nouveau: use bool instead of boolean
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_from_tgsi.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "tgsi/tgsi_dump.h"
24 #include "tgsi/tgsi_scan.h"
25 #include "tgsi/tgsi_util.h"
26
27 #include <set>
28
29 #include "codegen/nv50_ir.h"
30 #include "codegen/nv50_ir_util.h"
31 #include "codegen/nv50_ir_build_util.h"
32
33 namespace tgsi {
34
35 class Source;
36
37 static nv50_ir::operation translateOpcode(uint opcode);
38 static nv50_ir::DataFile translateFile(uint file);
39 static nv50_ir::TexTarget translateTexture(uint texTarg);
40 static nv50_ir::SVSemantic translateSysVal(uint sysval);
41
42 class Instruction
43 {
44 public:
45 Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
46
47 class SrcRegister
48 {
49 public:
50 SrcRegister(const struct tgsi_full_src_register *src)
51 : reg(src->Register),
52 fsr(src)
53 { }
54
55 SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
56
57 SrcRegister(const struct tgsi_ind_register& ind)
58 : reg(tgsi_util_get_src_from_ind(&ind)),
59 fsr(NULL)
60 { }
61
62 struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
63 {
64 struct tgsi_src_register reg;
65 memset(&reg, 0, sizeof(reg));
66 reg.Index = off.Index;
67 reg.File = off.File;
68 reg.SwizzleX = off.SwizzleX;
69 reg.SwizzleY = off.SwizzleY;
70 reg.SwizzleZ = off.SwizzleZ;
71 return reg;
72 }
73
74 SrcRegister(const struct tgsi_texture_offset& off) :
75 reg(offsetToSrc(off)),
76 fsr(NULL)
77 { }
78
79 uint getFile() const { return reg.File; }
80
81 bool is2D() const { return reg.Dimension; }
82
83 bool isIndirect(int dim) const
84 {
85 return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
86 }
87
88 int getIndex(int dim) const
89 {
90 return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
91 }
92
93 int getSwizzle(int chan) const
94 {
95 return tgsi_util_get_src_register_swizzle(&reg, chan);
96 }
97
98 nv50_ir::Modifier getMod(int chan) const;
99
100 SrcRegister getIndirect(int dim) const
101 {
102 assert(fsr && isIndirect(dim));
103 if (dim)
104 return SrcRegister(fsr->DimIndirect);
105 return SrcRegister(fsr->Indirect);
106 }
107
108 uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
109 {
110 assert(reg.File == TGSI_FILE_IMMEDIATE);
111 assert(!reg.Absolute);
112 assert(!reg.Negate);
113 return info->immd.data[reg.Index * 4 + getSwizzle(c)];
114 }
115
116 private:
117 const struct tgsi_src_register reg;
118 const struct tgsi_full_src_register *fsr;
119 };
120
121 class DstRegister
122 {
123 public:
124 DstRegister(const struct tgsi_full_dst_register *dst)
125 : reg(dst->Register),
126 fdr(dst)
127 { }
128
129 DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
130
131 uint getFile() const { return reg.File; }
132
133 bool is2D() const { return reg.Dimension; }
134
135 bool isIndirect(int dim) const
136 {
137 return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
138 }
139
140 int getIndex(int dim) const
141 {
142 return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
143 }
144
145 unsigned int getMask() const { return reg.WriteMask; }
146
147 bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
148
149 SrcRegister getIndirect(int dim) const
150 {
151 assert(fdr && isIndirect(dim));
152 if (dim)
153 return SrcRegister(fdr->DimIndirect);
154 return SrcRegister(fdr->Indirect);
155 }
156
157 private:
158 const struct tgsi_dst_register reg;
159 const struct tgsi_full_dst_register *fdr;
160 };
161
162 inline uint getOpcode() const { return insn->Instruction.Opcode; }
163
164 unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
165 unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
166
167 // mask of used components of source s
168 unsigned int srcMask(unsigned int s) const;
169
170 SrcRegister getSrc(unsigned int s) const
171 {
172 assert(s < srcCount());
173 return SrcRegister(&insn->Src[s]);
174 }
175
176 DstRegister getDst(unsigned int d) const
177 {
178 assert(d < dstCount());
179 return DstRegister(&insn->Dst[d]);
180 }
181
182 SrcRegister getTexOffset(unsigned int i) const
183 {
184 assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
185 return SrcRegister(insn->TexOffsets[i]);
186 }
187
188 unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
189
190 bool checkDstSrcAliasing() const;
191
192 inline nv50_ir::operation getOP() const {
193 return translateOpcode(getOpcode()); }
194
195 nv50_ir::DataType inferSrcType() const;
196 nv50_ir::DataType inferDstType() const;
197
198 nv50_ir::CondCode getSetCond() const;
199
200 nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
201
202 inline uint getLabel() { return insn->Label.Label; }
203
204 unsigned getSaturate() const { return insn->Instruction.Saturate; }
205
206 void print() const
207 {
208 tgsi_dump_instruction(insn, 1);
209 }
210
211 private:
212 const struct tgsi_full_instruction *insn;
213 };
214
215 unsigned int Instruction::srcMask(unsigned int s) const
216 {
217 unsigned int mask = insn->Dst[0].Register.WriteMask;
218
219 switch (insn->Instruction.Opcode) {
220 case TGSI_OPCODE_COS:
221 case TGSI_OPCODE_SIN:
222 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
223 case TGSI_OPCODE_DP2:
224 return 0x3;
225 case TGSI_OPCODE_DP3:
226 return 0x7;
227 case TGSI_OPCODE_DP4:
228 case TGSI_OPCODE_DPH:
229 case TGSI_OPCODE_KILL_IF: /* WriteMask ignored */
230 return 0xf;
231 case TGSI_OPCODE_DST:
232 return mask & (s ? 0xa : 0x6);
233 case TGSI_OPCODE_EX2:
234 case TGSI_OPCODE_EXP:
235 case TGSI_OPCODE_LG2:
236 case TGSI_OPCODE_LOG:
237 case TGSI_OPCODE_POW:
238 case TGSI_OPCODE_RCP:
239 case TGSI_OPCODE_RSQ:
240 case TGSI_OPCODE_SCS:
241 return 0x1;
242 case TGSI_OPCODE_IF:
243 case TGSI_OPCODE_UIF:
244 return 0x1;
245 case TGSI_OPCODE_LIT:
246 return 0xb;
247 case TGSI_OPCODE_TEX2:
248 case TGSI_OPCODE_TXB2:
249 case TGSI_OPCODE_TXL2:
250 return (s == 0) ? 0xf : 0x3;
251 case TGSI_OPCODE_TEX:
252 case TGSI_OPCODE_TXB:
253 case TGSI_OPCODE_TXD:
254 case TGSI_OPCODE_TXL:
255 case TGSI_OPCODE_TXP:
256 case TGSI_OPCODE_LODQ:
257 {
258 const struct tgsi_instruction_texture *tex = &insn->Texture;
259
260 assert(insn->Instruction.Texture);
261
262 mask = 0x7;
263 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
264 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
265 mask |= 0x8; /* bias, lod or proj */
266
267 switch (tex->Texture) {
268 case TGSI_TEXTURE_1D:
269 mask &= 0x9;
270 break;
271 case TGSI_TEXTURE_SHADOW1D:
272 mask &= 0xd;
273 break;
274 case TGSI_TEXTURE_1D_ARRAY:
275 case TGSI_TEXTURE_2D:
276 case TGSI_TEXTURE_RECT:
277 mask &= 0xb;
278 break;
279 case TGSI_TEXTURE_CUBE_ARRAY:
280 case TGSI_TEXTURE_SHADOW2D_ARRAY:
281 case TGSI_TEXTURE_SHADOWCUBE:
282 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
283 mask |= 0x8;
284 break;
285 default:
286 break;
287 }
288 }
289 return mask;
290 case TGSI_OPCODE_XPD:
291 {
292 unsigned int x = 0;
293 if (mask & 1) x |= 0x6;
294 if (mask & 2) x |= 0x5;
295 if (mask & 4) x |= 0x3;
296 return x;
297 }
298 case TGSI_OPCODE_D2I:
299 case TGSI_OPCODE_D2U:
300 case TGSI_OPCODE_D2F:
301 case TGSI_OPCODE_DSLT:
302 case TGSI_OPCODE_DSGE:
303 case TGSI_OPCODE_DSEQ:
304 case TGSI_OPCODE_DSNE:
305 switch (util_bitcount(mask)) {
306 case 1: return 0x3;
307 case 2: return 0xf;
308 default:
309 assert(!"unexpected mask");
310 return 0xf;
311 }
312 case TGSI_OPCODE_I2D:
313 case TGSI_OPCODE_U2D:
314 case TGSI_OPCODE_F2D: {
315 unsigned int x = 0;
316 if ((mask & 0x3) == 0x3)
317 x |= 1;
318 if ((mask & 0xc) == 0xc)
319 x |= 2;
320 return x;
321 }
322 default:
323 break;
324 }
325
326 return mask;
327 }
328
329 nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
330 {
331 nv50_ir::Modifier m(0);
332
333 if (reg.Absolute)
334 m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
335 if (reg.Negate)
336 m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
337 return m;
338 }
339
340 static nv50_ir::DataFile translateFile(uint file)
341 {
342 switch (file) {
343 case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST;
344 case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT;
345 case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT;
346 case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR;
347 case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS;
348 case TGSI_FILE_PREDICATE: return nv50_ir::FILE_PREDICATE;
349 case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE;
350 case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE;
351 case TGSI_FILE_RESOURCE: return nv50_ir::FILE_MEMORY_GLOBAL;
352 case TGSI_FILE_SAMPLER:
353 case TGSI_FILE_NULL:
354 default:
355 return nv50_ir::FILE_NULL;
356 }
357 }
358
359 static nv50_ir::SVSemantic translateSysVal(uint sysval)
360 {
361 switch (sysval) {
362 case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE;
363 case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE;
364 case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID;
365 case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
366 case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID;
367 case TGSI_SEMANTIC_GRID_SIZE: return nv50_ir::SV_NCTAID;
368 case TGSI_SEMANTIC_BLOCK_ID: return nv50_ir::SV_CTAID;
369 case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID;
370 case TGSI_SEMANTIC_THREAD_ID: return nv50_ir::SV_TID;
371 case TGSI_SEMANTIC_SAMPLEID: return nv50_ir::SV_SAMPLE_INDEX;
372 case TGSI_SEMANTIC_SAMPLEPOS: return nv50_ir::SV_SAMPLE_POS;
373 case TGSI_SEMANTIC_SAMPLEMASK: return nv50_ir::SV_SAMPLE_MASK;
374 case TGSI_SEMANTIC_INVOCATIONID: return nv50_ir::SV_INVOCATION_ID;
375 default:
376 assert(0);
377 return nv50_ir::SV_CLOCK;
378 }
379 }
380
381 #define NV50_IR_TEX_TARG_CASE(a, b) \
382 case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
383
384 static nv50_ir::TexTarget translateTexture(uint tex)
385 {
386 switch (tex) {
387 NV50_IR_TEX_TARG_CASE(1D, 1D);
388 NV50_IR_TEX_TARG_CASE(2D, 2D);
389 NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS);
390 NV50_IR_TEX_TARG_CASE(3D, 3D);
391 NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
392 NV50_IR_TEX_TARG_CASE(RECT, RECT);
393 NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
394 NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
395 NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY);
396 NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY);
397 NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
398 NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
399 NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
400 NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
401 NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
402 NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
403 NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW);
404 NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
405
406 case TGSI_TEXTURE_UNKNOWN:
407 default:
408 assert(!"invalid texture target");
409 return nv50_ir::TEX_TARGET_2D;
410 }
411 }
412
413 nv50_ir::DataType Instruction::inferSrcType() const
414 {
415 switch (getOpcode()) {
416 case TGSI_OPCODE_UIF:
417 case TGSI_OPCODE_AND:
