c8efaf5947a84c692d65b0e0596a6acafa09ae39
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_from_tgsi.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "tgsi/tgsi_dump.h"
24 #include "tgsi/tgsi_scan.h"
25 #include "tgsi/tgsi_util.h"
26
27 #include <set>
28
29 #include "codegen/nv50_ir.h"
30 #include "codegen/nv50_ir_util.h"
31 #include "codegen/nv50_ir_build_util.h"
32
33 namespace tgsi {
34
35 class Source;
36
37 static nv50_ir::operation translateOpcode(uint opcode);
38 static nv50_ir::DataFile translateFile(uint file);
39 static nv50_ir::TexTarget translateTexture(uint texTarg);
40 static nv50_ir::SVSemantic translateSysVal(uint sysval);
41
42 class Instruction
43 {
44 public:
45 Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
46
47 class SrcRegister
48 {
49 public:
50 SrcRegister(const struct tgsi_full_src_register *src)
51 : reg(src->Register),
52 fsr(src)
53 { }
54
55 SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
56
57 SrcRegister(const struct tgsi_ind_register& ind)
58 : reg(tgsi_util_get_src_from_ind(&ind)),
59 fsr(NULL)
60 { }
61
62 struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
63 {
64 struct tgsi_src_register reg;
65 memset(&reg, 0, sizeof(reg));
66 reg.Index = off.Index;
67 reg.File = off.File;
68 reg.SwizzleX = off.SwizzleX;
69 reg.SwizzleY = off.SwizzleY;
70 reg.SwizzleZ = off.SwizzleZ;
71 return reg;
72 }
73
74 SrcRegister(const struct tgsi_texture_offset& off) :
75 reg(offsetToSrc(off)),
76 fsr(NULL)
77 { }
78
79 uint getFile() const { return reg.File; }
80
81 bool is2D() const { return reg.Dimension; }
82
83 bool isIndirect(int dim) const
84 {
85 return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
86 }
87
88 int getIndex(int dim) const
89 {
90 return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
91 }
92
93 int getSwizzle(int chan) const
94 {
95 return tgsi_util_get_src_register_swizzle(&reg, chan);
96 }
97
98 nv50_ir::Modifier getMod(int chan) const;
99
100 SrcRegister getIndirect(int dim) const
101 {
102 assert(fsr && isIndirect(dim));
103 if (dim)
104 return SrcRegister(fsr->DimIndirect);
105 return SrcRegister(fsr->Indirect);
106 }
107
108 uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
109 {
110 assert(reg.File == TGSI_FILE_IMMEDIATE);
111 assert(!reg.Absolute);
112 assert(!reg.Negate);
113 return info->immd.data[reg.Index * 4 + getSwizzle(c)];
114 }
115
116 private:
117 const struct tgsi_src_register reg;
118 const struct tgsi_full_src_register *fsr;
119 };
120
121 class DstRegister
122 {
123 public:
124 DstRegister(const struct tgsi_full_dst_register *dst)
125 : reg(dst->Register),
126 fdr(dst)
127 { }
128
129 DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
130
131 uint getFile() const { return reg.File; }
132
133 bool is2D() const { return reg.Dimension; }
134
135 bool isIndirect(int dim) const
136 {
137 return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
138 }
139
140 int getIndex(int dim) const
141 {
142 return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
143 }
144
145 unsigned int getMask() const { return reg.WriteMask; }
146
147 bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
148
149 SrcRegister getIndirect(int dim) const
150 {
151 assert(fdr && isIndirect(dim));
152 if (dim)
153 return SrcRegister(fdr->DimIndirect);
154 return SrcRegister(fdr->Indirect);
155 }
156
157 private:
158 const struct tgsi_dst_register reg;
159 const struct tgsi_full_dst_register *fdr;
160 };
161
162 inline uint getOpcode() const { return insn->Instruction.Opcode; }
163
164 unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
165 unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
166
167 // mask of used components of source s
168 unsigned int srcMask(unsigned int s) const;
169
170 SrcRegister getSrc(unsigned int s) const
171 {
172 assert(s < srcCount());
173 return SrcRegister(&insn->Src[s]);
174 }
175
176 DstRegister getDst(unsigned int d) const
177 {
178 assert(d < dstCount());
179 return DstRegister(&insn->Dst[d]);
180 }
181
182 SrcRegister getTexOffset(unsigned int i) const
183 {
184 assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
185 return SrcRegister(insn->TexOffsets[i]);
186 }
187
188 unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
189
190 bool checkDstSrcAliasing() const;
191
192 inline nv50_ir::operation getOP() const {
193 return translateOpcode(getOpcode()); }
194
195 nv50_ir::DataType inferSrcType() const;
196 nv50_ir::DataType inferDstType() const;
197
198 nv50_ir::CondCode getSetCond() const;
199
200 nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
201
202 inline uint getLabel() { return insn->Label.Label; }
203
204 unsigned getSaturate() const { return insn->Instruction.Saturate; }
205
206 void print() const
207 {
208 tgsi_dump_instruction(insn, 1);
209 }
210
211 private:
212 const struct tgsi_full_instruction *insn;
213 };
214
215 unsigned int Instruction::srcMask(unsigned int s) const
216 {
217 unsigned int mask = insn->Dst[0].Register.WriteMask;
218
219 switch (insn->Instruction.Opcode) {
220 case TGSI_OPCODE_COS:
221 case TGSI_OPCODE_SIN:
222 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
223 case TGSI_OPCODE_DP2:
224 return 0x3;
225 case TGSI_OPCODE_DP3:
226 return 0x7;
227 case TGSI_OPCODE_DP4:
228 case TGSI_OPCODE_DPH:
229 case TGSI_OPCODE_KILL_IF: /* WriteMask ignored */
230 return 0xf;
231 case TGSI_OPCODE_DST:
232 return mask & (s ? 0xa : 0x6);
233 case TGSI_OPCODE_EX2:
234 case TGSI_OPCODE_EXP:
235 case TGSI_OPCODE_LG2:
236 case TGSI_OPCODE_LOG:
237 case TGSI_OPCODE_POW:
238 case TGSI_OPCODE_RCP:
239 case TGSI_OPCODE_RSQ:
240 case TGSI_OPCODE_SCS:
241 return 0x1;
242 case TGSI_OPCODE_IF:
243 case TGSI_OPCODE_UIF:
244 return 0x1;
245 case TGSI_OPCODE_LIT:
246 return 0xb;
247 case TGSI_OPCODE_TEX2:
248 case TGSI_OPCODE_TXB2:
249 case TGSI_OPCODE_TXL2:
250 return (s == 0) ? 0xf : 0x3;
251 case TGSI_OPCODE_TEX:
252 case TGSI_OPCODE_TXB:
253 case TGSI_OPCODE_TXD:
254 case TGSI_OPCODE_TXL:
255 case TGSI_OPCODE_TXP:
256 case TGSI_OPCODE_LODQ:
257 {
258 const struct tgsi_instruction_texture *tex = &insn->Texture;
259
260 assert(insn->Instruction.Texture);
261
262 mask = 0x7;
263 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
264 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
265 mask |= 0x8; /* bias, lod or proj */
266
267 switch (tex->Texture) {
268 case TGSI_TEXTURE_1D:
269 mask &= 0x9;
270 break;
271 case TGSI_TEXTURE_SHADOW1D:
272 mask &= 0xd;
273 break;
274 case TGSI_TEXTURE_1D_ARRAY:
275 case TGSI_TEXTURE_2D:
276 case TGSI_TEXTURE_RECT:
277 mask &= 0xb;
278 break;
279 case TGSI_TEXTURE_CUBE_ARRAY:
280 case TGSI_TEXTURE_SHADOW2D_ARRAY:
281 case TGSI_TEXTURE_SHADOWCUBE:
282 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
283 mask |= 0x8;
284 break;
285 default:
286 break;
287 }
288 }
289 return mask;
290 case TGSI_OPCODE_XPD:
291 {
292 unsigned int x = 0;
293 if (mask & 1) x |= 0x6;
294 if (mask & 2) x |= 0x5;
295 if (mask & 4) x |= 0x3;
296 return x;
297 }
298 case TGSI_OPCODE_D2I:
299 case TGSI_OPCODE_D2U:
300 case TGSI_OPCODE_D2F:
301 case TGSI_OPCODE_DSLT:
302 case TGSI_OPCODE_DSGE:
303 case TGSI_OPCODE_DSEQ:
304 case TGSI_OPCODE_DSNE:
305 switch (util_bitcount(mask)) {
306 case 1: return 0x3;
307 case 2: return 0xf;
308 default:
309 assert(!"unexpected mask");
310 return 0xf;
311 }
312 case TGSI_OPCODE_I2D:
313 case TGSI_OPCODE_U2D:
314 case TGSI_OPCODE_F2D: {
315 unsigned int x = 0;
316 if ((mask & 0x3) == 0x3)
317 x |= 1;
318 if ((mask & 0xc) == 0xc)
319 x |= 2;
320 return x;
321 }
322 default:
323 break;
324 }
325
326 return mask;
327 }
328
329 nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
330 {
331 nv50_ir::Modifier m(0);
332
333 if (reg.Absolute)
334 m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
335 if (reg.Negate)
336 m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
337 return m;
338 }
339
340 static nv50_ir::DataFile translateFile(uint file)
341 {
342 switch (file) {
343 case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST;
344 case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT;
345 case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT;
346 case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR;
347 case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS;
348 case TGSI_FILE_PREDICATE: return nv50_ir::FILE_PREDICATE;
349 case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE;
350 case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE;
351 case TGSI_FILE_RESOURCE: return nv50_ir::FILE_MEMORY_GLOBAL;
352 case TGSI_FILE_SAMPLER:
353 case TGSI_FILE_NULL:
354 default:
355 return nv50_ir::FILE_NULL;
356 }
357 }
358
359 static nv50_ir::SVSemantic translateSysVal(uint sysval)
360 {
361 switch (sysval) {
362 case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE;
363 case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE;
364 case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID;
365 case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
366 case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID;
367 case TGSI_SEMANTIC_GRID_SIZE: return nv50_ir::SV_NCTAID;
368 case TGSI_SEMANTIC_BLOCK_ID: return nv50_ir::SV_CTAID;
369 case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID;
370 case TGSI_SEMANTIC_THREAD_ID: return nv50_ir::SV_TID;
371 case TGSI_SEMANTIC_SAMPLEID: return nv50_ir::SV_SAMPLE_INDEX;
372 case TGSI_SEMANTIC_SAMPLEPOS: return nv50_ir::SV_SAMPLE_POS;
373 case TGSI_SEMANTIC_SAMPLEMASK: return nv50_ir::SV_SAMPLE_MASK;
374 case TGSI_SEMANTIC_INVOCATIONID: return nv50_ir::SV_INVOCATION_ID;
375 case TGSI_SEMANTIC_TESSCOORD: return nv50_ir::SV_TESS_COORD;
376 case TGSI_SEMANTIC_TESSOUTER: return nv50_ir::SV_TESS_OUTER;
377 case TGSI_SEMANTIC_TESSINNER: return nv50_ir::SV_TESS_INNER;
378 case TGSI_SEMANTIC_VERTICESIN: return nv50_ir::SV_VERTEX_COUNT;
379 default:
380 assert(0);
381 return nv50_ir::SV_CLOCK;
382 }
383 }
384
385 #define NV50_IR_TEX_TARG_CASE(a, b) \
386 case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
387
388 static nv50_ir::TexTarget translateTexture(uint tex)
389 {
390 switch (tex) {
391 NV50_IR_TEX_TARG_CASE(1D, 1D);
392 NV50_IR_TEX_TARG_CASE(2D, 2D);
393 NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS);
394 NV50_IR_TEX_TARG_CASE(3D, 3D);
395 NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
396 NV50_IR_TEX_TARG_CASE(RECT, RECT);
397 NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
398 NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
399 NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY);
400 NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY);
401 NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
402 NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
403 NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
404 NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
405 NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
406 NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
407 NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW);
408 NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
409
410 case TGSI_TEXTURE_UNKNOWN:
411 default:
412 assert(!"invalid texture target");
413 return nv50_ir::TEX_TARGET_2D;
414 }
415 }
416
417 nv50_ir::DataType Instruction::inferSrcType() const
418 {
419 switch (getOpcode()) {
420 case TGSI_OPCODE_UIF:
421 case TGSI_OPCODE_AND:
422 case TGSI_OPCODE_OR:
423 case TGSI_OPCODE_XOR:
424 case TGSI_OPCODE_NOT:
425 case TGSI_OPCODE_SHL:
426 case TGSI_OPCODE_U2F:
427 case TGSI_OPCODE_U2D:
428 case TGSI_OPCODE_UADD:
429 case TGSI_OPCODE_UDIV:
430 case TGSI_OPCODE_UMOD:
431 case TGSI_OPCODE_UMAD:
432 case TGSI_OPCODE_UMUL:
433 case TGSI_OPCODE_UMUL_HI:
