1051 case TGSI_SEMANTIC_VERTEXID:
1052 return 1;
1053 case TGSI_SEMANTIC_LAYER:
1054 #if 0
1055 case TGSI_SEMANTIC_VIEWPORTINDEX:
1056 return 0;
1057 #endif
1058 case TGSI_SEMANTIC_PRIMID:
1059 return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
1060 default:
1061 return 0;
1062 }
1063 }
1064
1065 bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
1066 {
1067 unsigned i, c;
1068 unsigned sn = TGSI_SEMANTIC_GENERIC;
1069 unsigned si = 0;
1070 const unsigned first = decl->Range.First, last = decl->Range.Last;
1071 const int arrayId = decl->Array.ArrayID;
1072
1073 if (decl->Declaration.Semantic) {
1074 sn = decl->Semantic.Name;
1075 si = decl->Semantic.Index;
1076 }
1077
1078 if (decl->Declaration.Local) {
1079 for (i = first; i <= last; ++i) {
1080 for (c = 0; c < 4; ++c) {
1081 locals.insert(
1082 Location(decl->Declaration.File, decl->Dim.Index2D, i, c));
1083 }
1084 }
1085 }
1086
1087 switch (decl->Declaration.File) {
1088 case TGSI_FILE_INPUT:
1089 if (info->type == PIPE_SHADER_VERTEX) {
1090 // all vertex attributes are equal
1091 for (i = first; i <= last; ++i) {
1092 info->in[i].sn = TGSI_SEMANTIC_GENERIC;
1093 info->in[i].si = i;
1094 }
1095 } else {
1096 for (i = first; i <= last; ++i, ++si) {
1097 info->in[i].id = i;
1098 info->in[i].sn = sn;
1099 info->in[i].si = si;
1100 if (info->type == PIPE_SHADER_FRAGMENT) {
1101 // translate interpolation mode
1102 switch (decl->Interp.Interpolate) {
1103 case TGSI_INTERPOLATE_CONSTANT:
1104 info->in[i].flat = 1;
1105 break;
1106 case TGSI_INTERPOLATE_COLOR:
1107 info->in[i].sc = 1;
1108 break;
1109 case TGSI_INTERPOLATE_LINEAR:
1110 info->in[i].linear = 1;
1111 break;
1112 default:
1113 break;
1114 }
1115 if (decl->Interp.Location)
1116 info->in[i].centroid = 1;
1117 }
1118
1119 if (sn == TGSI_SEMANTIC_PATCH)
1120 info->in[i].patch = 1;
1121 if (sn == TGSI_SEMANTIC_PATCH)
1122 info->numPatchConstants = MAX2(info->numPatchConstants, si + 1);
1123 }
1124 }
1125 break;
1126 case TGSI_FILE_OUTPUT:
1127 for (i = first; i <= last; ++i, ++si) {
1128 switch (sn) {
1129 case TGSI_SEMANTIC_POSITION:
1130 if (info->type == PIPE_SHADER_FRAGMENT)
1131 info->io.fragDepth = i;
1132 else
1133 if (clipVertexOutput < 0)
1134 clipVertexOutput = i;
1135 break;
1136 case TGSI_SEMANTIC_COLOR:
1137 if (info->type == PIPE_SHADER_FRAGMENT)
1138 info->prop.fp.numColourResults++;
1139 break;
1140 case TGSI_SEMANTIC_EDGEFLAG:
1141 info->io.edgeFlagOut = i;
1142 break;
1143 case TGSI_SEMANTIC_CLIPVERTEX:
1144 clipVertexOutput = i;
1145 break;
1146 case TGSI_SEMANTIC_CLIPDIST:
1147 info->io.genUserClip = -1;
1148 break;
1149 case TGSI_SEMANTIC_SAMPLEMASK:
1150 info->io.sampleMask = i;
1151 break;
1152 case TGSI_SEMANTIC_VIEWPORT_INDEX:
1153 info->io.viewportId = i;
1154 break;
1155 case TGSI_SEMANTIC_PATCH:
1156 info->numPatchConstants = MAX2(info->numPatchConstants, si + 1);
1157 /* fallthrough */
1158 case TGSI_SEMANTIC_TESSOUTER:
1159 case TGSI_SEMANTIC_TESSINNER:
1160 info->out[i].patch = 1;
1161 break;
1162 default:
1163 break;
1164 }
1165 info->out[i].id = i;
1166 info->out[i].sn = sn;
1167 info->out[i].si = si;
1168 }
1169 break;
1170 case TGSI_FILE_SYSTEM_VALUE:
1171 switch (sn) {
1172 case TGSI_SEMANTIC_INSTANCEID:
1173 info->io.instanceId = first;
1174 break;
1175 case TGSI_SEMANTIC_VERTEXID:
1176 info->io.vertexId = first;
1177 break;
1178 case TGSI_SEMANTIC_SAMPLEID:
1179 case TGSI_SEMANTIC_SAMPLEPOS:
1180 info->prop.fp.sampleInterp = 1;
1181 break;
1182 case TGSI_SEMANTIC_BASEVERTEX:
1183 case TGSI_SEMANTIC_BASEINSTANCE:
1184 case TGSI_SEMANTIC_DRAWID:
1185 info->prop.vp.usesDrawParameters = true;
1186 break;
1187 default:
1188 break;
1189 }
1190 for (i = first; i <= last; ++i, ++si) {
1191 info->sv[i].sn = sn;
1192 info->sv[i].si = si;
1193 info->sv[i].input = inferSysValDirection(sn);
1194
1195 switch (sn) {
1196 case TGSI_SEMANTIC_TESSOUTER:
1197 case TGSI_SEMANTIC_TESSINNER:
1198 info->sv[i].patch = 1;
1199 break;
1200 }
1201 }
1202 break;
1203 /*
1204 case TGSI_FILE_RESOURCE:
1205 for (i = first; i <= last; ++i) {
1206 resources[i].target = decl->Resource.Resource;
1207 resources[i].raw = decl->Resource.Raw;
1208 resources[i].slot = i;
1209 }
1210 break;
1211 */
1212 case TGSI_FILE_SAMPLER_VIEW:
1213 for (i = first; i <= last; ++i)
1214 textureViews[i].target = decl->SamplerView.Resource;
1215 break;
1216 case TGSI_FILE_TEMPORARY:
1217 for (i = first; i <= last; ++i)
1218 tempArrayId[i] = arrayId;
1219 if (arrayId)
1220 tempArrayInfo.insert(std::make_pair(arrayId, std::make_pair(
1221 first, last - first + 1)));
1222 break;
1223 case TGSI_FILE_NULL:
1224 case TGSI_FILE_ADDRESS:
1225 case TGSI_FILE_CONSTANT:
1226 case TGSI_FILE_IMMEDIATE:
1227 case TGSI_FILE_PREDICATE:
1228 case TGSI_FILE_SAMPLER:
1229 case TGSI_FILE_BUFFER:
1230 break;
1231 default:
1232 ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
1233 return false;
1234 }
1235 return true;
1236 }
1237
1238 inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
1239 {
1240 return insn.getOpcode() == TGSI_OPCODE_MOV &&
1241 insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
1242 insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
1243 }
1244
1245 bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
1246 {
1247 Instruction insn(inst);
1248
1249 if (insn.getOpcode() == TGSI_OPCODE_BARRIER)
1250 info->numBarriers = 1;
1251
1252 if (insn.dstCount()) {
1253 if (insn.getDst(0).getFile() == TGSI_FILE_OUTPUT) {
1254 Instruction::DstRegister dst = insn.getDst(0);
1255
1256 if (dst.isIndirect(0))
1257 for (unsigned i = 0; i < info->numOutputs; ++i)
1258 info->out[i].mask = 0xf;
1259 else
1260 info->out[dst.getIndex(0)].mask |= dst.getMask();
1261
1262 if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE ||
1263 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID ||
1264 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_LAYER ||
1265 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_VIEWPORT_INDEX ||
1266 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG)
1267 info->out[dst.getIndex(0)].mask &= 1;
1268
1269 if (isEdgeFlagPassthrough(insn))
1270 info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
1271 } else
1272 if (insn.getDst(0).getFile() == TGSI_FILE_TEMPORARY) {
1273 if (insn.getDst(0).isIndirect(0))
1274 indirectTempArrays.insert(insn.getDst(0).getArrayId());
1275 } else
1276 if (insn.getDst(0).getFile() == TGSI_FILE_BUFFER) {
1277 info->io.globalAccess |= 0x2;
1278 }
1279 }
1280
1281 for (unsigned s = 0; s < insn.srcCount(); ++s) {
1282 Instruction::SrcRegister src = insn.getSrc(s);
1283 if (src.getFile() == TGSI_FILE_TEMPORARY) {
1284 if (src.isIndirect(0))
1285 indirectTempArrays.insert(src.getArrayId());
1286 } else
1287 if (src.getFile() == TGSI_FILE_BUFFER) {
1288 info->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ?
1289 0x1 : 0x2;
1290 } else
1291 if (src.getFile() == TGSI_FILE_OUTPUT) {
1292 if (src.isIndirect(0)) {
1293 // We don't know which one is accessed, just mark everything for
1294 // reading. This is an extremely unlikely occurrence.