418 case TGSI_OPCODE_OR:
419 case TGSI_OPCODE_XOR:
420 case TGSI_OPCODE_NOT:
421 case TGSI_OPCODE_SHL:
422 case TGSI_OPCODE_U2F:
423 case TGSI_OPCODE_U2D:
424 case TGSI_OPCODE_UADD:
425 case TGSI_OPCODE_UDIV:
426 case TGSI_OPCODE_UMOD:
427 case TGSI_OPCODE_UMAD:
428 case TGSI_OPCODE_UMUL:
429 case TGSI_OPCODE_UMUL_HI:
430 case TGSI_OPCODE_UMAX:
431 case TGSI_OPCODE_UMIN:
432 case TGSI_OPCODE_USEQ:
433 case TGSI_OPCODE_USGE:
434 case TGSI_OPCODE_USLT:
435 case TGSI_OPCODE_USNE:
436 case TGSI_OPCODE_USHR:
437 case TGSI_OPCODE_ATOMUADD:
438 case TGSI_OPCODE_ATOMXCHG:
439 case TGSI_OPCODE_ATOMCAS:
440 case TGSI_OPCODE_ATOMAND:
441 case TGSI_OPCODE_ATOMOR:
442 case TGSI_OPCODE_ATOMXOR:
443 case TGSI_OPCODE_ATOMUMIN:
444 case TGSI_OPCODE_ATOMUMAX:
445 case TGSI_OPCODE_UBFE:
446 case TGSI_OPCODE_UMSB:
447 return nv50_ir::TYPE_U32;
448 case TGSI_OPCODE_I2F:
449 case TGSI_OPCODE_I2D:
450 case TGSI_OPCODE_IDIV:
451 case TGSI_OPCODE_IMUL_HI:
452 case TGSI_OPCODE_IMAX:
453 case TGSI_OPCODE_IMIN:
454 case TGSI_OPCODE_IABS:
455 case TGSI_OPCODE_INEG:
456 case TGSI_OPCODE_ISGE:
457 case TGSI_OPCODE_ISHR:
458 case TGSI_OPCODE_ISLT:
459 case TGSI_OPCODE_ISSG:
460 case TGSI_OPCODE_SAD: // not sure about SAD, but no one has a float version
461 case TGSI_OPCODE_MOD:
462 case TGSI_OPCODE_UARL:
463 case TGSI_OPCODE_ATOMIMIN:
464 case TGSI_OPCODE_ATOMIMAX:
465 case TGSI_OPCODE_IBFE:
466 case TGSI_OPCODE_IMSB:
467 return nv50_ir::TYPE_S32;
468 case TGSI_OPCODE_D2F:
469 case TGSI_OPCODE_D2I:
470 case TGSI_OPCODE_D2U:
471 case TGSI_OPCODE_DABS:
472 case TGSI_OPCODE_DNEG:
473 case TGSI_OPCODE_DADD:
474 case TGSI_OPCODE_DMUL:
475 case TGSI_OPCODE_DMAX:
476 case TGSI_OPCODE_DMIN:
477 case TGSI_OPCODE_DSLT:
478 case TGSI_OPCODE_DSGE:
479 case TGSI_OPCODE_DSEQ:
480 case TGSI_OPCODE_DSNE:
481 case TGSI_OPCODE_DRCP:
482 case TGSI_OPCODE_DSQRT:
483 case TGSI_OPCODE_DMAD:
484 case TGSI_OPCODE_DFRAC:
485 case TGSI_OPCODE_DRSQ:
486 case TGSI_OPCODE_DTRUNC:
487 case TGSI_OPCODE_DCEIL:
488 case TGSI_OPCODE_DFLR:
489 case TGSI_OPCODE_DROUND:
490 return nv50_ir::TYPE_F64;
491 default:
492 return nv50_ir::TYPE_F32;
493 }
494 }
495
496 nv50_ir::DataType Instruction::inferDstType() const
497 {
498 switch (getOpcode()) {
499 case TGSI_OPCODE_D2U:
500 case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
501 case TGSI_OPCODE_D2I:
502 case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
503 case TGSI_OPCODE_FSEQ:
504 case TGSI_OPCODE_FSGE:
505 case TGSI_OPCODE_FSLT:
506 case TGSI_OPCODE_FSNE:
507 case TGSI_OPCODE_DSEQ:
508 case TGSI_OPCODE_DSGE:
509 case TGSI_OPCODE_DSLT:
510 case TGSI_OPCODE_DSNE:
511 return nv50_ir::TYPE_U32;
512 case TGSI_OPCODE_I2F:
513 case TGSI_OPCODE_U2F:
514 case TGSI_OPCODE_D2F:
515 return nv50_ir::TYPE_F32;
516 case TGSI_OPCODE_I2D:
517 case TGSI_OPCODE_U2D:
518 case TGSI_OPCODE_F2D:
519 return nv50_ir::TYPE_F64;
520 default:
521 return inferSrcType();
522 }
523 }
524
525 nv50_ir::CondCode Instruction::getSetCond() const
526 {
527 using namespace nv50_ir;
528
529 switch (getOpcode()) {
530 case TGSI_OPCODE_SLT:
531 case TGSI_OPCODE_ISLT:
532 case TGSI_OPCODE_USLT:
533 case TGSI_OPCODE_FSLT:
534 case TGSI_OPCODE_DSLT:
535 return CC_LT;
536 case TGSI_OPCODE_SLE:
537 return CC_LE;
538 case TGSI_OPCODE_SGE:
539 case TGSI_OPCODE_ISGE:
540 case TGSI_OPCODE_USGE:
541 case TGSI_OPCODE_FSGE:
542 case TGSI_OPCODE_DSGE:
543 return CC_GE;
544 case TGSI_OPCODE_SGT:
545 return CC_GT;
546 case TGSI_OPCODE_SEQ:
547 case TGSI_OPCODE_USEQ:
548 case TGSI_OPCODE_FSEQ:
549 case TGSI_OPCODE_DSEQ:
550 return CC_EQ;
551 case TGSI_OPCODE_SNE:
552 case TGSI_OPCODE_FSNE:
553 case TGSI_OPCODE_DSNE:
554 return CC_NEU;
555 case TGSI_OPCODE_USNE:
556 return CC_NE;
557 default:
558 return CC_ALWAYS;
559 }
560 }
561
562 #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
563
564 static nv50_ir::operation translateOpcode(uint opcode)
565 {
566 switch (opcode) {
567 NV50_IR_OPCODE_CASE(ARL, SHL);
568 NV50_IR_OPCODE_CASE(MOV, MOV);
569
570 NV50_IR_OPCODE_CASE(RCP, RCP);
571 NV50_IR_OPCODE_CASE(RSQ, RSQ);
572
573 NV50_IR_OPCODE_CASE(MUL, MUL);
574 NV50_IR_OPCODE_CASE(ADD, ADD);
575
576 NV50_IR_OPCODE_CASE(MIN, MIN);
577 NV50_IR_OPCODE_CASE(MAX, MAX);
578 NV50_IR_OPCODE_CASE(SLT, SET);
579 NV50_IR_OPCODE_CASE(SGE, SET);
580 NV50_IR_OPCODE_CASE(MAD, MAD);
581 NV50_IR_OPCODE_CASE(SUB, SUB);
582
583 NV50_IR_OPCODE_CASE(FLR, FLOOR);
584 NV50_IR_OPCODE_CASE(ROUND, CVT);
585 NV50_IR_OPCODE_CASE(EX2, EX2);
586 NV50_IR_OPCODE_CASE(LG2, LG2);
587 NV50_IR_OPCODE_CASE(POW, POW);
588
589 NV50_IR_OPCODE_CASE(ABS, ABS);
590
591 NV50_IR_OPCODE_CASE(COS, COS);
592 NV50_IR_OPCODE_CASE(DDX, DFDX);
593 NV50_IR_OPCODE_CASE(DDX_FINE, DFDX);
594 NV50_IR_OPCODE_CASE(DDY, DFDY);
595 NV50_IR_OPCODE_CASE(DDY_FINE, DFDY);
596 NV50_IR_OPCODE_CASE(KILL, DISCARD);
597
598 NV50_IR_OPCODE_CASE(SEQ, SET);
599 NV50_IR_OPCODE_CASE(SGT, SET);
600 NV50_IR_OPCODE_CASE(SIN, SIN);
601 NV50_IR_OPCODE_CASE(SLE, SET);
602 NV50_IR_OPCODE_CASE(SNE, SET);
603 NV50_IR_OPCODE_CASE(TEX, TEX);
604 NV50_IR_OPCODE_CASE(TXD, TXD);
605 NV50_IR_OPCODE_CASE(TXP, TEX);
606
607 NV50_IR_OPCODE_CASE(CAL, CALL);
608 NV50_IR_OPCODE_CASE(RET, RET);
609 NV50_IR_OPCODE_CASE(CMP, SLCT);
610
611 NV50_IR_OPCODE_CASE(TXB, TXB);
612
613 NV50_IR_OPCODE_CASE(DIV, DIV);
614
615 NV50_IR_OPCODE_CASE(TXL, TXL);
616
617 NV50_IR_OPCODE_CASE(CEIL, CEIL);
618 NV50_IR_OPCODE_CASE(I2F, CVT);
619 NV50_IR_OPCODE_CASE(NOT, NOT);
620 NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
621 NV50_IR_OPCODE_CASE(SHL, SHL);
622
623 NV50_IR_OPCODE_CASE(AND, AND);
624 NV50_IR_OPCODE_CASE(OR, OR);
625 NV50_IR_OPCODE_CASE(MOD, MOD);
626 NV50_IR_OPCODE_CASE(XOR, XOR);
627 NV50_IR_OPCODE_CASE(SAD, SAD);
628 NV50_IR_OPCODE_CASE(TXF, TXF);
629 NV50_IR_OPCODE_CASE(TXQ, TXQ);
630 NV50_IR_OPCODE_CASE(TG4, TXG);
631 NV50_IR_OPCODE_CASE(LODQ, TXLQ);
632
633 NV50_IR_OPCODE_CASE(EMIT, EMIT);
634 NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
635
636 NV50_IR_OPCODE_CASE(KILL_IF, DISCARD);
637
638 NV50_IR_OPCODE_CASE(F2I, CVT);
639 NV50_IR_OPCODE_CASE(FSEQ, SET);
640 NV50_IR_OPCODE_CASE(FSGE, SET);
641 NV50_IR_OPCODE_CASE(FSLT, SET);
642 NV50_IR_OPCODE_CASE(FSNE, SET);
643 NV50_IR_OPCODE_CASE(IDIV, DIV);
644 NV50_IR_OPCODE_CASE(IMAX, MAX);
645 NV50_IR_OPCODE_CASE(IMIN, MIN);
646 NV50_IR_OPCODE_CASE(IABS, ABS);
647 NV50_IR_OPCODE_CASE(INEG, NEG);
648 NV50_IR_OPCODE_CASE(ISGE, SET);
649 NV50_IR_OPCODE_CASE(ISHR, SHR);
650 NV50_IR_OPCODE_CASE(ISLT, SET);
651 NV50_IR_OPCODE_CASE(F2U, CVT);
652 NV50_IR_OPCODE_CASE(U2F, CVT);
653 NV50_IR_OPCODE_CASE(UADD, ADD);
654 NV50_IR_OPCODE_CASE(UDIV, DIV);
655 NV50_IR_OPCODE_CASE(UMAD, MAD);
656 NV50_IR_OPCODE_CASE(UMAX, MAX);
657 NV50_IR_OPCODE_CASE(UMIN, MIN);
658 NV50_IR_OPCODE_CASE(UMOD, MOD);
659 NV50_IR_OPCODE_CASE(UMUL, MUL);
660 NV50_IR_OPCODE_CASE(USEQ, SET);
661 NV50_IR_OPCODE_CASE(USGE, SET);
662 NV50_IR_OPCODE_CASE(USHR, SHR);
663 NV50_IR_OPCODE_CASE(USLT, SET);
664 NV50_IR_OPCODE_CASE(USNE, SET);
665
666 NV50_IR_OPCODE_CASE(DABS, ABS);
667 NV50_IR_OPCODE_CASE(DNEG, NEG);
668 NV50_IR_OPCODE_CASE(DADD, ADD);
669 NV50_IR_OPCODE_CASE(DMUL, MUL);
670 NV50_IR_OPCODE_CASE(DMAX, MAX);
671 NV50_IR_OPCODE_CASE(DMIN, MIN);
672 NV50_IR_OPCODE_CASE(DSLT, SET);
673 NV50_IR_OPCODE_CASE(DSGE, SET);
674 NV50_IR_OPCODE_CASE(DSEQ, SET);
675 NV50_IR_OPCODE_CASE(DSNE, SET);
676 NV50_IR_OPCODE_CASE(DRCP, RCP);
677 NV50_IR_OPCODE_CASE(DSQRT, SQRT);
678 NV50_IR_OPCODE_CASE(DMAD, MAD);
679 NV50_IR_OPCODE_CASE(D2I, CVT);
680 NV50_IR_OPCODE_CASE(D2U, CVT);
681 NV50_IR_OPCODE_CASE(I2D, CVT);
682 NV50_IR_OPCODE_CASE(U2D, CVT);
683 NV50_IR_OPCODE_CASE(DRSQ, RSQ);
684 NV50_IR_OPCODE_CASE(DTRUNC, TRUNC);
685 NV50_IR_OPCODE_CASE(DCEIL, CEIL);
686 NV50_IR_OPCODE_CASE(DFLR, FLOOR);
687 NV50_IR_OPCODE_CASE(DROUND, CVT);
688
689 NV50_IR_OPCODE_CASE(IMUL_HI, MUL);
690 NV50_IR_OPCODE_CASE(UMUL_HI, MUL);
691
692 NV50_IR_OPCODE_CASE(SAMPLE, TEX);
693 NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
694 NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
695 NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
696 NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
697 NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
698 NV50_IR_OPCODE_CASE(SAMPLE_I, TXF);
699 NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF);
700 NV50_IR_OPCODE_CASE(GATHER4, TXG);
701 NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
702
703 NV50_IR_OPCODE_CASE(ATOMUADD, ATOM);
704 NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM);
705 NV50_IR_OPCODE_CASE(ATOMCAS, ATOM);
706 NV50_IR_OPCODE_CASE(ATOMAND, ATOM);
707 NV50_IR_OPCODE_CASE(ATOMOR, ATOM);
708 NV50_IR_OPCODE_CASE(ATOMXOR, ATOM);
709 NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM);
710 NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM);
711 NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM);
712 NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM);
713
714 NV50_IR_OPCODE_CASE(TEX2, TEX);
715 NV50_IR_OPCODE_CASE(TXB2, TXB);
716 NV50_IR_OPCODE_CASE(TXL2, TXL);
717
718 NV50_IR_OPCODE_CASE(IBFE, EXTBF);
719 NV50_IR_OPCODE_CASE(UBFE, EXTBF);
720 NV50_IR_OPCODE_CASE(BFI, INSBF);
721 NV50_IR_OPCODE_CASE(BREV, EXTBF);
722 NV50_IR_OPCODE_CASE(POPC, POPCNT);
723 NV50_IR_OPCODE_CASE(LSB, BFIND);
724 NV50_IR_OPCODE_CASE(IMSB, BFIND);
725 NV50_IR_OPCODE_CASE(UMSB, BFIND);
726
727 NV50_IR_OPCODE_CASE(END, EXIT);
728
729 default:
730 return nv50_ir::OP_NOP;
731 }
732 }
733
734 static uint16_t opcodeToSubOp(uint opcode)
735 {
736 switch (opcode) {
737 case TGSI_OPCODE_LFENCE: return NV50_IR_SUBOP_MEMBAR(L, GL);
738 case TGSI_OPCODE_SFENCE: return NV50_IR_SUBOP_MEMBAR(S, GL);
739 case TGSI_OPCODE_MFENCE: return NV50_IR_SUBOP_MEMBAR(M, GL);
740 case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD;
741 case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH;
742 case TGSI_OPCODE_ATOMCAS: return NV50_IR_SUBOP_ATOM_CAS;
743 case TGSI_OPCODE_ATOMAND: return NV50_IR_SUBOP_ATOM_AND;
744 case TGSI_OPCODE_ATOMOR: return NV50_IR_SUBOP_ATOM_OR;
745 case TGSI_OPCODE_ATOMXOR: return NV50_IR_SUBOP_ATOM_XOR;
746 case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN;
747 case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN;
748 case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX;
749 case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX;
750 case TGSI_OPCODE_IMUL_HI:
751 case TGSI_OPCODE_UMUL_HI:
752 return NV50_IR_SUBOP_MUL_HIGH;
753 default:
754 return 0;
755 }
756 }
757
758 bool Instruction::checkDstSrcAliasing() const
759 {
760 if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
761 return false;
762
763 for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
764 if (insn->Src[s].Register.File == TGSI_FILE_NULL)
765 break;
766 if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
767 insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
768 return true;
769 }
770 return false;
771 }
772
773 class Source
774 {
775 public:
776 Source(struct nv50_ir_prog_info *);
777 ~Source();
778
779 public:
780 bool scanSource();
781 unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
782
