nv50/ir/tgsi: TGSI_OPCODE_POW replicates its result
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_from_tgsi.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 extern "C" {
24 #include "tgsi/tgsi_dump.h"
25 #include "tgsi/tgsi_scan.h"
26 #include "tgsi/tgsi_util.h"
27 }
28
29 #include <set>
30
31 #include "codegen/nv50_ir.h"
32 #include "codegen/nv50_ir_util.h"
33 #include "codegen/nv50_ir_build_util.h"
34
35 namespace tgsi {
36
37 class Source;
38
39 static nv50_ir::operation translateOpcode(uint opcode);
40 static nv50_ir::DataFile translateFile(uint file);
41 static nv50_ir::TexTarget translateTexture(uint texTarg);
42 static nv50_ir::SVSemantic translateSysVal(uint sysval);
43
44 class Instruction
45 {
46 public:
47 Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
48
49 class SrcRegister
50 {
51 public:
52 SrcRegister(const struct tgsi_full_src_register *src)
53 : reg(src->Register),
54 fsr(src)
55 { }
56
57 SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
58
59 SrcRegister(const struct tgsi_ind_register& ind)
60 : reg(tgsi_util_get_src_from_ind(&ind)),
61 fsr(NULL)
62 { }
63
64 struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
65 {
66 struct tgsi_src_register reg;
67 memset(&reg, 0, sizeof(reg));
68 reg.Index = off.Index;
69 reg.File = off.File;
70 reg.SwizzleX = off.SwizzleX;
71 reg.SwizzleY = off.SwizzleY;
72 reg.SwizzleZ = off.SwizzleZ;
73 return reg;
74 }
75
76 SrcRegister(const struct tgsi_texture_offset& off) :
77 reg(offsetToSrc(off)),
78 fsr(NULL)
79 { }
80
81 uint getFile() const { return reg.File; }
82
83 bool is2D() const { return reg.Dimension; }
84
85 bool isIndirect(int dim) const
86 {
87 return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
88 }
89
90 int getIndex(int dim) const
91 {
92 return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
93 }
94
95 int getSwizzle(int chan) const
96 {
97 return tgsi_util_get_src_register_swizzle(&reg, chan);
98 }
99
100 nv50_ir::Modifier getMod(int chan) const;
101
102 SrcRegister getIndirect(int dim) const
103 {
104 assert(fsr && isIndirect(dim));
105 if (dim)
106 return SrcRegister(fsr->DimIndirect);
107 return SrcRegister(fsr->Indirect);
108 }
109
110 uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
111 {
112 assert(reg.File == TGSI_FILE_IMMEDIATE);
113 assert(!reg.Absolute);
114 assert(!reg.Negate);
115 return info->immd.data[reg.Index * 4 + getSwizzle(c)];
116 }
117
118 private:
119 const struct tgsi_src_register reg;
120 const struct tgsi_full_src_register *fsr;
121 };
122
123 class DstRegister
124 {
125 public:
126 DstRegister(const struct tgsi_full_dst_register *dst)
127 : reg(dst->Register),
128 fdr(dst)
129 { }
130
131 DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
132
133 uint getFile() const { return reg.File; }
134
135 bool is2D() const { return reg.Dimension; }
136
137 bool isIndirect(int dim) const
138 {
139 return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
140 }
141
142 int getIndex(int dim) const
143 {
144 return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
145 }
146
147 unsigned int getMask() const { return reg.WriteMask; }
148
149 bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
150
151 SrcRegister getIndirect(int dim) const
152 {
153 assert(fdr && isIndirect(dim));
154 if (dim)
155 return SrcRegister(fdr->DimIndirect);
156 return SrcRegister(fdr->Indirect);
157 }
158
159 private:
160 const struct tgsi_dst_register reg;
161 const struct tgsi_full_dst_register *fdr;
162 };
163
164 inline uint getOpcode() const { return insn->Instruction.Opcode; }
165
166 unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
167 unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
168
169 // mask of used components of source s
170 unsigned int srcMask(unsigned int s) const;
171
172 SrcRegister getSrc(unsigned int s) const
173 {
174 assert(s < srcCount());
175 return SrcRegister(&insn->Src[s]);
176 }
177
178 DstRegister getDst(unsigned int d) const
179 {
180 assert(d < dstCount());
181 return DstRegister(&insn->Dst[d]);
182 }
183
184 SrcRegister getTexOffset(unsigned int i) const
185 {
186 assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
187 return SrcRegister(insn->TexOffsets[i]);
188 }
189
190 unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
191
192 bool checkDstSrcAliasing() const;
193
194 inline nv50_ir::operation getOP() const {
195 return translateOpcode(getOpcode()); }
196
197 nv50_ir::DataType inferSrcType() const;
198 nv50_ir::DataType inferDstType() const;
199
200 nv50_ir::CondCode getSetCond() const;
201
202 nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
203
204 inline uint getLabel() { return insn->Label.Label; }
205
206 unsigned getSaturate() const { return insn->Instruction.Saturate; }
207
208 void print() const
209 {
210 tgsi_dump_instruction(insn, 1);
211 }
212
213 private:
214 const struct tgsi_full_instruction *insn;
215 };
216
217 unsigned int Instruction::srcMask(unsigned int s) const
218 {
219 unsigned int mask = insn->Dst[0].Register.WriteMask;
220
221 switch (insn->Instruction.Opcode) {
222 case TGSI_OPCODE_COS:
223 case TGSI_OPCODE_SIN:
224 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
225 case TGSI_OPCODE_DP2:
226 return 0x3;
227 case TGSI_OPCODE_DP3:
228 return 0x7;
229 case TGSI_OPCODE_DP4:
230 case TGSI_OPCODE_DPH:
231 case TGSI_OPCODE_KILL_IF: /* WriteMask ignored */
232 return 0xf;
233 case TGSI_OPCODE_DST:
234 return mask & (s ? 0xa : 0x6);
235 case TGSI_OPCODE_EX2:
236 case TGSI_OPCODE_EXP:
237 case TGSI_OPCODE_LG2:
238 case TGSI_OPCODE_LOG:
239 case TGSI_OPCODE_POW:
240 case TGSI_OPCODE_RCP:
241 case TGSI_OPCODE_RSQ:
242 case TGSI_OPCODE_SCS:
243 return 0x1;
244 case TGSI_OPCODE_IF:
245 case TGSI_OPCODE_UIF:
246 return 0x1;
247 case TGSI_OPCODE_LIT:
248 return 0xb;
249 case TGSI_OPCODE_TEX2:
250 case TGSI_OPCODE_TXB2:
251 case TGSI_OPCODE_TXL2:
252 return (s == 0) ? 0xf : 0x3;
253 case TGSI_OPCODE_TEX:
254 case TGSI_OPCODE_TXB:
255 case TGSI_OPCODE_TXD:
256 case TGSI_OPCODE_TXL:
257 case TGSI_OPCODE_TXP:
258 case TGSI_OPCODE_LODQ:
259 {
260 const struct tgsi_instruction_texture *tex = &insn->Texture;
261
262 assert(insn->Instruction.Texture);
263
264 mask = 0x7;
265 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
266 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
267 mask |= 0x8; /* bias, lod or proj */
268
269 switch (tex->Texture) {
270 case TGSI_TEXTURE_1D:
271 mask &= 0x9;
272 break;
273 case TGSI_TEXTURE_SHADOW1D:
274 mask &= 0xd;
275 break;
276 case TGSI_TEXTURE_1D_ARRAY:
277 case TGSI_TEXTURE_2D:
278 case TGSI_TEXTURE_RECT:
279 mask &= 0xb;
280 break;
281 case TGSI_TEXTURE_CUBE_ARRAY:
282 case TGSI_TEXTURE_SHADOW2D_ARRAY:
283 case TGSI_TEXTURE_SHADOWCUBE:
284 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
285 mask |= 0x8;
286 break;
287 default:
288 break;
289 }
290 }
291 return mask;
292 case TGSI_OPCODE_XPD:
293 {
294 unsigned int x = 0;
295 if (mask & 1) x |= 0x6;
296 if (mask & 2) x |= 0x5;
297 if (mask & 4) x |= 0x3;
298 return x;
299 }
300 default:
301 break;
302 }
303
304 return mask;
305 }
306
307 nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
308 {
309 nv50_ir::Modifier m(0);
310
311 if (reg.Absolute)
312 m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
313 if (reg.Negate)
314 m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
315 return m;
316 }
317
318 static nv50_ir::DataFile translateFile(uint file)
319 {
320 switch (file) {
321 case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST;
322 case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT;
323 case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT;
324 case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR;
325 case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS;
326 case TGSI_FILE_PREDICATE: return nv50_ir::FILE_PREDICATE;
327 case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE;
328 case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE;
329 case TGSI_FILE_RESOURCE: return nv50_ir::FILE_MEMORY_GLOBAL;
330 case TGSI_FILE_SAMPLER:
331 case TGSI_FILE_NULL:
332 default:
333 return nv50_ir::FILE_NULL;
334 }
335 }
336
337 static nv50_ir::SVSemantic translateSysVal(uint sysval)
338 {
339 switch (sysval) {
340 case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE;
341 case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE;
342 case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID;
343 case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
344 case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID;
345 case TGSI_SEMANTIC_GRID_SIZE: return nv50_ir::SV_NCTAID;
346 case TGSI_SEMANTIC_BLOCK_ID: return nv50_ir::SV_CTAID;
347 case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID;
348 case TGSI_SEMANTIC_THREAD_ID: return nv50_ir::SV_TID;
349 case TGSI_SEMANTIC_SAMPLEID: return nv50_ir::SV_SAMPLE_INDEX;
350 case TGSI_SEMANTIC_SAMPLEPOS: return nv50_ir::SV_SAMPLE_POS;
351 case TGSI_SEMANTIC_SAMPLEMASK: return nv50_ir::SV_SAMPLE_MASK;
352 case TGSI_SEMANTIC_INVOCATIONID: return nv50_ir::SV_INVOCATION_ID;
353 default:
354 assert(0);
355 return nv50_ir::SV_CLOCK;
356 }
357 }
358
359 #define NV50_IR_TEX_TARG_CASE(a, b) \
360 case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
361
362 static nv50_ir::TexTarget translateTexture(uint tex)
363 {
364 switch (tex) {
365 NV50_IR_TEX_TARG_CASE(1D, 1D);
366 NV50_IR_TEX_TARG_CASE(2D, 2D);
367 NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS);
368 NV50_IR_TEX_TARG_CASE(3D, 3D);
369 NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
370 NV50_IR_TEX_TARG_CASE(RECT, RECT);
371 NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
372 NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
373 NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY);
374 NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY);
375 NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
376 NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
377 NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
378 NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
379 NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
380 NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
381 NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW);