434 case TGSI_OPCODE_UMAX:
435 case TGSI_OPCODE_UMIN:
436 case TGSI_OPCODE_USEQ:
437 case TGSI_OPCODE_USGE:
438 case TGSI_OPCODE_USLT:
439 case TGSI_OPCODE_USNE:
440 case TGSI_OPCODE_USHR:
441 case TGSI_OPCODE_ATOMUADD:
442 case TGSI_OPCODE_ATOMXCHG:
443 case TGSI_OPCODE_ATOMCAS:
444 case TGSI_OPCODE_ATOMAND:
445 case TGSI_OPCODE_ATOMOR:
446 case TGSI_OPCODE_ATOMXOR:
447 case TGSI_OPCODE_ATOMUMIN:
448 case TGSI_OPCODE_ATOMUMAX:
449 case TGSI_OPCODE_UBFE:
450 case TGSI_OPCODE_UMSB:
451 return nv50_ir::TYPE_U32;
452 case TGSI_OPCODE_I2F:
453 case TGSI_OPCODE_I2D:
454 case TGSI_OPCODE_IDIV:
455 case TGSI_OPCODE_IMUL_HI:
456 case TGSI_OPCODE_IMAX:
457 case TGSI_OPCODE_IMIN:
458 case TGSI_OPCODE_IABS:
459 case TGSI_OPCODE_INEG:
460 case TGSI_OPCODE_ISGE:
461 case TGSI_OPCODE_ISHR:
462 case TGSI_OPCODE_ISLT:
463 case TGSI_OPCODE_ISSG:
464 case TGSI_OPCODE_SAD: // not sure about SAD, but no one has a float version
465 case TGSI_OPCODE_MOD:
466 case TGSI_OPCODE_UARL:
467 case TGSI_OPCODE_ATOMIMIN:
468 case TGSI_OPCODE_ATOMIMAX:
469 case TGSI_OPCODE_IBFE:
470 case TGSI_OPCODE_IMSB:
471 return nv50_ir::TYPE_S32;
472 case TGSI_OPCODE_D2F:
473 case TGSI_OPCODE_D2I:
474 case TGSI_OPCODE_D2U:
475 case TGSI_OPCODE_DABS:
476 case TGSI_OPCODE_DNEG:
477 case TGSI_OPCODE_DADD:
478 case TGSI_OPCODE_DMUL:
479 case TGSI_OPCODE_DMAX:
480 case TGSI_OPCODE_DMIN:
481 case TGSI_OPCODE_DSLT:
482 case TGSI_OPCODE_DSGE:
483 case TGSI_OPCODE_DSEQ:
484 case TGSI_OPCODE_DSNE:
485 case TGSI_OPCODE_DRCP:
486 case TGSI_OPCODE_DSQRT:
487 case TGSI_OPCODE_DMAD:
488 case TGSI_OPCODE_DFRAC:
489 case TGSI_OPCODE_DRSQ:
490 case TGSI_OPCODE_DTRUNC:
491 case TGSI_OPCODE_DCEIL:
492 case TGSI_OPCODE_DFLR:
493 case TGSI_OPCODE_DROUND:
494 return nv50_ir::TYPE_F64;
495 default:
496 return nv50_ir::TYPE_F32;
497 }
498 }
499
500 nv50_ir::DataType Instruction::inferDstType() const
501 {
502 switch (getOpcode()) {
503 case TGSI_OPCODE_D2U:
504 case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
505 case TGSI_OPCODE_D2I:
506 case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
507 case TGSI_OPCODE_FSEQ:
508 case TGSI_OPCODE_FSGE:
509 case TGSI_OPCODE_FSLT:
510 case TGSI_OPCODE_FSNE:
511 case TGSI_OPCODE_DSEQ:
512 case TGSI_OPCODE_DSGE:
513 case TGSI_OPCODE_DSLT:
514 case TGSI_OPCODE_DSNE:
515 return nv50_ir::TYPE_U32;
516 case TGSI_OPCODE_I2F:
517 case TGSI_OPCODE_U2F:
518 case TGSI_OPCODE_D2F:
519 return nv50_ir::TYPE_F32;
520 case TGSI_OPCODE_I2D:
521 case TGSI_OPCODE_U2D:
522 case TGSI_OPCODE_F2D:
523 return nv50_ir::TYPE_F64;
524 default:
525 return inferSrcType();
526 }
527 }
528
529 nv50_ir::CondCode Instruction::getSetCond() const
530 {
531 using namespace nv50_ir;
532
533 switch (getOpcode()) {
534 case TGSI_OPCODE_SLT:
535 case TGSI_OPCODE_ISLT:
536 case TGSI_OPCODE_USLT:
537 case TGSI_OPCODE_FSLT:
538 case TGSI_OPCODE_DSLT:
539 return CC_LT;
540 case TGSI_OPCODE_SLE:
541 return CC_LE;
542 case TGSI_OPCODE_SGE:
543 case TGSI_OPCODE_ISGE:
544 case TGSI_OPCODE_USGE:
545 case TGSI_OPCODE_FSGE:
546 case TGSI_OPCODE_DSGE:
547 return CC_GE;
548 case TGSI_OPCODE_SGT:
549 return CC_GT;
550 case TGSI_OPCODE_SEQ:
551 case TGSI_OPCODE_USEQ:
552 case TGSI_OPCODE_FSEQ:
553 case TGSI_OPCODE_DSEQ:
554 return CC_EQ;
555 case TGSI_OPCODE_SNE:
556 case TGSI_OPCODE_FSNE:
557 case TGSI_OPCODE_DSNE:
558 return CC_NEU;
559 case TGSI_OPCODE_USNE:
560 return CC_NE;
561 default:
562 return CC_ALWAYS;
563 }
564 }
565
566 #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
567
568 static nv50_ir::operation translateOpcode(uint opcode)
569 {
570 switch (opcode) {
571 NV50_IR_OPCODE_CASE(ARL, SHL);
572 NV50_IR_OPCODE_CASE(MOV, MOV);
573
574 NV50_IR_OPCODE_CASE(RCP, RCP);
575 NV50_IR_OPCODE_CASE(RSQ, RSQ);
576
577 NV50_IR_OPCODE_CASE(MUL, MUL);
578 NV50_IR_OPCODE_CASE(ADD, ADD);
579
580 NV50_IR_OPCODE_CASE(MIN, MIN);
581 NV50_IR_OPCODE_CASE(MAX, MAX);
582 NV50_IR_OPCODE_CASE(SLT, SET);
583 NV50_IR_OPCODE_CASE(SGE, SET);
584 NV50_IR_OPCODE_CASE(MAD, MAD);
585 NV50_IR_OPCODE_CASE(SUB, SUB);
586
587 NV50_IR_OPCODE_CASE(FLR, FLOOR);
588 NV50_IR_OPCODE_CASE(ROUND, CVT);
589 NV50_IR_OPCODE_CASE(EX2, EX2);
590 NV50_IR_OPCODE_CASE(LG2, LG2);
591 NV50_IR_OPCODE_CASE(POW, POW);
592
593 NV50_IR_OPCODE_CASE(ABS, ABS);
594
595 NV50_IR_OPCODE_CASE(COS, COS);
596 NV50_IR_OPCODE_CASE(DDX, DFDX);
597 NV50_IR_OPCODE_CASE(DDX_FINE, DFDX);
598 NV50_IR_OPCODE_CASE(DDY, DFDY);
599 NV50_IR_OPCODE_CASE(DDY_FINE, DFDY);
600 NV50_IR_OPCODE_CASE(KILL, DISCARD);
601
602 NV50_IR_OPCODE_CASE(SEQ, SET);
603 NV50_IR_OPCODE_CASE(SGT, SET);
604 NV50_IR_OPCODE_CASE(SIN, SIN);
605 NV50_IR_OPCODE_CASE(SLE, SET);
606 NV50_IR_OPCODE_CASE(SNE, SET);
607 NV50_IR_OPCODE_CASE(TEX, TEX);
608 NV50_IR_OPCODE_CASE(TXD, TXD);
609 NV50_IR_OPCODE_CASE(TXP, TEX);
610
611 NV50_IR_OPCODE_CASE(CAL, CALL);
612 NV50_IR_OPCODE_CASE(RET, RET);
613 NV50_IR_OPCODE_CASE(CMP, SLCT);
614
615 NV50_IR_OPCODE_CASE(TXB, TXB);
616
617 NV50_IR_OPCODE_CASE(DIV, DIV);
618
619 NV50_IR_OPCODE_CASE(TXL, TXL);
620
621 NV50_IR_OPCODE_CASE(CEIL, CEIL);
622 NV50_IR_OPCODE_CASE(I2F, CVT);
623 NV50_IR_OPCODE_CASE(NOT, NOT);
624 NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
625 NV50_IR_OPCODE_CASE(SHL, SHL);
626
627 NV50_IR_OPCODE_CASE(AND, AND);
628 NV50_IR_OPCODE_CASE(OR, OR);
629 NV50_IR_OPCODE_CASE(MOD, MOD);
630 NV50_IR_OPCODE_CASE(XOR, XOR);
631 NV50_IR_OPCODE_CASE(SAD, SAD);
632 NV50_IR_OPCODE_CASE(TXF, TXF);
633 NV50_IR_OPCODE_CASE(TXQ, TXQ);
634 NV50_IR_OPCODE_CASE(TXQS, TXQ);
635 NV50_IR_OPCODE_CASE(TG4, TXG);
636 NV50_IR_OPCODE_CASE(LODQ, TXLQ);
637
638 NV50_IR_OPCODE_CASE(EMIT, EMIT);
639 NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
640
641 NV50_IR_OPCODE_CASE(KILL_IF, DISCARD);
642
643 NV50_IR_OPCODE_CASE(F2I, CVT);
644 NV50_IR_OPCODE_CASE(FSEQ, SET);
645 NV50_IR_OPCODE_CASE(FSGE, SET);
646 NV50_IR_OPCODE_CASE(FSLT, SET);
647 NV50_IR_OPCODE_CASE(FSNE, SET);
648 NV50_IR_OPCODE_CASE(IDIV, DIV);
649 NV50_IR_OPCODE_CASE(IMAX, MAX);
650 NV50_IR_OPCODE_CASE(IMIN, MIN);
651 NV50_IR_OPCODE_CASE(IABS, ABS);
652 NV50_IR_OPCODE_CASE(INEG, NEG);
653 NV50_IR_OPCODE_CASE(ISGE, SET);
654 NV50_IR_OPCODE_CASE(ISHR, SHR);
655 NV50_IR_OPCODE_CASE(ISLT, SET);
656 NV50_IR_OPCODE_CASE(F2U, CVT);
657 NV50_IR_OPCODE_CASE(U2F, CVT);
658 NV50_IR_OPCODE_CASE(UADD, ADD);
659 NV50_IR_OPCODE_CASE(UDIV, DIV);
660 NV50_IR_OPCODE_CASE(UMAD, MAD);
661 NV50_IR_OPCODE_CASE(UMAX, MAX);
662 NV50_IR_OPCODE_CASE(UMIN, MIN);
663 NV50_IR_OPCODE_CASE(UMOD, MOD);
664 NV50_IR_OPCODE_CASE(UMUL, MUL);
665 NV50_IR_OPCODE_CASE(USEQ, SET);
666 NV50_IR_OPCODE_CASE(USGE, SET);
667 NV50_IR_OPCODE_CASE(USHR, SHR);
668 NV50_IR_OPCODE_CASE(USLT, SET);
669 NV50_IR_OPCODE_CASE(USNE, SET);
670
671 NV50_IR_OPCODE_CASE(DABS, ABS);
672 NV50_IR_OPCODE_CASE(DNEG, NEG);
673 NV50_IR_OPCODE_CASE(DADD, ADD);
674 NV50_IR_OPCODE_CASE(DMUL, MUL);
675 NV50_IR_OPCODE_CASE(DMAX, MAX);
676 NV50_IR_OPCODE_CASE(DMIN, MIN);
677 NV50_IR_OPCODE_CASE(DSLT, SET);
678 NV50_IR_OPCODE_CASE(DSGE, SET);
679 NV50_IR_OPCODE_CASE(DSEQ, SET);
680 NV50_IR_OPCODE_CASE(DSNE, SET);
681 NV50_IR_OPCODE_CASE(DRCP, RCP);
682 NV50_IR_OPCODE_CASE(DSQRT, SQRT);
683 NV50_IR_OPCODE_CASE(DMAD, MAD);
684 NV50_IR_OPCODE_CASE(D2I, CVT);
685 NV50_IR_OPCODE_CASE(D2U, CVT);
686 NV50_IR_OPCODE_CASE(I2D, CVT);
687 NV50_IR_OPCODE_CASE(U2D, CVT);
688 NV50_IR_OPCODE_CASE(DRSQ, RSQ);
689 NV50_IR_OPCODE_CASE(DTRUNC, TRUNC);
690 NV50_IR_OPCODE_CASE(DCEIL, CEIL);
691 NV50_IR_OPCODE_CASE(DFLR, FLOOR);
692 NV50_IR_OPCODE_CASE(DROUND, CVT);
693
694 NV50_IR_OPCODE_CASE(IMUL_HI, MUL);
695 NV50_IR_OPCODE_CASE(UMUL_HI, MUL);
696
697 NV50_IR_OPCODE_CASE(SAMPLE, TEX);
698 NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
699 NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
700 NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
701 NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
702 NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
703 NV50_IR_OPCODE_CASE(SAMPLE_I, TXF);
704 NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF);
705 NV50_IR_OPCODE_CASE(GATHER4, TXG);
706 NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
707
708 NV50_IR_OPCODE_CASE(ATOMUADD, ATOM);
709 NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM);
710 NV50_IR_OPCODE_CASE(ATOMCAS, ATOM);
711 NV50_IR_OPCODE_CASE(ATOMAND, ATOM);
712 NV50_IR_OPCODE_CASE(ATOMOR, ATOM);
713 NV50_IR_OPCODE_CASE(ATOMXOR, ATOM);
714 NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM);
715 NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM);
716 NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM);
717 NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM);
718
719 NV50_IR_OPCODE_CASE(TEX2, TEX);
720 NV50_IR_OPCODE_CASE(TXB2, TXB);
721 NV50_IR_OPCODE_CASE(TXL2, TXL);
722
723 NV50_IR_OPCODE_CASE(IBFE, EXTBF);
724 NV50_IR_OPCODE_CASE(UBFE, EXTBF);
725 NV50_IR_OPCODE_CASE(BFI, INSBF);
726 NV50_IR_OPCODE_CASE(BREV, EXTBF);
727 NV50_IR_OPCODE_CASE(POPC, POPCNT);
728 NV50_IR_OPCODE_CASE(LSB, BFIND);
729 NV50_IR_OPCODE_CASE(IMSB, BFIND);
730 NV50_IR_OPCODE_CASE(UMSB, BFIND);
731
732 NV50_IR_OPCODE_CASE(END, EXIT);
733
734 default:
735 return nv50_ir::OP_NOP;
736 }
737 }
738
739 static uint16_t opcodeToSubOp(uint opcode)
740 {
741 switch (opcode) {
742 case TGSI_OPCODE_LFENCE: return NV50_IR_SUBOP_MEMBAR(L, GL);
743 case TGSI_OPCODE_SFENCE: return NV50_IR_SUBOP_MEMBAR(S, GL);
744 case TGSI_OPCODE_MFENCE: return NV50_IR_SUBOP_MEMBAR(M, GL);
745 case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD;
746 case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH;
747 case TGSI_OPCODE_ATOMCAS: return NV50_IR_SUBOP_ATOM_CAS;
748 case TGSI_OPCODE_ATOMAND: return NV50_IR_SUBOP_ATOM_AND;
749 case TGSI_OPCODE_ATOMOR: return NV50_IR_SUBOP_ATOM_OR;
750 case TGSI_OPCODE_ATOMXOR: return NV50_IR_SUBOP_ATOM_XOR;
751 case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN;
752 case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN;
753 case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX;
754 case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX;
755 case TGSI_OPCODE_IMUL_HI:
756 case TGSI_OPCODE_UMUL_HI:
757 return NV50_IR_SUBOP_MUL_HIGH;
758 default:
759 return 0;
760 }
761 }
762
763 bool Instruction::checkDstSrcAliasing() const
764 {
765 if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
766 return false;
767
768 for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
769 if (insn->Src[s].Register.File == TGSI_FILE_NULL)
770 break;
771 if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
772 insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
773 return true;
774 }
775 return false;
776 }
777
778 class Source
779 {
780 public:
781 Source(struct nv50_ir_prog_info *);
782 ~Source();
783
784 public:
785 bool scanSource();
786 unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
787
788 public:
789 struct tgsi_shader_info scan;
790 struct tgsi_full_instruction *insns;
791 const struct tgsi_token *tokens;
792 struct nv50_ir_prog_info *info;
793
794 nv50_ir::DynArray tempArrays;
795 nv50_ir::DynArray immdArrays;
796
797 typedef nv50_ir::BuildUtil::Location Location;
798 // these registers are per-subroutine, cannot be used for parameter passing
799 std::set<Location> locals;
800
801 bool mainTempsInLMem;
802
803 int clipVertexOutput;
804
805 struct TextureView {
806 uint8_t target; // TGSI_TEXTURE_*
807 };
808 std::vector<TextureView> textureViews;
809
810 struct Resource {
811 uint8_t target; // TGSI_TEXTURE_*
812 bool raw;
813 uint8_t slot; // $surface index
814 };
815 std::vector<Resource> resources;
816
817 private:
818 int inferSysValDirection(unsigned sn) const;
819 bool scanDeclaration(const struct tgsi_full_declaration *);