783 public:
784 struct tgsi_shader_info scan;
785 struct tgsi_full_instruction *insns;
786 const struct tgsi_token *tokens;
787 struct nv50_ir_prog_info *info;
788
789 nv50_ir::DynArray tempArrays;
790 nv50_ir::DynArray immdArrays;
791
792 typedef nv50_ir::BuildUtil::Location Location;
793 // these registers are per-subroutine, cannot be used for parameter passing
794 std::set<Location> locals;
795
796 bool mainTempsInLMem;
797
798 int clipVertexOutput;
799
800 struct TextureView {
801 uint8_t target; // TGSI_TEXTURE_*
802 };
803 std::vector<TextureView> textureViews;
804
805 struct Resource {
806 uint8_t target; // TGSI_TEXTURE_*
807 bool raw;
808 uint8_t slot; // $surface index
809 };
810 std::vector<Resource> resources;
811
812 private:
813 int inferSysValDirection(unsigned sn) const;
814 bool scanDeclaration(const struct tgsi_full_declaration *);
815 bool scanInstruction(const struct tgsi_full_instruction *);
816 void scanProperty(const struct tgsi_full_property *);
817 void scanImmediate(const struct tgsi_full_immediate *);
818
819 inline bool isEdgeFlagPassthrough(const Instruction&) const;
820 };
821
822 Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
823 {
824 tokens = (const struct tgsi_token *)info->bin.source;
825
826 if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
827 tgsi_dump(tokens, 0);
828
829 mainTempsInLMem = false;
830 }
831
832 Source::~Source()
833 {
834 if (insns)
835 FREE(insns);
836
837 if (info->immd.data)
838 FREE(info->immd.data);
839 if (info->immd.type)
840 FREE(info->immd.type);
841 }
842
843 bool Source::scanSource()
844 {
845 unsigned insnCount = 0;
846 struct tgsi_parse_context parse;
847
848 tgsi_scan_shader(tokens, &scan);
849
850 insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
851 sizeof(insns[0]));
852 if (!insns)
853 return false;
854
855 clipVertexOutput = -1;
856
857 textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1);
858 resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1);
859
860 info->immd.bufSize = 0;
861
862 info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
863 info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
864 info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
865
866 if (info->type == PIPE_SHADER_FRAGMENT) {
867 info->prop.fp.writesDepth = scan.writes_z;
868 info->prop.fp.usesDiscard = scan.uses_kill;
869 } else
870 if (info->type == PIPE_SHADER_GEOMETRY) {
871 info->prop.gp.instanceCount = 1; // default value
872 }
873
874 info->io.viewportId = -1;
875
876 info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
877 info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
878
879 tgsi_parse_init(&parse, tokens);
880 while (!tgsi_parse_end_of_tokens(&parse)) {
881 tgsi_parse_token(&parse);
882
883 switch (parse.FullToken.Token.Type) {
884 case TGSI_TOKEN_TYPE_IMMEDIATE:
885 scanImmediate(&parse.FullToken.FullImmediate);
886 break;
887 case TGSI_TOKEN_TYPE_DECLARATION:
888 scanDeclaration(&parse.FullToken.FullDeclaration);
889 break;
890 case TGSI_TOKEN_TYPE_INSTRUCTION:
891 insns[insnCount++] = parse.FullToken.FullInstruction;
892 scanInstruction(&parse.FullToken.FullInstruction);
893 break;
894 case TGSI_TOKEN_TYPE_PROPERTY:
895 scanProperty(&parse.FullToken.FullProperty);
896 break;
897 default:
898 INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
899 break;
900 }
901 }
902 tgsi_parse_free(&parse);
903
904 if (mainTempsInLMem)
905 info->bin.tlsSpace += (scan.file_max[TGSI_FILE_TEMPORARY] + 1) * 16;
906
907 if (info->io.genUserClip > 0) {
908 info->io.clipDistanceMask = (1 << info->io.genUserClip) - 1;
909
910 const unsigned int nOut = (info->io.genUserClip + 3) / 4;
911
912 for (unsigned int n = 0; n < nOut; ++n) {
913 unsigned int i = info->numOutputs++;
914 info->out[i].id = i;
915 info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
916 info->out[i].si = n;
917 info->out[i].mask = info->io.clipDistanceMask >> (n * 4);
918 }
919 }
920
921 return info->assignSlots(info) == 0;
922 }
923
924 void Source::scanProperty(const struct tgsi_full_property *prop)
925 {
926 switch (prop->Property.PropertyName) {
927 case TGSI_PROPERTY_GS_OUTPUT_PRIM:
928 info->prop.gp.outputPrim = prop->u[0].Data;
929 break;
930 case TGSI_PROPERTY_GS_INPUT_PRIM:
931 info->prop.gp.inputPrim = prop->u[0].Data;
932 break;
933 case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
934 info->prop.gp.maxVertices = prop->u[0].Data;
935 break;
936 case TGSI_PROPERTY_GS_INVOCATIONS:
937 info->prop.gp.instanceCount = prop->u[0].Data;
938 break;
939 case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
940 info->prop.fp.separateFragData = true;
941 break;
942 case TGSI_PROPERTY_FS_COORD_ORIGIN:
943 case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
944 // we don't care
945 break;
946 case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
947 info->io.genUserClip = -1;
948 break;
949 default:
950 INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
951 break;
952 }
953 }
954
955 void Source::scanImmediate(const struct tgsi_full_immediate *imm)
956 {
957 const unsigned n = info->immd.count++;
958
959 assert(n < scan.immediate_count);
960
961 for (int c = 0; c < 4; ++c)
962 info->immd.data[n * 4 + c] = imm->u[c].Uint;
963
964 info->immd.type[n] = imm->Immediate.DataType;
965 }
966
967 int Source::inferSysValDirection(unsigned sn) const
968 {
969 switch (sn) {
970 case TGSI_SEMANTIC_INSTANCEID:
971 case TGSI_SEMANTIC_VERTEXID:
972 return 1;
973 case TGSI_SEMANTIC_LAYER:
974 #if 0
975 case TGSI_SEMANTIC_VIEWPORTINDEX:
976 return 0;
977 #endif
978 case TGSI_SEMANTIC_PRIMID:
979 return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
980 default:
981 return 0;
982 }
983 }
984
985 bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
986 {
987 unsigned i, c;
988 unsigned sn = TGSI_SEMANTIC_GENERIC;
989 unsigned si = 0;
990 const unsigned first = decl->Range.First, last = decl->Range.Last;
991
992 if (decl->Declaration.Semantic) {
993 sn = decl->Semantic.Name;
994 si = decl->Semantic.Index;
995 }
996
997 if (decl->Declaration.Local) {
998 for (i = first; i <= last; ++i) {
999 for (c = 0; c < 4; ++c) {
1000 locals.insert(
1001 Location(decl->Declaration.File, decl->Dim.Index2D, i, c));
1002 }
1003 }
1004 }
1005
1006 switch (decl->Declaration.File) {
1007 case TGSI_FILE_INPUT:
1008 if (info->type == PIPE_SHADER_VERTEX) {
1009 // all vertex attributes are equal
1010 for (i = first; i <= last; ++i) {
1011 info->in[i].sn = TGSI_SEMANTIC_GENERIC;
1012 info->in[i].si = i;
1013 }
1014 } else {
1015 for (i = first; i <= last; ++i, ++si) {
1016 info->in[i].id = i;
1017 info->in[i].sn = sn;
1018 info->in[i].si = si;
1019 if (info->type == PIPE_SHADER_FRAGMENT) {
1020 // translate interpolation mode
1021 switch (decl->Interp.Interpolate) {
1022 case TGSI_INTERPOLATE_CONSTANT:
1023 info->in[i].flat = 1;
1024 break;
1025 case TGSI_INTERPOLATE_COLOR:
1026 info->in[i].sc = 1;
1027 break;
1028 case TGSI_INTERPOLATE_LINEAR:
1029 info->in[i].linear = 1;
1030 break;
1031 default:
1032 break;
1033 }
1034 if (decl->Interp.Location || info->io.sampleInterp)
1035 info->in[i].centroid = 1;
1036 }
1037 }
1038 }
1039 break;
1040 case TGSI_FILE_OUTPUT:
1041 for (i = first; i <= last; ++i, ++si) {
1042 switch (sn) {
1043 case TGSI_SEMANTIC_POSITION:
1044 if (info->type == PIPE_SHADER_FRAGMENT)
1045 info->io.fragDepth = i;
1046 else
1047 if (clipVertexOutput < 0)
1048 clipVertexOutput = i;
1049 break;
1050 case TGSI_SEMANTIC_COLOR:
1051 if (info->type == PIPE_SHADER_FRAGMENT)
1052 info->prop.fp.numColourResults++;
1053 break;
1054 case TGSI_SEMANTIC_EDGEFLAG:
1055 info->io.edgeFlagOut = i;
1056 break;
1057 case TGSI_SEMANTIC_CLIPVERTEX:
1058 clipVertexOutput = i;
1059 break;
1060 case TGSI_SEMANTIC_CLIPDIST:
1061 info->io.clipDistanceMask |=
1062 decl->Declaration.UsageMask << (si * 4);
1063 info->io.genUserClip = -1;
1064 break;
1065 case TGSI_SEMANTIC_SAMPLEMASK:
1066 info->io.sampleMask = i;
1067 break;
1068 case TGSI_SEMANTIC_VIEWPORT_INDEX:
1069 info->io.viewportId = i;
1070 break;
1071 default:
1072 break;
1073 }
1074 info->out[i].id = i;
1075 info->out[i].sn = sn;
1076 info->out[i].si = si;
1077 }
1078 break;
1079 case TGSI_FILE_SYSTEM_VALUE:
1080 switch (sn) {
1081 case TGSI_SEMANTIC_INSTANCEID:
1082 info->io.instanceId = first;
1083 break;
1084 case TGSI_SEMANTIC_VERTEXID:
1085 info->io.vertexId = first;
1086 break;
1087 default:
1088 break;
1089 }
1090 for (i = first; i <= last; ++i, ++si) {
1091 info->sv[i].sn = sn;
1092 info->sv[i].si = si;
1093 info->sv[i].input = inferSysValDirection(sn);
1094 }
1095 break;
1096 case TGSI_FILE_RESOURCE:
1097 for (i = first; i <= last; ++i) {
1098 resources[i].target = decl->Resource.Resource;
1099 resources[i].raw = decl->Resource.Raw;
1100 resources[i].slot = i;
1101 }
1102 break;
1103 case TGSI_FILE_SAMPLER_VIEW:
1104 for (i = first; i <= last; ++i)
1105 textureViews[i].target = decl->SamplerView.Resource;
1106 break;
1107 case TGSI_FILE_NULL:
1108 case TGSI_FILE_TEMPORARY:
1109 case TGSI_FILE_ADDRESS:
1110 case TGSI_FILE_CONSTANT:
1111 case TGSI_FILE_IMMEDIATE:
1112 case TGSI_FILE_PREDICATE:
1113 case TGSI_FILE_SAMPLER:
1114 break;
1115 default:
1116 ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
1117 return false;
1118 }
1119 return true;
1120 }
1121
1122 inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
1123 {
1124 return insn.getOpcode() == TGSI_OPCODE_MOV &&
1125 insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
1126 insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
1127 }
1128
1129 bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
1130 {
1131 Instruction insn(inst);
1132
1133 if (insn.getOpcode() == TGSI_OPCODE_BARRIER)
1134 info->numBarriers = 1;
1135
1136 if (insn.dstCount()) {
1137 if (insn.getDst(0).getFile() == TGSI_FILE_OUTPUT) {
1138 Instruction::DstRegister dst = insn.getDst(0);
1139
1140 if (dst.isIndirect(0))
1141 for (unsigned i = 0; i < info->numOutputs; ++i)
1142 info->out[i].mask = 0xf;
1143 else
1144 info->out[dst.getIndex(0)].mask |= dst.getMask();
1145
1146 if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE ||
1147 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID ||
1148 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_LAYER ||
1149 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_VIEWPORT_INDEX ||
1150 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG)
1151 info->out[dst.getIndex(0)].mask &= 1;
1152
1153 if (isEdgeFlagPassthrough(insn))
1154 info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
1155 } else
1156 if (insn.getDst(0).getFile() == TGSI_FILE_TEMPORARY) {
1157 if (insn.getDst(0).isIndirect(0))
1158 mainTempsInLMem = true;
1159 }
1160 }
1161
1162 for (unsigned s = 0; s < insn.srcCount(); ++s) {
1163 Instruction::SrcRegister src = insn.getSrc(s);
1164 if (src.getFile() == TGSI_FILE_TEMPORARY) {
1165 if (src.isIndirect(0))
1166 mainTempsInLMem = true;
1167 } else
1168 if (src.getFile() == TGSI_FILE_RESOURCE) {
1169 if (src.getIndex(0) == TGSI_RESOURCE_GLOBAL)
1170 info->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ?