382 NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
383
384 case TGSI_TEXTURE_UNKNOWN:
385 default:
386 assert(!"invalid texture target");
387 return nv50_ir::TEX_TARGET_2D;
388 }
389 }
390
391 nv50_ir::DataType Instruction::inferSrcType() const
392 {
393 switch (getOpcode()) {
394 case TGSI_OPCODE_UIF:
395 case TGSI_OPCODE_AND:
396 case TGSI_OPCODE_OR:
397 case TGSI_OPCODE_XOR:
398 case TGSI_OPCODE_NOT:
399 case TGSI_OPCODE_U2F:
400 case TGSI_OPCODE_UADD:
401 case TGSI_OPCODE_UDIV:
402 case TGSI_OPCODE_UMOD:
403 case TGSI_OPCODE_UMAD:
404 case TGSI_OPCODE_UMUL:
405 case TGSI_OPCODE_UMUL_HI:
406 case TGSI_OPCODE_UMAX:
407 case TGSI_OPCODE_UMIN:
408 case TGSI_OPCODE_USEQ:
409 case TGSI_OPCODE_USGE:
410 case TGSI_OPCODE_USLT:
411 case TGSI_OPCODE_USNE:
412 case TGSI_OPCODE_USHR:
413 case TGSI_OPCODE_UCMP:
414 case TGSI_OPCODE_ATOMUADD:
415 case TGSI_OPCODE_ATOMXCHG:
416 case TGSI_OPCODE_ATOMCAS:
417 case TGSI_OPCODE_ATOMAND:
418 case TGSI_OPCODE_ATOMOR:
419 case TGSI_OPCODE_ATOMXOR:
420 case TGSI_OPCODE_ATOMUMIN:
421 case TGSI_OPCODE_ATOMUMAX:
422 case TGSI_OPCODE_UBFE:
423 case TGSI_OPCODE_UMSB:
424 return nv50_ir::TYPE_U32;
425 case TGSI_OPCODE_I2F:
426 case TGSI_OPCODE_IDIV:
427 case TGSI_OPCODE_IMUL_HI:
428 case TGSI_OPCODE_IMAX:
429 case TGSI_OPCODE_IMIN:
430 case TGSI_OPCODE_IABS:
431 case TGSI_OPCODE_INEG:
432 case TGSI_OPCODE_ISGE:
433 case TGSI_OPCODE_ISHR:
434 case TGSI_OPCODE_ISLT:
435 case TGSI_OPCODE_ISSG:
436 case TGSI_OPCODE_SAD: // not sure about SAD, but no one has a float version
437 case TGSI_OPCODE_MOD:
438 case TGSI_OPCODE_UARL:
439 case TGSI_OPCODE_ATOMIMIN:
440 case TGSI_OPCODE_ATOMIMAX:
441 case TGSI_OPCODE_IBFE:
442 case TGSI_OPCODE_IMSB:
443 return nv50_ir::TYPE_S32;
444 default:
445 return nv50_ir::TYPE_F32;
446 }
447 }
448
449 nv50_ir::DataType Instruction::inferDstType() const
450 {
451 switch (getOpcode()) {
452 case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
453 case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
454 case TGSI_OPCODE_FSEQ:
455 case TGSI_OPCODE_FSGE:
456 case TGSI_OPCODE_FSLT:
457 case TGSI_OPCODE_FSNE:
458 return nv50_ir::TYPE_U32;
459 case TGSI_OPCODE_I2F:
460 case TGSI_OPCODE_U2F:
461 return nv50_ir::TYPE_F32;
462 default:
463 return inferSrcType();
464 }
465 }
466
467 nv50_ir::CondCode Instruction::getSetCond() const
468 {
469 using namespace nv50_ir;
470
471 switch (getOpcode()) {
472 case TGSI_OPCODE_SLT:
473 case TGSI_OPCODE_ISLT:
474 case TGSI_OPCODE_USLT:
475 case TGSI_OPCODE_FSLT:
476 return CC_LT;
477 case TGSI_OPCODE_SLE:
478 return CC_LE;
479 case TGSI_OPCODE_SGE:
480 case TGSI_OPCODE_ISGE:
481 case TGSI_OPCODE_USGE:
482 case TGSI_OPCODE_FSGE:
483 return CC_GE;
484 case TGSI_OPCODE_SGT:
485 return CC_GT;
486 case TGSI_OPCODE_SEQ:
487 case TGSI_OPCODE_USEQ:
488 case TGSI_OPCODE_FSEQ:
489 return CC_EQ;
490 case TGSI_OPCODE_SNE:
491 case TGSI_OPCODE_FSNE:
492 return CC_NEU;
493 case TGSI_OPCODE_USNE:
494 return CC_NE;
495 case TGSI_OPCODE_SFL:
496 return CC_NEVER;
497 case TGSI_OPCODE_STR:
498 default:
499 return CC_ALWAYS;
500 }
501 }
502
503 #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
504
505 static nv50_ir::operation translateOpcode(uint opcode)
506 {
507 switch (opcode) {
508 NV50_IR_OPCODE_CASE(ARL, SHL);
509 NV50_IR_OPCODE_CASE(MOV, MOV);
510
511 NV50_IR_OPCODE_CASE(RCP, RCP);
512 NV50_IR_OPCODE_CASE(RSQ, RSQ);
513
514 NV50_IR_OPCODE_CASE(MUL, MUL);
515 NV50_IR_OPCODE_CASE(ADD, ADD);
516
517 NV50_IR_OPCODE_CASE(MIN, MIN);
518 NV50_IR_OPCODE_CASE(MAX, MAX);
519 NV50_IR_OPCODE_CASE(SLT, SET);
520 NV50_IR_OPCODE_CASE(SGE, SET);
521 NV50_IR_OPCODE_CASE(MAD, MAD);
522 NV50_IR_OPCODE_CASE(SUB, SUB);
523
524 NV50_IR_OPCODE_CASE(FLR, FLOOR);
525 NV50_IR_OPCODE_CASE(ROUND, CVT);
526 NV50_IR_OPCODE_CASE(EX2, EX2);
527 NV50_IR_OPCODE_CASE(LG2, LG2);
528 NV50_IR_OPCODE_CASE(POW, POW);
529
530 NV50_IR_OPCODE_CASE(ABS, ABS);
531
532 NV50_IR_OPCODE_CASE(COS, COS);
533 NV50_IR_OPCODE_CASE(DDX, DFDX);
534 NV50_IR_OPCODE_CASE(DDY, DFDY);
535 NV50_IR_OPCODE_CASE(KILL, DISCARD);
536
537 NV50_IR_OPCODE_CASE(SEQ, SET);
538 NV50_IR_OPCODE_CASE(SFL, SET);
539 NV50_IR_OPCODE_CASE(SGT, SET);
540 NV50_IR_OPCODE_CASE(SIN, SIN);
541 NV50_IR_OPCODE_CASE(SLE, SET);
542 NV50_IR_OPCODE_CASE(SNE, SET);
543 NV50_IR_OPCODE_CASE(STR, SET);
544 NV50_IR_OPCODE_CASE(TEX, TEX);
545 NV50_IR_OPCODE_CASE(TXD, TXD);
546 NV50_IR_OPCODE_CASE(TXP, TEX);
547
548 NV50_IR_OPCODE_CASE(BRA, BRA);
549 NV50_IR_OPCODE_CASE(CAL, CALL);
550 NV50_IR_OPCODE_CASE(RET, RET);
551 NV50_IR_OPCODE_CASE(CMP, SLCT);
552
553 NV50_IR_OPCODE_CASE(TXB, TXB);
554
555 NV50_IR_OPCODE_CASE(DIV, DIV);
556
557 NV50_IR_OPCODE_CASE(TXL, TXL);
558
559 NV50_IR_OPCODE_CASE(CEIL, CEIL);
560 NV50_IR_OPCODE_CASE(I2F, CVT);
561 NV50_IR_OPCODE_CASE(NOT, NOT);
562 NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
563 NV50_IR_OPCODE_CASE(SHL, SHL);
564
565 NV50_IR_OPCODE_CASE(AND, AND);
566 NV50_IR_OPCODE_CASE(OR, OR);
567 NV50_IR_OPCODE_CASE(MOD, MOD);
568 NV50_IR_OPCODE_CASE(XOR, XOR);
569 NV50_IR_OPCODE_CASE(SAD, SAD);
570 NV50_IR_OPCODE_CASE(TXF, TXF);
571 NV50_IR_OPCODE_CASE(TXQ, TXQ);
572 NV50_IR_OPCODE_CASE(TG4, TXG);