820 bool scanInstruction(const struct tgsi_full_instruction *);
821 void scanProperty(const struct tgsi_full_property *);
822 void scanImmediate(const struct tgsi_full_immediate *);
823
824 inline bool isEdgeFlagPassthrough(const Instruction&) const;
825 };
826
827 Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
828 {
829 tokens = (const struct tgsi_token *)info->bin.source;
830
831 if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
832 tgsi_dump(tokens, 0);
833
834 mainTempsInLMem = false;
835 }
836
837 Source::~Source()
838 {
839 if (insns)
840 FREE(insns);
841
842 if (info->immd.data)
843 FREE(info->immd.data);
844 if (info->immd.type)
845 FREE(info->immd.type);
846 }
847
848 bool Source::scanSource()
849 {
850 unsigned insnCount = 0;
851 struct tgsi_parse_context parse;
852
853 tgsi_scan_shader(tokens, &scan);
854
855 insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
856 sizeof(insns[0]));
857 if (!insns)
858 return false;
859
860 clipVertexOutput = -1;
861
862 textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1);
863 resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1);
864
865 info->immd.bufSize = 0;
866
867 info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
868 info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
869 info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
870
871 if (info->type == PIPE_SHADER_FRAGMENT) {
872 info->prop.fp.writesDepth = scan.writes_z;
873 info->prop.fp.usesDiscard = scan.uses_kill;
874 } else
875 if (info->type == PIPE_SHADER_GEOMETRY) {
876 info->prop.gp.instanceCount = 1; // default value
877 }
878
879 info->io.viewportId = -1;
880
881 info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
882 info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
883
884 tgsi_parse_init(&parse, tokens);
885 while (!tgsi_parse_end_of_tokens(&parse)) {
886 tgsi_parse_token(&parse);
887
888 switch (parse.FullToken.Token.Type) {
889 case TGSI_TOKEN_TYPE_IMMEDIATE:
890 scanImmediate(&parse.FullToken.FullImmediate);
891 break;
892 case TGSI_TOKEN_TYPE_DECLARATION:
893 scanDeclaration(&parse.FullToken.FullDeclaration);
894 break;
895 case TGSI_TOKEN_TYPE_INSTRUCTION:
896 insns[insnCount++] = parse.FullToken.FullInstruction;
897 scanInstruction(&parse.FullToken.FullInstruction);
898 break;
899 case TGSI_TOKEN_TYPE_PROPERTY:
900 scanProperty(&parse.FullToken.FullProperty);
901 break;
902 default:
903 INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
904 break;
905 }
906 }
907 tgsi_parse_free(&parse);
908
909 if (mainTempsInLMem)
910 info->bin.tlsSpace += (scan.file_max[TGSI_FILE_TEMPORARY] + 1) * 16;
911
912 if (info->io.genUserClip > 0) {
913 info->io.clipDistanceMask = (1 << info->io.genUserClip) - 1;
914
915 const unsigned int nOut = (info->io.genUserClip + 3) / 4;
916
917 for (unsigned int n = 0; n < nOut; ++n) {
918 unsigned int i = info->numOutputs++;
919 info->out[i].id = i;
920 info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
921 info->out[i].si = n;
922 info->out[i].mask = info->io.clipDistanceMask >> (n * 4);
923 }
924 }
925
926 return info->assignSlots(info) == 0;
927 }
928
929 void Source::scanProperty(const struct tgsi_full_property *prop)
930 {
931 switch (prop->Property.PropertyName) {
932 case TGSI_PROPERTY_GS_OUTPUT_PRIM:
933 info->prop.gp.outputPrim = prop->u[0].Data;
934 break;
935 case TGSI_PROPERTY_GS_INPUT_PRIM:
936 info->prop.gp.inputPrim = prop->u[0].Data;
937 break;
938 case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
939 info->prop.gp.maxVertices = prop->u[0].Data;
940 break;
941 case TGSI_PROPERTY_GS_INVOCATIONS:
942 info->prop.gp.instanceCount = prop->u[0].Data;
943 break;
944 case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
945 info->prop.fp.separateFragData = true;
946 break;
947 case TGSI_PROPERTY_FS_COORD_ORIGIN:
948 case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
949 // we don't care
950 break;
951 case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
952 info->io.genUserClip = -1;
953 break;
954 case TGSI_PROPERTY_TCS_VERTICES_OUT:
955 info->prop.tp.outputPatchSize = prop->u[0].Data;
956 break;
957 case TGSI_PROPERTY_TES_PRIM_MODE:
958 info->prop.tp.domain = prop->u[0].Data;
959 break;
960 case TGSI_PROPERTY_TES_SPACING:
961 info->prop.tp.partitioning = prop->u[0].Data;
962 break;
963 case TGSI_PROPERTY_TES_VERTEX_ORDER_CW:
964 info->prop.tp.winding = prop->u[0].Data;
965 break;
966 case TGSI_PROPERTY_TES_POINT_MODE:
967 if (prop->u[0].Data)
968 info->prop.tp.outputPrim = PIPE_PRIM_POINTS;
969 else
970 info->prop.tp.outputPrim = PIPE_PRIM_TRIANGLES; /* anything but points */
971 break;
972 default:
973 INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
974 break;
975 }
976 }
977
978 void Source::scanImmediate(const struct tgsi_full_immediate *imm)
979 {
980 const unsigned n = info->immd.count++;
981
982 assert(n < scan.immediate_count);
983
984 for (int c = 0; c < 4; ++c)
985 info->immd.data[n * 4 + c] = imm->u[c].Uint;
986
987 info->immd.type[n] = imm->Immediate.DataType;
988 }
989
990 int Source::inferSysValDirection(unsigned sn) const
991 {
992 switch (sn) {
993 case TGSI_SEMANTIC_INSTANCEID:
994 case TGSI_SEMANTIC_VERTEXID:
995 return 1;
996 case TGSI_SEMANTIC_LAYER:
997 #if 0
998 case TGSI_SEMANTIC_VIEWPORTINDEX:
999 return 0;
1000 #endif
1001 case TGSI_SEMANTIC_PRIMID:
1002 return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
1003 default:
1004 return 0;
1005 }
1006 }
1007
1008 bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
1009 {
1010 unsigned i, c;
1011 unsigned sn = TGSI_SEMANTIC_GENERIC;
1012 unsigned si = 0;
1013 const unsigned first = decl->Range.First, last = decl->Range.Last;
1014
1015 if (decl->Declaration.Semantic) {
1016 sn = decl->Semantic.Name;
1017 si = decl->Semantic.Index;
1018 }
1019
1020 if (decl->Declaration.Local) {
1021 for (i = first; i <= last; ++i) {
1022 for (c = 0; c < 4; ++c) {
1023 locals.insert(
1024 Location(decl->Declaration.File, decl->Dim.Index2D, i, c));
1025 }
1026 }
1027 }
1028
1029 switch (decl->Declaration.File) {
1030 case TGSI_FILE_INPUT:
1031 if (info->type == PIPE_SHADER_VERTEX) {
1032 // all vertex attributes are equal
1033 for (i = first; i <= last; ++i) {
1034 info->in[i].sn = TGSI_SEMANTIC_GENERIC;
1035 info->in[i].si = i;
1036 }
1037 } else {
1038 for (i = first; i <= last; ++i, ++si) {
1039 info->in[i].id = i;
1040 info->in[i].sn = sn;
1041 info->in[i].si = si;
1042 if (info->type == PIPE_SHADER_FRAGMENT) {
1043 // translate interpolation mode
1044 switch (decl->Interp.Interpolate) {
1045 case TGSI_INTERPOLATE_CONSTANT:
1046 info->in[i].flat = 1;
1047 break;
1048 case TGSI_INTERPOLATE_COLOR:
1049 info->in[i].sc = 1;
1050 break;
1051 case TGSI_INTERPOLATE_LINEAR:
1052 info->in[i].linear = 1;
1053 break;
1054 default:
1055 break;
1056 }
1057 if (decl->Interp.Location || info->io.sampleInterp)
1058 info->in[i].centroid = 1;
1059 }
1060
1061 if (sn == TGSI_SEMANTIC_PATCH)
1062 info->in[i].patch = 1;
1063 if (sn == TGSI_SEMANTIC_PATCH)
1064 info->numPatchConstants = MAX2(info->numPatchConstants, si + 1);
1065 }
1066 }
1067 break;
1068 case TGSI_FILE_OUTPUT:
1069 for (i = first; i <= last; ++i, ++si) {
1070 switch (sn) {
1071 case TGSI_SEMANTIC_POSITION:
1072 if (info->type == PIPE_SHADER_FRAGMENT)
1073 info->io.fragDepth = i;
1074 else
1075 if (clipVertexOutput < 0)
1076 clipVertexOutput = i;
1077 break;
1078 case TGSI_SEMANTIC_COLOR:
1079 if (info->type == PIPE_SHADER_FRAGMENT)
1080 info->prop.fp.numColourResults++;
1081 break;
1082 case TGSI_SEMANTIC_EDGEFLAG:
1083 info->io.edgeFlagOut = i;
1084 break;
1085 case TGSI_SEMANTIC_CLIPVERTEX:
1086 clipVertexOutput = i;
1087 break;
1088 case TGSI_SEMANTIC_CLIPDIST:
1089 info->io.clipDistanceMask |=
1090 decl->Declaration.UsageMask << (si * 4);
1091 info->io.genUserClip = -1;
1092 break;
1093 case TGSI_SEMANTIC_SAMPLEMASK:
1094 info->io.sampleMask = i;
1095 break;
1096 case TGSI_SEMANTIC_VIEWPORT_INDEX:
1097 info->io.viewportId = i;
1098 break;
1099 case TGSI_SEMANTIC_PATCH:
1100 info->numPatchConstants = MAX2(info->numPatchConstants, si + 1);
1101 /* fallthrough */
1102 case TGSI_SEMANTIC_TESSOUTER:
1103 case TGSI_SEMANTIC_TESSINNER:
1104 info->out[i].patch = 1;
1105 break;
1106 default:
1107 break;
1108 }
1109 info->out[i].id = i;
1110 info->out[i].sn = sn;
1111 info->out[i].si = si;
1112 }
1113 break;
1114 case TGSI_FILE_SYSTEM_VALUE:
1115 switch (sn) {
1116 case TGSI_SEMANTIC_INSTANCEID:
1117 info->io.instanceId = first;
1118 break;
1119 case TGSI_SEMANTIC_VERTEXID:
1120 info->io.vertexId = first;
1121 break;
1122 default:
1123 break;
1124 }
1125 for (i = first; i <= last; ++i, ++si) {
1126 info->sv[i].sn = sn;
1127 info->sv[i].si = si;
1128 info->sv[i].input = inferSysValDirection(sn);
1129
1130 switch (sn) {
1131 case TGSI_SEMANTIC_TESSOUTER:
1132 case TGSI_SEMANTIC_TESSINNER:
1133 info->sv[i].patch = 1;
1134 break;
1135 }
1136 }
1137 break;
1138 case TGSI_FILE_RESOURCE:
1139 for (i = first; i <= last; ++i) {
1140 resources[i].target = decl->Resource.Resource;
1141 resources[i].raw = decl->Resource.Raw;
1142 resources[i].slot = i;
1143 }
1144 break;
1145 case TGSI_FILE_SAMPLER_VIEW:
1146 for (i = first; i <= last; ++i)
1147 textureViews[i].target = decl->SamplerView.Resource;
1148 break;
1149 case TGSI_FILE_NULL:
1150 case TGSI_FILE_TEMPORARY:
1151 case TGSI_FILE_ADDRESS:
1152 case TGSI_FILE_CONSTANT:
1153 case TGSI_FILE_IMMEDIATE:
1154 case TGSI_FILE_PREDICATE:
1155 case TGSI_FILE_SAMPLER:
1156 break;
1157 default:
1158 ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
1159 return false;
1160 }
1161 return true;
1162 }
1163
1164 inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
1165 {
1166 return insn.getOpcode() == TGSI_OPCODE_MOV &&
1167 insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
1168 insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
1169 }
1170
1171 bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
1172 {
1173 Instruction insn(inst);
1174
1175 if (insn.getOpcode() == TGSI_OPCODE_BARRIER)
1176 info->numBarriers = 1;
1177
1178 if (insn.dstCount()) {
1179 if (insn.getDst(0).getFile() == TGSI_FILE_OUTPUT) {
1180 Instruction::DstRegister dst = insn.getDst(0);
1181
1182 if (dst.isIndirect(0))
1183 for (unsigned i = 0; i < info->numOutputs; ++i)
1184 info->out[i].mask = 0xf;
1185 else
1186 info->out[dst.getIndex(0)].mask |= dst.getMask();
1187
1188 if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE ||
1189 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID ||
1190 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_LAYER ||
1191 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_VIEWPORT_INDEX ||
1192 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG)
1193 info->out[dst.getIndex(0)].mask &= 1;
1194
1195 if (isEdgeFlagPassthrough(insn))
1196 info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
1197 } else
1198 if (insn.getDst(0).getFile() == TGSI_FILE_TEMPORARY) {
1199 if (insn.getDst(0).isIndirect(0))
1200 mainTempsInLMem = true;
1201 }
1202 }
1203
1204 for (unsigned s = 0; s < insn.srcCount(); ++s) {
1205 Instruction::SrcRegister src = insn.getSrc(s);
1206 if (src.getFile() == TGSI_FILE_TEMPORARY) {
1207 if (src.isIndirect(0))
1208 mainTempsInLMem = true;
1209 } else
1210 if (src.getFile() == TGSI_FILE_RESOURCE) {
1211 if (src.getIndex(0) == TGSI_RESOURCE_GLOBAL)
1212 info->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ?
1213 0x1 : 0x2;
1214 } else
1215 if (src.getFile() == TGSI_FILE_OUTPUT) {
1216 if (src.isIndirect(0)) {
1217 // We don't know which one is accessed, just mark everything for
1218 // reading. This is an extremely unlikely occurrence.