1171 0x1 : 0x2;
1172 }
1173 if (src.getFile() != TGSI_FILE_INPUT)
1174 continue;
1175 unsigned mask = insn.srcMask(s);
1176
1177 if (src.isIndirect(0)) {
1178 for (unsigned i = 0; i < info->numInputs; ++i)
1179 info->in[i].mask = 0xf;
1180 } else {
1181 const int i = src.getIndex(0);
1182 for (unsigned c = 0; c < 4; ++c) {
1183 if (!(mask & (1 << c)))
1184 continue;
1185 int k = src.getSwizzle(c);
1186 if (k <= TGSI_SWIZZLE_W)
1187 info->in[i].mask |= 1 << k;
1188 }
1189 switch (info->in[i].sn) {
1190 case TGSI_SEMANTIC_PSIZE:
1191 case TGSI_SEMANTIC_PRIMID:
1192 case TGSI_SEMANTIC_FOG:
1193 info->in[i].mask &= 0x1;
1194 break;
1195 case TGSI_SEMANTIC_PCOORD:
1196 info->in[i].mask &= 0x3;
1197 break;
1198 default:
1199 break;
1200 }
1201 }
1202 }
1203 return true;
1204 }
1205
1206 nv50_ir::TexInstruction::Target
1207 Instruction::getTexture(const tgsi::Source *code, int s) const
1208 {
1209 // XXX: indirect access
1210 unsigned int r;
1211
1212 switch (getSrc(s).getFile()) {
1213 case TGSI_FILE_RESOURCE:
1214 r = getSrc(s).getIndex(0);
1215 return translateTexture(code->resources.at(r).target);
1216 case TGSI_FILE_SAMPLER_VIEW:
1217 r = getSrc(s).getIndex(0);
1218 return translateTexture(code->textureViews.at(r).target);
1219 default:
1220 return translateTexture(insn->Texture.Texture);
1221 }
1222 }
1223
1224 } // namespace tgsi
1225
1226 namespace {
1227
1228 using namespace nv50_ir;
1229
1230 class Converter : public BuildUtil
1231 {
1232 public:
1233 Converter(Program *, const tgsi::Source *);
1234 ~Converter();
1235
1236 bool run();
1237
1238 private:
1239 struct Subroutine
1240 {
1241 Subroutine(Function *f) : f(f) { }
1242 Function *f;
1243 ValueMap values;
1244 };
1245
1246 Value *shiftAddress(Value *);
1247 Value *getVertexBase(int s);
1248 DataArray *getArrayForFile(unsigned file, int idx);
1249 Value *fetchSrc(int s, int c);
1250 Value *acquireDst(int d, int c);
1251 void storeDst(int d, int c, Value *);
1252
1253 Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1254 void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1255 Value *val, Value *ptr);
1256
1257 Value *applySrcMod(Value *, int s, int c);
1258
1259 Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1260 Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1261 Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1262
1263 bool handleInstruction(const struct tgsi_full_instruction *);
1264 void exportOutputs();
1265 inline Subroutine *getSubroutine(unsigned ip);
1266 inline Subroutine *getSubroutine(Function *);
1267 inline bool isEndOfSubroutine(uint ip);
1268
1269 void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1270
1271 // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1272 void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1273 void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1274 void handleTXF(Value *dst0[4], int R, int L_M);
1275 void handleTXQ(Value *dst0[4], enum TexQuery);
1276 void handleLIT(Value *dst0[4]);
1277 void handleUserClipPlanes();
1278
1279 Symbol *getResourceBase(int r);
1280 void getResourceCoords(std::vector<Value *>&, int r, int s);
1281
1282 void handleLOAD(Value *dst0[4]);
1283 void handleSTORE();
1284 void handleATOM(Value *dst0[4], DataType, uint16_t subOp);
1285
1286 void handleINTERP(Value *dst0[4]);
1287
1288 Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1289
1290 void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1291
1292 Value *buildDot(int dim);
1293
1294 class BindArgumentsPass : public Pass {
1295 public:
1296 BindArgumentsPass(Converter &conv) : conv(conv) { }
1297
1298 private:
1299 Converter &conv;
1300 Subroutine *sub;
1301
1302 inline const Location *getValueLocation(Subroutine *, Value *);
1303
1304 template<typename T> inline void
1305 updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1306 T (Function::*proto));
1307
1308 template<typename T> inline void
1309 updatePrototype(BitSet *set, void (Function::*updateSet)(),
1310 T (Function::*proto));
1311
1312 protected:
1313 bool visit(Function *);
1314 bool visit(BasicBlock *bb) { return false; }
1315 };
1316
1317 private:
1318 const tgsi::Source *code;
1319 const struct nv50_ir_prog_info *info;
1320
1321 struct {
1322 std::map<unsigned, Subroutine> map;
1323 Subroutine *cur;
1324 } sub;
1325
1326 uint ip; // instruction pointer
1327
1328 tgsi::Instruction tgsi;
1329
1330 DataType dstTy;
1331 DataType srcTy;
1332
1333 DataArray tData; // TGSI_FILE_TEMPORARY
1334 DataArray aData; // TGSI_FILE_ADDRESS
1335 DataArray pData; // TGSI_FILE_PREDICATE
1336 DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1337
1338 Value *zero;
1339 Value *fragCoord[4];
1340 Value *clipVtx[4];
1341
1342 Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1343 uint8_t vtxBaseValid;
1344
1345 Stack condBBs; // fork BB, then else clause BB
1346 Stack joinBBs; // fork BB, for inserting join ops on ENDIF
1347 Stack loopBBs; // loop headers
1348 Stack breakBBs; // end of / after loop
1349
1350 Value *viewport;
1351 };
1352
1353 Symbol *
1354 Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1355 {
1356 const int swz = src.getSwizzle(c);
1357
1358 /* TODO: Use Array ID when it's available for the index */
1359 return makeSym(src.getFile(),
1360 src.is2D() ? src.getIndex(1) : 0,
1361 src.getIndex(0), swz,
1362 src.getIndex(0) * 16 + swz * 4);
1363 }
1364
1365 Symbol *
1366 Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1367 {
1368 /* TODO: Use Array ID when it's available for the index */
1369 return makeSym(dst.getFile(),
1370 dst.is2D() ? dst.getIndex(1) : 0,
1371 dst.getIndex(0), c,
1372 dst.getIndex(0) * 16 + c * 4);
1373 }
1374
1375 Symbol *
1376 Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1377 {
1378 Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1379
1380 sym->reg.fileIndex = fileIdx;
1381
1382 if (idx >= 0) {
1383 if (sym->reg.file == FILE_SHADER_INPUT)
1384 sym->setOffset(info->in[idx].slot[c] * 4);
1385 else
1386 if (sym->reg.file == FILE_SHADER_OUTPUT)
1387 sym->setOffset(info->out[idx].slot[c] * 4);
1388 else
1389 if (sym->reg.file == FILE_SYSTEM_VALUE)
1390 sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
1391 else
1392 sym->setOffset(address);
1393 } else {
1394 sym->setOffset(address);
1395 }
1396 return sym;
1397 }
1398
1399 static inline uint8_t
1400 translateInterpMode(const struct nv50_ir_varying *var, operation& op)
1401 {
1402 uint8_t mode = NV50_IR_INTERP_PERSPECTIVE;
1403
1404 if (var->flat)
1405 mode = NV50_IR_INTERP_FLAT;
1406 else
1407 if (var->linear)
1408 mode = NV50_IR_INTERP_LINEAR;
1409 else
1410 if (var->sc)
1411 mode = NV50_IR_INTERP_SC;
1412
1413 op = (mode == NV50_IR_INTERP_PERSPECTIVE || mode == NV50_IR_INTERP_SC)
1414 ? OP_PINTERP : OP_LINTERP;
1415
1416 if (var->centroid)
1417 mode |= NV50_IR_INTERP_CENTROID;
1418
1419 return mode;
1420 }
1421
1422 Value *
1423 Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1424 {
1425 operation op;
1426
1427 // XXX: no way to know interpolation mode if we don't know what's accessed
1428 const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
1429 src.getIndex(0)], op);
1430
1431 Instruction *insn = new_Instruction(func, op, TYPE_F32);
1432
1433 insn->setDef(0, getScratch());
1434 insn->setSrc(0, srcToSym(src, c));
1435 if (op == OP_PINTERP)
1436 insn->setSrc(1, fragCoord[3]);
1437 if (ptr)
1438 insn->setIndirect(0, 0, ptr);
1439
1440 insn->setInterpolate(mode);
1441
1442 bb->insertTail(insn);
1443 return insn->getDef(0);
1444 }
1445
1446 Value *
1447 Converter::applySrcMod(Value *val, int s, int c)
1448 {
1449 Modifier m = tgsi.getSrc(s).getMod(c);
1450 DataType ty = tgsi.inferSrcType();
1451
1452 if (m & Modifier(NV50_IR_MOD_ABS))
1453 val = mkOp1v(OP_ABS, ty, getScratch(), val);
1454
1455 if (m & Modifier(NV50_IR_MOD_NEG))
1456 val = mkOp1v(OP_NEG, ty, getScratch(), val);
1457
1458 return val;
1459 }
1460
1461 Value *
1462 Converter::getVertexBase(int s)
1463 {
1464 assert(s < 5);
1465 if (!(vtxBaseValid & (1 << s))) {
1466 const int index = tgsi.getSrc(s).getIndex(1);
1467 Value *rel = NULL;
1468 if (tgsi.getSrc(s).isIndirect(1))
1469 rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1470 vtxBaseValid |= 1 << s;
1471 vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1472 mkImm(index), rel);
1473 }
1474 return vtxBase[s];
1475 }
1476
1477 Value *
1478 Converter::fetchSrc(int s, int c)
1479 {
1480 Value *res;
1481 Value *ptr = NULL, *dimRel = NULL;
1482
1483 tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1484
1485 if (src.isIndirect(0))
1486 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1487
1488 if (src.is2D()) {
1489 switch (src.getFile()) {
1490 case TGSI_FILE_INPUT:
1491 dimRel = getVertexBase(s);
1492 break;
1493 case TGSI_FILE_CONSTANT:
1494 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1495 if (src.isIndirect(1))
1496 dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1497 break;
1498 default:
1499 break;
1500 }
1501 }
1502
1503 res = fetchSrc(src, c, ptr);
1504
1505 if (dimRel)
1506 res->getInsn()->setIndirect(0, 1, dimRel);
1507
1508 return applySrcMod(res, s, c);
1509 }
1510
1511 Converter::DataArray *
1512 Converter::getArrayForFile(unsigned file, int idx)
1513 {
1514 switch (file) {
1515 case TGSI_FILE_TEMPORARY:
1516 return &tData;
1517 case TGSI_FILE_PREDICATE:
1518 return &pData;
1519 case TGSI_FILE_ADDRESS:
1520 return &aData;
1521 case TGSI_FILE_OUTPUT:
1522 assert(prog->getType() == Program::TYPE_FRAGMENT);
1523 return &oData;
1524 default:
1525 assert(!"invalid/unhandled TGSI source file");
1526 return NULL;
1527 }
1528 }
1529
1530 Value *
1531 Converter::shiftAddress(Value *index)
1532 {
1533 if (!index)
1534 return NULL;
1535 return mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), index, mkImm(4));
1536 }
1537
1538 Value *
1539 Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1540 {
1541 const int idx2d = src.is2D() ? src.getIndex(1) : 0;
1542 const int idx = src.getIndex(0);
1543 const int swz = src.getSwizzle(c);
1544
1545 switch (src.getFile()) {
1546 case TGSI_FILE_IMMEDIATE:
1547 assert(!ptr);
1548 return loadImm(NULL, info->immd.data[idx * 4 + swz]);
1549 case TGSI_FILE_CONSTANT:
1550 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1551 case TGSI_FILE_INPUT:
1552 if (prog->getType() == Program::TYPE_FRAGMENT) {
1553 // don't load masked inputs, won't be assigned a slot
1554 if (!ptr && !(info->in[idx].mask & (1 << swz)))
1555 return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
1556 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_FACE)
1557 return mkOp1v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_FACE, 0));
1558 return interpolate(src, c, shiftAddress(ptr));
1559 } else
1560 if (prog->getType() == Program::TYPE_GEOMETRY) {
1561 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_PRIMID)
1562 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_PRIMITIVE_ID, 0));
1563 // XXX: This is going to be a problem with scalar arrays, i.e. when
1564 // we cannot assume that the address is given in units of vec4.