1295 for (unsigned i = 0; i < info->numOutputs; ++i)
1296 info->out[i].oread = 1;
1297 } else {
1298 info->out[src.getIndex(0)].oread = 1;
1299 }
1300 }
1301 if (src.getFile() != TGSI_FILE_INPUT)
1302 continue;
1303 unsigned mask = insn.srcMask(s);
1304
1305 if (src.isIndirect(0)) {
1306 for (unsigned i = 0; i < info->numInputs; ++i)
1307 info->in[i].mask = 0xf;
1308 } else {
1309 const int i = src.getIndex(0);
1310 for (unsigned c = 0; c < 4; ++c) {
1311 if (!(mask & (1 << c)))
1312 continue;
1313 int k = src.getSwizzle(c);
1314 if (k <= TGSI_SWIZZLE_W)
1315 info->in[i].mask |= 1 << k;
1316 }
1317 switch (info->in[i].sn) {
1318 case TGSI_SEMANTIC_PSIZE:
1319 case TGSI_SEMANTIC_PRIMID:
1320 case TGSI_SEMANTIC_FOG:
1321 info->in[i].mask &= 0x1;
1322 break;
1323 case TGSI_SEMANTIC_PCOORD:
1324 info->in[i].mask &= 0x3;
1325 break;
1326 default:
1327 break;
1328 }
1329 }
1330 }
1331 return true;
1332 }
1333
1334 nv50_ir::TexInstruction::Target
1335 Instruction::getTexture(const tgsi::Source *code, int s) const
1336 {
1337 // XXX: indirect access
1338 unsigned int r;
1339
1340 switch (getSrc(s).getFile()) {
1341 /*
1342 case TGSI_FILE_RESOURCE:
1343 r = getSrc(s).getIndex(0);
1344 return translateTexture(code->resources.at(r).target);
1345 */
1346 case TGSI_FILE_SAMPLER_VIEW:
1347 r = getSrc(s).getIndex(0);
1348 return translateTexture(code->textureViews.at(r).target);
1349 default:
1350 return translateTexture(insn->Texture.Texture);
1351 }
1352 }
1353
1354 } // namespace tgsi
1355
1356 namespace {
1357
1358 using namespace nv50_ir;
1359
1360 class Converter : public BuildUtil
1361 {
1362 public:
1363 Converter(Program *, const tgsi::Source *);
1364 ~Converter();
1365
1366 bool run();
1367
1368 private:
1369 struct Subroutine
1370 {
1371 Subroutine(Function *f) : f(f) { }
1372 Function *f;
1373 ValueMap values;
1374 };
1375
1376 Value *shiftAddress(Value *);
1377 Value *getVertexBase(int s);
1378 Value *getOutputBase(int s);
1379 DataArray *getArrayForFile(unsigned file, int idx);
1380 Value *fetchSrc(int s, int c);
1381 Value *acquireDst(int d, int c);
1382 void storeDst(int d, int c, Value *);
1383
1384 Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1385 void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1386 Value *val, Value *ptr);
1387
1388 void adjustTempIndex(int arrayId, int &idx, int &idx2d) const;
1389 Value *applySrcMod(Value *, int s, int c);
1390
1391 Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1392 Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1393 Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1394
1395 bool handleInstruction(const struct tgsi_full_instruction *);
1396 void exportOutputs();
1397 inline Subroutine *getSubroutine(unsigned ip);
1398 inline Subroutine *getSubroutine(Function *);
1399 inline bool isEndOfSubroutine(uint ip);
1400
1401 void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1402
1403 // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1404 void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1405 void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1406 void handleTXF(Value *dst0[4], int R, int L_M);
1407 void handleTXQ(Value *dst0[4], enum TexQuery, int R);
1408 void handleLIT(Value *dst0[4]);
1409 void handleUserClipPlanes();
1410
1411 Symbol *getResourceBase(int r);
1412 void getResourceCoords(std::vector<Value *>&, int r, int s);
1413
1414 void handleLOAD(Value *dst0[4]);
1415 void handleSTORE();
1416 void handleATOM(Value *dst0[4], DataType, uint16_t subOp);
1417
1418 void handleINTERP(Value *dst0[4]);
1419
1420 uint8_t translateInterpMode(const struct nv50_ir_varying *var,
1421 operation& op);
1422 Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1423
1424 void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1425
1426 Value *buildDot(int dim);
1427
1428 class BindArgumentsPass : public Pass {
1429 public:
1430 BindArgumentsPass(Converter &conv) : conv(conv) { }
1431
1432 private:
1433 Converter &conv;
1434 Subroutine *sub;
1435
1436 inline const Location *getValueLocation(Subroutine *, Value *);
1437
1438 template<typename T> inline void
1439 updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1440 T (Function::*proto));
1441
1442 template<typename T> inline void
1443 updatePrototype(BitSet *set, void (Function::*updateSet)(),
1444 T (Function::*proto));
1445
1446 protected:
1447 bool visit(Function *);
1448 bool visit(BasicBlock *bb) { return false; }
1449 };
1450
1451 private:
1452 const tgsi::Source *code;
1453 const struct nv50_ir_prog_info *info;
1454
1455 struct {
1456 std::map<unsigned, Subroutine> map;
1457 Subroutine *cur;
1458 } sub;
1459
1460 uint ip; // instruction pointer
1461
1462 tgsi::Instruction tgsi;
1463
1464 DataType dstTy;
1465 DataType srcTy;
1466
1467 DataArray tData; // TGSI_FILE_TEMPORARY
1468 DataArray lData; // TGSI_FILE_TEMPORARY, for indirect arrays
1469 DataArray aData; // TGSI_FILE_ADDRESS
1470 DataArray pData; // TGSI_FILE_PREDICATE
1471 DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1472
1473 Value *zero;
1474 Value *fragCoord[4];
1475 Value *clipVtx[4];
1476
1477 Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1478 uint8_t vtxBaseValid;
1479
1480 Value *outBase; // base address of vertex out patch (for TCP)
1481
1482 Stack condBBs; // fork BB, then else clause BB
1483 Stack joinBBs; // fork BB, for inserting join ops on ENDIF
1484 Stack loopBBs; // loop headers
1485 Stack breakBBs; // end of / after loop
1486
1487 Value *viewport;
1488 };
1489
1490 Symbol *
1491 Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1492 {
1493 const int swz = src.getSwizzle(c);
1494
1495 /* TODO: Use Array ID when it's available for the index */
1496 return makeSym(src.getFile(),
1497 src.is2D() ? src.getIndex(1) : 0,
1498 src.getIndex(0), swz,
1499 src.getIndex(0) * 16 + swz * 4);
1500 }
1501
1502 Symbol *
1503 Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1504 {
1505 /* TODO: Use Array ID when it's available for the index */
1506 return makeSym(dst.getFile(),
1507 dst.is2D() ? dst.getIndex(1) : 0,
1508 dst.getIndex(0), c,
1509 dst.getIndex(0) * 16 + c * 4);
1510 }
1511
1512 Symbol *
1513 Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1514 {
1515 Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1516
1517 sym->reg.fileIndex = fileIdx;
1518
1519 if (idx >= 0) {
1520 if (sym->reg.file == FILE_SHADER_INPUT)
1521 sym->setOffset(info->in[idx].slot[c] * 4);
1522 else
1523 if (sym->reg.file == FILE_SHADER_OUTPUT)
1524 sym->setOffset(info->out[idx].slot[c] * 4);
1525 else
1526 if (sym->reg.file == FILE_SYSTEM_VALUE)
1527 sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
1528 else
1529 sym->setOffset(address);
1530 } else {
1531 sym->setOffset(address);
1532 }
1533 return sym;
1534 }
1535
1536 uint8_t
1537 Converter::translateInterpMode(const struct nv50_ir_varying *var, operation& op)
1538 {
1539 uint8_t mode = NV50_IR_INTERP_PERSPECTIVE;
1540
1541 if (var->flat)
1542 mode = NV50_IR_INTERP_FLAT;
1543 else
1544 if (var->linear)
1545 mode = NV50_IR_INTERP_LINEAR;
1546 else
1547 if (var->sc)
1548 mode = NV50_IR_INTERP_SC;
1549
1550 op = (mode == NV50_IR_INTERP_PERSPECTIVE || mode == NV50_IR_INTERP_SC)
1551 ? OP_PINTERP : OP_LINTERP;
1552
1553 if (var->centroid || info->prop.fp.sampleInterp)
1554 mode |= NV50_IR_INTERP_CENTROID;
1555
1556 return mode;
1557 }
1558
1559 Value *
1560 Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1561 {
1562 operation op;
1563
1564 // XXX: no way to know interpolation mode if we don't know what's accessed
1565 const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
1566 src.getIndex(0)], op);
1567
1568 Instruction *insn = new_Instruction(func, op, TYPE_F32);
1569
1570 insn->setDef(0, getScratch());
1571 insn->setSrc(0, srcToSym(src, c));
1572 if (op == OP_PINTERP)
1573 insn->setSrc(1, fragCoord[3]);
1574 if (ptr)
1575 insn->setIndirect(0, 0, ptr);
1576
1577 insn->setInterpolate(mode);
1578
1579 bb->insertTail(insn);
1580 return insn->getDef(0);
1581 }
1582
1583 Value *
1584 Converter::applySrcMod(Value *val, int s, int c)
1585 {
1586 Modifier m = tgsi.getSrc(s).getMod(c);
1587 DataType ty = tgsi.inferSrcType();
1588
1589 if (m & Modifier(NV50_IR_MOD_ABS))
1590 val = mkOp1v(OP_ABS, ty, getScratch(), val);
1591
1592 if (m & Modifier(NV50_IR_MOD_NEG))
1593 val = mkOp1v(OP_NEG, ty, getScratch(), val);
1594
1595 return val;
1596 }
1597
1598 Value *
1599 Converter::getVertexBase(int s)
1600 {
1601 assert(s < 5);
1602 if (!(vtxBaseValid & (1 << s))) {
1603 const int index = tgsi.getSrc(s).getIndex(1);
1604 Value *rel = NULL;
1605 if (tgsi.getSrc(s).isIndirect(1))
1606 rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1607 vtxBaseValid |= 1 << s;
1608 vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1609 mkImm(index), rel);
1610 }
1611 return vtxBase[s];
1612 }
1613
1614 Value *
1615 Converter::getOutputBase(int s)
1616 {
1617 assert(s < 5);
1618 if (!(vtxBaseValid & (1 << s))) {
1619 Value *offset = loadImm(NULL, tgsi.getSrc(s).getIndex(1));
1620 if (tgsi.getSrc(s).isIndirect(1))
1621 offset = mkOp2v(OP_ADD, TYPE_U32, getSSA(),
1622 fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL),
1623 offset);
1624 vtxBaseValid |= 1 << s;
1625 vtxBase[s] = mkOp2v(OP_ADD, TYPE_U32, getSSA(), outBase, offset);
1626 }
1627 return vtxBase[s];
1628 }
1629
1630 Value *
1631 Converter::fetchSrc(int s, int c)
1632 {
1633 Value *res;
1634 Value *ptr = NULL, *dimRel = NULL;
1635
1636 tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1637
1638 if (src.isIndirect(0))
1639 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1640
1641 if (src.is2D()) {
1642 switch (src.getFile()) {
1643 case TGSI_FILE_OUTPUT:
1644 dimRel = getOutputBase(s);
1645 break;
1646 case TGSI_FILE_INPUT:
1647 dimRel = getVertexBase(s);
1648 break;
1649 case TGSI_FILE_CONSTANT:
1650 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1651 if (src.isIndirect(1))
1652 dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1653 break;
1654 default:
1655 break;
1656 }
1657 }
1658
1659 res = fetchSrc(src, c, ptr);
1660
1661 if (dimRel)
1662 res->getInsn()->setIndirect(0, 1, dimRel);
1663
1664 return applySrcMod(res, s, c);
1665 }
1666
1667 Converter::DataArray *
1668 Converter::getArrayForFile(unsigned file, int idx)
1669 {
1670 switch (file) {
1671 case TGSI_FILE_TEMPORARY:
1672 return idx == 0 ? &tData : &lData;
1673 case TGSI_FILE_PREDICATE:
1674 return &pData;
1675 case TGSI_FILE_ADDRESS:
1676 return &aData;
1677 case TGSI_FILE_OUTPUT:
1678 assert(prog->getType() == Program::TYPE_FRAGMENT);
1679 return &oData;
1680 default:
1681 assert(!"invalid/unhandled TGSI source file");
1682 return NULL;
1683 }
1684 }
1685
1686 Value *
1687 Converter::shiftAddress(Value *index)
1688 {
1689 if (!index)
1690 return NULL;
1691 return mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), index, mkImm(4));
1692 }
1693
1694 void
1695 Converter::adjustTempIndex(int arrayId, int &idx, int &idx2d) const
1696 {
1697 std::map<int, int>::const_iterator it =
1698 code->indirectTempOffsets.find(arrayId);
1699 if (it == code->indirectTempOffsets.end())
1700 return;
1701
1702 idx2d = 1;
1703 idx += it->second;
1704 }
1705
1706 Value *
1707 Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1708 {
1709 int idx2d = src.is2D() ? src.getIndex(1) : 0;
1710 int idx = src.getIndex(0);
1711 const int swz = src.getSwizzle(c);
1712 Instruction *ld;
1713
1714 switch (src.getFile()) {
1715 case TGSI_FILE_IMMEDIATE:
1716 assert(!ptr);
1717 return loadImm(NULL, info->immd.data[idx * 4 + swz]);
1718 case TGSI_FILE_CONSTANT:
1719 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1720 case TGSI_FILE_INPUT:
1721 if (prog->getType() == Program::TYPE_FRAGMENT) {
1722 // don't load masked inputs, won't be assigned a slot
1723 if (!ptr && !(info->in[idx].mask & (1 << swz)))
1724 return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
1725 return interpolate(src, c, shiftAddress(ptr));
1726 } else
1727 if (prog->getType() == Program::TYPE_GEOMETRY) {
1728 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_PRIMID)
1729 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_PRIMITIVE_ID, 0));
1730 // XXX: This is going to be a problem with scalar arrays, i.e. when
1731 // we cannot assume that the address is given in units of vec4.