1219 for (unsigned i = 0; i < info->numOutputs; ++i)
1220 info->out[i].oread = 1;
1221 } else {
1222 info->out[src.getIndex(0)].oread = 1;
1223 }
1224 }
1225 if (src.getFile() != TGSI_FILE_INPUT)
1226 continue;
1227 unsigned mask = insn.srcMask(s);
1228
1229 if (src.isIndirect(0)) {
1230 for (unsigned i = 0; i < info->numInputs; ++i)
1231 info->in[i].mask = 0xf;
1232 } else {
1233 const int i = src.getIndex(0);
1234 for (unsigned c = 0; c < 4; ++c) {
1235 if (!(mask & (1 << c)))
1236 continue;
1237 int k = src.getSwizzle(c);
1238 if (k <= TGSI_SWIZZLE_W)
1239 info->in[i].mask |= 1 << k;
1240 }
1241 switch (info->in[i].sn) {
1242 case TGSI_SEMANTIC_PSIZE:
1243 case TGSI_SEMANTIC_PRIMID:
1244 case TGSI_SEMANTIC_FOG:
1245 info->in[i].mask &= 0x1;
1246 break;
1247 case TGSI_SEMANTIC_PCOORD:
1248 info->in[i].mask &= 0x3;
1249 break;
1250 default:
1251 break;
1252 }
1253 }
1254 }
1255 return true;
1256 }
1257
1258 nv50_ir::TexInstruction::Target
1259 Instruction::getTexture(const tgsi::Source *code, int s) const
1260 {
1261 // XXX: indirect access
1262 unsigned int r;
1263
1264 switch (getSrc(s).getFile()) {
1265 case TGSI_FILE_RESOURCE:
1266 r = getSrc(s).getIndex(0);
1267 return translateTexture(code->resources.at(r).target);
1268 case TGSI_FILE_SAMPLER_VIEW:
1269 r = getSrc(s).getIndex(0);
1270 return translateTexture(code->textureViews.at(r).target);
1271 default:
1272 return translateTexture(insn->Texture.Texture);
1273 }
1274 }
1275
1276 } // namespace tgsi
1277
1278 namespace {
1279
1280 using namespace nv50_ir;
1281
1282 class Converter : public BuildUtil
1283 {
1284 public:
1285 Converter(Program *, const tgsi::Source *);
1286 ~Converter();
1287
1288 bool run();
1289
1290 private:
1291 struct Subroutine
1292 {
1293 Subroutine(Function *f) : f(f) { }
1294 Function *f;
1295 ValueMap values;
1296 };
1297
1298 Value *shiftAddress(Value *);
1299 Value *getVertexBase(int s);
1300 Value *getOutputBase(int s);
1301 DataArray *getArrayForFile(unsigned file, int idx);
1302 Value *fetchSrc(int s, int c);
1303 Value *acquireDst(int d, int c);
1304 void storeDst(int d, int c, Value *);
1305
1306 Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1307 void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1308 Value *val, Value *ptr);
1309
1310 Value *applySrcMod(Value *, int s, int c);
1311
1312 Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1313 Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1314 Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1315
1316 bool handleInstruction(const struct tgsi_full_instruction *);
1317 void exportOutputs();
1318 inline Subroutine *getSubroutine(unsigned ip);
1319 inline Subroutine *getSubroutine(Function *);
1320 inline bool isEndOfSubroutine(uint ip);
1321
1322 void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1323
1324 // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1325 void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1326 void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1327 void handleTXF(Value *dst0[4], int R, int L_M);
1328 void handleTXQ(Value *dst0[4], enum TexQuery, int R);
1329 void handleLIT(Value *dst0[4]);
1330 void handleUserClipPlanes();
1331
1332 Symbol *getResourceBase(int r);
1333 void getResourceCoords(std::vector<Value *>&, int r, int s);
1334
1335 void handleLOAD(Value *dst0[4]);
1336 void handleSTORE();
1337 void handleATOM(Value *dst0[4], DataType, uint16_t subOp);
1338
1339 void handleINTERP(Value *dst0[4]);
1340
1341 Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1342
1343 void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1344
1345 Value *buildDot(int dim);
1346
1347 class BindArgumentsPass : public Pass {
1348 public:
1349 BindArgumentsPass(Converter &conv) : conv(conv) { }
1350
1351 private:
1352 Converter &conv;
1353 Subroutine *sub;
1354
1355 inline const Location *getValueLocation(Subroutine *, Value *);
1356
1357 template<typename T> inline void
1358 updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1359 T (Function::*proto));
1360
1361 template<typename T> inline void
1362 updatePrototype(BitSet *set, void (Function::*updateSet)(),
1363 T (Function::*proto));
1364
1365 protected:
1366 bool visit(Function *);
1367 bool visit(BasicBlock *bb) { return false; }
1368 };
1369
1370 private:
1371 const tgsi::Source *code;
1372 const struct nv50_ir_prog_info *info;
1373
1374 struct {
1375 std::map<unsigned, Subroutine> map;
1376 Subroutine *cur;
1377 } sub;
1378
1379 uint ip; // instruction pointer
1380
1381 tgsi::Instruction tgsi;
1382
1383 DataType dstTy;
1384 DataType srcTy;
1385
1386 DataArray tData; // TGSI_FILE_TEMPORARY
1387 DataArray aData; // TGSI_FILE_ADDRESS
1388 DataArray pData; // TGSI_FILE_PREDICATE
1389 DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1390
1391 Value *zero;
1392 Value *fragCoord[4];
1393 Value *clipVtx[4];
1394
1395 Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1396 uint8_t vtxBaseValid;
1397
1398 Value *outBase; // base address of vertex out patch (for TCP)
1399
1400 Stack condBBs; // fork BB, then else clause BB
1401 Stack joinBBs; // fork BB, for inserting join ops on ENDIF
1402 Stack loopBBs; // loop headers
1403 Stack breakBBs; // end of / after loop
1404
1405 Value *viewport;
1406 };
1407
1408 Symbol *
1409 Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1410 {
1411 const int swz = src.getSwizzle(c);
1412
1413 /* TODO: Use Array ID when it's available for the index */
1414 return makeSym(src.getFile(),
1415 src.is2D() ? src.getIndex(1) : 0,
1416 src.getIndex(0), swz,
1417 src.getIndex(0) * 16 + swz * 4);
1418 }
1419
1420 Symbol *
1421 Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1422 {
1423 /* TODO: Use Array ID when it's available for the index */
1424 return makeSym(dst.getFile(),
1425 dst.is2D() ? dst.getIndex(1) : 0,
1426 dst.getIndex(0), c,
1427 dst.getIndex(0) * 16 + c * 4);
1428 }
1429
1430 Symbol *
1431 Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1432 {
1433 Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1434
1435 sym->reg.fileIndex = fileIdx;
1436
1437 if (idx >= 0) {
1438 if (sym->reg.file == FILE_SHADER_INPUT)
1439 sym->setOffset(info->in[idx].slot[c] * 4);
1440 else
1441 if (sym->reg.file == FILE_SHADER_OUTPUT)
1442 sym->setOffset(info->out[idx].slot[c] * 4);
1443 else
1444 if (sym->reg.file == FILE_SYSTEM_VALUE)
1445 sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
1446 else
1447 sym->setOffset(address);
1448 } else {
1449 sym->setOffset(address);
1450 }
1451 return sym;
1452 }
1453
1454 static inline uint8_t
1455 translateInterpMode(const struct nv50_ir_varying *var, operation& op)
1456 {
1457 uint8_t mode = NV50_IR_INTERP_PERSPECTIVE;
1458
1459 if (var->flat)
1460 mode = NV50_IR_INTERP_FLAT;
1461 else
1462 if (var->linear)
1463 mode = NV50_IR_INTERP_LINEAR;
1464 else
1465 if (var->sc)
1466 mode = NV50_IR_INTERP_SC;
1467
1468 op = (mode == NV50_IR_INTERP_PERSPECTIVE || mode == NV50_IR_INTERP_SC)
1469 ? OP_PINTERP : OP_LINTERP;
1470
1471 if (var->centroid)
1472 mode |= NV50_IR_INTERP_CENTROID;
1473
1474 return mode;
1475 }
1476
1477 Value *
1478 Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1479 {
1480 operation op;
1481
1482 // XXX: no way to know interpolation mode if we don't know what's accessed
1483 const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
1484 src.getIndex(0)], op);
1485
1486 Instruction *insn = new_Instruction(func, op, TYPE_F32);
1487
1488 insn->setDef(0, getScratch());
1489 insn->setSrc(0, srcToSym(src, c));
1490 if (op == OP_PINTERP)
1491 insn->setSrc(1, fragCoord[3]);
1492 if (ptr)
1493 insn->setIndirect(0, 0, ptr);
1494
1495 insn->setInterpolate(mode);
1496
1497 bb->insertTail(insn);
1498 return insn->getDef(0);
1499 }
1500
1501 Value *
1502 Converter::applySrcMod(Value *val, int s, int c)
1503 {
1504 Modifier m = tgsi.getSrc(s).getMod(c);
1505 DataType ty = tgsi.inferSrcType();
1506
1507 if (m & Modifier(NV50_IR_MOD_ABS))
1508 val = mkOp1v(OP_ABS, ty, getScratch(), val);
1509
1510 if (m & Modifier(NV50_IR_MOD_NEG))
1511 val = mkOp1v(OP_NEG, ty, getScratch(), val);
1512
1513 return val;
1514 }
1515
1516 Value *
1517 Converter::getVertexBase(int s)
1518 {
1519 assert(s < 5);
1520 if (!(vtxBaseValid & (1 << s))) {
1521 const int index = tgsi.getSrc(s).getIndex(1);
1522 Value *rel = NULL;
1523 if (tgsi.getSrc(s).isIndirect(1))
1524 rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1525 vtxBaseValid |= 1 << s;
1526 vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1527 mkImm(index), rel);
1528 }
1529 return vtxBase[s];
1530 }
1531
1532 Value *
1533 Converter::getOutputBase(int s)
1534 {
1535 assert(s < 5);
1536 if (!(vtxBaseValid & (1 << s))) {
1537 Value *offset = loadImm(NULL, tgsi.getSrc(s).getIndex(1));
1538 if (tgsi.getSrc(s).isIndirect(1))
1539 offset = mkOp2v(OP_ADD, TYPE_U32, getSSA(),
1540 fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL),
1541 offset);
1542 vtxBaseValid |= 1 << s;
1543 vtxBase[s] = mkOp2v(OP_ADD, TYPE_U32, getSSA(), outBase, offset);
1544 }
1545 return vtxBase[s];
1546 }
1547
1548 Value *
1549 Converter::fetchSrc(int s, int c)
1550 {
1551 Value *res;
1552 Value *ptr = NULL, *dimRel = NULL;
1553
1554 tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1555
1556 if (src.isIndirect(0))
1557 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1558
1559 if (src.is2D()) {
1560 switch (src.getFile()) {
1561 case TGSI_FILE_OUTPUT:
1562 dimRel = getOutputBase(s);
1563 break;
1564 case TGSI_FILE_INPUT:
1565 dimRel = getVertexBase(s);
1566 break;
1567 case TGSI_FILE_CONSTANT:
1568 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1569 if (src.isIndirect(1))
1570 dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1571 break;
1572 default:
1573 break;
1574 }
1575 }
1576
1577 res = fetchSrc(src, c, ptr);
1578
1579 if (dimRel)
1580 res->getInsn()->setIndirect(0, 1, dimRel);
1581
1582 return applySrcMod(res, s, c);
1583 }
1584
1585 Converter::DataArray *
1586 Converter::getArrayForFile(unsigned file, int idx)
1587 {
1588 switch (file) {
1589 case TGSI_FILE_TEMPORARY:
1590 return &tData;
1591 case TGSI_FILE_PREDICATE:
1592 return &pData;
1593 case TGSI_FILE_ADDRESS:
1594 return &aData;
1595 case TGSI_FILE_OUTPUT:
1596 assert(prog->getType() == Program::TYPE_FRAGMENT);
1597 return &oData;
1598 default:
1599 assert(!"invalid/unhandled TGSI source file");
1600 return NULL;
1601 }
1602 }
1603
1604 Value *
1605 Converter::shiftAddress(Value *index)
1606 {
1607 if (!index)
1608 return NULL;
1609 return mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), index, mkImm(4));
1610 }
1611
1612 Value *
1613 Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1614 {
1615 const int idx2d = src.is2D() ? src.getIndex(1) : 0;
1616 const int idx = src.getIndex(0);
1617 const int swz = src.getSwizzle(c);
1618 Instruction *ld;
1619
1620 switch (src.getFile()) {
1621 case TGSI_FILE_IMMEDIATE:
1622 assert(!ptr);
1623 return loadImm(NULL, info->immd.data[idx * 4 + swz]);
1624 case TGSI_FILE_CONSTANT:
1625 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1626 case TGSI_FILE_INPUT:
1627 if (prog->getType() == Program::TYPE_FRAGMENT) {
1628 // don't load masked inputs, won't be assigned a slot
1629 if (!ptr && !(info->in[idx].mask & (1 << swz)))
1630 return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
1631 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_FACE)
1632 return mkOp1v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_FACE, 0));
1633 return interpolate(src, c, shiftAddress(ptr));
1634 } else
1635 if (prog->getType() == Program::TYPE_GEOMETRY) {
1636 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_PRIMID)
1637 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_PRIMITIVE_ID, 0));
1638 // XXX: This is going to be a problem with scalar arrays, i.e. when
1639 // we cannot assume that the address is given in units of vec4.