1565 //
1566 // nv50 and nvc0 need different things here, so let the lowering
1567 // passes decide what to do with the address
1568 if (ptr)
1569 return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
1570 }
1571 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1572 case TGSI_FILE_OUTPUT:
1573 assert(!"load from output file");
1574 return NULL;
1575 case TGSI_FILE_SYSTEM_VALUE:
1576 assert(!ptr);
1577 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
1578 default:
1579 return getArrayForFile(src.getFile(), idx2d)->load(
1580 sub.cur->values, idx, swz, shiftAddress(ptr));
1581 }
1582 }
1583
1584 Value *
1585 Converter::acquireDst(int d, int c)
1586 {
1587 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1588 const unsigned f = dst.getFile();
1589 const int idx = dst.getIndex(0);
1590 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1591
1592 if (dst.isMasked(c) || f == TGSI_FILE_RESOURCE)
1593 return NULL;
1594
1595 if (dst.isIndirect(0) ||
1596 f == TGSI_FILE_SYSTEM_VALUE ||
1597 (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
1598 return getScratch();
1599
1600 return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
1601 }
1602
1603 void
1604 Converter::storeDst(int d, int c, Value *val)
1605 {
1606 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1607
1608 if (tgsi.getSaturate()) {
1609 mkOp1(OP_SAT, dstTy, val, val);
1610 }
1611
1612 Value *ptr = NULL;
1613 if (dst.isIndirect(0))
1614 ptr = shiftAddress(fetchSrc(dst.getIndirect(0), 0, NULL));
1615
1616 if (info->io.genUserClip > 0 &&
1617 dst.getFile() == TGSI_FILE_OUTPUT &&
1618 !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
1619 mkMov(clipVtx[c], val);
1620 val = clipVtx[c];
1621 }
1622
1623 storeDst(dst, c, val, ptr);
1624 }
1625
1626 void
1627 Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
1628 Value *val, Value *ptr)
1629 {
1630 const unsigned f = dst.getFile();
1631 const int idx = dst.getIndex(0);
1632 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1633
1634 if (f == TGSI_FILE_SYSTEM_VALUE) {
1635 assert(!ptr);
1636 mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
1637 } else
1638 if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
1639
1640 if (ptr || (info->out[idx].mask & (1 << c))) {
1641 /* Save the viewport index into a scratch register so that it can be
1642 exported at EMIT time */
1643 if (info->out[idx].sn == TGSI_SEMANTIC_VIEWPORT_INDEX &&
1644 viewport != NULL)
1645 mkOp1(OP_MOV, TYPE_U32, viewport, val);
1646 else
1647 mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val);
1648 }
1649 } else
1650 if (f == TGSI_FILE_TEMPORARY ||
1651 f == TGSI_FILE_PREDICATE ||
1652 f == TGSI_FILE_ADDRESS ||
1653 f == TGSI_FILE_OUTPUT) {
1654 getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
1655 } else {
1656 assert(!"invalid dst file");
1657 }
1658 }
1659
1660 #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
1661 for (chan = 0; chan < 4; ++chan) \
1662 if (!inst.getDst(d).isMasked(chan))
1663
1664 Value *
1665 Converter::buildDot(int dim)
1666 {
1667 assert(dim > 0);
1668
1669 Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
1670 Value *dotp = getScratch();
1671
1672 mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1);
1673
1674 for (int c = 1; c < dim; ++c) {
1675 src0 = fetchSrc(0, c);
1676 src1 = fetchSrc(1, c);
1677 mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp);
1678 }
1679 return dotp;
1680 }
1681
1682 void
1683 Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
1684 {
1685 FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
1686 join->fixed = 1;
1687 conv->insertHead(join);
1688
1689 assert(!fork->joinAt);
1690 fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
1691 fork->insertBefore(fork->getExit(), fork->joinAt);
1692 }
1693
1694 void
1695 Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
1696 {
1697 unsigned rIdx = 0, sIdx = 0;
1698
1699 if (R >= 0)
1700 rIdx = tgsi.getSrc(R).getIndex(0);
1701 if (S >= 0)
1702 sIdx = tgsi.getSrc(S).getIndex(0);
1703
1704 tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
1705
1706 if (tgsi.getSrc(R).isIndirect(0)) {
1707 tex->tex.rIndirectSrc = s;
1708 tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
1709 }
1710 if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
1711 tex->tex.sIndirectSrc = s;
1712 tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
1713 }
1714 }
1715
1716 void
1717 Converter::handleTXQ(Value *dst0[4], enum TexQuery query)
1718 {
1719 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1720 tex->tex.query = query;
1721 unsigned int c, d;
1722
1723 for (d = 0, c = 0; c < 4; ++c) {
1724 if (!dst0[c])
1725 continue;
1726 tex->tex.mask |= 1 << c;
1727 tex->setDef(d++, dst0[c]);
1728 }
1729 tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
1730
1731 setTexRS(tex, ++c, 1, -1);
1732
1733 bb->insertTail(tex);
1734 }
1735
1736 void
1737 Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
1738 {
1739 Value *proj = fetchSrc(0, 3);
1740 Instruction *insn = proj->getUniqueInsn();
1741 int c;
1742
1743 if (insn->op == OP_PINTERP) {
1744 bb->insertTail(insn = cloneForward(func, insn));
1745 insn->op = OP_LINTERP;
1746 insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
1747 insn->setSrc(1, NULL);
1748 proj = insn->getDef(0);
1749 }
1750 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
1751
1752 for (c = 0; c < 4; ++c) {
1753 if (!(mask & (1 << c)))
1754 continue;
1755 if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
1756 continue;
1757 mask &= ~(1 << c);
1758
1759 bb->insertTail(insn = cloneForward(func, insn));
1760 insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
1761 insn->setSrc(1, proj);
1762 dst[c] = insn->getDef(0);
1763 }
1764 if (!mask)
1765 return;
1766
1767 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
1768
1769 for (c = 0; c < 4; ++c)
1770 if (mask & (1 << c))
1771 dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
1772 }
1773
1774 // order of nv50 ir sources: x y z layer lod/bias shadow
1775 // order of TGSI TEX sources: x y z layer shadow lod/bias
1776 // lowering will finally set the hw specific order (like array first on nvc0)
1777 void
1778 Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
1779 {
1780 Value *val;
1781 Value *arg[4], *src[8];
1782 Value *lod = NULL, *shd = NULL;
1783 unsigned int s, c, d;
1784 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1785
1786 TexInstruction::Target tgt = tgsi.getTexture(code, R);
1787
1788 for (s = 0; s < tgt.getArgCount(); ++s)
1789 arg[s] = src[s] = fetchSrc(0, s);
1790
1791 if (texi->op == OP_TXL || texi->op == OP_TXB)
1792 lod = fetchSrc(L >> 4, L & 3);
1793
1794 if (C == 0x0f)
1795 C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
1796
1797 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 &&
1798 tgt == TEX_TARGET_CUBE_ARRAY_SHADOW)
1799 shd = fetchSrc(1, 0);
1800 else if (tgt.isShadow())
1801 shd = fetchSrc(C >> 4, C & 3);
1802
1803 if (texi->op == OP_TXD) {
1804 for (c = 0; c < tgt.getDim(); ++c) {
1805 texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
1806 texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
1807 }
1808 }
1809
1810 // cube textures don't care about projection value, it's divided out
1811 if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
1812 unsigned int n = tgt.getDim();
1813 if (shd) {
1814 arg[n] = shd;
1815 ++n;
1816 assert(tgt.getDim() == tgt.getArgCount());
1817 }
1818 loadProjTexCoords(src, arg, (1 << n) - 1);
1819 if (shd)
1820 shd = src[n - 1];
1821 }
1822
1823 if (tgt.isCube()) {
1824 for (c = 0; c < 3; ++c)
1825 src[c] = mkOp1v(OP_ABS, TYPE_F32, getSSA(), arg[c]);
1826 val = getScratch();
1827 mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1828 mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1829 mkOp1(OP_RCP, TYPE_F32, val, val);
1830 for (c = 0; c < 3; ++c)
1831 src[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), arg[c], val);
1832 }
1833
1834 for (c = 0, d = 0; c < 4; ++c) {
1835 if (dst[c]) {
1836 texi->setDef(d++, dst[c]);
1837 texi->tex.mask |= 1 << c;
1838 } else {
1839 // NOTE: maybe hook up def too, for CSE
1840 }
1841 }
1842 for (s = 0; s < tgt.getArgCount(); ++s)
1843 texi->setSrc(s, src[s]);
1844 if (lod)
1845 texi->setSrc(s++, lod);
1846 if (shd)
1847 texi->setSrc(s++, shd);
1848
1849 setTexRS(texi, s, R, S);
1850
1851 if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
1852 texi->tex.levelZero = true;
1853 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 && !tgt.isShadow())
1854 texi->tex.gatherComp = tgsi.getSrc(1).getValueU32(0, info);
1855
1856 texi->tex.useOffsets = tgsi.getNumTexOffsets();
1857 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1858 for (c = 0; c < 3; ++c) {
1859 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
1860 texi->offset[s][c].setInsn(texi);
1861 }
1862 }
1863
1864 bb->insertTail(texi);
1865 }
1866
1867 // 1st source: xyz = coordinates, w = lod/sample
1868 // 2nd source: offset
1869 void
1870 Converter::handleTXF(Value *dst[4], int R, int L_M)
1871 {
1872 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1873 int ms;
1874 unsigned int c, d, s;
1875
1876 texi->tex.target = tgsi.getTexture(code, R);
1877
1878 ms = texi->tex.target.isMS() ? 1 : 0;
1879 texi->tex.levelZero = ms; /* MS textures don't have mip-maps */
1880
1881 for (c = 0, d = 0; c < 4; ++c) {
1882 if (dst[c]) {
1883 texi->setDef(d++, dst[c]);
1884 texi->tex.mask |= 1 << c;
1885 }
1886 }
1887 for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c)
1888 texi->setSrc(c, fetchSrc(0, c));
1889 texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms
1890
1891 setTexRS(texi, c, R, -1);
1892
1893 texi->tex.useOffsets = tgsi.getNumTexOffsets();
1894 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1895 for (c = 0; c < 3; ++c) {
1896 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
1897 texi->offset[s][c].setInsn(texi);
1898 }
1899 }
1900
1901 bb->insertTail(texi);
1902 }
1903
1904 void
1905 Converter::handleLIT(Value *dst0[4])
1906 {
1907 Value *val0 = NULL;
1908 unsigned int mask = tgsi.getDst(0).getMask();
1909
1910 if (mask & (1 << 0))
1911 loadImm(dst0[0], 1.0f);
1912
1913 if (mask & (1 << 3))
1914 loadImm(dst0[3], 1.0f);
1915
1916 if (mask & (3 << 1)) {
1917 val0 = getScratch();
1918 mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
1919 if (mask & (1 << 1))
1920 mkMov(dst0[1], val0);
1921 }
1922
1923 if (mask & (1 << 2)) {
1924 Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
1925 Value *val1 = getScratch(), *val3 = getScratch();
1926
1927 Value *pos128 = loadImm(NULL, +127.999999f);
1928 Value *neg128 = loadImm(NULL, -127.999999f);
1929
1930 mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
1931 mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
1932 mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
1933 mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
1934
1935 mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], TYPE_F32, val3, zero, val0);
1936 }
1937 }
1938
1939 static inline bool
1940 isResourceSpecial(const int r)
1941 {
1942 return (r == TGSI_RESOURCE_GLOBAL ||
1943 r == TGSI_RESOURCE_LOCAL ||
1944 r == TGSI_RESOURCE_PRIVATE ||
1945 r == TGSI_RESOURCE_INPUT);
1946 }
1947
1948 static inline bool
1949 isResourceRaw(const tgsi::Source *code, const int r)
1950 {
1951 return isResourceSpecial(r) || code->resources[r].raw;
1952 }
1953
1954 static inline nv50_ir::TexTarget
1955 getResourceTarget(const tgsi::Source *code, int r)
1956 {
1957 if (isResourceSpecial(r))
1958 return nv50_ir::TEX_TARGET_BUFFER;
1959 return tgsi::translateTexture(code->resources.at(r).target);
1960 }
1961
1962 Symbol *
1963 Converter::getResourceBase(const int r)
1964 {
1965 Symbol *sym = NULL;
1966
1967 switch (r) {
1968 case TGSI_RESOURCE_GLOBAL:
1969 sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL, 15);
1970 break;
1971 case TGSI_RESOURCE_LOCAL:
1972 assert(prog->getType() == Program::TYPE_COMPUTE);
1973 sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32,
1974 info->prop.cp.sharedOffset);
1975 break;
1976 case TGSI_RESOURCE_PRIVATE:
1977 sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32,
1978 info->bin.tlsSpace);
1979 break;
1980 case TGSI_RESOURCE_INPUT:
1981 assert(prog->getType() == Program::TYPE_COMPUTE);
1982 sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32,
1983 info->prop.cp.inputOffset);
1984 break;
1985 default:
1986 sym = new_Symbol(prog,
1987 nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot);
1988 break;
1989 }
1990 return sym;
1991 }
1992
1993 void
1994 Converter::getResourceCoords(std::vector<Value *> &coords, int r, int s)
1995 {
1996 const int arg =
1997 TexInstruction::Target(getResourceTarget(code, r)).getArgCount();
1998
1999 for (int c = 0; c < arg; ++c)
2000 coords.push_back(fetchSrc(s, c));
2001
2002 // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk
2003 if (r == TGSI_RESOURCE_LOCAL ||
2004 r == TGSI_RESOURCE_PRIVATE ||
2005 r == TGSI_RESOURCE_INPUT)
2006 coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS),
2007 coords[0]);
2008 }
2009
2010 static inline int
2011 partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask)
2012 {
2013 int n = 0;
2014
2015 while (mask) {
2016 if (mask & 1) {
2017 size[n]++;
2018 } else {
2019 if (size[n])
2020 comp[n = 1] = size[0] + 1;
2021 else
2022 comp[n]++;
2023 }
2024 mask >>= 1;
2025 }
2026 if (size[0] == 3) {
2027 n = 1;
2028 size[0] = (comp[0] == 1) ? 1 : 2;
2029 size[1] = 3 - size[0];
2030 comp[1] = comp[0] + size[0];
2031 }
2032 return n + 1;
2033 }
2034
2035 // For raw loads, granularity is 4 byte.
2036 // Usage of the texture read mask on OP_SULDP is not allowed.
2037 void
2038 Converter::handleLOAD(Value *dst0[4])
2039 {
2040 const int r = tgsi.getSrc(0).getIndex(0);
2041 int c;
2042 std::vector<Value *> off, src, ldv, def;
2043
2044 getResourceCoords(off, r, 1);
2045
2046 if (isResourceRaw(code, r)) {
2047 uint8_t mask = 0;
2048 uint8_t comp[2] = { 0, 0 };
2049 uint8_t size[2] = { 0, 0 };
2050
2051 Symbol *base = getResourceBase(r);
2052
2053 // determine the base and size of the at most 2 load ops
2054 for (c = 0; c < 4; ++c)
2055 if (!tgsi.getDst(0).isMasked(c))
2056 mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X);
2057
2058 int n = partitionLoadStore(comp, size, mask);
2059
2060 src = off;
2061
2062 def.resize(4); // index by component, the ones we need will be non-NULL
2063 for (c = 0; c < 4; ++c) {
2064 if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c))
2065 def[c] = dst0[c];
2066 else
2067 if (mask & (1 << c))
2068 def[c] = getScratch();
2069 }
2070
2071 const bool useLd = isResourceSpecial(r) ||
2072 (info->io.nv50styleSurfaces &&
2073 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2074
2075 for (int i = 0; i < n; ++i) {
2076 ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]);
2077
2078 if (comp[i]) // adjust x component of source address if necessary
2079 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2080 off[0], mkImm(comp[i] * 4));
2081 else
2082 src[0] = off[0];
2083
2084 if (useLd) {
2085 Instruction *ld =
2086 mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]);
2087 for (size_t c = 1; c < ldv.size(); ++c)
2088 ld->setDef(c, ldv[c]);
2089 } else {
2090 mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot,
2091 0, ldv, src)->dType = typeOfSize(size[i] * 4);
2092 }
2093 }
2094 } else {
2095 def.resize(4);
2096 for (c = 0; c < 4; ++c) {
2097 if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
2098 def[c] = getScratch();
2099 else
2100 def[c] = dst0[c];
2101 }
2102
2103 mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0,
2104 def, off);
2105 }
2106 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2107 if (dst0[c] != def[c])
2108 mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
2109 }
2110
2111 // For formatted stores, the write mask on OP_SUSTP can be used.
2112 // Raw stores have to be split.
2113 void
2114 Converter::handleSTORE()
2115 {
2116 const int r = tgsi.getDst(0).getIndex(0);
2117 int c;
2118 std::vector<Value *> off, src, dummy;
2119
2120 getResourceCoords(off, r, 0);
2121 src = off;
2122 const int s = src.size();
2123
2124 if (isResourceRaw(code, r)) {
2125 uint8_t comp[2] = { 0, 0 };
2126 uint8_t size[2] = { 0, 0 };
2127
2128 int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask());
2129
2130 Symbol *base = getResourceBase(r);
2131
2132 const bool useSt = isResourceSpecial(r) ||
2133 (info->io.nv50styleSurfaces &&
2134 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2135
2136 for (int i = 0; i < n; ++i) {
2137 if (comp[i]) // adjust x component of source address if necessary
2138 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2139 off[0], mkImm(comp[i] * 4));
2140 else
2141 src[0] = off[0];
2142
2143 const DataType stTy = typeOfSize(size[i] * 4);
2144
2145 if (useSt) {
2146 Instruction *st =
2147 mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i]));
2148 for (c = 1; c < size[i]; ++c)
2149 st->setSrc(1 + c, fetchSrc(1, comp[i] + c));
2150 st->setIndirect(0, 0, src[0]);
2151 } else {
2152 // attach values to be stored
2153 src.resize(s + size[i]);
2154 for (c = 0; c < size[i]; ++c)
2155 src[s + c] = fetchSrc(1, comp[i] + c);
2156 mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot,
2157 0, dummy, src)->setType(stTy);
2158 }
2159 }
2160 } else {
2161 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2162 src.push_back(fetchSrc(1, c));
2163
2164 mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0,
2165 dummy, src)->tex.mask = tgsi.getDst(0).getMask();
2166 }
2167 }
2168
2169 // XXX: These only work on resources with the single-component u32/s32 formats.