1732 //
1733 // nv50 and nvc0 need different things here, so let the lowering
1734 // passes decide what to do with the address
1735 if (ptr)
1736 return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
1737 }
1738 ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr));
1739 ld->perPatch = info->in[idx].patch;
1740 return ld->getDef(0);
1741 case TGSI_FILE_OUTPUT:
1742 assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
1743 ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr));
1744 ld->perPatch = info->out[idx].patch;
1745 return ld->getDef(0);
1746 case TGSI_FILE_SYSTEM_VALUE:
1747 assert(!ptr);
1748 ld = mkOp1(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
1749 ld->perPatch = info->sv[idx].patch;
1750 return ld->getDef(0);
1751 case TGSI_FILE_TEMPORARY: {
1752 int arrayid = src.getArrayId();
1753 if (!arrayid)
1754 arrayid = code->tempArrayId[idx];
1755 adjustTempIndex(arrayid, idx, idx2d);
1756 }
1757 /* fallthrough */
1758 default:
1759 return getArrayForFile(src.getFile(), idx2d)->load(
1760 sub.cur->values, idx, swz, shiftAddress(ptr));
1761 }
1762 }
1763
1764 Value *
1765 Converter::acquireDst(int d, int c)
1766 {
1767 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1768 const unsigned f = dst.getFile();
1769 int idx = dst.getIndex(0);
1770 int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1771
1772 if (dst.isMasked(c) || f == TGSI_FILE_BUFFER)
1773 return NULL;
1774
1775 if (dst.isIndirect(0) ||
1776 f == TGSI_FILE_SYSTEM_VALUE ||
1777 (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
1778 return getScratch();
1779
1780 if (f == TGSI_FILE_TEMPORARY) {
1781 int arrayid = dst.getArrayId();
1782 if (!arrayid)
1783 arrayid = code->tempArrayId[idx];
1784 adjustTempIndex(arrayid, idx, idx2d);
1785 }
1786
1787 return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
1788 }
1789
1790 void
1791 Converter::storeDst(int d, int c, Value *val)
1792 {
1793 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1794
1795 if (tgsi.getSaturate()) {
1796 mkOp1(OP_SAT, dstTy, val, val);
1797 }
1798
1799 Value *ptr = NULL;
1800 if (dst.isIndirect(0))
1801 ptr = shiftAddress(fetchSrc(dst.getIndirect(0), 0, NULL));
1802
1803 if (info->io.genUserClip > 0 &&
1804 dst.getFile() == TGSI_FILE_OUTPUT &&
1805 !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
1806 mkMov(clipVtx[c], val);
1807 val = clipVtx[c];
1808 }
1809
1810 storeDst(dst, c, val, ptr);
1811 }
1812
1813 void
1814 Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
1815 Value *val, Value *ptr)
1816 {
1817 const unsigned f = dst.getFile();
1818 int idx = dst.getIndex(0);
1819 int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1820
1821 if (f == TGSI_FILE_SYSTEM_VALUE) {
1822 assert(!ptr);
1823 mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
1824 } else
1825 if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
1826
1827 if (ptr || (info->out[idx].mask & (1 << c))) {
1828 /* Save the viewport index into a scratch register so that it can be
1829 exported at EMIT time */
1830 if (info->out[idx].sn == TGSI_SEMANTIC_VIEWPORT_INDEX &&
1831 viewport != NULL)
1832 mkOp1(OP_MOV, TYPE_U32, viewport, val);
1833 else
1834 mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val)->perPatch =
1835 info->out[idx].patch;
1836 }
1837 } else
1838 if (f == TGSI_FILE_TEMPORARY ||
1839 f == TGSI_FILE_PREDICATE ||
1840 f == TGSI_FILE_ADDRESS ||
1841 f == TGSI_FILE_OUTPUT) {
1842 if (f == TGSI_FILE_TEMPORARY) {
1843 int arrayid = dst.getArrayId();
1844 if (!arrayid)
1845 arrayid = code->tempArrayId[idx];
1846 adjustTempIndex(arrayid, idx, idx2d);
1847 }
1848
1849 getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
1850 } else {
1851 assert(!"invalid dst file");
1852 }
1853 }
1854
1855 #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
1856 for (chan = 0; chan < 4; ++chan) \
1857 if (!inst.getDst(d).isMasked(chan))
1858
1859 Value *
1860 Converter::buildDot(int dim)
1861 {
1862 assert(dim > 0);
1863
1864 Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
1865 Value *dotp = getScratch();
1866
1867 mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1);
1868
1869 for (int c = 1; c < dim; ++c) {
1870 src0 = fetchSrc(0, c);
1871 src1 = fetchSrc(1, c);
1872 mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp);
1873 }
1874 return dotp;
1875 }
1876
1877 void
1878 Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
1879 {
1880 FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
1881 join->fixed = 1;
1882 conv->insertHead(join);
1883
1884 assert(!fork->joinAt);
1885 fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
1886 fork->insertBefore(fork->getExit(), fork->joinAt);
1887 }
1888
1889 void
1890 Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
1891 {
1892 unsigned rIdx = 0, sIdx = 0;
1893
1894 if (R >= 0)
1895 rIdx = tgsi.getSrc(R).getIndex(0);
1896 if (S >= 0)
1897 sIdx = tgsi.getSrc(S).getIndex(0);
1898
1899 tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
1900
1901 if (tgsi.getSrc(R).isIndirect(0)) {
1902 tex->tex.rIndirectSrc = s;
1903 tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
1904 }
1905 if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
1906 tex->tex.sIndirectSrc = s;
1907 tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
1908 }
1909 }
1910
1911 void
1912 Converter::handleTXQ(Value *dst0[4], enum TexQuery query, int R)
1913 {
1914 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1915 tex->tex.query = query;
1916 unsigned int c, d;
1917
1918 for (d = 0, c = 0; c < 4; ++c) {
1919 if (!dst0[c])
1920 continue;
1921 tex->tex.mask |= 1 << c;
1922 tex->setDef(d++, dst0[c]);
1923 }
1924 if (query == TXQ_DIMS)
1925 tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
1926 else
1927 tex->setSrc((c = 0), zero);
1928
1929 setTexRS(tex, ++c, R, -1);
1930
1931 bb->insertTail(tex);
1932 }
1933
1934 void
1935 Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
1936 {
1937 Value *proj = fetchSrc(0, 3);
1938 Instruction *insn = proj->getUniqueInsn();
1939 int c;
1940
1941 if (insn->op == OP_PINTERP) {
1942 bb->insertTail(insn = cloneForward(func, insn));
1943 insn->op = OP_LINTERP;
1944 insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
1945 insn->setSrc(1, NULL);
1946 proj = insn->getDef(0);
1947 }
1948 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
1949
1950 for (c = 0; c < 4; ++c) {
1951 if (!(mask & (1 << c)))
1952 continue;
1953 if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
1954 continue;
1955 mask &= ~(1 << c);
1956
1957 bb->insertTail(insn = cloneForward(func, insn));
1958 insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
1959 insn->setSrc(1, proj);
1960 dst[c] = insn->getDef(0);
1961 }
1962 if (!mask)
1963 return;
1964
1965 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
1966
1967 for (c = 0; c < 4; ++c)
1968 if (mask & (1 << c))
1969 dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
1970 }
1971
1972 // order of nv50 ir sources: x y z layer lod/bias shadow
1973 // order of TGSI TEX sources: x y z layer shadow lod/bias
1974 // lowering will finally set the hw specific order (like array first on nvc0)
1975 void
1976 Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
1977 {
1978 Value *val;
1979 Value *arg[4], *src[8];
1980 Value *lod = NULL, *shd = NULL;
1981 unsigned int s, c, d;
1982 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1983
1984 TexInstruction::Target tgt = tgsi.getTexture(code, R);
1985
1986 for (s = 0; s < tgt.getArgCount(); ++s)
1987 arg[s] = src[s] = fetchSrc(0, s);
1988
1989 if (texi->op == OP_TXL || texi->op == OP_TXB)
1990 lod = fetchSrc(L >> 4, L & 3);
1991
1992 if (C == 0x0f)
1993 C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
1994
1995 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 &&
1996 tgt == TEX_TARGET_CUBE_ARRAY_SHADOW)
1997 shd = fetchSrc(1, 0);
1998 else if (tgt.isShadow())
1999 shd = fetchSrc(C >> 4, C & 3);
2000
2001 if (texi->op == OP_TXD) {
2002 for (c = 0; c < tgt.getDim() + tgt.isCube(); ++c) {
2003 texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
2004 texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
2005 }
2006 }
2007
2008 // cube textures don't care about projection value, it's divided out
2009 if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
2010 unsigned int n = tgt.getDim();
2011 if (shd) {
2012 arg[n] = shd;
2013 ++n;
2014 assert(tgt.getDim() == tgt.getArgCount());
2015 }
2016 loadProjTexCoords(src, arg, (1 << n) - 1);
2017 if (shd)
2018 shd = src[n - 1];
2019 }
2020
2021 if (tgt.isCube()) {
2022 for (c = 0; c < 3; ++c)
2023 src[c] = mkOp1v(OP_ABS, TYPE_F32, getSSA(), arg[c]);
2024 val = getScratch();
2025 mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
2026 mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
2027 mkOp1(OP_RCP, TYPE_F32, val, val);
2028 for (c = 0; c < 3; ++c)
2029 src[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), arg[c], val);
2030 }
2031
2032 for (c = 0, d = 0; c < 4; ++c) {
2033 if (dst[c]) {
2034 texi->setDef(d++, dst[c]);
2035 texi->tex.mask |= 1 << c;
2036 } else {
2037 // NOTE: maybe hook up def too, for CSE
2038 }
2039 }
2040 for (s = 0; s < tgt.getArgCount(); ++s)
2041 texi->setSrc(s, src[s]);
2042 if (lod)
2043 texi->setSrc(s++, lod);
2044 if (shd)
2045 texi->setSrc(s++, shd);
2046
2047 setTexRS(texi, s, R, S);
2048
2049 if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
2050 texi->tex.levelZero = true;
2051 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 && !tgt.isShadow())
2052 texi->tex.gatherComp = tgsi.getSrc(1).getValueU32(0, info);
2053
2054 texi->tex.useOffsets = tgsi.getNumTexOffsets();
2055 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
2056 for (c = 0; c < 3; ++c) {
2057 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
2058 texi->offset[s][c].setInsn(texi);
2059 }
2060 }
2061
2062 bb->insertTail(texi);
2063 }
2064
2065 // 1st source: xyz = coordinates, w = lod/sample
2066 // 2nd source: offset
2067 void
2068 Converter::handleTXF(Value *dst[4], int R, int L_M)
2069 {
2070 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
2071 int ms;
2072 unsigned int c, d, s;
2073