573 NV50_IR_OPCODE_CASE(LODQ, TXLQ);
574
575 NV50_IR_OPCODE_CASE(EMIT, EMIT);
576 NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
577
578 NV50_IR_OPCODE_CASE(KILL_IF, DISCARD);
579
580 NV50_IR_OPCODE_CASE(F2I, CVT);
581 NV50_IR_OPCODE_CASE(FSEQ, SET);
582 NV50_IR_OPCODE_CASE(FSGE, SET);
583 NV50_IR_OPCODE_CASE(FSLT, SET);
584 NV50_IR_OPCODE_CASE(FSNE, SET);
585 NV50_IR_OPCODE_CASE(IDIV, DIV);
586 NV50_IR_OPCODE_CASE(IMAX, MAX);
587 NV50_IR_OPCODE_CASE(IMIN, MIN);
588 NV50_IR_OPCODE_CASE(IABS, ABS);
589 NV50_IR_OPCODE_CASE(INEG, NEG);
590 NV50_IR_OPCODE_CASE(ISGE, SET);
591 NV50_IR_OPCODE_CASE(ISHR, SHR);
592 NV50_IR_OPCODE_CASE(ISLT, SET);
593 NV50_IR_OPCODE_CASE(F2U, CVT);
594 NV50_IR_OPCODE_CASE(U2F, CVT);
595 NV50_IR_OPCODE_CASE(UADD, ADD);
596 NV50_IR_OPCODE_CASE(UDIV, DIV);
597 NV50_IR_OPCODE_CASE(UMAD, MAD);
598 NV50_IR_OPCODE_CASE(UMAX, MAX);
599 NV50_IR_OPCODE_CASE(UMIN, MIN);
600 NV50_IR_OPCODE_CASE(UMOD, MOD);
601 NV50_IR_OPCODE_CASE(UMUL, MUL);
602 NV50_IR_OPCODE_CASE(USEQ, SET);
603 NV50_IR_OPCODE_CASE(USGE, SET);
604 NV50_IR_OPCODE_CASE(USHR, SHR);
605 NV50_IR_OPCODE_CASE(USLT, SET);
606 NV50_IR_OPCODE_CASE(USNE, SET);
607
608 NV50_IR_OPCODE_CASE(IMUL_HI, MUL);
609 NV50_IR_OPCODE_CASE(UMUL_HI, MUL);
610
611 NV50_IR_OPCODE_CASE(SAMPLE, TEX);
612 NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
613 NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
614 NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
615 NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
616 NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
617 NV50_IR_OPCODE_CASE(SAMPLE_I, TXF);
618 NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF);
619 NV50_IR_OPCODE_CASE(GATHER4, TXG);
620 NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
621
622 NV50_IR_OPCODE_CASE(ATOMUADD, ATOM);
623 NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM);
624 NV50_IR_OPCODE_CASE(ATOMCAS, ATOM);
625 NV50_IR_OPCODE_CASE(ATOMAND, ATOM);
626 NV50_IR_OPCODE_CASE(ATOMOR, ATOM);
627 NV50_IR_OPCODE_CASE(ATOMXOR, ATOM);
628 NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM);
629 NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM);
630 NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM);
631 NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM);
632
633 NV50_IR_OPCODE_CASE(TEX2, TEX);
634 NV50_IR_OPCODE_CASE(TXB2, TXB);
635 NV50_IR_OPCODE_CASE(TXL2, TXL);
636
637 NV50_IR_OPCODE_CASE(IBFE, EXTBF);
638 NV50_IR_OPCODE_CASE(UBFE, EXTBF);
639 NV50_IR_OPCODE_CASE(BFI, INSBF);
640 NV50_IR_OPCODE_CASE(BREV, EXTBF);
641 NV50_IR_OPCODE_CASE(POPC, POPCNT);
642 NV50_IR_OPCODE_CASE(LSB, BFIND);
643 NV50_IR_OPCODE_CASE(IMSB, BFIND);
644 NV50_IR_OPCODE_CASE(UMSB, BFIND);
645
646 NV50_IR_OPCODE_CASE(END, EXIT);
647
648 default:
649 return nv50_ir::OP_NOP;
650 }
651 }
652
653 static uint16_t opcodeToSubOp(uint opcode)
654 {
655 switch (opcode) {
656 case TGSI_OPCODE_LFENCE: return NV50_IR_SUBOP_MEMBAR(L, GL);
657 case TGSI_OPCODE_SFENCE: return NV50_IR_SUBOP_MEMBAR(S, GL);
658 case TGSI_OPCODE_MFENCE: return NV50_IR_SUBOP_MEMBAR(M, GL);
659 case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD;
660 case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH;
661 case TGSI_OPCODE_ATOMCAS: return NV50_IR_SUBOP_ATOM_CAS;
662 case TGSI_OPCODE_ATOMAND: return NV50_IR_SUBOP_ATOM_AND;
663 case TGSI_OPCODE_ATOMOR: return NV50_IR_SUBOP_ATOM_OR;
664 case TGSI_OPCODE_ATOMXOR: return NV50_IR_SUBOP_ATOM_XOR;
665 case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN;
666 case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN;
667 case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX;
668 case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX;
669 case TGSI_OPCODE_IMUL_HI:
670 case TGSI_OPCODE_UMUL_HI:
671 return NV50_IR_SUBOP_MUL_HIGH;
672 default:
673 return 0;
674 }
675 }
676
677 bool Instruction::checkDstSrcAliasing() const
678 {
679 if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
680 return false;
681
682 for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
683 if (insn->Src[s].Register.File == TGSI_FILE_NULL)
684 break;
685 if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
686 insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
687 return true;
688 }
689 return false;
690 }
691
692 class Source
693 {
694 public:
695 Source(struct nv50_ir_prog_info *);
696 ~Source();
697
698 public:
699 bool scanSource();
700 unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
701
702 public:
703 struct tgsi_shader_info scan;
704 struct tgsi_full_instruction *insns;
705 const struct tgsi_token *tokens;
706 struct nv50_ir_prog_info *info;
707
708 nv50_ir::DynArray tempArrays;
709 nv50_ir::DynArray immdArrays;
710
711 typedef nv50_ir::BuildUtil::Location Location;
712 // these registers are per-subroutine, cannot be used for parameter passing
713 std::set<Location> locals;
714
715 bool mainTempsInLMem;
716
717 int clipVertexOutput;
718
719 struct TextureView {
720 uint8_t target; // TGSI_TEXTURE_*
721 };
722 std::vector<TextureView> textureViews;
723
724 struct Resource {
725 uint8_t target; // TGSI_TEXTURE_*