2170 // Therefore the result is replicated. This might not be intended by TGSI, but
2171 // operating on more than 1 component would produce undefined results because
2172 // they do not exist.
2173 void
2174 Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp)
2175 {
2176 const int r = tgsi.getSrc(0).getIndex(0);
2177 std::vector<Value *> srcv;
2178 std::vector<Value *> defv;
2179 LValue *dst = getScratch();
2180
2181 getResourceCoords(srcv, r, 1);
2182
2183 if (isResourceSpecial(r)) {
2184 assert(r != TGSI_RESOURCE_INPUT);
2185 Instruction *insn;
2186 insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0));
2187 insn->subOp = subOp;
2188 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2189 insn->setSrc(2, fetchSrc(3, 0));
2190 insn->setIndirect(0, 0, srcv.at(0));
2191 } else {
2192 operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP;
2193 TexTarget targ = getResourceTarget(code, r);
2194 int idx = code->resources[r].slot;
2195 defv.push_back(dst);
2196 srcv.push_back(fetchSrc(2, 0));
2197 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2198 srcv.push_back(fetchSrc(3, 0));
2199 TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv);
2200 tex->subOp = subOp;
2201 tex->tex.mask = 1;
2202 tex->setType(ty);
2203 }
2204
2205 for (int c = 0; c < 4; ++c)
2206 if (dst0[c])
2207 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2208 }
2209
2210 void
2211 Converter::handleINTERP(Value *dst[4])
2212 {
2213 // Check whether the input is linear. All other attributes ignored.
2214 Instruction *insn;
2215 Value *offset = NULL, *ptr = NULL, *w = NULL;
2216 bool linear;
2217 operation op;
2218 int c, mode;
2219
2220 tgsi::Instruction::SrcRegister src = tgsi.getSrc(0);
2221 assert(src.getFile() == TGSI_FILE_INPUT);
2222
2223 if (src.isIndirect(0))
2224 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
2225
2226 // XXX: no way to know interp mode if we don't know the index
2227 linear = info->in[ptr ? 0 : src.getIndex(0)].linear;
2228 if (linear) {
2229 op = OP_LINTERP;
2230 mode = NV50_IR_INTERP_LINEAR;
2231 } else {
2232 op = OP_PINTERP;
2233 mode = NV50_IR_INTERP_PERSPECTIVE;
2234 }
2235
2236 switch (tgsi.getOpcode()) {
2237 case TGSI_OPCODE_INTERP_CENTROID:
2238 mode |= NV50_IR_INTERP_CENTROID;
2239 break;
2240 case TGSI_OPCODE_INTERP_SAMPLE:
2241 insn = mkOp1(OP_PIXLD, TYPE_U32, (offset = getScratch()), fetchSrc(1, 0));
2242 insn->subOp = NV50_IR_SUBOP_PIXLD_OFFSET;
2243 mode |= NV50_IR_INTERP_OFFSET;
2244 break;
2245 case TGSI_OPCODE_INTERP_OFFSET: {
2246 // The input in src1.xy is float, but we need a single 32-bit value
2247 // where the upper and lower 16 bits are encoded in S0.12 format. We need
2248 // to clamp the input coordinates to (-0.5, 0.4375), multiply by 4096,
2249 // and then convert to s32.
2250 Value *offs[2];
2251 for (c = 0; c < 2; c++) {
2252 offs[c] = fetchSrc(1, c);
2253 mkOp2(OP_MIN, TYPE_F32, offs[c], offs[c], loadImm(NULL, 0.4375f));
2254 mkOp2(OP_MAX, TYPE_F32, offs[c], offs[c], loadImm(NULL, -0.5f));
2255 mkOp2(OP_MUL, TYPE_F32, offs[c], offs[c], loadImm(NULL, 4096.0f));
2256 mkCvt(OP_CVT, TYPE_S32, offs[c], TYPE_F32, offs[c]);
2257 }
2258 offset = mkOp3v(OP_INSBF, TYPE_U32, getScratch(),
2259 offs[1], mkImm(0x1010), offs[0]);
2260 mode |= NV50_IR_INTERP_OFFSET;
2261 break;
2262 }
2263 }
2264
2265 if (op == OP_PINTERP) {
2266 if (offset) {
2267 w = mkOp2v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_POSITION, 3), offset);
2268 mkOp1(OP_RCP, TYPE_F32, w, w);
2269 } else {
2270 w = fragCoord[3];
2271 }
2272 }
2273
2274
2275 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2276 insn = mkOp1(op, TYPE_F32, dst[c], srcToSym(src, c));
2277 if (op == OP_PINTERP)
2278 insn->setSrc(1, w);
2279 if (ptr)
2280 insn->setIndirect(0, 0, ptr);
2281 if (offset)
2282 insn->setSrc(op == OP_PINTERP ? 2 : 1, offset);
2283
2284 insn->setInterpolate(mode);
2285 }
2286 }
2287
2288 Converter::Subroutine *
2289 Converter::getSubroutine(unsigned ip)
2290 {
2291 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2292
2293 if (it == sub.map.end())
2294 it = sub.map.insert(std::make_pair(
2295 ip, Subroutine(new Function(prog, "SUB", ip)))).first;
2296
2297 return &it->second;
2298 }
2299
2300 Converter::Subroutine *
2301 Converter::getSubroutine(Function *f)
2302 {
2303 unsigned ip = f->getLabel();
2304 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2305
2306 if (it == sub.map.end())
2307 it = sub.map.insert(std::make_pair(ip, Subroutine(f))).first;
2308
2309 return &it->second;
2310 }
2311
2312 bool
2313 Converter::isEndOfSubroutine(uint ip)
2314 {
2315 assert(ip < code->scan.num_instructions);
2316 tgsi::Instruction insn(&code->insns[ip]);
2317 return (insn.getOpcode() == TGSI_OPCODE_END ||
2318 insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
2319 // does END occur at end of main or the very end ?
2320 insn.getOpcode() == TGSI_OPCODE_BGNSUB);
2321 }
2322
2323 bool
2324 Converter::handleInstruction(const struct tgsi_full_instruction *insn)
2325 {
2326 Instruction *geni;
2327
2328 Value *dst0[4], *rDst0[4];
2329 Value *src0, *src1, *src2, *src3;
2330 Value *val0, *val1;
2331 int c;
2332
2333 tgsi = tgsi::Instruction(insn);
2334
2335 bool useScratchDst = tgsi.checkDstSrcAliasing();
2336
2337 operation op = tgsi.getOP();
2338 dstTy = tgsi.inferDstType();
2339 srcTy = tgsi.inferSrcType();
2340
2341 unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
2342
2343 if (tgsi.dstCount()) {
2344 for (c = 0; c < 4; ++c) {
2345 rDst0[c] = acquireDst(0, c);
2346 dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
2347 }
2348 }
2349
2350 switch (tgsi.getOpcode()) {
2351 case TGSI_OPCODE_ADD:
2352 case TGSI_OPCODE_UADD:
2353 case TGSI_OPCODE_AND:
2354 case TGSI_OPCODE_DIV:
2355 case TGSI_OPCODE_IDIV:
2356 case TGSI_OPCODE_UDIV:
2357 case TGSI_OPCODE_MAX:
2358 case TGSI_OPCODE_MIN:
2359 case TGSI_OPCODE_IMAX:
2360 case TGSI_OPCODE_IMIN:
2361 case TGSI_OPCODE_UMAX:
2362 case TGSI_OPCODE_UMIN:
2363 case TGSI_OPCODE_MOD:
2364 case TGSI_OPCODE_UMOD:
2365 case TGSI_OPCODE_MUL:
2366 case TGSI_OPCODE_UMUL:
2367 case TGSI_OPCODE_IMUL_HI:
2368 case TGSI_OPCODE_UMUL_HI:
2369 case TGSI_OPCODE_OR:
2370 case TGSI_OPCODE_SHL:
2371 case TGSI_OPCODE_ISHR:
2372 case TGSI_OPCODE_USHR:
2373 case TGSI_OPCODE_SUB:
2374 case TGSI_OPCODE_XOR:
2375 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2376 src0 = fetchSrc(0, c);
2377 src1 = fetchSrc(1, c);
2378 geni = mkOp2(op, dstTy, dst0[c], src0, src1);
2379 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2380 }
2381 break;
2382 case TGSI_OPCODE_MAD:
2383 case TGSI_OPCODE_UMAD:
2384 case TGSI_OPCODE_SAD:
2385 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2386 src0 = fetchSrc(0, c);
2387 src1 = fetchSrc(1, c);
2388 src2 = fetchSrc(2, c);
2389 mkOp3(op, dstTy, dst0[c], src0, src1, src2);
2390 }
2391 break;
2392 case TGSI_OPCODE_MOV:
2393 case TGSI_OPCODE_ABS:
2394 case TGSI_OPCODE_CEIL:
2395 case TGSI_OPCODE_FLR:
2396 case TGSI_OPCODE_TRUNC:
2397 case TGSI_OPCODE_RCP:
2398 case TGSI_OPCODE_IABS:
2399 case TGSI_OPCODE_INEG:
2400 case TGSI_OPCODE_NOT:
2401 case TGSI_OPCODE_DDX:
2402 case TGSI_OPCODE_DDY:
2403 case TGSI_OPCODE_DDX_FINE:
2404 case TGSI_OPCODE_DDY_FINE:
2405 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2406 mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
2407 break;
2408 case TGSI_OPCODE_RSQ:
2409 src0 = fetchSrc(0, 0);
2410 val0 = getScratch();
2411 mkOp1(OP_ABS, TYPE_F32, val0, src0);
2412 mkOp1(OP_RSQ, TYPE_F32, val0, val0);
2413 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2414 mkMov(dst0[c], val0);
2415 break;
2416 case TGSI_OPCODE_ARL:
2417 case TGSI_OPCODE_ARR:
2418 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2419 const RoundMode rnd =
2420 tgsi.getOpcode() == TGSI_OPCODE_ARR ? ROUND_N : ROUND_M;
2421 src0 = fetchSrc(0, c);
2422 mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = rnd;
2423 }
2424 break;
2425 case TGSI_OPCODE_UARL:
2426 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2427 mkOp1(OP_MOV, TYPE_U32, dst0[c], fetchSrc(0, c));
2428 break;
2429 case TGSI_OPCODE_POW:
2430 val0 = mkOp2v(op, TYPE_F32, getScratch(), fetchSrc(0, 0), fetchSrc(1, 0));
2431 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2432 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2433 break;
2434 case TGSI_OPCODE_EX2:
2435 case TGSI_OPCODE_LG2:
2436 val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
2437 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2438 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2439 break;
2440 case TGSI_OPCODE_COS:
2441 case TGSI_OPCODE_SIN:
2442 val0 = getScratch();
2443 if (mask & 7) {
2444 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
2445 mkOp1(op, TYPE_F32, val0, val0);
2446 for (c = 0; c < 3; ++c)
2447 if (dst0[c])
2448 mkMov(dst0[c], val0);
2449 }
2450 if (dst0[3]) {
2451 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
2452 mkOp1(op, TYPE_F32, dst0[3], val0);
2453 }
2454 break;
2455 case TGSI_OPCODE_SCS:
2456 if (mask & 3) {
2457 val0 = mkOp1v(OP_PRESIN, TYPE_F32, getSSA(), fetchSrc(0, 0));
2458 if (dst0[0])
2459 mkOp1(OP_COS, TYPE_F32, dst0[0], val0);
2460 if (dst0[1])
2461 mkOp1(OP_SIN, TYPE_F32, dst0[1], val0);
2462 }
2463 if (dst0[2])
2464 loadImm(dst0[2], 0.0f);
2465 if (dst0[3])
2466 loadImm(dst0[3], 1.0f);
2467 break;
2468 case TGSI_OPCODE_EXP:
2469 src0 = fetchSrc(0, 0);
2470 val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
2471 if (dst0[1])
2472 mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
2473 if (dst0[0])
2474 mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
2475 if (dst0[2])
2476 mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
2477 if (dst0[3])
2478 loadImm(dst0[3], 1.0f);
2479 break;
2480 case TGSI_OPCODE_LOG:
2481 src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
2482 val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
2483 if (dst0[0] || dst0[1])
2484 val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
2485 if (dst0[1]) {
2486 mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
2487 mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
2488 mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0);
2489 }
2490 if (dst0[3])
2491 loadImm(dst0[3], 1.0f);
2492 break;
2493 case TGSI_OPCODE_DP2:
2494 val0 = buildDot(2);
2495 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2496 mkMov(dst0[c], val0);
2497 break;
2498 case TGSI_OPCODE_DP3:
2499 val0 = buildDot(3);
2500 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2501 mkMov(dst0[c], val0);
2502 break;
2503 case TGSI_OPCODE_DP4:
2504 val0 = buildDot(4);
2505 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2506 mkMov(dst0[c], val0);
2507 break;
2508 case TGSI_OPCODE_DPH:
2509 val0 = buildDot(3);
2510 src1 = fetchSrc(1, 3);
2511 mkOp2(OP_ADD, TYPE_F32, val0, val0, src1);
2512 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2513 mkMov(dst0[c], val0);
2514 break;
2515 case TGSI_OPCODE_DST:
2516 if (dst0[0])
2517 loadImm(dst0[0], 1.0f);
2518 if (dst0[1]) {
2519 src0 = fetchSrc(0, 1);
2520 src1 = fetchSrc(1, 1);
2521 mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1);
2522 }
2523 if (dst0[2])
2524 mkMov(dst0[2], fetchSrc(0, 2));
2525 if (dst0[3])
2526 mkMov(dst0[3], fetchSrc(1, 3));
2527 break;
2528 case TGSI_OPCODE_LRP:
2529 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2530 src0 = fetchSrc(0, c);
2531 src1 = fetchSrc(1, c);
2532 src2 = fetchSrc(2, c);
2533 mkOp3(OP_MAD, TYPE_F32, dst0[c],
2534 mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2);
2535 }
2536 break;
2537 case TGSI_OPCODE_LIT:
2538 handleLIT(dst0);
2539 break;
2540 case TGSI_OPCODE_XPD:
2541 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2542 if (c < 3) {
2543 val0 = getSSA();
2544 src0 = fetchSrc(1, (c + 1) % 3);
2545 src1 = fetchSrc(0, (c + 2) % 3);
2546 mkOp2(OP_MUL, TYPE_F32, val0, src0, src1);
2547 mkOp1(OP_NEG, TYPE_F32, val0, val0);
2548
2549 src0 = fetchSrc(0, (c + 1) % 3);
2550 src1 = fetchSrc(1, (c + 2) % 3);