1640 //
1641 // nv50 and nvc0 need different things here, so let the lowering
1642 // passes decide what to do with the address
1643 if (ptr)
1644 return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
1645 }
1646 ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr));
1647 ld->perPatch = info->in[idx].patch;
1648 return ld->getDef(0);
1649 case TGSI_FILE_OUTPUT:
1650 assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
1651 ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr));
1652 ld->perPatch = info->out[idx].patch;
1653 return ld->getDef(0);
1654 case TGSI_FILE_SYSTEM_VALUE:
1655 assert(!ptr);
1656 ld = mkOp1(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
1657 ld->perPatch = info->sv[idx].patch;
1658 return ld->getDef(0);
1659 default:
1660 return getArrayForFile(src.getFile(), idx2d)->load(
1661 sub.cur->values, idx, swz, shiftAddress(ptr));
1662 }
1663 }
1664
1665 Value *
1666 Converter::acquireDst(int d, int c)
1667 {
1668 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1669 const unsigned f = dst.getFile();
1670 const int idx = dst.getIndex(0);
1671 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1672
1673 if (dst.isMasked(c) || f == TGSI_FILE_RESOURCE)
1674 return NULL;
1675
1676 if (dst.isIndirect(0) ||
1677 f == TGSI_FILE_SYSTEM_VALUE ||
1678 (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
1679 return getScratch();
1680
1681 return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
1682 }
1683
1684 void
1685 Converter::storeDst(int d, int c, Value *val)
1686 {
1687 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1688
1689 if (tgsi.getSaturate()) {
1690 mkOp1(OP_SAT, dstTy, val, val);
1691 }
1692
1693 Value *ptr = NULL;
1694 if (dst.isIndirect(0))
1695 ptr = shiftAddress(fetchSrc(dst.getIndirect(0), 0, NULL));
1696
1697 if (info->io.genUserClip > 0 &&
1698 dst.getFile() == TGSI_FILE_OUTPUT &&
1699 !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
1700 mkMov(clipVtx[c], val);
1701 val = clipVtx[c];
1702 }
1703
1704 storeDst(dst, c, val, ptr);
1705 }
1706
1707 void
1708 Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
1709 Value *val, Value *ptr)
1710 {
1711 const unsigned f = dst.getFile();
1712 const int idx = dst.getIndex(0);
1713 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1714
1715 if (f == TGSI_FILE_SYSTEM_VALUE) {
1716 assert(!ptr);
1717 mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
1718 } else
1719 if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
1720
1721 if (ptr || (info->out[idx].mask & (1 << c))) {
1722 /* Save the viewport index into a scratch register so that it can be
1723 exported at EMIT time */
1724 if (info->out[idx].sn == TGSI_SEMANTIC_VIEWPORT_INDEX &&
1725 viewport != NULL)
1726 mkOp1(OP_MOV, TYPE_U32, viewport, val);
1727 else
1728 mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val)->perPatch =
1729 info->out[idx].patch;
1730 }
1731 } else
1732 if (f == TGSI_FILE_TEMPORARY ||
1733 f == TGSI_FILE_PREDICATE ||
1734 f == TGSI_FILE_ADDRESS ||
1735 f == TGSI_FILE_OUTPUT) {
1736 getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
1737 } else {
1738 assert(!"invalid dst file");
1739 }
1740 }
1741
1742 #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
1743 for (chan = 0; chan < 4; ++chan) \
1744 if (!inst.getDst(d).isMasked(chan))
1745
1746 Value *
1747 Converter::buildDot(int dim)
1748 {
1749 assert(dim > 0);
1750
1751 Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
1752 Value *dotp = getScratch();
1753
1754 mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1);
1755
1756 for (int c = 1; c < dim; ++c) {
1757 src0 = fetchSrc(0, c);
1758 src1 = fetchSrc(1, c);
1759 mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp);
1760 }
1761 return dotp;
1762 }
1763
1764 void
1765 Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
1766 {
1767 FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
1768 join->fixed = 1;
1769 conv->insertHead(join);
1770
1771 assert(!fork->joinAt);
1772 fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
1773 fork->insertBefore(fork->getExit(), fork->joinAt);
1774 }
1775
1776 void
1777 Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
1778 {
1779 unsigned rIdx = 0, sIdx = 0;
1780
1781 if (R >= 0)
1782 rIdx = tgsi.getSrc(R).getIndex(0);
1783 if (S >= 0)
1784 sIdx = tgsi.getSrc(S).getIndex(0);
1785
1786 tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
1787
1788 if (tgsi.getSrc(R).isIndirect(0)) {
1789 tex->tex.rIndirectSrc = s;
1790 tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
1791 }
1792 if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
1793 tex->tex.sIndirectSrc = s;
1794 tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
1795 }
1796 }
1797
1798 void
1799 Converter::handleTXQ(Value *dst0[4], enum TexQuery query, int R)
1800 {
1801 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1802 tex->tex.query = query;
1803 unsigned int c, d;
1804
1805 for (d = 0, c = 0; c < 4; ++c) {
1806 if (!dst0[c])
1807 continue;
1808 tex->tex.mask |= 1 << c;
1809 tex->setDef(d++, dst0[c]);
1810 }
1811 if (query == TXQ_DIMS)
1812 tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
1813 else
1814 tex->setSrc((c = 0), zero);
1815
1816 setTexRS(tex, ++c, R, -1);
1817
1818 bb->insertTail(tex);
1819 }
1820
1821 void
1822 Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
1823 {
1824 Value *proj = fetchSrc(0, 3);
1825 Instruction *insn = proj->getUniqueInsn();
1826 int c;
1827
1828 if (insn->op == OP_PINTERP) {
1829 bb->insertTail(insn = cloneForward(func, insn));
1830 insn->op = OP_LINTERP;
1831 insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
1832 insn->setSrc(1, NULL);
1833 proj = insn->getDef(0);
1834 }
1835 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
1836
1837 for (c = 0; c < 4; ++c) {
1838 if (!(mask & (1 << c)))
1839 continue;
1840 if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
1841 continue;
1842 mask &= ~(1 << c);
1843
1844 bb->insertTail(insn = cloneForward(func, insn));
1845 insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
1846 insn->setSrc(1, proj);
1847 dst[c] = insn->getDef(0);
1848 }
1849 if (!mask)
1850 return;
1851
1852 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
1853
1854 for (c = 0; c < 4; ++c)
1855 if (mask & (1 << c))
1856 dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
1857 }
1858
1859 // order of nv50 ir sources: x y z layer lod/bias shadow
1860 // order of TGSI TEX sources: x y z layer shadow lod/bias
1861 // lowering will finally set the hw specific order (like array first on nvc0)
1862 void
1863 Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
1864 {
1865 Value *val;
1866 Value *arg[4], *src[8];
1867 Value *lod = NULL, *shd = NULL;
1868 unsigned int s, c, d;
1869 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1870
1871 TexInstruction::Target tgt = tgsi.getTexture(code, R);
1872
1873 for (s = 0; s < tgt.getArgCount(); ++s)
1874 arg[s] = src[s] = fetchSrc(0, s);
1875
1876 if (texi->op == OP_TXL || texi->op == OP_TXB)
1877 lod = fetchSrc(L >> 4, L & 3);
1878
1879 if (C == 0x0f)
1880 C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
1881
1882 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 &&
1883 tgt == TEX_TARGET_CUBE_ARRAY_SHADOW)
1884 shd = fetchSrc(1, 0);
1885 else if (tgt.isShadow())
1886 shd = fetchSrc(C >> 4, C & 3);
1887
1888 if (texi->op == OP_TXD) {
1889 for (c = 0; c < tgt.getDim(); ++c) {
1890 texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
1891 texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
1892 }
1893 }
1894
1895 // cube textures don't care about projection value, it's divided out
1896 if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
1897 unsigned int n = tgt.getDim();
1898 if (shd) {
1899 arg[n] = shd;
1900 ++n;
1901 assert(tgt.getDim() == tgt.getArgCount());
1902 }
1903 loadProjTexCoords(src, arg, (1 << n) - 1);
1904 if (shd)
1905 shd = src[n - 1];
1906 }
1907
1908 if (tgt.isCube()) {
1909 for (c = 0; c < 3; ++c)
1910 src[c] = mkOp1v(OP_ABS, TYPE_F32, getSSA(), arg[c]);
1911 val = getScratch();
1912 mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1913 mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1914 mkOp1(OP_RCP, TYPE_F32, val, val);
1915 for (c = 0; c < 3; ++c)
1916 src[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), arg[c], val);
1917 }
1918
1919 for (c = 0, d = 0; c < 4; ++c) {
1920 if (dst[c]) {
1921 texi->setDef(d++, dst[c]);
1922 texi->tex.mask |= 1 << c;
1923 } else {
1924 // NOTE: maybe hook up def too, for CSE
1925 }
1926 }
1927 for (s = 0; s < tgt.getArgCount(); ++s)
1928 texi->setSrc(s, src[s]);
1929 if (lod)
1930 texi->setSrc(s++, lod);
1931 if (shd)
1932 texi->setSrc(s++, shd);
1933
1934 setTexRS(texi, s, R, S);
1935
1936 if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
1937 texi->tex.levelZero = true;
1938 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 && !tgt.isShadow())
1939 texi->tex.gatherComp = tgsi.getSrc(1).getValueU32(0, info);
1940
1941 texi->tex.useOffsets = tgsi.getNumTexOffsets();
1942 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1943 for (c = 0; c < 3; ++c) {
1944 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
1945 texi->offset[s][c].setInsn(texi);
1946 }
1947 }
1948
1949 bb->insertTail(texi);
1950 }
1951
1952 // 1st source: xyz = coordinates, w = lod/sample
1953 // 2nd source: offset
1954 void
1955 Converter::handleTXF(Value *dst[4], int R, int L_M)
1956 {
1957 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1958 int ms;
1959 unsigned int c, d, s;
1960
1961 texi->tex.target = tgsi.getTexture(code, R);
1962
1963 ms = texi->tex.target.isMS() ? 1 : 0;
1964 texi->tex.levelZero = ms; /* MS textures don't have mip-maps */
1965
1966 for (c = 0, d = 0; c < 4; ++c) {
1967 if (dst[c]) {
1968 texi->setDef(d++, dst[c]);
1969 texi->tex.mask |= 1 << c;
1970 }
1971 }
1972 for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c)
1973 texi->setSrc(c, fetchSrc(0, c));
1974 texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms
1975
1976 setTexRS(texi, c, R, -1);
1977
1978 texi->tex.useOffsets = tgsi.getNumTexOffsets();
1979 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1980 for (c = 0; c < 3; ++c) {
1981 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
1982 texi->offset[s][c].setInsn(texi);
1983 }
1984 }
1985
1986 bb->insertTail(texi);
1987 }
1988
1989 void
1990 Converter::handleLIT(Value *dst0[4])
1991 {
1992 Value *val0 = NULL;
1993 unsigned int mask = tgsi.getDst(0).getMask();
1994
1995 if (mask & (1 << 0))
1996 loadImm(dst0[0], 1.0f);
1997
1998 if (mask & (1 << 3))
1999 loadImm(dst0[3], 1.0f);
2000
2001 if (mask & (3 << 1)) {
2002 val0 = getScratch();
2003 mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
2004 if (mask & (1 << 1))
2005 mkMov(dst0[1], val0);
2006 }
2007
2008 if (mask & (1 << 2)) {
2009 Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
2010 Value *val1 = getScratch(), *val3 = getScratch();
2011
2012 Value *pos128 = loadImm(NULL, +127.999999f);
2013 Value *neg128 = loadImm(NULL, -127.999999f);
2014
2015 mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
2016 mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
2017 mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
2018 mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
2019
2020 mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], TYPE_F32, val3, zero, val0);
2021 }
2022 }
2023
2024 static inline bool
2025 isResourceSpecial(const int r)
2026 {
2027 return (r == TGSI_RESOURCE_GLOBAL ||
2028 r == TGSI_RESOURCE_LOCAL ||
2029 r == TGSI_RESOURCE_PRIVATE ||
2030 r == TGSI_RESOURCE_INPUT);
2031 }
2032
2033 static inline bool
2034 isResourceRaw(const tgsi::Source *code, const int r)
2035 {
2036 return isResourceSpecial(r) || code->resources[r].raw;
2037 }
2038
2039 static inline nv50_ir::TexTarget
2040 getResourceTarget(const tgsi::Source *code, int r)
2041 {
2042 if (isResourceSpecial(r))
2043 return nv50_ir::TEX_TARGET_BUFFER;
2044 return tgsi::translateTexture(code->resources.at(r).target);
2045 }
2046
2047 Symbol *
2048 Converter::getResourceBase(const int r)
2049 {
2050 Symbol *sym = NULL;
2051
2052 switch (r) {
2053 case TGSI_RESOURCE_GLOBAL:
2054 sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL, 15);
2055 break;
2056 case TGSI_RESOURCE_LOCAL:
2057 assert(prog->getType() == Program::TYPE_COMPUTE);
2058 sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32,
2059 info->prop.cp.sharedOffset);
2060 break;
2061 case TGSI_RESOURCE_PRIVATE:
2062 sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32,
2063 info->bin.tlsSpace);
2064 break;
2065 case TGSI_RESOURCE_INPUT:
2066 assert(prog->getType() == Program::TYPE_COMPUTE);
2067 sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32,
2068 info->prop.cp.inputOffset);
2069 break;
2070 default:
2071 sym = new_Symbol(prog,
2072 nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot);
2073 break;
2074 }
2075 return sym;
2076 }
2077
2078 void
2079 Converter::getResourceCoords(std::vector<Value *> &coords, int r, int s)
2080 {
2081 const int arg =
2082 TexInstruction::Target(getResourceTarget(code, r)).getArgCount();
2083
2084 for (int c = 0; c < arg; ++c)
2085 coords.push_back(fetchSrc(s, c));
2086
2087 // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk
2088 if (r == TGSI_RESOURCE_LOCAL ||
2089 r == TGSI_RESOURCE_PRIVATE ||
2090 r == TGSI_RESOURCE_INPUT)
2091 coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS),
2092 coords[0]);
2093 }
2094
2095 static inline int
2096 partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask)
2097 {
2098 int n = 0;
2099
2100 while (mask) {
2101 if (mask & 1) {
2102 size[n]++;
2103 } else {
2104 if (size[n])
2105 comp[n = 1] = size[0] + 1;
2106 else
2107 comp[n]++;
2108 }
2109 mask >>= 1;
2110 }
2111 if (size[0] == 3) {
2112 n = 1;
2113 size[0] = (comp[0] == 1) ? 1 : 2;
2114 size[1] = 3 - size[0];
2115 comp[1] = comp[0] + size[0];
2116 }
2117 return n + 1;
2118 }
2119
2120 // For raw loads, granularity is 4 byte.
2121 // Usage of the texture read mask on OP_SULDP is not allowed.
2122 void
2123 Converter::handleLOAD(Value *dst0[4])
2124 {
2125 const int r = tgsi.getSrc(0).getIndex(0);
2126 int c;
2127 std::vector<Value *> off, src, ldv, def;
2128
2129 getResourceCoords(off, r, 1);
2130
2131 if (isResourceRaw(code, r)) {
2132 uint8_t mask = 0;
2133 uint8_t comp[2] = { 0, 0 };
2134 uint8_t size[2] = { 0, 0 };
2135
2136 Symbol *base = getResourceBase(r);
2137
2138 // determine the base and size of the at most 2 load ops
2139 for (c = 0; c < 4; ++c)
2140 if (!tgsi.getDst(0).isMasked(c))
2141 mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X);
2142
2143 int n = partitionLoadStore(comp, size, mask);
2144
2145 src = off;
2146
2147 def.resize(4); // index by component, the ones we need will be non-NULL
2148 for (c = 0; c < 4; ++c) {
2149 if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c))
2150 def[c] = dst0[c];
2151 else
2152 if (mask & (1 << c))
2153 def[c] = getScratch();
2154 }
2155
2156 const bool useLd = isResourceSpecial(r) ||
2157 (info->io.nv50styleSurfaces &&
2158 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2159
2160 for (int i = 0; i < n; ++i) {
2161 ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]);
2162
2163 if (comp[i]) // adjust x component of source address if necessary
2164 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2165 off[0], mkImm(comp[i] * 4));
2166 else
2167 src[0] = off[0];
2168
2169 if (useLd) {
2170 Instruction *ld =
2171 mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]);
2172 for (size_t c = 1; c < ldv.size(); ++c)
2173 ld->setDef(c, ldv[c]);
2174 } else {
2175 mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot,
2176 0, ldv, src)->dType = typeOfSize(size[i] * 4);
2177 }
2178 }
2179 } else {
2180 def.resize(4);
2181 for (c = 0; c < 4; ++c) {
2182 if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
2183 def[c] = getScratch();
2184 else
2185 def[c] = dst0[c];
2186 }
2187
2188 mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0,
2189 def, off);
2190 }
2191 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2192 if (dst0[c] != def[c])
2193 mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
2194 }
2195
2196 // For formatted stores, the write mask on OP_SUSTP can be used.
2197 // Raw stores have to be split.