726 bool raw;
727 uint8_t slot; // $surface index
728 };
729 std::vector<Resource> resources;
730
731 private:
732 int inferSysValDirection(unsigned sn) const;
733 bool scanDeclaration(const struct tgsi_full_declaration *);
734 bool scanInstruction(const struct tgsi_full_instruction *);
735 void scanProperty(const struct tgsi_full_property *);
736 void scanImmediate(const struct tgsi_full_immediate *);
737
738 inline bool isEdgeFlagPassthrough(const Instruction&) const;
739 };
740
741 Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
742 {
743 tokens = (const struct tgsi_token *)info->bin.source;
744
745 if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
746 tgsi_dump(tokens, 0);
747
748 mainTempsInLMem = FALSE;
749 }
750
751 Source::~Source()
752 {
753 if (insns)
754 FREE(insns);
755
756 if (info->immd.data)
757 FREE(info->immd.data);
758 if (info->immd.type)
759 FREE(info->immd.type);
760 }
761
762 bool Source::scanSource()
763 {
764 unsigned insnCount = 0;
765 struct tgsi_parse_context parse;
766
767 tgsi_scan_shader(tokens, &scan);
768
769 insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
770 sizeof(insns[0]));
771 if (!insns)
772 return false;
773
774 clipVertexOutput = -1;
775
776 textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1);
777 resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1);
778
779 info->immd.bufSize = 0;
780
781 info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
782 info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
783 info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
784
785 if (info->type == PIPE_SHADER_FRAGMENT) {
786 info->prop.fp.writesDepth = scan.writes_z;
787 info->prop.fp.usesDiscard = scan.uses_kill;
788 } else
789 if (info->type == PIPE_SHADER_GEOMETRY) {
790 info->prop.gp.instanceCount = 1; // default value
791 }
792
793 info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
794 info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
795
796 tgsi_parse_init(&parse, tokens);
797 while (!tgsi_parse_end_of_tokens(&parse)) {
798 tgsi_parse_token(&parse);
799
800 switch (parse.FullToken.Token.Type) {
801 case TGSI_TOKEN_TYPE_IMMEDIATE:
802 scanImmediate(&parse.FullToken.FullImmediate);
803 break;
804 case TGSI_TOKEN_TYPE_DECLARATION:
805 scanDeclaration(&parse.FullToken.FullDeclaration);
806 break;
807 case TGSI_TOKEN_TYPE_INSTRUCTION:
808 insns[insnCount++] = parse.FullToken.FullInstruction;
809 scanInstruction(&parse.FullToken.FullInstruction);
810 break;
811 case TGSI_TOKEN_TYPE_PROPERTY:
812 scanProperty(&parse.FullToken.FullProperty);
813 break;
814 default:
815 INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
816 break;
817 }
818 }
819 tgsi_parse_free(&parse);
820
821 if (mainTempsInLMem)
822 info->bin.tlsSpace += (scan.file_max[TGSI_FILE_TEMPORARY] + 1) * 16;
823
824 if (info->io.genUserClip > 0) {
825 info->io.clipDistanceMask = (1 << info->io.genUserClip) - 1;
826
827 const unsigned int nOut = (info->io.genUserClip + 3) / 4;
828
829 for (unsigned int n = 0; n < nOut; ++n) {
830 unsigned int i = info->numOutputs++;
831 info->out[i].id = i;
832 info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
833 info->out[i].si = n;
834 info->out[i].mask = info->io.clipDistanceMask >> (n * 4);
835 }
836 }
837
838 return info->assignSlots(info) == 0;
839 }
840
841 void Source::scanProperty(const struct tgsi_full_property *prop)
842 {
843 switch (prop->Property.PropertyName) {
844 case TGSI_PROPERTY_GS_OUTPUT_PRIM:
845 info->prop.gp.outputPrim = prop->u[0].Data;
846 break;
847 case TGSI_PROPERTY_GS_INPUT_PRIM:
848 info->prop.gp.inputPrim = prop->u[0].Data;
849 break;
850 case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
851 info->prop.gp.maxVertices = prop->u[0].Data;
852 break;
853 case TGSI_PROPERTY_GS_INVOCATIONS:
854 info->prop.gp.instanceCount = prop->u[0].Data;
855 break;
856 case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
857 info->prop.fp.separateFragData = TRUE;
858 break;
859 case TGSI_PROPERTY_FS_COORD_ORIGIN:
860 case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
861 // we don't care
862 break;
863 case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
864 info->io.genUserClip = -1;
865 break;
866 default:
867 INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
868 break;
869 }
870 }
871
872 void Source::scanImmediate(const struct tgsi_full_immediate *imm)
873 {
874 const unsigned n = info->immd.count++;
875
876 assert(n < scan.immediate_count);
877
878 for (int c = 0; c < 4; ++c)
879 info->immd.data[n * 4 + c] = imm->u[c].Uint;
880
881 info->immd.type[n] = imm->Immediate.DataType;
882 }
883
884 int Source::inferSysValDirection(unsigned sn) const
885 {
886 switch (sn) {
887 case TGSI_SEMANTIC_INSTANCEID:
888 case TGSI_SEMANTIC_VERTEXID:
889 return 1;
890 case TGSI_SEMANTIC_LAYER:
891 #if 0
892 case TGSI_SEMANTIC_VIEWPORTINDEX:
893 return 0;
894 #endif
895 case TGSI_SEMANTIC_PRIMID:
896 return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
897 default:
898 return 0;
899 }
900 }
901
902 bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
903 {
904 unsigned i, c;