2551 mkOp3(OP_MAD, TYPE_F32, dst0[c], src0, src1, val0);
2552 } else {
2553 loadImm(dst0[c], 1.0f);
2554 }
2555 }
2556 break;
2557 case TGSI_OPCODE_ISSG:
2558 case TGSI_OPCODE_SSG:
2559 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2560 src0 = fetchSrc(0, c);
2561 val0 = getScratch();
2562 val1 = getScratch();
2563 mkCmp(OP_SET, CC_GT, srcTy, val0, srcTy, src0, zero);
2564 mkCmp(OP_SET, CC_LT, srcTy, val1, srcTy, src0, zero);
2565 if (srcTy == TYPE_F32)
2566 mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
2567 else
2568 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
2569 }
2570 break;
2571 case TGSI_OPCODE_UCMP:
2572 srcTy = TYPE_U32;
2573 /* fallthrough */
2574 case TGSI_OPCODE_CMP:
2575 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2576 src0 = fetchSrc(0, c);
2577 src1 = fetchSrc(1, c);
2578 src2 = fetchSrc(2, c);
2579 if (src1 == src2)
2580 mkMov(dst0[c], src1);
2581 else
2582 mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
2583 srcTy, dst0[c], srcTy, src1, src2, src0);
2584 }
2585 break;
2586 case TGSI_OPCODE_FRC:
2587 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2588 src0 = fetchSrc(0, c);
2589 val0 = getScratch();
2590 mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
2591 mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
2592 }
2593 break;
2594 case TGSI_OPCODE_ROUND:
2595 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2596 mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
2597 ->rnd = ROUND_NI;
2598 break;
2599 case TGSI_OPCODE_CLAMP:
2600 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2601 src0 = fetchSrc(0, c);
2602 src1 = fetchSrc(1, c);
2603 src2 = fetchSrc(2, c);
2604 val0 = getScratch();
2605 mkOp2(OP_MIN, TYPE_F32, val0, src0, src1);
2606 mkOp2(OP_MAX, TYPE_F32, dst0[c], val0, src2);
2607 }
2608 break;
2609 case TGSI_OPCODE_SLT:
2610 case TGSI_OPCODE_SGE:
2611 case TGSI_OPCODE_SEQ:
2612 case TGSI_OPCODE_SGT:
2613 case TGSI_OPCODE_SLE:
2614 case TGSI_OPCODE_SNE:
2615 case TGSI_OPCODE_FSEQ:
2616 case TGSI_OPCODE_FSGE:
2617 case TGSI_OPCODE_FSLT:
2618 case TGSI_OPCODE_FSNE:
2619 case TGSI_OPCODE_ISGE:
2620 case TGSI_OPCODE_ISLT:
2621 case TGSI_OPCODE_USEQ:
2622 case TGSI_OPCODE_USGE:
2623 case TGSI_OPCODE_USLT:
2624 case TGSI_OPCODE_USNE:
2625 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2626 src0 = fetchSrc(0, c);
2627 src1 = fetchSrc(1, c);
2628 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
2629 }
2630 break;
2631 case TGSI_OPCODE_KILL_IF:
2632 val0 = new_LValue(func, FILE_PREDICATE);
2633 mask = 0;
2634 for (c = 0; c < 4; ++c) {
2635 const int s = tgsi.getSrc(0).getSwizzle(c);
2636 if (mask & (1 << s))
2637 continue;
2638 mask |= 1 << s;
2639 mkCmp(OP_SET, CC_LT, TYPE_F32, val0, TYPE_F32, fetchSrc(0, c), zero);
2640 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
2641 }
2642 break;
2643 case TGSI_OPCODE_KILL:
2644 mkOp(OP_DISCARD, TYPE_NONE, NULL);
2645 break;
2646 case TGSI_OPCODE_TEX:
2647 case TGSI_OPCODE_TXB:
2648 case TGSI_OPCODE_TXL:
2649 case TGSI_OPCODE_TXP:
2650 case TGSI_OPCODE_LODQ:
2651 // R S L C Dx Dy
2652 handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
2653 break;
2654 case TGSI_OPCODE_TXD:
2655 handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
2656 break;
2657 case TGSI_OPCODE_TG4:
2658 handleTEX(dst0, 2, 2, 0x03, 0x0f, 0x00, 0x00);
2659 break;
2660 case TGSI_OPCODE_TEX2:
2661 handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00);
2662 break;
2663 case TGSI_OPCODE_TXB2:
2664 case TGSI_OPCODE_TXL2:
2665 handleTEX(dst0, 2, 2, 0x10, 0x0f, 0x00, 0x00);
2666 break;
2667 case TGSI_OPCODE_SAMPLE:
2668 case TGSI_OPCODE_SAMPLE_B:
2669 case TGSI_OPCODE_SAMPLE_D:
2670 case TGSI_OPCODE_SAMPLE_L:
2671 case TGSI_OPCODE_SAMPLE_C:
2672 case TGSI_OPCODE_SAMPLE_C_LZ:
2673 handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40);
2674 break;
2675 case TGSI_OPCODE_TXF:
2676 handleTXF(dst0, 1, 0x03);
2677 break;
2678 case TGSI_OPCODE_SAMPLE_I:
2679 handleTXF(dst0, 1, 0x03);
2680 break;
2681 case TGSI_OPCODE_SAMPLE_I_MS:
2682 handleTXF(dst0, 1, 0x20);
2683 break;
2684 case TGSI_OPCODE_TXQ:
2685 case TGSI_OPCODE_SVIEWINFO:
2686 handleTXQ(dst0, TXQ_DIMS);
2687 break;
2688 case TGSI_OPCODE_F2I:
2689 case TGSI_OPCODE_F2U:
2690 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2691 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
2692 break;
2693 case TGSI_OPCODE_I2F:
2694 case TGSI_OPCODE_U2F:
2695 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2696 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
2697 break;
2698 case TGSI_OPCODE_EMIT:
2699 /* export the saved viewport index */
2700 if (viewport != NULL) {
2701 Symbol *vpSym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_U32,
2702 info->out[info->io.viewportId].slot[0] * 4);
2703 mkStore(OP_EXPORT, TYPE_U32, vpSym, NULL, viewport);
2704 }
2705 /* fallthrough */
2706 case TGSI_OPCODE_ENDPRIM:
2707 {
2708 // get vertex stream (must be immediate)
2709 unsigned int stream = tgsi.getSrc(0).getValueU32(0, info);
2710 if (stream && op == OP_RESTART)
2711 break;
2712 src0 = mkImm(stream);
2713 mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
2714 break;
2715 }
2716 case TGSI_OPCODE_IF:
2717 case TGSI_OPCODE_UIF:
2718 {
2719 BasicBlock *ifBB = new BasicBlock(func);
2720
2721 bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
2722 condBBs.push(bb);
2723 joinBBs.push(bb);
2724
2725 mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy);
2726
2727 setPosition(ifBB, true);
2728 }
2729 break;
2730 case TGSI_OPCODE_ELSE:
2731 {
2732 BasicBlock *elseBB = new BasicBlock(func);
2733 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2734
2735 forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
2736 condBBs.push(bb);
2737
2738 forkBB->getExit()->asFlow()->target.bb = elseBB;
2739 if (!bb->isTerminated())
2740 mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
2741
2742 setPosition(elseBB, true);
2743 }
2744 break;
2745 case TGSI_OPCODE_ENDIF:
2746 {
2747 BasicBlock *convBB = new BasicBlock(func);
2748 BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2749 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
2750
2751 if (!bb->isTerminated()) {
2752 // we only want join if none of the clauses ended with CONT/BREAK/RET
2753 if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
2754 insertConvergenceOps(convBB, forkBB);
2755 mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
2756 bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2757 }
2758
2759 if (prevBB->getExit()->op == OP_BRA) {
2760 prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2761 prevBB->getExit()->asFlow()->target.bb = convBB;
2762 }
2763 setPosition(convBB, true);
2764 }
2765 break;
2766 case TGSI_OPCODE_BGNLOOP:
2767 {
2768 BasicBlock *lbgnBB = new BasicBlock(func);
2769 BasicBlock *lbrkBB = new BasicBlock(func);
2770
2771 loopBBs.push(lbgnBB);
2772 breakBBs.push(lbrkBB);
2773 if (loopBBs.getSize() > func->loopNestingBound)
2774 func->loopNestingBound++;
2775
2776 mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
2777
2778 bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
2779 setPosition(lbgnBB, true);
2780 mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
2781 }
2782 break;
2783 case TGSI_OPCODE_ENDLOOP:
2784 {
2785 BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
2786
2787 if (!bb->isTerminated()) {
2788 mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
2789 bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
2790 }
2791 setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
2792 }
2793 break;
2794 case TGSI_OPCODE_BRK:
2795 {
2796 if (bb->isTerminated())
2797 break;
2798 BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
2799 mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
2800 bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
2801 }
2802 break;
2803 case TGSI_OPCODE_CONT:
2804 {
2805 if (bb->isTerminated())
2806 break;
2807 BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
2808 mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
2809 contBB->explicitCont = true;
2810 bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
2811 }
2812 break;
2813 case TGSI_OPCODE_BGNSUB:
2814 {
2815 Subroutine *s = getSubroutine(ip);
2816 BasicBlock *entry = new BasicBlock(s->f);
2817 BasicBlock *leave = new BasicBlock(s->f);
2818
2819 // multiple entrypoints possible, keep the graph connected
2820 if (prog->getType() == Program::TYPE_COMPUTE)
2821 prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
2822
2823 sub.cur = s;
2824 s->f->setEntry(entry);
2825 s->f->setExit(leave);
2826 setPosition(entry, true);
2827 return true;
2828 }
2829 case TGSI_OPCODE_ENDSUB:
2830 {
2831 sub.cur = getSubroutine(prog->main);
2832 setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
2833 return true;
2834 }
2835 case TGSI_OPCODE_CAL:
2836 {
2837 Subroutine *s = getSubroutine(tgsi.getLabel());
2838 mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
2839 func->call.attach(&s->f->call, Graph::Edge::TREE);
2840 return true;
2841 }
2842 case TGSI_OPCODE_RET:
2843 {
2844 if (bb->isTerminated())
2845 return true;
2846 BasicBlock *leave = BasicBlock::get(func->cfgExit);
2847
2848 if (!isEndOfSubroutine(ip + 1)) {
2849 // insert a PRERET at the entry if this is an early return
2850 // (only needed for sharing code in the epilogue)
2851 BasicBlock *pos = getBB();
2852 setPosition(BasicBlock::get(func->cfg.getRoot()), false);
2853 mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
2854 setPosition(pos, true);
2855 }
2856 mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
2857 bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
2858 }
2859 break;
2860 case TGSI_OPCODE_END:
2861 {
2862 // attach and generate epilogue code
2863 BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
2864 bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
2865 setPosition(epilogue, true);
2866 if (prog->getType() == Program::TYPE_FRAGMENT)
2867 exportOutputs();
2868 if (info->io.genUserClip > 0)
2869 handleUserClipPlanes();
2870 mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
2871 }
2872 break;
2873 case TGSI_OPCODE_SWITCH:
2874 case TGSI_OPCODE_CASE:
2875 ERROR("switch/case opcode encountered, should have been lowered\n");
2876 abort();
2877 break;
2878 case TGSI_OPCODE_LOAD:
2879 handleLOAD(dst0);
2880 break;
2881 case TGSI_OPCODE_STORE:
2882 handleSTORE();
2883 break;
2884 case TGSI_OPCODE_BARRIER:
2885 geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
2886 geni->fixed = 1;
2887 geni->subOp = NV50_IR_SUBOP_BAR_SYNC;
2888 break;
2889 case TGSI_OPCODE_MFENCE:
2890 case TGSI_OPCODE_LFENCE:
2891 case TGSI_OPCODE_SFENCE:
2892 geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
2893 geni->fixed = 1;
2894 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2895 break;
2896 case TGSI_OPCODE_ATOMUADD:
2897 case TGSI_OPCODE_ATOMXCHG:
2898 case TGSI_OPCODE_ATOMCAS:
2899 case TGSI_OPCODE_ATOMAND:
2900 case TGSI_OPCODE_ATOMOR:
2901 case TGSI_OPCODE_ATOMXOR:
2902 case TGSI_OPCODE_ATOMUMIN:
2903 case TGSI_OPCODE_ATOMIMIN:
2904 case TGSI_OPCODE_ATOMUMAX:
2905 case TGSI_OPCODE_ATOMIMAX:
2906 handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode()));
2907 break;
2908 case TGSI_OPCODE_IBFE:
2909 case TGSI_OPCODE_UBFE:
2910 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2911 src0 = fetchSrc(0, c);
2912 src1 = fetchSrc(1, c);
2913 src2 = fetchSrc(2, c);
2914 mkOp3(OP_INSBF, TYPE_U32, src1, src2, mkImm(0x808), src1);
2915 mkOp2(OP_EXTBF, dstTy, dst0[c], src0, src1);
2916 }
2917 break;
2918 case TGSI_OPCODE_BFI:
2919 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2920 src0 = fetchSrc(0, c);
2921 src1 = fetchSrc(1, c);
2922 src2 = fetchSrc(2, c);
2923 src3 = fetchSrc(3, c);
2924 mkOp3(OP_INSBF, TYPE_U32, src2, src3, mkImm(0x808), src2);
2925 mkOp3(OP_INSBF, TYPE_U32, dst0[c], src1, src2, src0);
2926 }
2927 break;
2928 case TGSI_OPCODE_LSB:
2929 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2930 src0 = fetchSrc(0, c);