2198 void
2199 Converter::handleSTORE()
2200 {
2201 const int r = tgsi.getDst(0).getIndex(0);
2202 int c;
2203 std::vector<Value *> off, src, dummy;
2204
2205 getResourceCoords(off, r, 0);
2206 src = off;
2207 const int s = src.size();
2208
2209 if (isResourceRaw(code, r)) {
2210 uint8_t comp[2] = { 0, 0 };
2211 uint8_t size[2] = { 0, 0 };
2212
2213 int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask());
2214
2215 Symbol *base = getResourceBase(r);
2216
2217 const bool useSt = isResourceSpecial(r) ||
2218 (info->io.nv50styleSurfaces &&
2219 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2220
2221 for (int i = 0; i < n; ++i) {
2222 if (comp[i]) // adjust x component of source address if necessary
2223 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2224 off[0], mkImm(comp[i] * 4));
2225 else
2226 src[0] = off[0];
2227
2228 const DataType stTy = typeOfSize(size[i] * 4);
2229
2230 if (useSt) {
2231 Instruction *st =
2232 mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i]));
2233 for (c = 1; c < size[i]; ++c)
2234 st->setSrc(1 + c, fetchSrc(1, comp[i] + c));
2235 st->setIndirect(0, 0, src[0]);
2236 } else {
2237 // attach values to be stored
2238 src.resize(s + size[i]);
2239 for (c = 0; c < size[i]; ++c)
2240 src[s + c] = fetchSrc(1, comp[i] + c);
2241 mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot,
2242 0, dummy, src)->setType(stTy);
2243 }
2244 }
2245 } else {
2246 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2247 src.push_back(fetchSrc(1, c));
2248
2249 mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0,
2250 dummy, src)->tex.mask = tgsi.getDst(0).getMask();
2251 }
2252 }
2253
2254 // XXX: These only work on resources with the single-component u32/s32 formats.
2255 // Therefore the result is replicated. This might not be intended by TGSI, but
2256 // operating on more than 1 component would produce undefined results because
2257 // they do not exist.
2258 void
2259 Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp)
2260 {
2261 const int r = tgsi.getSrc(0).getIndex(0);
2262 std::vector<Value *> srcv;
2263 std::vector<Value *> defv;
2264 LValue *dst = getScratch();
2265
2266 getResourceCoords(srcv, r, 1);
2267
2268 if (isResourceSpecial(r)) {
2269 assert(r != TGSI_RESOURCE_INPUT);
2270 Instruction *insn;
2271 insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0));
2272 insn->subOp = subOp;
2273 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2274 insn->setSrc(2, fetchSrc(3, 0));
2275 insn->setIndirect(0, 0, srcv.at(0));
2276 } else {
2277 operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP;
2278 TexTarget targ = getResourceTarget(code, r);
2279 int idx = code->resources[r].slot;
2280 defv.push_back(dst);
2281 srcv.push_back(fetchSrc(2, 0));
2282 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2283 srcv.push_back(fetchSrc(3, 0));
2284 TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv);
2285 tex->subOp = subOp;
2286 tex->tex.mask = 1;
2287 tex->setType(ty);
2288 }
2289
2290 for (int c = 0; c < 4; ++c)
2291 if (dst0[c])
2292 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2293 }
2294
2295 void
2296 Converter::handleINTERP(Value *dst[4])
2297 {
2298 // Check whether the input is linear. All other attributes ignored.
2299 Instruction *insn;
2300 Value *offset = NULL, *ptr = NULL, *w = NULL;
2301 bool linear;
2302 operation op;
2303 int c, mode;
2304
2305 tgsi::Instruction::SrcRegister src = tgsi.getSrc(0);
2306 assert(src.getFile() == TGSI_FILE_INPUT);
2307
2308 if (src.isIndirect(0))
2309 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
2310
2311 // XXX: no way to know interp mode if we don't know the index
2312 linear = info->in[ptr ? 0 : src.getIndex(0)].linear;
2313 if (linear) {
2314 op = OP_LINTERP;
2315 mode = NV50_IR_INTERP_LINEAR;
2316 } else {
2317 op = OP_PINTERP;
2318 mode = NV50_IR_INTERP_PERSPECTIVE;
2319 }
2320
2321 switch (tgsi.getOpcode()) {
2322 case TGSI_OPCODE_INTERP_CENTROID:
2323 mode |= NV50_IR_INTERP_CENTROID;
2324 break;
2325 case TGSI_OPCODE_INTERP_SAMPLE:
2326 insn = mkOp1(OP_PIXLD, TYPE_U32, (offset = getScratch()), fetchSrc(1, 0));
2327 insn->subOp = NV50_IR_SUBOP_PIXLD_OFFSET;
2328 mode |= NV50_IR_INTERP_OFFSET;
2329 break;
2330 case TGSI_OPCODE_INTERP_OFFSET: {
2331 // The input in src1.xy is float, but we need a single 32-bit value
2332 // where the upper and lower 16 bits are encoded in S0.12 format. We need
2333 // to clamp the input coordinates to (-0.5, 0.4375), multiply by 4096,
2334 // and then convert to s32.
2335 Value *offs[2];
2336 for (c = 0; c < 2; c++) {
2337 offs[c] = fetchSrc(1, c);
2338 mkOp2(OP_MIN, TYPE_F32, offs[c], offs[c], loadImm(NULL, 0.4375f));
2339 mkOp2(OP_MAX, TYPE_F32, offs[c], offs[c], loadImm(NULL, -0.5f));
2340 mkOp2(OP_MUL, TYPE_F32, offs[c], offs[c], loadImm(NULL, 4096.0f));
2341 mkCvt(OP_CVT, TYPE_S32, offs[c], TYPE_F32, offs[c]);
2342 }
2343 offset = mkOp3v(OP_INSBF, TYPE_U32, getScratch(),
2344 offs[1], mkImm(0x1010), offs[0]);
2345 mode |= NV50_IR_INTERP_OFFSET;
2346 break;
2347 }
2348 }
2349
2350 if (op == OP_PINTERP) {
2351 if (offset) {
2352 w = mkOp2v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_POSITION, 3), offset);
2353 mkOp1(OP_RCP, TYPE_F32, w, w);
2354 } else {
2355 w = fragCoord[3];
2356 }
2357 }
2358
2359
2360 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2361 insn = mkOp1(op, TYPE_F32, dst[c], srcToSym(src, c));
2362 if (op == OP_PINTERP)
2363 insn->setSrc(1, w);
2364 if (ptr)
2365 insn->setIndirect(0, 0, ptr);
2366 if (offset)
2367 insn->setSrc(op == OP_PINTERP ? 2 : 1, offset);
2368
2369 insn->setInterpolate(mode);
2370 }
2371 }
2372
2373 Converter::Subroutine *
2374 Converter::getSubroutine(unsigned ip)
2375 {
2376 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2377
2378 if (it == sub.map.end())
2379 it = sub.map.insert(std::make_pair(
2380 ip, Subroutine(new Function(prog, "SUB", ip)))).first;
2381
2382 return &it->second;
2383 }
2384
2385 Converter::Subroutine *
2386 Converter::getSubroutine(Function *f)
2387 {
2388 unsigned ip = f->getLabel();
2389 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2390
2391 if (it == sub.map.end())
2392 it = sub.map.insert(std::make_pair(ip, Subroutine(f))).first;
2393
2394 return &it->second;
2395 }
2396
2397 bool
2398 Converter::isEndOfSubroutine(uint ip)
2399 {
2400 assert(ip < code->scan.num_instructions);
2401 tgsi::Instruction insn(&code->insns[ip]);
2402 return (insn.getOpcode() == TGSI_OPCODE_END ||
2403 insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
2404 // does END occur at end of main or the very end ?
2405 insn.getOpcode() == TGSI_OPCODE_BGNSUB);
2406 }
2407
2408 bool
2409 Converter::handleInstruction(const struct tgsi_full_instruction *insn)
2410 {
2411 Instruction *geni;
2412
2413 Value *dst0[4], *rDst0[4];
2414 Value *src0, *src1, *src2, *src3;
2415 Value *val0, *val1;
2416 int c;
2417
2418 tgsi = tgsi::Instruction(insn);
2419
2420 bool useScratchDst = tgsi.checkDstSrcAliasing();
2421
2422 operation op = tgsi.getOP();
2423 dstTy = tgsi.inferDstType();
2424 srcTy = tgsi.inferSrcType();
2425
2426 unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
2427
2428 if (tgsi.dstCount()) {
2429 for (c = 0; c < 4; ++c) {
2430 rDst0[c] = acquireDst(0, c);
2431 dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
2432 }
2433 }
2434
2435 switch (tgsi.getOpcode()) {
2436 case TGSI_OPCODE_ADD:
2437 case TGSI_OPCODE_UADD:
2438 case TGSI_OPCODE_AND:
2439 case TGSI_OPCODE_DIV:
2440 case TGSI_OPCODE_IDIV:
2441 case TGSI_OPCODE_UDIV:
2442 case TGSI_OPCODE_MAX:
2443 case TGSI_OPCODE_MIN:
2444 case TGSI_OPCODE_IMAX:
2445 case TGSI_OPCODE_IMIN:
2446 case TGSI_OPCODE_UMAX:
2447 case TGSI_OPCODE_UMIN:
2448 case TGSI_OPCODE_MOD:
2449 case TGSI_OPCODE_UMOD:
2450 case TGSI_OPCODE_MUL:
2451 case TGSI_OPCODE_UMUL:
2452 case TGSI_OPCODE_IMUL_HI:
2453 case TGSI_OPCODE_UMUL_HI:
2454 case TGSI_OPCODE_OR:
2455 case TGSI_OPCODE_SHL:
2456 case TGSI_OPCODE_ISHR:
2457 case TGSI_OPCODE_USHR:
2458 case TGSI_OPCODE_SUB:
2459 case TGSI_OPCODE_XOR:
2460 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2461 src0 = fetchSrc(0, c);
2462 src1 = fetchSrc(1, c);
2463 geni = mkOp2(op, dstTy, dst0[c], src0, src1);
2464 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2465 }
2466 break;
2467 case TGSI_OPCODE_MAD:
2468 case TGSI_OPCODE_UMAD:
2469 case TGSI_OPCODE_SAD:
2470 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2471 src0 = fetchSrc(0, c);
2472 src1 = fetchSrc(1, c);
2473 src2 = fetchSrc(2, c);
2474 mkOp3(op, dstTy, dst0[c], src0, src1, src2);
2475 }
2476 break;
2477 case TGSI_OPCODE_MOV:
2478 case TGSI_OPCODE_ABS:
2479 case TGSI_OPCODE_CEIL:
2480 case TGSI_OPCODE_FLR:
2481 case TGSI_OPCODE_TRUNC:
2482 case TGSI_OPCODE_RCP:
2483 case TGSI_OPCODE_IABS:
2484 case TGSI_OPCODE_INEG:
2485 case TGSI_OPCODE_NOT:
2486 case TGSI_OPCODE_DDX:
2487 case TGSI_OPCODE_DDY:
2488 case TGSI_OPCODE_DDX_FINE:
2489 case TGSI_OPCODE_DDY_FINE:
2490 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2491 mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
2492 break;
2493 case TGSI_OPCODE_RSQ:
2494 src0 = fetchSrc(0, 0);
2495 val0 = getScratch();
2496 mkOp1(OP_ABS, TYPE_F32, val0, src0);
2497 mkOp1(OP_RSQ, TYPE_F32, val0, val0);
2498 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2499 mkMov(dst0[c], val0);
2500 break;
2501 case TGSI_OPCODE_ARL:
2502 case TGSI_OPCODE_ARR:
2503 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2504 const RoundMode rnd =
2505 tgsi.getOpcode() == TGSI_OPCODE_ARR ? ROUND_N : ROUND_M;
2506 src0 = fetchSrc(0, c);
2507 mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = rnd;
2508 }
2509 break;
2510 case TGSI_OPCODE_UARL:
2511 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2512 mkOp1(OP_MOV, TYPE_U32, dst0[c], fetchSrc(0, c));
2513 break;
2514 case TGSI_OPCODE_POW:
2515 val0 = mkOp2v(op, TYPE_F32, getScratch(), fetchSrc(0, 0), fetchSrc(1, 0));
2516 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2517 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2518 break;
2519 case TGSI_OPCODE_EX2:
2520 case TGSI_OPCODE_LG2:
2521 val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
2522 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2523 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2524 break;
2525 case TGSI_OPCODE_COS:
2526 case TGSI_OPCODE_SIN:
2527 val0 = getScratch();
2528 if (mask & 7) {
2529 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
2530 mkOp1(op, TYPE_F32, val0, val0);
2531 for (c = 0; c < 3; ++c)
2532 if (dst0[c])
2533 mkMov(dst0[c], val0);
2534 }
2535 if (dst0[3]) {
2536 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
2537 mkOp1(op, TYPE_F32, dst0[3], val0);
2538 }
2539 break;
2540 case TGSI_OPCODE_SCS:
2541 if (mask & 3) {
2542 val0 = mkOp1v(OP_PRESIN, TYPE_F32, getSSA(), fetchSrc(0, 0));
2543 if (dst0[0])
2544 mkOp1(OP_COS, TYPE_F32, dst0[0], val0);
2545 if (dst0[1])
2546 mkOp1(OP_SIN, TYPE_F32, dst0[1], val0);
2547 }
2548 if (dst0[2])
2549 loadImm(dst0[2], 0.0f);
2550 if (dst0[3])
2551 loadImm(dst0[3], 1.0f);
2552 break;
2553 case TGSI_OPCODE_EXP:
2554 src0 = fetchSrc(0, 0);
2555 val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
2556 if (dst0[1])
2557 mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
2558 if (dst0[0])
2559 mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
2560 if (dst0[2])
2561 mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
2562 if (dst0[3])
2563 loadImm(dst0[3], 1.0f);
2564 break;
2565 case TGSI_OPCODE_LOG:
2566 src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
2567 val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
2568 if (dst0[0] || dst0[1])
2569 val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
2570 if (dst0[1]) {
2571 mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
2572 mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
2573 mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0);
2574 }
2575 if (dst0[3])
2576 loadImm(dst0[3], 1.0f);
2577 break;
2578 case TGSI_OPCODE_DP2:
2579 val0 = buildDot(2);
2580 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2581 mkMov(dst0[c], val0);
2582 break;
2583 case TGSI_OPCODE_DP3:
2584 val0 = buildDot(3);
2585 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2586 mkMov(dst0[c], val0);
2587 break;
2588 case TGSI_OPCODE_DP4:
2589 val0 = buildDot(4);
2590 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2591 mkMov(dst0[c], val0);
2592 break;
2593 case TGSI_OPCODE_DPH:
2594 val0 = buildDot(3);
2595 src1 = fetchSrc(1, 3);
2596 mkOp2(OP_ADD, TYPE_F32, val0, val0, src1);
2597 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2598 mkMov(dst0[c], val0);
2599 break;
2600 case TGSI_OPCODE_DST:
2601 if (dst0[0])
2602 loadImm(dst0[0], 1.0f);
2603 if (dst0[1]) {
2604 src0 = fetchSrc(0, 1);
2605 src1 = fetchSrc(1, 1);
2606 mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1);
2607 }