905 unsigned sn = TGSI_SEMANTIC_GENERIC;
906 unsigned si = 0;
907 const unsigned first = decl->Range.First, last = decl->Range.Last;
908
909 if (decl->Declaration.Semantic) {
910 sn = decl->Semantic.Name;
911 si = decl->Semantic.Index;
912 }
913
914 if (decl->Declaration.Local) {
915 for (i = first; i <= last; ++i) {
916 for (c = 0; c < 4; ++c) {
917 locals.insert(
918 Location(decl->Declaration.File, decl->Dim.Index2D, i, c));
919 }
920 }
921 }
922
923 switch (decl->Declaration.File) {
924 case TGSI_FILE_INPUT:
925 if (info->type == PIPE_SHADER_VERTEX) {
926 // all vertex attributes are equal
927 for (i = first; i <= last; ++i) {
928 info->in[i].sn = TGSI_SEMANTIC_GENERIC;
929 info->in[i].si = i;
930 }
931 } else {
932 for (i = first; i <= last; ++i, ++si) {
933 info->in[i].id = i;
934 info->in[i].sn = sn;
935 info->in[i].si = si;
936 if (info->type == PIPE_SHADER_FRAGMENT) {
937 // translate interpolation mode
938 switch (decl->Interp.Interpolate) {
939 case TGSI_INTERPOLATE_CONSTANT:
940 info->in[i].flat = 1;
941 break;
942 case TGSI_INTERPOLATE_COLOR:
943 info->in[i].sc = 1;
944 break;
945 case TGSI_INTERPOLATE_LINEAR:
946 info->in[i].linear = 1;
947 break;
948 default:
949 break;
950 }
951 if (decl->Interp.Centroid || info->io.sampleInterp)
952 info->in[i].centroid = 1;
953 }
954 }
955 }
956 break;
957 case TGSI_FILE_OUTPUT:
958 for (i = first; i <= last; ++i, ++si) {
959 switch (sn) {
960 case TGSI_SEMANTIC_POSITION:
961 if (info->type == PIPE_SHADER_FRAGMENT)
962 info->io.fragDepth = i;
963 else
964 if (clipVertexOutput < 0)
965 clipVertexOutput = i;
966 break;
967 case TGSI_SEMANTIC_COLOR:
968 if (info->type == PIPE_SHADER_FRAGMENT)
969 info->prop.fp.numColourResults++;
970 break;
971 case TGSI_SEMANTIC_EDGEFLAG:
972 info->io.edgeFlagOut = i;
973 break;
974 case TGSI_SEMANTIC_CLIPVERTEX:
975 clipVertexOutput = i;
976 break;
977 case TGSI_SEMANTIC_CLIPDIST:
978 info->io.clipDistanceMask |=
979 decl->Declaration.UsageMask << (si * 4);
980 info->io.genUserClip = -1;
981 break;
982 case TGSI_SEMANTIC_SAMPLEMASK:
983 info->io.sampleMask = i;
984 break;
985 default:
986 break;
987 }
988 info->out[i].id = i;
989 info->out[i].sn = sn;
990 info->out[i].si = si;
991 }
992 break;
993 case TGSI_FILE_SYSTEM_VALUE:
994 switch (sn) {
995 case TGSI_SEMANTIC_INSTANCEID:
996 info->io.instanceId = first;
997 break;
998 case TGSI_SEMANTIC_VERTEXID:
999 info->io.vertexId = first;
1000 break;
1001 default:
1002 break;
1003 }
1004 for (i = first; i <= last; ++i, ++si) {
1005 info->sv[i].sn = sn;
1006 info->sv[i].si = si;
1007 info->sv[i].input = inferSysValDirection(sn);
1008 }
1009 break;
1010 case TGSI_FILE_RESOURCE:
1011 for (i = first; i <= last; ++i) {
1012 resources[i].target = decl->Resource.Resource;
1013 resources[i].raw = decl->Resource.Raw;
1014 resources[i].slot = i;
1015 }
1016 break;
1017 case TGSI_FILE_SAMPLER_VIEW:
1018 for (i = first; i <= last; ++i)
1019 textureViews[i].target = decl->SamplerView.Resource;
1020 break;
1021 case TGSI_FILE_NULL:
1022 case TGSI_FILE_TEMPORARY:
1023 case TGSI_FILE_ADDRESS:
1024 case TGSI_FILE_CONSTANT:
1025 case TGSI_FILE_IMMEDIATE:
1026 case TGSI_FILE_PREDICATE:
1027 case TGSI_FILE_SAMPLER:
1028 break;
1029 default:
1030 ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
1031 return false;
1032 }
1033 return true;
1034 }
1035
1036 inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
1037 {
1038 return insn.getOpcode() == TGSI_OPCODE_MOV &&
1039 insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
1040 insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
1041 }
1042
1043 bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
1044 {
1045 Instruction insn(inst);
1046
1047 if (insn.getOpcode() == TGSI_OPCODE_BARRIER)
1048 info->numBarriers = 1;
1049
1050 if (insn.dstCount()) {
1051 if (insn.getDst(0).getFile() == TGSI_FILE_OUTPUT) {
1052 Instruction::DstRegister dst = insn.getDst(0);
1053
1054 if (dst.isIndirect(0))
1055 for (unsigned i = 0; i < info->numOutputs; ++i)
1056 info->out[i].mask = 0xf;
1057 else
1058 info->out[dst.getIndex(0)].mask |= dst.getMask();
1059
1060 if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE ||
1061 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID ||
1062 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_LAYER ||
1063 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_VIEWPORT_INDEX ||
1064 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG)
1065 info->out[dst.getIndex(0)].mask &= 1;
1066
1067 if (isEdgeFlagPassthrough(insn))
1068 info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
1069 } else
1070 if (insn.getDst(0).getFile() == TGSI_FILE_TEMPORARY) {
1071 if (insn.getDst(0).isIndirect(0))
1072 mainTempsInLMem = TRUE;
1073 }
1074 }
1075
1076 for (unsigned s = 0; s < insn.srcCount(); ++s) {
1077 Instruction::SrcRegister src = insn.getSrc(s);
1078 if (src.getFile() == TGSI_FILE_TEMPORARY) {
1079 if (src.isIndirect(0))
1080 mainTempsInLMem = TRUE;
1081 } else
1082 if (src.getFile() == TGSI_FILE_RESOURCE) {
1083 if (src.getIndex(0) == TGSI_RESOURCE_GLOBAL)
1084 info->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ?