2074 texi->tex.target = tgsi.getTexture(code, R);
2075
2076 ms = texi->tex.target.isMS() ? 1 : 0;
2077 texi->tex.levelZero = ms; /* MS textures don't have mip-maps */
2078
2079 for (c = 0, d = 0; c < 4; ++c) {
2080 if (dst[c]) {
2081 texi->setDef(d++, dst[c]);
2082 texi->tex.mask |= 1 << c;
2083 }
2084 }
2085 for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c)
2086 texi->setSrc(c, fetchSrc(0, c));
2087 texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms
2088
2089 setTexRS(texi, c, R, -1);
2090
2091 texi->tex.useOffsets = tgsi.getNumTexOffsets();
2092 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
2093 for (c = 0; c < 3; ++c) {
2094 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
2095 texi->offset[s][c].setInsn(texi);
2096 }
2097 }
2098
2099 bb->insertTail(texi);
2100 }
2101
2102 void
2103 Converter::handleLIT(Value *dst0[4])
2104 {
2105 Value *val0 = NULL;
2106 unsigned int mask = tgsi.getDst(0).getMask();
2107
2108 if (mask & (1 << 0))
2109 loadImm(dst0[0], 1.0f);
2110
2111 if (mask & (1 << 3))
2112 loadImm(dst0[3], 1.0f);
2113
2114 if (mask & (3 << 1)) {
2115 val0 = getScratch();
2116 mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
2117 if (mask & (1 << 1))
2118 mkMov(dst0[1], val0);
2119 }
2120
2121 if (mask & (1 << 2)) {
2122 Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
2123 Value *val1 = getScratch(), *val3 = getScratch();
2124
2125 Value *pos128 = loadImm(NULL, +127.999999f);
2126 Value *neg128 = loadImm(NULL, -127.999999f);
2127
2128 mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
2129 mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
2130 mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
2131 mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
2132
2133 mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], TYPE_F32, val3, zero, val0);
2134 }
2135 }
2136
2137 static inline bool
2138 isResourceSpecial(const int r)
2139 {
2140 return (r == TGSI_RESOURCE_GLOBAL ||
2141 r == TGSI_RESOURCE_LOCAL ||
2142 r == TGSI_RESOURCE_PRIVATE ||
2143 r == TGSI_RESOURCE_INPUT);
2144 }
2145
2146 static inline bool
2147 isResourceRaw(const tgsi::Source *code, const int r)
2148 {
2149 return isResourceSpecial(r) || code->resources[r].raw;
2150 }
2151
2152 static inline nv50_ir::TexTarget
2153 getResourceTarget(const tgsi::Source *code, int r)
2154 {
2155 if (isResourceSpecial(r))
2156 return nv50_ir::TEX_TARGET_BUFFER;
2157 return tgsi::translateTexture(code->resources.at(r).target);
2158 }
2159
2160 Symbol *
2161 Converter::getResourceBase(const int r)
2162 {
2163 Symbol *sym = NULL;
2164
2165 switch (r) {
2166 case TGSI_RESOURCE_GLOBAL:
2167 sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL, 15);
2168 break;
2169 case TGSI_RESOURCE_LOCAL:
2170 assert(prog->getType() == Program::TYPE_COMPUTE);
2171 sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32,
2172 info->prop.cp.sharedOffset);
2173 break;
2174 case TGSI_RESOURCE_PRIVATE:
2175 sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32,
2176 info->bin.tlsSpace);
2177 break;
2178 case TGSI_RESOURCE_INPUT:
2179 assert(prog->getType() == Program::TYPE_COMPUTE);
2180 sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32,
2181 info->prop.cp.inputOffset);
2182 break;
2183 default:
2184 sym = new_Symbol(prog,
2185 nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot);
2186 break;
2187 }
2188 return sym;
2189 }
2190
2191 void
2192 Converter::getResourceCoords(std::vector<Value *> &coords, int r, int s)
2193 {
2194 const int arg =
2195 TexInstruction::Target(getResourceTarget(code, r)).getArgCount();
2196
2197 for (int c = 0; c < arg; ++c)
2198 coords.push_back(fetchSrc(s, c));
2199
2200 // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk
2201 if (r == TGSI_RESOURCE_LOCAL ||
2202 r == TGSI_RESOURCE_PRIVATE ||
2203 r == TGSI_RESOURCE_INPUT)
2204 coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS),
2205 coords[0]);
2206 }
2207
2208 static inline int
2209 partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask)
2210 {
2211 int n = 0;
2212
2213 while (mask) {
2214 if (mask & 1) {
2215 size[n]++;
2216 } else {
2217 if (size[n])
2218 comp[n = 1] = size[0] + 1;
2219 else
2220 comp[n]++;
2221 }
2222 mask >>= 1;
2223 }
2224 if (size[0] == 3) {
2225 n = 1;
2226 size[0] = (comp[0] == 1) ? 1 : 2;
2227 size[1] = 3 - size[0];
2228 comp[1] = comp[0] + size[0];
2229 }
2230 return n + 1;
2231 }
2232
2233 // For raw loads, granularity is 4 byte.
2234 // Usage of the texture read mask on OP_SULDP is not allowed.
2235 void
2236 Converter::handleLOAD(Value *dst0[4])
2237 {
2238 const int r = tgsi.getSrc(0).getIndex(0);
2239 int c;
2240 std::vector<Value *> off, src, ldv, def;
2241
2242 if (tgsi.getSrc(0).getFile() == TGSI_FILE_BUFFER) {
2243 for (c = 0; c < 4; ++c) {
2244 if (!dst0[c])
2245 continue;
2246
2247 Value *off = fetchSrc(1, c);
2248 Symbol *sym;
2249 if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE) {
2250 off = NULL;
2251 sym = makeSym(TGSI_FILE_BUFFER, r, -1, c, tgsi.getSrc(1).getValueU32(0, info) + 4 * c);
2252 } else {
2253 sym = makeSym(TGSI_FILE_BUFFER, r, -1, c, 4 * c);
2254 }
2255
2256 Instruction *ld = mkLoad(TYPE_U32, dst0[c], sym, off);
2257 ld->cache = tgsi.getCacheMode();
2258 if (tgsi.getSrc(0).isIndirect(0))
2259 ld->setIndirect(0, 1, fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0));
2260 }
2261 return;
2262 }
2263
2264 getResourceCoords(off, r, 1);
2265
2266 if (isResourceRaw(code, r)) {
2267 uint8_t mask = 0;
2268 uint8_t comp[2] = { 0, 0 };
2269 uint8_t size[2] = { 0, 0 };
2270
2271 Symbol *base = getResourceBase(r);
2272
2273 // determine the base and size of the at most 2 load ops
2274 for (c = 0; c < 4; ++c)
2275 if (!tgsi.getDst(0).isMasked(c))
2276 mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X);
2277
2278 int n = partitionLoadStore(comp, size, mask);
2279
2280 src = off;
2281
2282 def.resize(4); // index by component, the ones we need will be non-NULL
2283 for (c = 0; c < 4; ++c) {
2284 if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c))
2285 def[c] = dst0[c];
2286 else
2287 if (mask & (1 << c))
2288 def[c] = getScratch();
2289 }
2290
2291 const bool useLd = isResourceSpecial(r) ||
2292 (info->io.nv50styleSurfaces &&
2293 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2294
2295 for (int i = 0; i < n; ++i) {
2296 ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]);
2297
2298 if (comp[i]) // adjust x component of source address if necessary
2299 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2300 off[0], mkImm(comp[i] * 4));
2301 else
2302 src[0] = off[0];
2303
2304 if (useLd) {
2305 Instruction *ld =
2306 mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]);
2307 for (size_t c = 1; c < ldv.size(); ++c)
2308 ld->setDef(c, ldv[c]);
2309 } else {
2310 mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot,
2311 0, ldv, src)->dType = typeOfSize(size[i] * 4);
2312 }
2313 }
2314 } else {
2315 def.resize(4);
2316 for (c = 0; c < 4; ++c) {
2317 if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
2318 def[c] = getScratch();
2319 else
2320 def[c] = dst0[c];
2321 }
2322
2323 mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0,
2324 def, off);
2325 }
2326 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2327 if (dst0[c] != def[c])
2328 mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
2329 }
2330
2331 // For formatted stores, the write mask on OP_SUSTP can be used.
2332 // Raw stores have to be split.
2333 void
2334 Converter::handleSTORE()
2335 {
2336 const int r = tgsi.getDst(0).getIndex(0);
2337 int c;
2338 std::vector<Value *> off, src, dummy;
2339
2340 if (tgsi.getDst(0).getFile() == TGSI_FILE_BUFFER) {
2341 for (c = 0; c < 4; ++c) {
2342 if (!(tgsi.getDst(0).getMask() & (1 << c)))
2343 continue;
2344
2345 Symbol *sym;
2346 Value *off;
2347 if (tgsi.getSrc(0).getFile() == TGSI_FILE_IMMEDIATE) {
2348 off = NULL;
2349 sym = makeSym(TGSI_FILE_BUFFER, r, -1, c,
2350 tgsi.getSrc(0).getValueU32(0, info) + 4 * c);
2351 } else {
2352 off = fetchSrc(0, 0);
2353 sym = makeSym(TGSI_FILE_BUFFER, r, -1, c, 4 * c);
2354 }
2355
2356 Instruction *st = mkStore(OP_STORE, TYPE_U32, sym, off, fetchSrc(1, c));
2357 st->cache = tgsi.getCacheMode();
2358 if (tgsi.getDst(0).isIndirect(0))
2359 st->setIndirect(0, 1, fetchSrc(tgsi.getDst(0).getIndirect(0), 0, 0));
2360 }
2361 return;
2362 }
2363
2364 getResourceCoords(off, r, 0);
2365 src = off;
2366 const int s = src.size();
2367
2368 if (isResourceRaw(code, r)) {
2369 uint8_t comp[2] = { 0, 0 };
2370 uint8_t size[2] = { 0, 0 };
2371
2372 int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask());
2373
2374 Symbol *base = getResourceBase(r);
2375
2376 const bool useSt = isResourceSpecial(r) ||
2377 (info->io.nv50styleSurfaces &&
2378 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2379
2380 for (int i = 0; i < n; ++i) {
2381 if (comp[i]) // adjust x component of source address if necessary
2382 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2383 off[0], mkImm(comp[i] * 4));
2384 else
2385 src[0] = off[0];
2386
2387 const DataType stTy = typeOfSize(size[i] * 4);
2388
2389 if (useSt) {
2390 Instruction *st =
2391 mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i]));
2392 for (c = 1; c < size[i]; ++c)
2393 st->setSrc(1 + c, fetchSrc(1, comp[i] + c));
2394 st->setIndirect(0, 0, src[0]);
2395 } else {
2396 // attach values to be stored
2397 src.resize(s + size[i]);
2398 for (c = 0; c < size[i]; ++c)
2399 src[s + c] = fetchSrc(1, comp[i] + c);
2400 mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot,
2401 0, dummy, src)->setType(stTy);
2402 }
2403 }
2404 } else {
2405 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2406 src.push_back(fetchSrc(1, c));
2407
2408 mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0,
2409 dummy, src)->tex.mask = tgsi.getDst(0).getMask();
2410 }
2411 }
2412
2413 // XXX: These only work on resources with the single-component u32/s32 formats.
2414 // Therefore the result is replicated. This might not be intended by TGSI, but
2415 // operating on more than 1 component would produce undefined results because
2416 // they do not exist.