2608 if (dst0[2])
2609 mkMov(dst0[2], fetchSrc(0, 2));
2610 if (dst0[3])
2611 mkMov(dst0[3], fetchSrc(1, 3));
2612 break;
2613 case TGSI_OPCODE_LRP:
2614 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2615 src0 = fetchSrc(0, c);
2616 src1 = fetchSrc(1, c);
2617 src2 = fetchSrc(2, c);
2618 mkOp3(OP_MAD, TYPE_F32, dst0[c],
2619 mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2);
2620 }
2621 break;
2622 case TGSI_OPCODE_LIT:
2623 handleLIT(dst0);
2624 break;
2625 case TGSI_OPCODE_XPD:
2626 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2627 if (c < 3) {
2628 val0 = getSSA();
2629 src0 = fetchSrc(1, (c + 1) % 3);
2630 src1 = fetchSrc(0, (c + 2) % 3);
2631 mkOp2(OP_MUL, TYPE_F32, val0, src0, src1);
2632 mkOp1(OP_NEG, TYPE_F32, val0, val0);
2633
2634 src0 = fetchSrc(0, (c + 1) % 3);
2635 src1 = fetchSrc(1, (c + 2) % 3);
2636 mkOp3(OP_MAD, TYPE_F32, dst0[c], src0, src1, val0);
2637 } else {
2638 loadImm(dst0[c], 1.0f);
2639 }
2640 }
2641 break;
2642 case TGSI_OPCODE_ISSG:
2643 case TGSI_OPCODE_SSG:
2644 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2645 src0 = fetchSrc(0, c);
2646 val0 = getScratch();
2647 val1 = getScratch();
2648 mkCmp(OP_SET, CC_GT, srcTy, val0, srcTy, src0, zero);
2649 mkCmp(OP_SET, CC_LT, srcTy, val1, srcTy, src0, zero);
2650 if (srcTy == TYPE_F32)
2651 mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
2652 else
2653 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
2654 }
2655 break;
2656 case TGSI_OPCODE_UCMP:
2657 srcTy = TYPE_U32;
2658 /* fallthrough */
2659 case TGSI_OPCODE_CMP:
2660 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2661 src0 = fetchSrc(0, c);
2662 src1 = fetchSrc(1, c);
2663 src2 = fetchSrc(2, c);
2664 if (src1 == src2)
2665 mkMov(dst0[c], src1);
2666 else
2667 mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
2668 srcTy, dst0[c], srcTy, src1, src2, src0);
2669 }
2670 break;
2671 case TGSI_OPCODE_FRC:
2672 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2673 src0 = fetchSrc(0, c);
2674 val0 = getScratch();
2675 mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
2676 mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
2677 }
2678 break;
2679 case TGSI_OPCODE_ROUND:
2680 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2681 mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
2682 ->rnd = ROUND_NI;
2683 break;
2684 case TGSI_OPCODE_CLAMP:
2685 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2686 src0 = fetchSrc(0, c);
2687 src1 = fetchSrc(1, c);
2688 src2 = fetchSrc(2, c);
2689 val0 = getScratch();
2690 mkOp2(OP_MIN, TYPE_F32, val0, src0, src1);
2691 mkOp2(OP_MAX, TYPE_F32, dst0[c], val0, src2);
2692 }
2693 break;
2694 case TGSI_OPCODE_SLT:
2695 case TGSI_OPCODE_SGE:
2696 case TGSI_OPCODE_SEQ:
2697 case TGSI_OPCODE_SGT:
2698 case TGSI_OPCODE_SLE:
2699 case TGSI_OPCODE_SNE:
2700 case TGSI_OPCODE_FSEQ:
2701 case TGSI_OPCODE_FSGE:
2702 case TGSI_OPCODE_FSLT:
2703 case TGSI_OPCODE_FSNE:
2704 case TGSI_OPCODE_ISGE:
2705 case TGSI_OPCODE_ISLT:
2706 case TGSI_OPCODE_USEQ:
2707 case TGSI_OPCODE_USGE:
2708 case TGSI_OPCODE_USLT:
2709 case TGSI_OPCODE_USNE:
2710 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2711 src0 = fetchSrc(0, c);
2712 src1 = fetchSrc(1, c);
2713 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
2714 }
2715 break;
2716 case TGSI_OPCODE_KILL_IF:
2717 val0 = new_LValue(func, FILE_PREDICATE);
2718 mask = 0;
2719 for (c = 0; c < 4; ++c) {
2720 const int s = tgsi.getSrc(0).getSwizzle(c);
2721 if (mask & (1 << s))
2722 continue;
2723 mask |= 1 << s;
2724 mkCmp(OP_SET, CC_LT, TYPE_F32, val0, TYPE_F32, fetchSrc(0, c), zero);
2725 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
2726 }
2727 break;
2728 case TGSI_OPCODE_KILL:
2729 mkOp(OP_DISCARD, TYPE_NONE, NULL);
2730 break;
2731 case TGSI_OPCODE_TEX:
2732 case TGSI_OPCODE_TXB:
2733 case TGSI_OPCODE_TXL:
2734 case TGSI_OPCODE_TXP:
2735 case TGSI_OPCODE_LODQ:
2736 // R S L C Dx Dy
2737 handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
2738 break;
2739 case TGSI_OPCODE_TXD:
2740 handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
2741 break;
2742 case TGSI_OPCODE_TG4:
2743 handleTEX(dst0, 2, 2, 0x03, 0x0f, 0x00, 0x00);
2744 break;
2745 case TGSI_OPCODE_TEX2:
2746 handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00);
2747 break;
2748 case TGSI_OPCODE_TXB2:
2749 case TGSI_OPCODE_TXL2:
2750 handleTEX(dst0, 2, 2, 0x10, 0x0f, 0x00, 0x00);
2751 break;
2752 case TGSI_OPCODE_SAMPLE:
2753 case TGSI_OPCODE_SAMPLE_B:
2754 case TGSI_OPCODE_SAMPLE_D:
2755 case TGSI_OPCODE_SAMPLE_L:
2756 case TGSI_OPCODE_SAMPLE_C:
2757 case TGSI_OPCODE_SAMPLE_C_LZ:
2758 handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40);
2759 break;
2760 case TGSI_OPCODE_TXF:
2761 handleTXF(dst0, 1, 0x03);
2762 break;
2763 case TGSI_OPCODE_SAMPLE_I:
2764 handleTXF(dst0, 1, 0x03);
2765 break;
2766 case TGSI_OPCODE_SAMPLE_I_MS:
2767 handleTXF(dst0, 1, 0x20);
2768 break;
2769 case TGSI_OPCODE_TXQ:
2770 case TGSI_OPCODE_SVIEWINFO:
2771 handleTXQ(dst0, TXQ_DIMS, 1);
2772 break;
2773 case TGSI_OPCODE_TXQS:
2774 // The TXQ_TYPE query returns samples in its 3rd arg, but we need it to
2775 // be in .x
2776 dst0[1] = dst0[2] = dst0[3] = NULL;
2777 std::swap(dst0[0], dst0[2]);
2778 handleTXQ(dst0, TXQ_TYPE, 0);
2779 std::swap(dst0[0], dst0[2]);
2780 break;
2781 case TGSI_OPCODE_F2I:
2782 case TGSI_OPCODE_F2U:
2783 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2784 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
2785 break;
2786 case TGSI_OPCODE_I2F:
2787 case TGSI_OPCODE_U2F:
2788 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2789 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
2790 break;
2791 case TGSI_OPCODE_EMIT:
2792 /* export the saved viewport index */
2793 if (viewport != NULL) {
2794 Symbol *vpSym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_U32,
2795 info->out[info->io.viewportId].slot[0] * 4);
2796 mkStore(OP_EXPORT, TYPE_U32, vpSym, NULL, viewport);
2797 }
2798 /* fallthrough */
2799 case TGSI_OPCODE_ENDPRIM:
2800 {
2801 // get vertex stream (must be immediate)
2802 unsigned int stream = tgsi.getSrc(0).getValueU32(0, info);
2803 if (stream && op == OP_RESTART)
2804 break;
2805 src0 = mkImm(stream);
2806 mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
2807 break;
2808 }
2809 case TGSI_OPCODE_IF:
2810 case TGSI_OPCODE_UIF:
2811 {
2812 BasicBlock *ifBB = new BasicBlock(func);
2813
2814 bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
2815 condBBs.push(bb);
2816 joinBBs.push(bb);
2817
2818 mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy);
2819
2820 setPosition(ifBB, true);
2821 }
2822 break;
2823 case TGSI_OPCODE_ELSE:
2824 {
2825 BasicBlock *elseBB = new BasicBlock(func);
2826 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2827
2828 forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
2829 condBBs.push(bb);
2830
2831 forkBB->getExit()->asFlow()->target.bb = elseBB;
2832 if (!bb->isTerminated())
2833 mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
2834
2835 setPosition(elseBB, true);
2836 }
2837 break;
2838 case TGSI_OPCODE_ENDIF:
2839 {
2840 BasicBlock *convBB = new BasicBlock(func);
2841 BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2842 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
2843
2844 if (!bb->isTerminated()) {
2845 // we only want join if none of the clauses ended with CONT/BREAK/RET
2846 if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
2847 insertConvergenceOps(convBB, forkBB);
2848 mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
2849 bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2850 }
2851
2852 if (prevBB->getExit()->op == OP_BRA) {
2853 prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2854 prevBB->getExit()->asFlow()->target.bb = convBB;
2855 }
2856 setPosition(convBB, true);
2857 }
2858 break;
2859 case TGSI_OPCODE_BGNLOOP:
2860 {
2861 BasicBlock *lbgnBB = new BasicBlock(func);
2862 BasicBlock *lbrkBB = new BasicBlock(func);
2863
2864 loopBBs.push(lbgnBB);
2865 breakBBs.push(lbrkBB);
2866 if (loopBBs.getSize() > func->loopNestingBound)
2867 func->loopNestingBound++;
2868
2869 mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
2870
2871 bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
2872 setPosition(lbgnBB, true);
2873 mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
2874 }
2875 break;
2876 case TGSI_OPCODE_ENDLOOP:
2877 {
2878 BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
2879
2880 if (!bb->isTerminated()) {
2881 mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
2882 bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
2883 }
2884 setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
2885 }
2886 break;
2887 case TGSI_OPCODE_BRK:
2888 {
2889 if (bb->isTerminated())
2890 break;
2891 BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
2892 mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
2893 bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
2894 }
2895 break;
2896 case TGSI_OPCODE_CONT:
2897 {
2898 if (bb->isTerminated())
2899 break;
2900 BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
2901 mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
2902 contBB->explicitCont = true;
2903 bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
2904 }
2905 break;
2906 case TGSI_OPCODE_BGNSUB:
2907 {
2908 Subroutine *s = getSubroutine(ip);
2909 BasicBlock *entry = new BasicBlock(s->f);
2910 BasicBlock *leave = new BasicBlock(s->f);
2911
2912 // multiple entrypoints possible, keep the graph connected
2913 if (prog->getType() == Program::TYPE_COMPUTE)
2914 prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
2915
2916 sub.cur = s;
2917 s->f->setEntry(entry);
2918 s->f->setExit(leave);
2919 setPosition(entry, true);
2920 return true;
2921 }
2922 case TGSI_OPCODE_ENDSUB:
2923 {
2924 sub.cur = getSubroutine(prog->main);
2925 setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
2926 return true;
2927 }
2928 case TGSI_OPCODE_CAL:
2929 {
2930 Subroutine *s = getSubroutine(tgsi.getLabel());
2931 mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
2932 func->call.attach(&s->f->call, Graph::Edge::TREE);
2933 return true;
2934 }
2935 case TGSI_OPCODE_RET:
2936 {
2937 if (bb->isTerminated())
2938 return true;
2939 BasicBlock *leave = BasicBlock::get(func->cfgExit);
2940
2941 if (!isEndOfSubroutine(ip + 1)) {
2942 // insert a PRERET at the entry if this is an early return
2943 // (only needed for sharing code in the epilogue)
2944 BasicBlock *pos = getBB();
2945 setPosition(BasicBlock::get(func->cfg.getRoot()), false);
2946 mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
2947 setPosition(pos, true);
2948 }
2949 mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
2950 bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
2951 }
2952 break;
2953 case TGSI_OPCODE_END:
2954 {
2955 // attach and generate epilogue code
2956 BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
2957 bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
2958 setPosition(epilogue, true);
2959 if (prog->getType() == Program::TYPE_FRAGMENT)
2960 exportOutputs();
2961 if (info->io.genUserClip > 0)
2962 handleUserClipPlanes();
2963 mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
2964 }
2965 break;
2966 case TGSI_OPCODE_SWITCH:
2967 case TGSI_OPCODE_CASE:
2968 ERROR("switch/case opcode encountered, should have been lowered\n");
2969 abort();
2970 break;
2971 case TGSI_OPCODE_LOAD:
2972 handleLOAD(dst0);
2973 break;
2974 case TGSI_OPCODE_STORE:
2975 handleSTORE();
2976 break;
2977 case TGSI_OPCODE_BARRIER:
2978 geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
2979 geni->fixed = 1;
2980 geni->subOp = NV50_IR_SUBOP_BAR_SYNC;
2981 break;
2982 case TGSI_OPCODE_MFENCE:
2983 case TGSI_OPCODE_LFENCE:
2984 case TGSI_OPCODE_SFENCE:
2985 geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
2986 geni->fixed = 1;
2987 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2988 break;
2989 case TGSI_OPCODE_ATOMUADD:
2990 case TGSI_OPCODE_ATOMXCHG:
2991 case TGSI_OPCODE_ATOMCAS:
2992 case TGSI_OPCODE_ATOMAND:
2993 case TGSI_OPCODE_ATOMOR:
2994 case TGSI_OPCODE_ATOMXOR:
2995 case TGSI_OPCODE_ATOMUMIN:
2996 case TGSI_OPCODE_ATOMIMIN:
2997 case TGSI_OPCODE_ATOMUMAX:
2998 case TGSI_OPCODE_ATOMIMAX:
2999 handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode()));
3000 break;
3001 case TGSI_OPCODE_IBFE:
3002 case TGSI_OPCODE_UBFE:
3003 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3004 src0 = fetchSrc(0, c);
3005 if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE &&
3006 tgsi.getSrc(2).getFile() == TGSI_FILE_IMMEDIATE) {
3007 src1 = loadImm(NULL, tgsi.getSrc(2).getValueU32(c, info) << 8 |
3008 tgsi.getSrc(1).getValueU32(c, info));
3009 } else {
3010 src1 = fetchSrc(1, c);
3011 src2 = fetchSrc(2, c);
3012 mkOp3(OP_INSBF, TYPE_U32, src1, src2, mkImm(0x808), src1);
3013 }