1085 0x1 : 0x2;
1086 }
1087 if (src.getFile() != TGSI_FILE_INPUT)
1088 continue;
1089 unsigned mask = insn.srcMask(s);
1090
1091 if (src.isIndirect(0)) {
1092 for (unsigned i = 0; i < info->numInputs; ++i)
1093 info->in[i].mask = 0xf;
1094 } else {
1095 const int i = src.getIndex(0);
1096 for (unsigned c = 0; c < 4; ++c) {
1097 if (!(mask & (1 << c)))
1098 continue;
1099 int k = src.getSwizzle(c);
1100 if (k <= TGSI_SWIZZLE_W)
1101 info->in[i].mask |= 1 << k;
1102 }
1103 switch (info->in[i].sn) {
1104 case TGSI_SEMANTIC_PSIZE:
1105 case TGSI_SEMANTIC_PRIMID:
1106 case TGSI_SEMANTIC_FOG:
1107 info->in[i].mask &= 0x1;
1108 break;
1109 case TGSI_SEMANTIC_PCOORD:
1110 info->in[i].mask &= 0x3;
1111 break;
1112 default:
1113 break;
1114 }
1115 }
1116 }
1117 return true;
1118 }
1119
1120 nv50_ir::TexInstruction::Target
1121 Instruction::getTexture(const tgsi::Source *code, int s) const
1122 {
1123 // XXX: indirect access
1124 unsigned int r;
1125
1126 switch (getSrc(s).getFile()) {
1127 case TGSI_FILE_RESOURCE:
1128 r = getSrc(s).getIndex(0);
1129 return translateTexture(code->resources.at(r).target);
1130 case TGSI_FILE_SAMPLER_VIEW:
1131 r = getSrc(s).getIndex(0);
1132 return translateTexture(code->textureViews.at(r).target);
1133 default:
1134 return translateTexture(insn->Texture.Texture);
1135 }
1136 }
1137
1138 } // namespace tgsi
1139
1140 namespace {
1141
1142 using namespace nv50_ir;
1143
1144 class Converter : public BuildUtil
1145 {
1146 public:
1147 Converter(Program *, const tgsi::Source *);
1148 ~Converter();
1149
1150 bool run();
1151
1152 private:
1153 struct Subroutine
1154 {
1155 Subroutine(Function *f) : f(f) { }
1156 Function *f;
1157 ValueMap values;
1158 };
1159
1160 Value *shiftAddress(Value *);
1161 Value *getVertexBase(int s);
1162 DataArray *getArrayForFile(unsigned file, int idx);
1163 Value *fetchSrc(int s, int c);
1164 Value *acquireDst(int d, int c);
1165 void storeDst(int d, int c, Value *);
1166
1167 Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1168 void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1169 Value *val, Value *ptr);
1170
1171 Value *applySrcMod(Value *, int s, int c);
1172
1173 Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1174 Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1175 Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1176
1177 bool handleInstruction(const struct tgsi_full_instruction *);
1178 void exportOutputs();
1179 inline Subroutine *getSubroutine(unsigned ip);
1180 inline Subroutine *getSubroutine(Function *);
1181 inline bool isEndOfSubroutine(uint ip);
1182
1183 void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1184
1185 // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1186 void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1187 void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1188 void handleTXF(Value *dst0[4], int R, int L_M);
1189 void handleTXQ(Value *dst0[4], enum TexQuery);
1190 void handleLIT(Value *dst0[4]);
1191 void handleUserClipPlanes();
1192
1193 Symbol *getResourceBase(int r);
1194 void getResourceCoords(std::vector<Value *>&, int r, int s);
1195
1196 void handleLOAD(Value *dst0[4]);
1197 void handleSTORE();
1198 void handleATOM(Value *dst0[4], DataType, uint16_t subOp);
1199
1200 Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1201
1202 void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1203
1204 Value *buildDot(int dim);
1205
1206 class BindArgumentsPass : public Pass {
1207 public:
1208 BindArgumentsPass(Converter &conv) : conv(conv) { }
1209
1210 private:
1211 Converter &conv;
1212 Subroutine *sub;
1213
1214 inline const Location *getValueLocation(Subroutine *, Value *);
1215
1216 template<typename T> inline void
1217 updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1218 T (Function::*proto));
1219
1220 template<typename T> inline void
1221 updatePrototype(BitSet *set, void (Function::*updateSet)(),
1222 T (Function::*proto));
1223
1224 protected:
1225 bool visit(Function *);
1226 bool visit(BasicBlock *bb) { return false; }
1227 };
1228
1229 private:
1230 const struct tgsi::Source *code;
1231 const struct nv50_ir_prog_info *info;
1232
1233 struct {
1234 std::map<unsigned, Subroutine> map;
1235 Subroutine *cur;
1236 } sub;
1237
1238 uint ip; // instruction pointer
1239
1240 tgsi::Instruction tgsi;
1241
1242 DataType dstTy;
1243 DataType srcTy;
1244
1245 DataArray tData; // TGSI_FILE_TEMPORARY
1246 DataArray aData; // TGSI_FILE_ADDRESS
1247 DataArray pData; // TGSI_FILE_PREDICATE
1248 DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1249
1250 Value *zero;
1251 Value *fragCoord[4];
1252 Value *clipVtx[4];
1253
1254 Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1255 uint8_t vtxBaseValid;
1256
1257 Stack condBBs; // fork BB, then else clause BB
1258 Stack joinBBs; // fork BB, for inserting join ops on ENDIF
1259 Stack loopBBs; // loop headers
1260 Stack breakBBs; // end of / after loop
1261 };
1262
1263 Symbol *
1264 Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1265 {
1266 const int swz = src.getSwizzle(c);
1267
1268 return makeSym(src.getFile(),
1269 src.is2D() ? src.getIndex(1) : 0,
1270 src.isIndirect(0) ? -1 : src.getIndex(0), swz,
1271 src.getIndex(0) * 16 + swz * 4);
1272 }
1273
1274 Symbol *
1275 Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1276 {
1277 return makeSym(dst.getFile(),
1278 dst.is2D() ? dst.getIndex(1) : 0,
1279 dst.isIndirect(0) ? -1 : dst.getIndex(0), c,
1280 dst.getIndex(0) * 16 + c * 4);
1281 }
1282
1283 Symbol *
1284 Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1285 {