2417 void
2418 Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp)
2419 {
2420 const int r = tgsi.getSrc(0).getIndex(0);
2421 std::vector<Value *> srcv;
2422 std::vector<Value *> defv;
2423 LValue *dst = getScratch();
2424
2425 if (tgsi.getSrc(0).getFile() == TGSI_FILE_BUFFER) {
2426 for (int c = 0; c < 4; ++c) {
2427 if (!dst0[c])
2428 continue;
2429
2430 Instruction *insn;
2431 Value *off = fetchSrc(1, c);
2432 Value *sym;
2433 if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE)
2434 sym = makeSym(TGSI_FILE_BUFFER, r, -1, c, tgsi.getSrc(1).getValueU32(c, info));
2435 else
2436 sym = makeSym(TGSI_FILE_BUFFER, r, -1, c, 0);
2437 insn = mkOp2(OP_ATOM, ty, dst, sym, fetchSrc(2, c));
2438 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2439 insn->setSrc(2, fetchSrc(3, 0));
2440 if (tgsi.getSrc(1).getFile() != TGSI_FILE_IMMEDIATE)
2441 insn->setIndirect(0, 0, off);
2442 if (tgsi.getSrc(0).isIndirect(0))
2443 insn->setIndirect(0, 1, fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0));
2444 insn->subOp = subOp;
2445 }
2446 for (int c = 0; c < 4; ++c)
2447 if (dst0[c])
2448 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2449 return;
2450 }
2451
2452
2453 getResourceCoords(srcv, r, 1);
2454
2455 if (isResourceSpecial(r)) {
2456 assert(r != TGSI_RESOURCE_INPUT);
2457 Instruction *insn;
2458 insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0));
2459 insn->subOp = subOp;
2460 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2461 insn->setSrc(2, fetchSrc(3, 0));
2462 insn->setIndirect(0, 0, srcv.at(0));
2463 } else {
2464 operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP;
2465 TexTarget targ = getResourceTarget(code, r);
2466 int idx = code->resources[r].slot;
2467 defv.push_back(dst);
2468 srcv.push_back(fetchSrc(2, 0));
2469 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2470 srcv.push_back(fetchSrc(3, 0));
2471 TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv);
2472 tex->subOp = subOp;
2473 tex->tex.mask = 1;
2474 tex->setType(ty);
2475 }
2476
2477 for (int c = 0; c < 4; ++c)
2478 if (dst0[c])
2479 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2480 }
2481
2482 void
2483 Converter::handleINTERP(Value *dst[4])
2484 {
2485 // Check whether the input is linear. All other attributes ignored.
2486 Instruction *insn;
2487 Value *offset = NULL, *ptr = NULL, *w = NULL;
2488 bool linear;
2489 operation op;
2490 int c, mode;
2491
2492 tgsi::Instruction::SrcRegister src = tgsi.getSrc(0);
2493 assert(src.getFile() == TGSI_FILE_INPUT);
2494
2495 if (src.isIndirect(0))
2496 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
2497
2498 // XXX: no way to know interp mode if we don't know the index
2499 linear = info->in[ptr ? 0 : src.getIndex(0)].linear;
2500 if (linear) {
2501 op = OP_LINTERP;
2502 mode = NV50_IR_INTERP_LINEAR;
2503 } else {
2504 op = OP_PINTERP;
2505 mode = NV50_IR_INTERP_PERSPECTIVE;
2506 }
2507
2508 switch (tgsi.getOpcode()) {
2509 case TGSI_OPCODE_INTERP_CENTROID:
2510 mode |= NV50_IR_INTERP_CENTROID;
2511 break;
2512 case TGSI_OPCODE_INTERP_SAMPLE:
2513 insn = mkOp1(OP_PIXLD, TYPE_U32, (offset = getScratch()), fetchSrc(1, 0));
2514 insn->subOp = NV50_IR_SUBOP_PIXLD_OFFSET;
2515 mode |= NV50_IR_INTERP_OFFSET;
2516 break;
2517 case TGSI_OPCODE_INTERP_OFFSET: {
2518 // The input in src1.xy is float, but we need a single 32-bit value
2519 // where the upper and lower 16 bits are encoded in S0.12 format. We need
2520 // to clamp the input coordinates to (-0.5, 0.4375), multiply by 4096,
2521 // and then convert to s32.
2522 Value *offs[2];
2523 for (c = 0; c < 2; c++) {
2524 offs[c] = fetchSrc(1, c);
2525 mkOp2(OP_MIN, TYPE_F32, offs[c], offs[c], loadImm(NULL, 0.4375f));
2526 mkOp2(OP_MAX, TYPE_F32, offs[c], offs[c], loadImm(NULL, -0.5f));
2527 mkOp2(OP_MUL, TYPE_F32, offs[c], offs[c], loadImm(NULL, 4096.0f));
2528 mkCvt(OP_CVT, TYPE_S32, offs[c], TYPE_F32, offs[c]);
2529 }
2530 offset = mkOp3v(OP_INSBF, TYPE_U32, getScratch(),
2531 offs[1], mkImm(0x1010), offs[0]);
2532 mode |= NV50_IR_INTERP_OFFSET;
2533 break;
2534 }
2535 }
2536
2537 if (op == OP_PINTERP) {
2538 if (offset) {
2539 w = mkOp2v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_POSITION, 3), offset);
2540 mkOp1(OP_RCP, TYPE_F32, w, w);
2541 } else {
2542 w = fragCoord[3];
2543 }
2544 }
2545
2546
2547 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2548 insn = mkOp1(op, TYPE_F32, dst[c], srcToSym(src, c));
2549 if (op == OP_PINTERP)
2550 insn->setSrc(1, w);
2551 if (ptr)
2552 insn->setIndirect(0, 0, ptr);
2553 if (offset)
2554 insn->setSrc(op == OP_PINTERP ? 2 : 1, offset);
2555
2556 insn->setInterpolate(mode);
2557 }
2558 }
2559
2560 Converter::Subroutine *
2561 Converter::getSubroutine(unsigned ip)
2562 {
2563 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2564
2565 if (it == sub.map.end())
2566 it = sub.map.insert(std::make_pair(
2567 ip, Subroutine(new Function(prog, "SUB", ip)))).first;
2568
2569 return &it->second;
2570 }
2571
2572 Converter::Subroutine *
2573 Converter::getSubroutine(Function *f)
2574 {
2575 unsigned ip = f->getLabel();
2576 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2577
2578 if (it == sub.map.end())
2579 it = sub.map.insert(std::make_pair(ip, Subroutine(f))).first;
2580
2581 return &it->second;
2582 }
2583
2584 bool
2585 Converter::isEndOfSubroutine(uint ip)
2586 {
2587 assert(ip < code->scan.num_instructions);
2588 tgsi::Instruction insn(&code->insns[ip]);
2589 return (insn.getOpcode() == TGSI_OPCODE_END ||
2590 insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
2591 // does END occur at end of main or the very end ?
2592 insn.getOpcode() == TGSI_OPCODE_BGNSUB);
2593 }
2594
2595 bool
2596 Converter::handleInstruction(const struct tgsi_full_instruction *insn)
2597 {
2598 Instruction *geni;
2599
2600 Value *dst0[4], *rDst0[4];
2601 Value *src0, *src1, *src2, *src3;
2602 Value *val0, *val1;
2603 int c;
2604
2605 tgsi = tgsi::Instruction(insn);
2606
2607 bool useScratchDst = tgsi.checkDstSrcAliasing();
2608
2609 operation op = tgsi.getOP();
2610 dstTy = tgsi.inferDstType();
2611 srcTy = tgsi.inferSrcType();
2612
2613 unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
2614
2615 if (tgsi.dstCount()) {
2616 for (c = 0; c < 4; ++c) {
2617 rDst0[c] = acquireDst(0, c);
2618 dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
2619 }
2620 }
2621
2622 switch (tgsi.getOpcode()) {
2623 case TGSI_OPCODE_ADD:
2624 case TGSI_OPCODE_UADD:
2625 case TGSI_OPCODE_AND:
2626 case TGSI_OPCODE_DIV:
2627 case TGSI_OPCODE_IDIV:
2628 case TGSI_OPCODE_UDIV:
2629 case TGSI_OPCODE_MAX:
2630 case TGSI_OPCODE_MIN:
2631 case TGSI_OPCODE_IMAX:
2632 case TGSI_OPCODE_IMIN:
2633 case TGSI_OPCODE_UMAX:
2634 case TGSI_OPCODE_UMIN:
2635 case TGSI_OPCODE_MOD:
2636 case TGSI_OPCODE_UMOD:
2637 case TGSI_OPCODE_MUL:
2638 case TGSI_OPCODE_UMUL:
2639 case TGSI_OPCODE_IMUL_HI:
2640 case TGSI_OPCODE_UMUL_HI:
2641 case TGSI_OPCODE_OR:
2642 case TGSI_OPCODE_SHL:
2643 case TGSI_OPCODE_ISHR:
2644 case TGSI_OPCODE_USHR:
2645 case TGSI_OPCODE_SUB:
2646 case TGSI_OPCODE_XOR:
2647 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2648 src0 = fetchSrc(0, c);
2649 src1 = fetchSrc(1, c);
2650 geni = mkOp2(op, dstTy, dst0[c], src0, src1);
2651 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2652 }
2653 break;
2654 case TGSI_OPCODE_MAD:
2655 case TGSI_OPCODE_UMAD:
2656 case TGSI_OPCODE_SAD:
2657 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2658 src0 = fetchSrc(0, c);
2659 src1 = fetchSrc(1, c);
2660 src2 = fetchSrc(2, c);
2661 mkOp3(op, dstTy, dst0[c], src0, src1, src2);
2662 }
2663 break;
2664 case TGSI_OPCODE_MOV:
2665 case TGSI_OPCODE_ABS:
2666 case TGSI_OPCODE_CEIL:
2667 case TGSI_OPCODE_FLR:
2668 case TGSI_OPCODE_TRUNC:
2669 case TGSI_OPCODE_RCP:
2670 case TGSI_OPCODE_IABS:
2671 case TGSI_OPCODE_INEG:
2672 case TGSI_OPCODE_NOT:
2673 case TGSI_OPCODE_DDX:
2674 case TGSI_OPCODE_DDY:
2675 case TGSI_OPCODE_DDX_FINE:
2676 case TGSI_OPCODE_DDY_FINE:
2677 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2678 mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
2679 break;
2680 case TGSI_OPCODE_RSQ:
2681 src0 = fetchSrc(0, 0);
2682 val0 = getScratch();
2683 mkOp1(OP_ABS, TYPE_F32, val0, src0);
2684 mkOp1(OP_RSQ, TYPE_F32, val0, val0);
2685 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2686 mkMov(dst0[c], val0);
2687 break;
2688 case TGSI_OPCODE_ARL:
2689 case TGSI_OPCODE_ARR:
2690 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2691 const RoundMode rnd =
2692 tgsi.getOpcode() == TGSI_OPCODE_ARR ? ROUND_N : ROUND_M;
2693 src0 = fetchSrc(0, c);
2694 mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = rnd;
2695 }
2696 break;
2697 case TGSI_OPCODE_UARL:
2698 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2699 mkOp1(OP_MOV, TYPE_U32, dst0[c], fetchSrc(0, c));
2700 break;
2701 case TGSI_OPCODE_POW:
2702 val0 = mkOp2v(op, TYPE_F32, getScratch(), fetchSrc(0, 0), fetchSrc(1, 0));
2703 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2704 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2705 break;
2706 case TGSI_OPCODE_EX2:
2707 case TGSI_OPCODE_LG2:
2708 val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
2709 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2710 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2711 break;
2712 case TGSI_OPCODE_COS:
2713 case TGSI_OPCODE_SIN:
2714 val0 = getScratch();
2715 if (mask & 7) {
2716 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
2717 mkOp1(op, TYPE_F32, val0, val0);
2718 for (c = 0; c < 3; ++c)
2719 if (dst0[c])
2720 mkMov(dst0[c], val0);
2721 }
2722 if (dst0[3]) {
2723 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
2724 mkOp1(op, TYPE_F32, dst0[3], val0);
2725 }
2726 break;
2727 case TGSI_OPCODE_SCS:
2728 if (mask & 3) {
2729 val0 = mkOp1v(OP_PRESIN, TYPE_F32, getSSA(), fetchSrc(0, 0));
2730 if (dst0[0])
2731 mkOp1(OP_COS, TYPE_F32, dst0[0], val0);
2732 if (dst0[1])
2733 mkOp1(OP_SIN, TYPE_F32, dst0[1], val0);
2734 }
2735 if (dst0[2])
2736 loadImm(dst0[2], 0.0f);
2737 if (dst0[3])
2738 loadImm(dst0[3], 1.0f);
2739 break;
2740 case TGSI_OPCODE_EXP:
2741 src0 = fetchSrc(0, 0);
2742 val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
2743 if (dst0[1])
2744 mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
2745 if (dst0[0])
2746 mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
2747 if (dst0[2])
2748 mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
2749 if (dst0[3])
2750 loadImm(dst0[3], 1.0f);
2751 break;
2752 case TGSI_OPCODE_LOG:
2753 src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
2754 val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
2755 if (dst0[0] || dst0[1])