2931 geni = mkOp2(OP_EXTBF, TYPE_U32, src0, src0, mkImm(0x2000));
2932 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
2933 geni = mkOp1(OP_BFIND, TYPE_U32, dst0[c], src0);
2934 geni->subOp = NV50_IR_SUBOP_BFIND_SAMT;
2935 }
2936 break;
2937 case TGSI_OPCODE_IMSB:
2938 case TGSI_OPCODE_UMSB:
2939 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2940 src0 = fetchSrc(0, c);
2941 mkOp1(OP_BFIND, srcTy, dst0[c], src0);
2942 }
2943 break;
2944 case TGSI_OPCODE_BREV:
2945 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2946 src0 = fetchSrc(0, c);
2947 geni = mkOp2(OP_EXTBF, TYPE_U32, dst0[c], src0, mkImm(0x2000));
2948 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
2949 }
2950 break;
2951 case TGSI_OPCODE_POPC:
2952 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2953 src0 = fetchSrc(0, c);
2954 mkOp2(OP_POPCNT, TYPE_U32, dst0[c], src0, src0);
2955 }
2956 break;
2957 case TGSI_OPCODE_INTERP_CENTROID:
2958 case TGSI_OPCODE_INTERP_SAMPLE:
2959 case TGSI_OPCODE_INTERP_OFFSET:
2960 handleINTERP(dst0);
2961 break;
2962 case TGSI_OPCODE_D2I:
2963 case TGSI_OPCODE_D2U:
2964 case TGSI_OPCODE_D2F: {
2965 int pos = 0;
2966 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2967 Value *dreg = getSSA(8);
2968 src0 = fetchSrc(0, pos);
2969 src1 = fetchSrc(0, pos + 1);
2970 mkOp2(OP_MERGE, TYPE_U64, dreg, src0, src1);
2971 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, dreg);
2972 pos += 2;
2973 }
2974 break;
2975 }
2976 case TGSI_OPCODE_I2D:
2977 case TGSI_OPCODE_U2D:
2978 case TGSI_OPCODE_F2D:
2979 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2980 Value *dreg = getSSA(8);
2981 mkCvt(OP_CVT, dstTy, dreg, srcTy, fetchSrc(0, c / 2));
2982 mkSplit(&dst0[c], 4, dreg);
2983 c++;
2984 }
2985 break;
2986 case TGSI_OPCODE_DABS:
2987 case TGSI_OPCODE_DNEG:
2988 case TGSI_OPCODE_DRCP:
2989 case TGSI_OPCODE_DSQRT:
2990 case TGSI_OPCODE_DRSQ:
2991 case TGSI_OPCODE_DTRUNC:
2992 case TGSI_OPCODE_DCEIL:
2993 case TGSI_OPCODE_DFLR:
2994 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2995 src0 = getSSA(8);
2996 Value *dst = getSSA(8), *tmp[2];
2997 tmp[0] = fetchSrc(0, c);
2998 tmp[1] = fetchSrc(0, c + 1);
2999 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3000 mkOp1(op, dstTy, dst, src0);
3001 mkSplit(&dst0[c], 4, dst);
3002 c++;
3003 }
3004 break;
3005 case TGSI_OPCODE_DFRAC:
3006 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3007 src0 = getSSA(8);
3008 Value *dst = getSSA(8), *tmp[2];
3009 tmp[0] = fetchSrc(0, c);
3010 tmp[1] = fetchSrc(0, c + 1);
3011 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3012 mkOp1(OP_FLOOR, TYPE_F64, dst, src0);
3013 mkOp2(OP_SUB, TYPE_F64, dst, src0, dst);
3014 mkSplit(&dst0[c], 4, dst);
3015 c++;
3016 }
3017 break;
3018 case TGSI_OPCODE_DSLT:
3019 case TGSI_OPCODE_DSGE:
3020 case TGSI_OPCODE_DSEQ:
3021 case TGSI_OPCODE_DSNE: {
3022 int pos = 0;
3023 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3024 Value *tmp[2];
3025
3026 src0 = getSSA(8);
3027 src1 = getSSA(8);
3028 tmp[0] = fetchSrc(0, pos);
3029 tmp[1] = fetchSrc(0, pos + 1);
3030 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3031 tmp[0] = fetchSrc(1, pos);
3032 tmp[1] = fetchSrc(1, pos + 1);
3033 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3034 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
3035 pos += 2;
3036 }
3037 break;
3038 }
3039 case TGSI_OPCODE_DADD:
3040 case TGSI_OPCODE_DMUL:
3041 case TGSI_OPCODE_DMAX:
3042 case TGSI_OPCODE_DMIN:
3043 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3044 src0 = getSSA(8);
3045 src1 = getSSA(8);
3046 Value *dst = getSSA(8), *tmp[2];
3047 tmp[0] = fetchSrc(0, c);
3048 tmp[1] = fetchSrc(0, c + 1);
3049 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3050 tmp[0] = fetchSrc(1, c);
3051 tmp[1] = fetchSrc(1, c + 1);
3052 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3053 mkOp2(op, dstTy, dst, src0, src1);
3054 mkSplit(&dst0[c], 4, dst);
3055 c++;
3056 }
3057 break;
3058 case TGSI_OPCODE_DMAD:
3059 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3060 src0 = getSSA(8);
3061 src1 = getSSA(8);
3062 src2 = getSSA(8);
3063 Value *dst = getSSA(8), *tmp[2];
3064 tmp[0] = fetchSrc(0, c);
3065 tmp[1] = fetchSrc(0, c + 1);
3066 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3067 tmp[0] = fetchSrc(1, c);
3068 tmp[1] = fetchSrc(1, c + 1);
3069 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3070 tmp[0] = fetchSrc(2, c);
3071 tmp[1] = fetchSrc(2, c + 1);
3072 mkOp2(OP_MERGE, TYPE_U64, src2, tmp[0], tmp[1]);
3073 mkOp3(op, dstTy, dst, src0, src1, src2);
3074 mkSplit(&dst0[c], 4, dst);
3075 c++;
3076 }
3077 break;
3078 case TGSI_OPCODE_DROUND:
3079 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3080 src0 = getSSA(8);
3081 Value *dst = getSSA(8), *tmp[2];
3082 tmp[0] = fetchSrc(0, c);
3083 tmp[1] = fetchSrc(0, c + 1);
3084 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3085 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F64, src0)
3086 ->rnd = ROUND_NI;
3087 mkSplit(&dst0[c], 4, dst);
3088 c++;
3089 }
3090 break;
3091 case TGSI_OPCODE_DSSG:
3092 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3093 src0 = getSSA(8);
3094 Value *dst = getSSA(8), *dstF32 = getSSA(), *tmp[2];
3095 tmp[0] = fetchSrc(0, c);
3096 tmp[1] = fetchSrc(0, c + 1);
3097 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3098
3099 val0 = getScratch();
3100 val1 = getScratch();
3101 // The zero is wrong here since it's only 32-bit, but it works out in
3102 // the end since it gets replaced with $r63.
3103 mkCmp(OP_SET, CC_GT, TYPE_F32, val0, TYPE_F64, src0, zero);
3104 mkCmp(OP_SET, CC_LT, TYPE_F32, val1, TYPE_F64, src0, zero);
3105 mkOp2(OP_SUB, TYPE_F32, dstF32, val0, val1);
3106 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F32, dstF32);
3107 mkSplit(&dst0[c], 4, dst);
3108 c++;
3109 }
3110 break;
3111 default:
3112 ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
3113 assert(0);
3114 break;
3115 }
3116
3117 if (tgsi.dstCount()) {
3118 for (c = 0; c < 4; ++c) {
3119 if (!dst0[c])
3120 continue;
3121 if (dst0[c] != rDst0[c])
3122 mkMov(rDst0[c], dst0[c]);
3123 storeDst(0, c, rDst0[c]);
3124 }
3125 }
3126 vtxBaseValid = 0;
3127
3128 return true;
3129 }
3130
3131 void
3132 Converter::handleUserClipPlanes()
3133 {
3134 Value *res[8];
3135 int n, i, c;
3136
3137 for (c = 0; c < 4; ++c) {
3138 for (i = 0; i < info->io.genUserClip; ++i) {
3139 Symbol *sym = mkSymbol(FILE_MEMORY_CONST, info->io.ucpCBSlot,
3140 TYPE_F32, info->io.ucpBase + i * 16 + c * 4);
3141 Value *ucp = mkLoadv(TYPE_F32, sym, NULL);
3142 if (c == 0)
3143 res[i] = mkOp2v(OP_MUL, TYPE_F32, getScratch(), clipVtx[c], ucp);
3144 else
3145 mkOp3(OP_MAD, TYPE_F32, res[i], clipVtx[c], ucp, res[i]);
3146 }
3147 }
3148
3149 const int first = info->numOutputs - (info->io.genUserClip + 3) / 4;
3150
3151 for (i = 0; i < info->io.genUserClip; ++i) {
3152 n = i / 4 + first;
3153 c = i % 4;
3154 Symbol *sym =
3155 mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[n].slot[c] * 4);
3156 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, res[i]);
3157 }
3158 }
3159
3160 void
3161 Converter::exportOutputs()
3162 {
3163 for (unsigned int i = 0; i < info->numOutputs; ++i) {
3164 for (unsigned int c = 0; c < 4; ++c) {
3165 if (!oData.exists(sub.cur->values, i, c))
3166 continue;
3167 Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
3168 info->out[i].slot[c] * 4);
3169 Value *val = oData.load(sub.cur->values, i, c, NULL);
3170 if (val)
3171 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
3172 }
3173 }
3174 }
3175
3176 Converter::Converter(Program *ir, const tgsi::Source *code) : BuildUtil(ir),
3177 code(code),
3178 tgsi(NULL),
3179 tData(this), aData(this), pData(this), oData(this)
3180 {
3181 info = code->info;
3182
3183 const DataFile tFile = code->mainTempsInLMem ? FILE_MEMORY_LOCAL : FILE_GPR;
3184
3185 const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
3186 const unsigned pSize = code->fileSize(TGSI_FILE_PREDICATE);
3187 const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
3188 const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
3189
3190 tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, tFile, 0);
3191 pData.setup(TGSI_FILE_PREDICATE, 0, 0, pSize, 4, 4, FILE_PREDICATE, 0);
3192 aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_GPR, 0);
3193 oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
3194
3195 zero = mkImm((uint32_t)0);
3196
3197 vtxBaseValid = 0;
3198 }
3199
3200 Converter::~Converter()
3201 {
3202 }
3203
3204 inline const Converter::Location *
3205 Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v)
3206 {
3207 ValueMap::l_iterator it = s->values.l.find(v);
3208 return it == s->values.l.end() ? NULL : &it->second;
3209 }
3210
3211 template<typename T> inline void
3212 Converter::BindArgumentsPass::updateCallArgs(
3213 Instruction *i, void (Instruction::*setArg)(int, Value *),
3214 T (Function::*proto))
3215 {
3216 Function *g = i->asFlow()->target.fn;
3217 Subroutine *subg = conv.getSubroutine(g);
3218
3219 for (unsigned a = 0; a < (g->*proto).size(); ++a) {
3220 Value *v = (g->*proto)[a].get();
3221 const Converter::Location &l = *getValueLocation(subg, v);
3222 Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
3223
3224 (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
3225 }
3226 }
3227
3228 template<typename T> inline void
3229 Converter::BindArgumentsPass::updatePrototype(
3230 BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
3231 {
3232 (func->*updateSet)();
3233
3234 for (unsigned i = 0; i < set->getSize(); ++i) {
3235 Value *v = func->getLValue(i);
3236 const Converter::Location *l = getValueLocation(sub, v);
3237
3238 // only include values with a matching TGSI register
3239 if (set->test(i) && l && !conv.code->locals.count(*l))
3240 (func->*proto).push_back(v);
3241 }
3242 }
3243
3244 bool
3245 Converter::BindArgumentsPass::visit(Function *f)
3246 {
3247 sub = conv.getSubroutine(f);
3248
3249 for (ArrayList::Iterator bi = f->allBBlocks.iterator();
3250 !bi.end(); bi.next()) {
3251 for (Instruction *i = BasicBlock::get(bi)->getFirst();
3252 i; i = i->next) {
3253 if (i->op == OP_CALL && !i->asFlow()->builtin) {
3254 updateCallArgs(i, &Instruction::setSrc, &Function::ins);
3255 updateCallArgs(i, &Instruction::setDef, &Function::outs);
3256 }
3257 }
3258 }
3259
3260 if (func == prog->main && prog->getType() != Program::TYPE_COMPUTE)
3261 return true;
3262 updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
3263 &Function::buildLiveSets, &Function::ins);
3264 updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
3265 &Function::buildDefSets, &Function::outs);
3266
3267 return true;
3268 }
3269
3270 bool
3271 Converter::run()
3272 {
3273 BasicBlock *entry = new BasicBlock(prog->main);
3274 BasicBlock *leave = new BasicBlock(prog->main);
3275
3276 prog->main->setEntry(entry);
3277 prog->main->setExit(leave);
3278
3279 setPosition(entry, true);
3280 sub.cur = getSubroutine(prog->main);
3281
3282 if (info->io.genUserClip > 0) {
3283 for (int c = 0; c < 4; ++c)
3284 clipVtx[c] = getScratch();
3285 }
3286
3287 if (prog->getType() == Program::TYPE_FRAGMENT) {
3288 Symbol *sv = mkSysVal(SV_POSITION, 3);
3289 fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
3290 mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
3291 }
3292
3293 if (info->io.viewportId >= 0)
3294 viewport = getScratch();
3295 else
3296 viewport = NULL;
3297
3298 for (ip = 0; ip < code->scan.num_instructions; ++ip) {
3299 if (!handleInstruction(&code->insns[ip]))
3300 return false;
3301 }
3302
3303 if (!BindArgumentsPass(*this).run(prog))
3304 return false;
3305
3306 return true;
3307 }
3308
3309 } // unnamed namespace
3310
3311 namespace nv50_ir {
3312
3313 bool
3314 Program::makeFromTGSI(struct nv50_ir_prog_info *info)
3315 {
3316 tgsi::Source src(info);
3317 if (!src.scanSource())
3318 return false;
3319 tlsSize = info->bin.tlsSpace;
3320
3321 Converter builder(this, &src);
3322 return builder.run();
3323 }
3324
3325 } // namespace nv50_ir