3014 mkOp2(OP_EXTBF, dstTy, dst0[c], src0, src1);
3015 }
3016 break;
3017 case TGSI_OPCODE_BFI:
3018 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3019 src0 = fetchSrc(0, c);
3020 src1 = fetchSrc(1, c);
3021 src2 = fetchSrc(2, c);
3022 src3 = fetchSrc(3, c);
3023 mkOp3(OP_INSBF, TYPE_U32, src2, src3, mkImm(0x808), src2);
3024 mkOp3(OP_INSBF, TYPE_U32, dst0[c], src1, src2, src0);
3025 }
3026 break;
3027 case TGSI_OPCODE_LSB:
3028 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3029 src0 = fetchSrc(0, c);
3030 geni = mkOp2(OP_EXTBF, TYPE_U32, src0, src0, mkImm(0x2000));
3031 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
3032 geni = mkOp1(OP_BFIND, TYPE_U32, dst0[c], src0);
3033 geni->subOp = NV50_IR_SUBOP_BFIND_SAMT;
3034 }
3035 break;
3036 case TGSI_OPCODE_IMSB:
3037 case TGSI_OPCODE_UMSB:
3038 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3039 src0 = fetchSrc(0, c);
3040 mkOp1(OP_BFIND, srcTy, dst0[c], src0);
3041 }
3042 break;
3043 case TGSI_OPCODE_BREV:
3044 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3045 src0 = fetchSrc(0, c);
3046 geni = mkOp2(OP_EXTBF, TYPE_U32, dst0[c], src0, mkImm(0x2000));
3047 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
3048 }
3049 break;
3050 case TGSI_OPCODE_POPC:
3051 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3052 src0 = fetchSrc(0, c);
3053 mkOp2(OP_POPCNT, TYPE_U32, dst0[c], src0, src0);
3054 }
3055 break;
3056 case TGSI_OPCODE_INTERP_CENTROID:
3057 case TGSI_OPCODE_INTERP_SAMPLE:
3058 case TGSI_OPCODE_INTERP_OFFSET:
3059 handleINTERP(dst0);
3060 break;
3061 case TGSI_OPCODE_D2I:
3062 case TGSI_OPCODE_D2U:
3063 case TGSI_OPCODE_D2F: {
3064 int pos = 0;
3065 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3066 Value *dreg = getSSA(8);
3067 src0 = fetchSrc(0, pos);
3068 src1 = fetchSrc(0, pos + 1);
3069 mkOp2(OP_MERGE, TYPE_U64, dreg, src0, src1);
3070 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, dreg);
3071 pos += 2;
3072 }
3073 break;
3074 }
3075 case TGSI_OPCODE_I2D:
3076 case TGSI_OPCODE_U2D:
3077 case TGSI_OPCODE_F2D:
3078 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3079 Value *dreg = getSSA(8);
3080 mkCvt(OP_CVT, dstTy, dreg, srcTy, fetchSrc(0, c / 2));
3081 mkSplit(&dst0[c], 4, dreg);
3082 c++;
3083 }
3084 break;
3085 case TGSI_OPCODE_DABS:
3086 case TGSI_OPCODE_DNEG:
3087 case TGSI_OPCODE_DRCP:
3088 case TGSI_OPCODE_DSQRT:
3089 case TGSI_OPCODE_DRSQ:
3090 case TGSI_OPCODE_DTRUNC:
3091 case TGSI_OPCODE_DCEIL:
3092 case TGSI_OPCODE_DFLR:
3093 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3094 src0 = getSSA(8);
3095 Value *dst = getSSA(8), *tmp[2];
3096 tmp[0] = fetchSrc(0, c);
3097 tmp[1] = fetchSrc(0, c + 1);
3098 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3099 mkOp1(op, dstTy, dst, src0);
3100 mkSplit(&dst0[c], 4, dst);
3101 c++;
3102 }
3103 break;
3104 case TGSI_OPCODE_DFRAC:
3105 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3106 src0 = getSSA(8);
3107 Value *dst = getSSA(8), *tmp[2];
3108 tmp[0] = fetchSrc(0, c);
3109 tmp[1] = fetchSrc(0, c + 1);
3110 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3111 mkOp1(OP_FLOOR, TYPE_F64, dst, src0);
3112 mkOp2(OP_SUB, TYPE_F64, dst, src0, dst);
3113 mkSplit(&dst0[c], 4, dst);
3114 c++;
3115 }
3116 break;
3117 case TGSI_OPCODE_DSLT:
3118 case TGSI_OPCODE_DSGE:
3119 case TGSI_OPCODE_DSEQ:
3120 case TGSI_OPCODE_DSNE: {
3121 int pos = 0;
3122 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3123 Value *tmp[2];
3124
3125 src0 = getSSA(8);
3126 src1 = getSSA(8);
3127 tmp[0] = fetchSrc(0, pos);
3128 tmp[1] = fetchSrc(0, pos + 1);
3129 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3130 tmp[0] = fetchSrc(1, pos);
3131 tmp[1] = fetchSrc(1, pos + 1);
3132 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3133 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
3134 pos += 2;
3135 }
3136 break;
3137 }
3138 case TGSI_OPCODE_DADD:
3139 case TGSI_OPCODE_DMUL:
3140 case TGSI_OPCODE_DMAX:
3141 case TGSI_OPCODE_DMIN:
3142 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3143 src0 = getSSA(8);
3144 src1 = getSSA(8);
3145 Value *dst = getSSA(8), *tmp[2];
3146 tmp[0] = fetchSrc(0, c);
3147 tmp[1] = fetchSrc(0, c + 1);
3148 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3149 tmp[0] = fetchSrc(1, c);
3150 tmp[1] = fetchSrc(1, c + 1);
3151 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3152 mkOp2(op, dstTy, dst, src0, src1);
3153 mkSplit(&dst0[c], 4, dst);
3154 c++;
3155 }
3156 break;
3157 case TGSI_OPCODE_DMAD:
3158 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3159 src0 = getSSA(8);
3160 src1 = getSSA(8);
3161 src2 = getSSA(8);
3162 Value *dst = getSSA(8), *tmp[2];
3163 tmp[0] = fetchSrc(0, c);
3164 tmp[1] = fetchSrc(0, c + 1);
3165 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3166 tmp[0] = fetchSrc(1, c);
3167 tmp[1] = fetchSrc(1, c + 1);
3168 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3169 tmp[0] = fetchSrc(2, c);
3170 tmp[1] = fetchSrc(2, c + 1);
3171 mkOp2(OP_MERGE, TYPE_U64, src2, tmp[0], tmp[1]);
3172 mkOp3(op, dstTy, dst, src0, src1, src2);
3173 mkSplit(&dst0[c], 4, dst);
3174 c++;
3175 }
3176 break;
3177 case TGSI_OPCODE_DROUND:
3178 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3179 src0 = getSSA(8);
3180 Value *dst = getSSA(8), *tmp[2];
3181 tmp[0] = fetchSrc(0, c);
3182 tmp[1] = fetchSrc(0, c + 1);
3183 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3184 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F64, src0)
3185 ->rnd = ROUND_NI;
3186 mkSplit(&dst0[c], 4, dst);
3187 c++;
3188 }
3189 break;
3190 case TGSI_OPCODE_DSSG:
3191 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3192 src0 = getSSA(8);
3193 Value *dst = getSSA(8), *dstF32 = getSSA(), *tmp[2];
3194 tmp[0] = fetchSrc(0, c);
3195 tmp[1] = fetchSrc(0, c + 1);
3196 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3197
3198 val0 = getScratch();
3199 val1 = getScratch();
3200 // The zero is wrong here since it's only 32-bit, but it works out in
3201 // the end since it gets replaced with $r63.
3202 mkCmp(OP_SET, CC_GT, TYPE_F32, val0, TYPE_F64, src0, zero);
3203 mkCmp(OP_SET, CC_LT, TYPE_F32, val1, TYPE_F64, src0, zero);
3204 mkOp2(OP_SUB, TYPE_F32, dstF32, val0, val1);
3205 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F32, dstF32);
3206 mkSplit(&dst0[c], 4, dst);
3207 c++;
3208 }
3209 break;
3210 default:
3211 ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
3212 assert(0);
3213 break;
3214 }
3215
3216 if (tgsi.dstCount()) {
3217 for (c = 0; c < 4; ++c) {
3218 if (!dst0[c])
3219 continue;
3220 if (dst0[c] != rDst0[c])
3221 mkMov(rDst0[c], dst0[c]);
3222 storeDst(0, c, rDst0[c]);
3223 }
3224 }
3225 vtxBaseValid = 0;
3226
3227 return true;
3228 }
3229
3230 void
3231 Converter::handleUserClipPlanes()
3232 {
3233 Value *res[8];
3234 int n, i, c;
3235
3236 for (c = 0; c < 4; ++c) {
3237 for (i = 0; i < info->io.genUserClip; ++i) {
3238 Symbol *sym = mkSymbol(FILE_MEMORY_CONST, info->io.ucpCBSlot,
3239 TYPE_F32, info->io.ucpBase + i * 16 + c * 4);
3240 Value *ucp = mkLoadv(TYPE_F32, sym, NULL);
3241 if (c == 0)
3242 res[i] = mkOp2v(OP_MUL, TYPE_F32, getScratch(), clipVtx[c], ucp);
3243 else
3244 mkOp3(OP_MAD, TYPE_F32, res[i], clipVtx[c], ucp, res[i]);
3245 }
3246 }
3247
3248 const int first = info->numOutputs - (info->io.genUserClip + 3) / 4;
3249
3250 for (i = 0; i < info->io.genUserClip; ++i) {
3251 n = i / 4 + first;
3252 c = i % 4;
3253 Symbol *sym =
3254 mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[n].slot[c] * 4);
3255 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, res[i]);
3256 }
3257 }
3258
3259 void
3260 Converter::exportOutputs()
3261 {
3262 for (unsigned int i = 0; i < info->numOutputs; ++i) {
3263 for (unsigned int c = 0; c < 4; ++c) {
3264 if (!oData.exists(sub.cur->values, i, c))
3265 continue;
3266 Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
3267 info->out[i].slot[c] * 4);
3268 Value *val = oData.load(sub.cur->values, i, c, NULL);
3269 if (val)
3270 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
3271 }
3272 }
3273 }
3274
3275 Converter::Converter(Program *ir, const tgsi::Source *code) : BuildUtil(ir),
3276 code(code),
3277 tgsi(NULL),
3278 tData(this), aData(this), pData(this), oData(this)
3279 {
3280 info = code->info;
3281
3282 const DataFile tFile = code->mainTempsInLMem ? FILE_MEMORY_LOCAL : FILE_GPR;
3283
3284 const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
3285 const unsigned pSize = code->fileSize(TGSI_FILE_PREDICATE);
3286 const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
3287 const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
3288
3289 tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, tFile, 0);
3290 pData.setup(TGSI_FILE_PREDICATE, 0, 0, pSize, 4, 4, FILE_PREDICATE, 0);
3291 aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_GPR, 0);
3292 oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
3293
3294 zero = mkImm((uint32_t)0);
3295
3296 vtxBaseValid = 0;
3297 }
3298
3299 Converter::~Converter()
3300 {
3301 }
3302
3303 inline const Converter::Location *
3304 Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v)
3305 {
3306 ValueMap::l_iterator it = s->values.l.find(v);
3307 return it == s->values.l.end() ? NULL : &it->second;
3308 }
3309
3310 template<typename T> inline void
3311 Converter::BindArgumentsPass::updateCallArgs(
3312 Instruction *i, void (Instruction::*setArg)(int, Value *),
3313 T (Function::*proto))
3314 {
3315 Function *g = i->asFlow()->target.fn;
3316 Subroutine *subg = conv.getSubroutine(g);
3317
3318 for (unsigned a = 0; a < (g->*proto).size(); ++a) {
3319 Value *v = (g->*proto)[a].get();
3320 const Converter::Location &l = *getValueLocation(subg, v);
3321 Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
3322
3323 (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
3324 }
3325 }
3326
3327 template<typename T> inline void
3328 Converter::BindArgumentsPass::updatePrototype(
3329 BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
3330 {
3331 (func->*updateSet)();
3332
3333 for (unsigned i = 0; i < set->getSize(); ++i) {
3334 Value *v = func->getLValue(i);
3335 const Converter::Location *l = getValueLocation(sub, v);
3336
3337 // only include values with a matching TGSI register
3338 if (set->test(i) && l && !conv.code->locals.count(*l))
3339 (func->*proto).push_back(v);
3340 }
3341 }
3342
3343 bool
3344 Converter::BindArgumentsPass::visit(Function *f)
3345 {
3346 sub = conv.getSubroutine(f);
3347
3348 for (ArrayList::Iterator bi = f->allBBlocks.iterator();
3349 !bi.end(); bi.next()) {
3350 for (Instruction *i = BasicBlock::get(bi)->getFirst();
3351 i; i = i->next) {
3352 if (i->op == OP_CALL && !i->asFlow()->builtin) {
3353 updateCallArgs(i, &Instruction::setSrc, &Function::ins);
3354 updateCallArgs(i, &Instruction::setDef, &Function::outs);
3355 }
3356 }
3357 }
3358
3359 if (func == prog->main && prog->getType() != Program::TYPE_COMPUTE)
3360 return true;
3361 updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
3362 &Function::buildLiveSets, &Function::ins);
3363 updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
3364 &Function::buildDefSets, &Function::outs);
3365
3366 return true;
3367 }
3368
3369 bool
3370 Converter::run()
3371 {
3372 BasicBlock *entry = new BasicBlock(prog->main);
3373 BasicBlock *leave = new BasicBlock(prog->main);
3374
3375 prog->main->setEntry(entry);
3376 prog->main->setExit(leave);
3377
3378 setPosition(entry, true);
3379 sub.cur = getSubroutine(prog->main);
3380
3381 if (info->io.genUserClip > 0) {
3382 for (int c = 0; c < 4; ++c)
3383 clipVtx[c] = getScratch();
3384 }
3385
3386 switch (prog->getType()) {
3387 case Program::TYPE_TESSELLATION_CONTROL:
3388 outBase = mkOp2v(
3389 OP_SUB, TYPE_U32, getSSA(),
3390 mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_LANEID, 0)),
3391 mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_INVOCATION_ID, 0)));
3392 break;
3393 case Program::TYPE_FRAGMENT: {
3394 Symbol *sv = mkSysVal(SV_POSITION, 3);
3395 fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
3396 mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
3397 break;
3398 }
3399 default:
3400 break;
3401 }
3402
3403 if (info->io.viewportId >= 0)
3404 viewport = getScratch();
3405 else
3406 viewport = NULL;
3407
3408 for (ip = 0; ip < code->scan.num_instructions; ++ip) {
3409 if (!handleInstruction(&code->insns[ip]))
3410 return false;
3411 }
3412
3413 if (!BindArgumentsPass(*this).run(prog))
3414 return false;
3415
3416 return true;
3417 }
3418
3419 } // unnamed namespace
3420
3421 namespace nv50_ir {
3422
3423 bool
3424 Program::makeFromTGSI(struct nv50_ir_prog_info *info)
3425 {
3426 tgsi::Source src(info);
3427 if (!src.scanSource())
3428 return false;
3429 tlsSize = info->bin.tlsSpace;
3430
3431 Converter builder(this, &src);
3432 return builder.run();
3433 }
3434
3435 } // namespace nv50_ir