2756 val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
2757 if (dst0[1]) {
2758 mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
2759 mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
2760 mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0);
2761 }
2762 if (dst0[3])
2763 loadImm(dst0[3], 1.0f);
2764 break;
2765 case TGSI_OPCODE_DP2:
2766 val0 = buildDot(2);
2767 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2768 mkMov(dst0[c], val0);
2769 break;
2770 case TGSI_OPCODE_DP3:
2771 val0 = buildDot(3);
2772 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2773 mkMov(dst0[c], val0);
2774 break;
2775 case TGSI_OPCODE_DP4:
2776 val0 = buildDot(4);
2777 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2778 mkMov(dst0[c], val0);
2779 break;
2780 case TGSI_OPCODE_DPH:
2781 val0 = buildDot(3);
2782 src1 = fetchSrc(1, 3);
2783 mkOp2(OP_ADD, TYPE_F32, val0, val0, src1);
2784 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2785 mkMov(dst0[c], val0);
2786 break;
2787 case TGSI_OPCODE_DST:
2788 if (dst0[0])
2789 loadImm(dst0[0], 1.0f);
2790 if (dst0[1]) {
2791 src0 = fetchSrc(0, 1);
2792 src1 = fetchSrc(1, 1);
2793 mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1);
2794 }
2795 if (dst0[2])
2796 mkMov(dst0[2], fetchSrc(0, 2));
2797 if (dst0[3])
2798 mkMov(dst0[3], fetchSrc(1, 3));
2799 break;
2800 case TGSI_OPCODE_LRP:
2801 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2802 src0 = fetchSrc(0, c);
2803 src1 = fetchSrc(1, c);
2804 src2 = fetchSrc(2, c);
2805 mkOp3(OP_MAD, TYPE_F32, dst0[c],
2806 mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2);
2807 }
2808 break;
2809 case TGSI_OPCODE_LIT:
2810 handleLIT(dst0);
2811 break;
2812 case TGSI_OPCODE_XPD:
2813 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2814 if (c < 3) {
2815 val0 = getSSA();
2816 src0 = fetchSrc(1, (c + 1) % 3);
2817 src1 = fetchSrc(0, (c + 2) % 3);
2818 mkOp2(OP_MUL, TYPE_F32, val0, src0, src1);
2819 mkOp1(OP_NEG, TYPE_F32, val0, val0);
2820
2821 src0 = fetchSrc(0, (c + 1) % 3);
2822 src1 = fetchSrc(1, (c + 2) % 3);
2823 mkOp3(OP_MAD, TYPE_F32, dst0[c], src0, src1, val0);
2824 } else {
2825 loadImm(dst0[c], 1.0f);
2826 }
2827 }
2828 break;
2829 case TGSI_OPCODE_ISSG:
2830 case TGSI_OPCODE_SSG:
2831 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2832 src0 = fetchSrc(0, c);
2833 val0 = getScratch();
2834 val1 = getScratch();
2835 mkCmp(OP_SET, CC_GT, srcTy, val0, srcTy, src0, zero);
2836 mkCmp(OP_SET, CC_LT, srcTy, val1, srcTy, src0, zero);
2837 if (srcTy == TYPE_F32)
2838 mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
2839 else
2840 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
2841 }
2842 break;
2843 case TGSI_OPCODE_UCMP:
2844 srcTy = TYPE_U32;
2845 /* fallthrough */
2846 case TGSI_OPCODE_CMP:
2847 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2848 src0 = fetchSrc(0, c);
2849 src1 = fetchSrc(1, c);
2850 src2 = fetchSrc(2, c);
2851 if (src1 == src2)
2852 mkMov(dst0[c], src1);
2853 else
2854 mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
2855 srcTy, dst0[c], srcTy, src1, src2, src0);
2856 }
2857 break;
2858 case TGSI_OPCODE_FRC:
2859 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2860 src0 = fetchSrc(0, c);
2861 val0 = getScratch();
2862 mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
2863 mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
2864 }
2865 break;
2866 case TGSI_OPCODE_ROUND:
2867 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2868 mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
2869 ->rnd = ROUND_NI;
2870 break;
2871 case TGSI_OPCODE_CLAMP:
2872 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2873 src0 = fetchSrc(0, c);
2874 src1 = fetchSrc(1, c);
2875 src2 = fetchSrc(2, c);
2876 val0 = getScratch();
2877 mkOp2(OP_MIN, TYPE_F32, val0, src0, src1);
2878 mkOp2(OP_MAX, TYPE_F32, dst0[c], val0, src2);
2879 }
2880 break;
2881 case TGSI_OPCODE_SLT:
2882 case TGSI_OPCODE_SGE:
2883 case TGSI_OPCODE_SEQ:
2884 case TGSI_OPCODE_SGT:
2885 case TGSI_OPCODE_SLE:
2886 case TGSI_OPCODE_SNE:
2887 case TGSI_OPCODE_FSEQ:
2888 case TGSI_OPCODE_FSGE:
2889 case TGSI_OPCODE_FSLT:
2890 case TGSI_OPCODE_FSNE:
2891 case TGSI_OPCODE_ISGE:
2892 case TGSI_OPCODE_ISLT:
2893 case TGSI_OPCODE_USEQ:
2894 case TGSI_OPCODE_USGE:
2895 case TGSI_OPCODE_USLT:
2896 case TGSI_OPCODE_USNE:
2897 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2898 src0 = fetchSrc(0, c);
2899 src1 = fetchSrc(1, c);
2900 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
2901 }
2902 break;
2903 case TGSI_OPCODE_KILL_IF:
2904 val0 = new_LValue(func, FILE_PREDICATE);
2905 mask = 0;
2906 for (c = 0; c < 4; ++c) {
2907 const int s = tgsi.getSrc(0).getSwizzle(c);
2908 if (mask & (1 << s))
2909 continue;
2910 mask |= 1 << s;
2911 mkCmp(OP_SET, CC_LT, TYPE_F32, val0, TYPE_F32, fetchSrc(0, c), zero);
2912 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
2913 }
2914 break;
2915 case TGSI_OPCODE_KILL:
2916 mkOp(OP_DISCARD, TYPE_NONE, NULL);
2917 break;
2918 case TGSI_OPCODE_TEX:
2919 case TGSI_OPCODE_TXB:
2920 case TGSI_OPCODE_TXL:
2921 case TGSI_OPCODE_TXP:
2922 case TGSI_OPCODE_LODQ:
2923 // R S L C Dx Dy
2924 handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
2925 break;
2926 case TGSI_OPCODE_TXD:
2927 handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
2928 break;
2929 case TGSI_OPCODE_TG4:
2930 handleTEX(dst0, 2, 2, 0x03, 0x0f, 0x00, 0x00);
2931 break;
2932 case TGSI_OPCODE_TEX2:
2933 handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00);
2934 break;
2935 case TGSI_OPCODE_TXB2:
2936 case TGSI_OPCODE_TXL2:
2937 handleTEX(dst0, 2, 2, 0x10, 0x0f, 0x00, 0x00);
2938 break;
2939 case TGSI_OPCODE_SAMPLE:
2940 case TGSI_OPCODE_SAMPLE_B:
2941 case TGSI_OPCODE_SAMPLE_D:
2942 case TGSI_OPCODE_SAMPLE_L:
2943 case TGSI_OPCODE_SAMPLE_C:
2944 case TGSI_OPCODE_SAMPLE_C_LZ:
2945 handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40);
2946 break;
2947 case TGSI_OPCODE_TXF:
2948 handleTXF(dst0, 1, 0x03);
2949 break;
2950 case TGSI_OPCODE_SAMPLE_I:
2951 handleTXF(dst0, 1, 0x03);
2952 break;
2953 case TGSI_OPCODE_SAMPLE_I_MS:
2954 handleTXF(dst0, 1, 0x20);
2955 break;
2956 case TGSI_OPCODE_TXQ:
2957 case TGSI_OPCODE_SVIEWINFO:
2958 handleTXQ(dst0, TXQ_DIMS, 1);
2959 break;
2960 case TGSI_OPCODE_TXQS:
2961 // The TXQ_TYPE query returns samples in its 3rd arg, but we need it to
2962 // be in .x
2963 dst0[1] = dst0[2] = dst0[3] = NULL;
2964 std::swap(dst0[0], dst0[2]);
2965 handleTXQ(dst0, TXQ_TYPE, 0);
2966 std::swap(dst0[0], dst0[2]);
2967 break;
2968 case TGSI_OPCODE_F2I:
2969 case TGSI_OPCODE_F2U:
2970 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2971 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
2972 break;
2973 case TGSI_OPCODE_I2F:
2974 case TGSI_OPCODE_U2F:
2975 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2976 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
2977 break;
2978 case TGSI_OPCODE_PK2H:
2979 val0 = getScratch();
2980 val1 = getScratch();
2981 mkCvt(OP_CVT, TYPE_F16, val0, TYPE_F32, fetchSrc(0, 0));
2982 mkCvt(OP_CVT, TYPE_F16, val1, TYPE_F32, fetchSrc(0, 1));
2983 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2984 mkOp3(OP_INSBF, TYPE_U32, dst0[c], val1, mkImm(0x1010), val0);
2985 break;
2986 case TGSI_OPCODE_UP2H:
2987 src0 = fetchSrc(0, 0);
2988 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2989 geni = mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F16, src0);
2990 geni->subOp = c & 1;
2991 }
2992 break;
2993 case TGSI_OPCODE_EMIT:
2994 /* export the saved viewport index */
2995 if (viewport != NULL) {
2996 Symbol *vpSym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_U32,
2997 info->out[info->io.viewportId].slot[0] * 4);
2998 mkStore(OP_EXPORT, TYPE_U32, vpSym, NULL, viewport);
2999 }
3000 /* fallthrough */
3001 case TGSI_OPCODE_ENDPRIM:
3002 {
3003 // get vertex stream (must be immediate)
3004 unsigned int stream = tgsi.getSrc(0).getValueU32(0, info);
3005 if (stream && op == OP_RESTART)
3006 break;
3007 src0 = mkImm(stream);
3008 mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
3009 break;
3010 }
3011 case TGSI_OPCODE_IF:
3012 case TGSI_OPCODE_UIF:
3013 {
3014 BasicBlock *ifBB = new BasicBlock(func);
3015
3016 bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
3017 condBBs.push(bb);
3018 joinBBs.push(bb);
3019
3020 mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy);
3021
3022 setPosition(ifBB, true);
3023 }
3024 break;
3025 case TGSI_OPCODE_ELSE:
3026 {
3027 BasicBlock *elseBB = new BasicBlock(func);
3028 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
3029
3030 forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
3031 condBBs.push(bb);
3032
3033 forkBB->getExit()->asFlow()->target.bb = elseBB;
3034 if (!bb->isTerminated())
3035 mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
3036
3037 setPosition(elseBB, true);
3038 }
3039 break;
3040 case TGSI_OPCODE_ENDIF:
3041 {
3042 BasicBlock *convBB = new BasicBlock(func);
3043 BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
3044 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
3045
3046 if (!bb->isTerminated()) {
3047 // we only want join if none of the clauses ended with CONT/BREAK/RET
3048 if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
3049 insertConvergenceOps(convBB, forkBB);
3050 mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
3051 bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
3052 }
3053
3054 if (prevBB->getExit()->op == OP_BRA) {
3055 prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
3056 prevBB->getExit()->asFlow()->target.bb = convBB;
3057 }
3058 setPosition(convBB, true);
3059 }
3060 break;
3061 case TGSI_OPCODE_BGNLOOP:
3062 {
3063 BasicBlock *lbgnBB = new BasicBlock(func);
3064 BasicBlock *lbrkBB = new BasicBlock(func);
3065
3066 loopBBs.push(lbgnBB);
3067 breakBBs.push(lbrkBB);
3068 if (loopBBs.getSize() > func->loopNestingBound)
3069 func->loopNestingBound++;
3070
3071 mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
3072
3073 bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
3074 setPosition(lbgnBB, true);
3075 mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
3076 }
3077 break;
3078 case TGSI_OPCODE_ENDLOOP:
3079 {
3080 BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
3081
3082 if (!bb->isTerminated()) {
3083 mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
3084 bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
3085 }
3086 setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
3087
3088 // If the loop never breaks (e.g. only has RET's inside), then there
3089 // will be no way to get to the break bb. However BGNLOOP will have
3090 // already made a PREBREAK to it, so it must be in the CFG.
3091 if (getBB()->cfg.incidentCount() == 0)
3092 loopBB->cfg.attach(&getBB()->cfg, Graph::Edge::TREE);
3093 }
3094 break;
3095 case TGSI_OPCODE_BRK:
3096 {
3097 if (bb->isTerminated())
3098 break;
3099 BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
3100 mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
3101 bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
3102 }
3103 break;
3104 case TGSI_OPCODE_CONT:
3105 {
3106 if (bb->isTerminated())
3107 break;
3108 BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
3109 mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
3110 contBB->explicitCont = true;
3111 bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
3112 }
3113 break;
3114 case TGSI_OPCODE_BGNSUB:
3115 {
3116 Subroutine *s = getSubroutine(ip);
3117 BasicBlock *entry = new BasicBlock(s->f);
3118 BasicBlock *leave = new BasicBlock(s->f);
3119
3120 // multiple entrypoints possible, keep the graph connected
3121 if (prog->getType() == Program::TYPE_COMPUTE)
3122 prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
3123
3124 sub.cur = s;
3125 s->f->setEntry(entry);
3126 s->f->setExit(leave);
3127 setPosition(entry, true);
3128 return true;
3129 }
3130 case TGSI_OPCODE_ENDSUB:
3131 {
3132 sub.cur = getSubroutine(prog->main);
3133 setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
3134 return true;
3135 }
3136 case TGSI_OPCODE_CAL:
3137 {
3138 Subroutine *s = getSubroutine(tgsi.getLabel());
3139 mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
3140 func->call.attach(&s->f->call, Graph::Edge::TREE);
3141 return true;
3142 }
3143 case TGSI_OPCODE_RET:
3144 {
3145 if (bb->isTerminated())
3146 return true;
3147 BasicBlock *leave = BasicBlock::get(func->cfgExit);
3148
3149 if (!isEndOfSubroutine(ip + 1)) {
3150 // insert a PRERET at the entry if this is an early return
3151 // (only needed for sharing code in the epilogue)
3152 BasicBlock *pos = getBB();
3153 setPosition(BasicBlock::get(func->cfg.getRoot()), false);
3154 mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
3155 setPosition(pos, true);
3156 }
3157 mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
3158 bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
3159 }
3160 break;
3161 case TGSI_OPCODE_END:
3162 {
3163 // attach and generate epilogue code
3164 BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
3165 bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
3166 setPosition(epilogue, true);
3167 if (prog->getType() == Program::TYPE_FRAGMENT)
3168 exportOutputs();
3169 if (info->io.genUserClip > 0)
3170 handleUserClipPlanes();
3171 mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
3172 }
3173 break;
3174 case TGSI_OPCODE_SWITCH:
3175 case TGSI_OPCODE_CASE:
3176 ERROR("switch/case opcode encountered, should have been lowered\n");
3177 abort();
3178 break;
3179 case TGSI_OPCODE_LOAD:
3180 handleLOAD(dst0);
3181 break;
3182 case TGSI_OPCODE_STORE:
3183 handleSTORE();
3184 break;
3185 case TGSI_OPCODE_BARRIER:
3186 geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
3187 geni->fixed = 1;
3188 geni->subOp = NV50_IR_SUBOP_BAR_SYNC;
3189 break;
3190 case TGSI_OPCODE_MFENCE:
3191 case TGSI_OPCODE_LFENCE:
3192 case TGSI_OPCODE_SFENCE:
3193 geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
3194 geni->fixed = 1;
3195 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
3196 break;
3197 case TGSI_OPCODE_ATOMUADD:
3198 case TGSI_OPCODE_ATOMXCHG:
3199 case TGSI_OPCODE_ATOMCAS:
3200 case TGSI_OPCODE_ATOMAND:
3201 case TGSI_OPCODE_ATOMOR:
3202 case TGSI_OPCODE_ATOMXOR:
3203 case TGSI_OPCODE_ATOMUMIN:
3204 case TGSI_OPCODE_ATOMIMIN:
3205 case TGSI_OPCODE_ATOMUMAX:
3206 case TGSI_OPCODE_ATOMIMAX:
3207 handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode()));
3208 break;
3209 case TGSI_OPCODE_RESQ:
3210 geni = mkOp1(OP_SUQ, TYPE_U32, dst0[0],
3211 makeSym(TGSI_FILE_BUFFER, tgsi.getSrc(0).getIndex(0), -1, 0, 0));
3212 if (tgsi.getSrc(0).isIndirect(0))
3213 geni->setIndirect(0, 1, fetchSrc(tgsi.getSrc(0).getIndirect(0), 0, 0));
3214 break;
3215 case TGSI_OPCODE_IBFE:
3216 case TGSI_OPCODE_UBFE:
3217 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3218 src0 = fetchSrc(0, c);
3219 if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE &&
3220 tgsi.getSrc(2).getFile() == TGSI_FILE_IMMEDIATE) {
3221 src1 = loadImm(NULL, tgsi.getSrc(2).getValueU32(c, info) << 8 |
3222 tgsi.getSrc(1).getValueU32(c, info));
3223 } else {
3224 src1 = fetchSrc(1, c);
3225 src2 = fetchSrc(2, c);
3226 mkOp3(OP_INSBF, TYPE_U32, src1, src2, mkImm(0x808), src1);
3227 }
3228 mkOp2(OP_EXTBF, dstTy, dst0[c], src0, src1);
3229 }
3230 break;
3231 case TGSI_OPCODE_BFI:
3232 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3233 src0 = fetchSrc(0, c);
3234 src1 = fetchSrc(1, c);
3235 src2 = fetchSrc(2, c);
3236 src3 = fetchSrc(3, c);
3237 mkOp3(OP_INSBF, TYPE_U32, src2, src3, mkImm(0x808), src2);
3238 mkOp3(OP_INSBF, TYPE_U32, dst0[c], src1, src2, src0);
3239 }
3240 break;
3241 case TGSI_OPCODE_LSB:
3242 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3243 src0 = fetchSrc(0, c);
3244 geni = mkOp2(OP_EXTBF, TYPE_U32, src0, src0, mkImm(0x2000));
3245 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
3246 geni = mkOp1(OP_BFIND, TYPE_U32, dst0[c], src0);
3247 geni->subOp = NV50_IR_SUBOP_BFIND_SAMT;
3248 }
3249 break;
3250 case TGSI_OPCODE_IMSB:
3251 case TGSI_OPCODE_UMSB:
3252 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3253 src0 = fetchSrc(0, c);
3254 mkOp1(OP_BFIND, srcTy, dst0[c], src0);
3255 }
3256 break;
3257 case TGSI_OPCODE_BREV:
3258 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3259 src0 = fetchSrc(0, c);
3260 geni = mkOp2(OP_EXTBF, TYPE_U32, dst0[c], src0, mkImm(0x2000));
3261 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
3262 }
3263 break;
3264 case TGSI_OPCODE_POPC:
3265 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3266 src0 = fetchSrc(0, c);
3267 mkOp2(OP_POPCNT, TYPE_U32, dst0[c], src0, src0);
3268 }
3269 break;
3270 case TGSI_OPCODE_INTERP_CENTROID:
3271 case TGSI_OPCODE_INTERP_SAMPLE:
3272 case TGSI_OPCODE_INTERP_OFFSET:
3273 handleINTERP(dst0);
3274 break;
3275 case TGSI_OPCODE_D2I:
3276 case TGSI_OPCODE_D2U:
3277 case TGSI_OPCODE_D2F: {
3278 int pos = 0;
3279 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3280 Value *dreg = getSSA(8);
3281 src0 = fetchSrc(0, pos);
3282 src1 = fetchSrc(0, pos + 1);
3283 mkOp2(OP_MERGE, TYPE_U64, dreg, src0, src1);
3284 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, dreg);
3285 pos += 2;
3286 }
3287 break;
3288 }
3289 case TGSI_OPCODE_I2D:
3290 case TGSI_OPCODE_U2D:
3291 case TGSI_OPCODE_F2D:
3292 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3293 Value *dreg = getSSA(8);
3294 mkCvt(OP_CVT, dstTy, dreg, srcTy, fetchSrc(0, c / 2));
3295 mkSplit(&dst0[c], 4, dreg);
3296 c++;
3297 }
3298 break;
3299 case TGSI_OPCODE_DABS:
3300 case TGSI_OPCODE_DNEG:
3301 case TGSI_OPCODE_DRCP:
3302 case TGSI_OPCODE_DSQRT:
3303 case TGSI_OPCODE_DRSQ:
3304 case TGSI_OPCODE_DTRUNC:
3305 case TGSI_OPCODE_DCEIL:
3306 case TGSI_OPCODE_DFLR:
3307 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3308 src0 = getSSA(8);
3309 Value *dst = getSSA(8), *tmp[2];
3310 tmp[0] = fetchSrc(0, c);
3311 tmp[1] = fetchSrc(0, c + 1);
3312 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3313 mkOp1(op, dstTy, dst, src0);
3314 mkSplit(&dst0[c], 4, dst);
3315 c++;
3316 }
3317 break;
3318 case TGSI_OPCODE_DFRAC:
3319 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3320 src0 = getSSA(8);
3321 Value *dst = getSSA(8), *tmp[2];
3322 tmp[0] = fetchSrc(0, c);
3323 tmp[1] = fetchSrc(0, c + 1);
3324 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3325 mkOp1(OP_FLOOR, TYPE_F64, dst, src0);
3326 mkOp2(OP_SUB, TYPE_F64, dst, src0, dst);
3327 mkSplit(&dst0[c], 4, dst);
3328 c++;
3329 }
3330 break;
3331 case TGSI_OPCODE_DSLT:
3332 case TGSI_OPCODE_DSGE:
3333 case TGSI_OPCODE_DSEQ:
3334 case TGSI_OPCODE_DSNE: {
3335 int pos = 0;
3336 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3337 Value *tmp[2];
3338
3339 src0 = getSSA(8);
3340 src1 = getSSA(8);
3341 tmp[0] = fetchSrc(0, pos);
3342 tmp[1] = fetchSrc(0, pos + 1);
3343 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3344 tmp[0] = fetchSrc(1, pos);
3345 tmp[1] = fetchSrc(1, pos + 1);
3346 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3347 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
3348 pos += 2;
3349 }
3350 break;
3351 }
3352 case TGSI_OPCODE_DADD:
3353 case TGSI_OPCODE_DMUL:
3354 case TGSI_OPCODE_DMAX:
3355 case TGSI_OPCODE_DMIN:
3356 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3357 src0 = getSSA(8);
3358 src1 = getSSA(8);
3359 Value *dst = getSSA(8), *tmp[2];
3360 tmp[0] = fetchSrc(0, c);
3361 tmp[1] = fetchSrc(0, c + 1);
3362 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3363 tmp[0] = fetchSrc(1, c);
3364 tmp[1] = fetchSrc(1, c + 1);
3365 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3366 mkOp2(op, dstTy, dst, src0, src1);
3367 mkSplit(&dst0[c], 4, dst);
3368 c++;
3369 }
3370 break;
3371 case TGSI_OPCODE_DMAD:
3372 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3373 src0 = getSSA(8);
3374 src1 = getSSA(8);
3375 src2 = getSSA(8);
3376 Value *dst = getSSA(8), *tmp[2];
3377 tmp[0] = fetchSrc(0, c);
3378 tmp[1] = fetchSrc(0, c + 1);
3379 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3380 tmp[0] = fetchSrc(1, c);
3381 tmp[1] = fetchSrc(1, c + 1);
3382 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3383 tmp[0] = fetchSrc(2, c);
3384 tmp[1] = fetchSrc(2, c + 1);
3385 mkOp2(OP_MERGE, TYPE_U64, src2, tmp[0], tmp[1]);
3386 mkOp3(op, dstTy, dst, src0, src1, src2);
3387 mkSplit(&dst0[c], 4, dst);
3388 c++;
3389 }
3390 break;
3391 case TGSI_OPCODE_DROUND:
3392 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3393 src0 = getSSA(8);
3394 Value *dst = getSSA(8), *tmp[2];
3395 tmp[0] = fetchSrc(0, c);
3396 tmp[1] = fetchSrc(0, c + 1);
3397 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3398 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F64, src0)
3399 ->rnd = ROUND_NI;
3400 mkSplit(&dst0[c], 4, dst);
3401 c++;
3402 }
3403 break;
3404 case TGSI_OPCODE_DSSG:
3405 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3406 src0 = getSSA(8);
3407 Value *dst = getSSA(8), *dstF32 = getSSA(), *tmp[2];
3408 tmp[0] = fetchSrc(0, c);
3409 tmp[1] = fetchSrc(0, c + 1);
3410 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3411
3412 val0 = getScratch();
3413 val1 = getScratch();
3414 // The zero is wrong here since it's only 32-bit, but it works out in
3415 // the end since it gets replaced with $r63.
3416 mkCmp(OP_SET, CC_GT, TYPE_F32, val0, TYPE_F64, src0, zero);
3417 mkCmp(OP_SET, CC_LT, TYPE_F32, val1, TYPE_F64, src0, zero);
3418 mkOp2(OP_SUB, TYPE_F32, dstF32, val0, val1);
3419 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F32, dstF32);
3420 mkSplit(&dst0[c], 4, dst);
3421 c++;
3422 }
3423 break;
3424 default:
3425 ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
3426 assert(0);
3427 break;
3428 }
3429
3430 if (tgsi.dstCount()) {
3431 for (c = 0; c < 4; ++c) {
3432 if (!dst0[c])
3433 continue;
3434 if (dst0[c] != rDst0[c])
3435 mkMov(rDst0[c], dst0[c]);
3436 storeDst(0, c, rDst0[c]);
3437 }
3438 }
3439 vtxBaseValid = 0;
3440
3441 return true;
3442 }
3443
3444 void
3445 Converter::handleUserClipPlanes()
3446 {
3447 Value *res[8];
3448 int n, i, c;
3449
3450 for (c = 0; c < 4; ++c) {
3451 for (i = 0; i < info->io.genUserClip; ++i) {
3452 Symbol *sym = mkSymbol(FILE_MEMORY_CONST, info->io.auxCBSlot,
3453 TYPE_F32, info->io.ucpBase + i * 16 + c * 4);
3454 Value *ucp = mkLoadv(TYPE_F32, sym, NULL);
3455 if (c == 0)
3456 res[i] = mkOp2v(OP_MUL, TYPE_F32, getScratch(), clipVtx[c], ucp);
3457 else
3458 mkOp3(OP_MAD, TYPE_F32, res[i], clipVtx[c], ucp, res[i]);
3459 }
3460 }
3461
3462 const int first = info->numOutputs - (info->io.genUserClip + 3) / 4;
3463
3464 for (i = 0; i < info->io.genUserClip; ++i) {
3465 n = i / 4 + first;
3466 c = i % 4;
3467 Symbol *sym =
3468 mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[n].slot[c] * 4);
3469 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, res[i]);
3470 }
3471 }
3472
3473 void
3474 Converter::exportOutputs()
3475 {
3476 for (unsigned int i = 0; i < info->numOutputs; ++i) {
3477 for (unsigned int c = 0; c < 4; ++c) {
3478 if (!oData.exists(sub.cur->values, i, c))
3479 continue;
3480 Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
3481 info->out[i].slot[c] * 4);
3482 Value *val = oData.load(sub.cur->values, i, c, NULL);
3483 if (val)
3484 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
3485 }
3486 }
3487 }
3488
3489 Converter::Converter(Program *ir, const tgsi::Source *code) : BuildUtil(ir),
3490 code(code),
3491 tgsi(NULL),
3492 tData(this), lData(this), aData(this), pData(this), oData(this)
3493 {
3494 info = code->info;
3495
3496 const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
3497 const unsigned pSize = code->fileSize(TGSI_FILE_PREDICATE);
3498 const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
3499 const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
3500
3501 tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, FILE_GPR, 0);
3502 lData.setup(TGSI_FILE_TEMPORARY, 1, 0, tSize, 4, 4, FILE_MEMORY_LOCAL, 0);
3503 pData.setup(TGSI_FILE_PREDICATE, 0, 0, pSize, 4, 4, FILE_PREDICATE, 0);
3504 aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_GPR, 0);
3505 oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
3506
3507 zero = mkImm((uint32_t)0);
3508
3509 vtxBaseValid = 0;
3510 }
3511
3512 Converter::~Converter()
3513 {
3514 }
3515
3516 inline const Converter::Location *
3517 Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v)
3518 {
3519 ValueMap::l_iterator it = s->values.l.find(v);
3520 return it == s->values.l.end() ? NULL : &it->second;
3521 }
3522
3523 template<typename T> inline void
3524 Converter::BindArgumentsPass::updateCallArgs(
3525 Instruction *i, void (Instruction::*setArg)(int, Value *),
3526 T (Function::*proto))
3527 {
3528 Function *g = i->asFlow()->target.fn;
3529 Subroutine *subg = conv.getSubroutine(g);
3530
3531 for (unsigned a = 0; a < (g->*proto).size(); ++a) {
3532 Value *v = (g->*proto)[a].get();
3533 const Converter::Location &l = *getValueLocation(subg, v);
3534 Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
3535
3536 (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
3537 }
3538 }
3539
3540 template<typename T> inline void
3541 Converter::BindArgumentsPass::updatePrototype(
3542 BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
3543 {
3544 (func->*updateSet)();
3545
3546 for (unsigned i = 0; i < set->getSize(); ++i) {
3547 Value *v = func->getLValue(i);
3548 const Converter::Location *l = getValueLocation(sub, v);
3549
3550 // only include values with a matching TGSI register
3551 if (set->test(i) && l && !conv.code->locals.count(*l))
3552 (func->*proto).push_back(v);
3553 }
3554 }
3555
3556 bool
3557 Converter::BindArgumentsPass::visit(Function *f)
3558 {
3559 sub = conv.getSubroutine(f);
3560
3561 for (ArrayList::Iterator bi = f->allBBlocks.iterator();
3562 !bi.end(); bi.next()) {
3563 for (Instruction *i = BasicBlock::get(bi)->getFirst();
3564 i; i = i->next) {
3565 if (i->op == OP_CALL && !i->asFlow()->builtin) {
3566 updateCallArgs(i, &Instruction::setSrc, &Function::ins);
3567 updateCallArgs(i, &Instruction::setDef, &Function::outs);
3568 }
3569 }
3570 }
3571
3572 if (func == prog->main && prog->getType() != Program::TYPE_COMPUTE)
3573 return true;
3574 updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
3575 &Function::buildLiveSets, &Function::ins);
3576 updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
3577 &Function::buildDefSets, &Function::outs);
3578
3579 return true;
3580 }
3581
3582 bool
3583 Converter::run()
3584 {
3585 BasicBlock *entry = new BasicBlock(prog->main);
3586 BasicBlock *leave = new BasicBlock(prog->main);
3587
3588 prog->main->setEntry(entry);
3589 prog->main->setExit(leave);
3590
3591 setPosition(entry, true);
3592 sub.cur = getSubroutine(prog->main);
3593
3594 if (info->io.genUserClip > 0) {
3595 for (int c = 0; c < 4; ++c)
3596 clipVtx[c] = getScratch();
3597 }
3598
3599 switch (prog->getType()) {
3600 case Program::TYPE_TESSELLATION_CONTROL:
3601 outBase = mkOp2v(
3602 OP_SUB, TYPE_U32, getSSA(),
3603 mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_LANEID, 0)),
3604 mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_INVOCATION_ID, 0)));
3605 break;
3606 case Program::TYPE_FRAGMENT: {
3607 Symbol *sv = mkSysVal(SV_POSITION, 3);
3608 fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
3609 mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
3610 break;
3611 }
3612 default:
3613 break;
3614 }
3615
3616 if (info->io.viewportId >= 0)
3617 viewport = getScratch();
3618 else
3619 viewport = NULL;
3620
3621 for (ip = 0; ip < code->scan.num_instructions; ++ip) {
3622 if (!handleInstruction(&code->insns[ip]))
3623 return false;
3624 }
3625
3626 if (!BindArgumentsPass(*this).run(prog))
3627 return false;
3628
3629 return true;
3630 }
3631
3632 } // unnamed namespace
3633
3634 namespace nv50_ir {
3635
3636 bool
3637 Program::makeFromTGSI(struct nv50_ir_prog_info *info)
3638 {
3639 tgsi::Source src(info);
3640 if (!src.scanSource())
3641 return false;
3642 tlsSize = info->bin.tlsSpace;
3643
3644 Converter builder(this, &src);
3645 return builder.run();
3646 }
3647
3648 } // namespace nv50_ir