1286 Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1287
1288 sym->reg.fileIndex = fileIdx;
1289
1290 if (idx >= 0) {
1291 if (sym->reg.file == FILE_SHADER_INPUT)
1292 sym->setOffset(info->in[idx].slot[c] * 4);
1293 else
1294 if (sym->reg.file == FILE_SHADER_OUTPUT)
1295 sym->setOffset(info->out[idx].slot[c] * 4);
1296 else
1297 if (sym->reg.file == FILE_SYSTEM_VALUE)
1298 sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
1299 else
1300 sym->setOffset(address);
1301 } else {
1302 sym->setOffset(address);
1303 }
1304 return sym;
1305 }
1306
1307 static inline uint8_t
1308 translateInterpMode(const struct nv50_ir_varying *var, operation& op)
1309 {
1310 uint8_t mode = NV50_IR_INTERP_PERSPECTIVE;
1311
1312 if (var->flat)
1313 mode = NV50_IR_INTERP_FLAT;
1314 else
1315 if (var->linear)
1316 mode = NV50_IR_INTERP_LINEAR;
1317 else
1318 if (var->sc)
1319 mode = NV50_IR_INTERP_SC;
1320
1321 op = (mode == NV50_IR_INTERP_PERSPECTIVE || mode == NV50_IR_INTERP_SC)
1322 ? OP_PINTERP : OP_LINTERP;
1323
1324 if (var->centroid)
1325 mode |= NV50_IR_INTERP_CENTROID;
1326
1327 return mode;
1328 }
1329
1330 Value *
1331 Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1332 {
1333 operation op;
1334
1335 // XXX: no way to know interpolation mode if we don't know what's accessed
1336 const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
1337 src.getIndex(0)], op);
1338
1339 Instruction *insn = new_Instruction(func, op, TYPE_F32);
1340
1341 insn->setDef(0, getScratch());
1342 insn->setSrc(0, srcToSym(src, c));
1343 if (op == OP_PINTERP)
1344 insn->setSrc(1, fragCoord[3]);
1345 if (ptr)
1346 insn->setIndirect(0, 0, ptr);
1347
1348 insn->setInterpolate(mode);
1349
1350 bb->insertTail(insn);
1351 return insn->getDef(0);
1352 }
1353
1354 Value *
1355 Converter::applySrcMod(Value *val, int s, int c)
1356 {
1357 Modifier m = tgsi.getSrc(s).getMod(c);
1358 DataType ty = tgsi.inferSrcType();
1359
1360 if (m & Modifier(NV50_IR_MOD_ABS))
1361 val = mkOp1v(OP_ABS, ty, getScratch(), val);
1362
1363 if (m & Modifier(NV50_IR_MOD_NEG))
1364 val = mkOp1v(OP_NEG, ty, getScratch(), val);
1365
1366 return val;
1367 }
1368
1369 Value *
1370 Converter::getVertexBase(int s)
1371 {
1372 assert(s < 5);
1373 if (!(vtxBaseValid & (1 << s))) {
1374 const int index = tgsi.getSrc(s).getIndex(1);
1375 Value *rel = NULL;
1376 if (tgsi.getSrc(s).isIndirect(1))
1377 rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1378 vtxBaseValid |= 1 << s;
1379 vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1380 mkImm(index), rel);
1381 }
1382 return vtxBase[s];
1383 }
1384
1385 Value *
1386 Converter::fetchSrc(int s, int c)
1387 {
1388 Value *res;
1389 Value *ptr = NULL, *dimRel = NULL;
1390
1391 tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1392
1393 if (src.isIndirect(0))
1394 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1395
1396 if (src.is2D()) {
1397 switch (src.getFile()) {
1398 case TGSI_FILE_INPUT:
1399 dimRel = getVertexBase(s);
1400 break;
1401 case TGSI_FILE_CONSTANT:
1402 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1403 if (src.isIndirect(1))
1404 dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1405 break;
1406 default:
1407 break;
1408 }
1409 }
1410
1411 res = fetchSrc(src, c, ptr);
1412
1413 if (dimRel)
1414 res->getInsn()->setIndirect(0, 1, dimRel);
1415
1416 return applySrcMod(res, s, c);
1417 }
1418
1419 Converter::DataArray *
1420 Converter::getArrayForFile(unsigned file, int idx)
1421 {
1422 switch (file) {
1423 case TGSI_FILE_TEMPORARY:
1424 return &tData;
1425 case TGSI_FILE_PREDICATE:
1426 return &pData;
1427 case TGSI_FILE_ADDRESS:
1428 return &aData;
1429 case TGSI_FILE_OUTPUT:
1430 assert(prog->getType() == Program::TYPE_FRAGMENT);
1431 return &oData;
1432 default:
1433 assert(!"invalid/unhandled TGSI source file");
1434 return NULL;
1435 }
1436 }
1437
1438 Value *
1439 Converter::shiftAddress(Value *index)
1440 {
1441 if (!index)
1442 return NULL;
1443 return mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), index, mkImm(4));
1444 }
1445
1446 Value *
1447 Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1448 {
1449 const int idx2d = src.is2D() ? src.getIndex(1) : 0;
1450 const int idx = src.getIndex(0);
1451 const int swz = src.getSwizzle(c);
1452
1453 switch (src.getFile()) {
1454 case TGSI_FILE_IMMEDIATE:
1455 assert(!ptr);
1456 return loadImm(NULL, info->immd.data[idx * 4 + swz]);
1457 case TGSI_FILE_CONSTANT:
1458 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1459 case TGSI_FILE_INPUT:
1460 if (prog->getType() == Program::TYPE_FRAGMENT) {
1461 // don't load masked inputs, won't be assigned a slot
1462 if (!ptr && !(info->in[idx].mask & (1 << swz)))
1463 return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
1464 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_FACE)
1465 return mkOp1v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_FACE, 0));
1466 return interpolate(src, c, shiftAddress(ptr));
1467 } else
1468 if (prog->getType() == Program::TYPE_GEOMETRY) {
1469 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_PRIMID)
1470 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_PRIMITIVE_ID, 0));
1471 // XXX: This is going to be a problem with scalar arrays, i.e. when
1472 // we cannot assume that the address is given in units of vec4.
1473 //
1474 // nv50 and nvc0 need different things here, so let the lowering
1475 // passes decide what to do with the address
1476 if (ptr)
1477 return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
1478 }
1479 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1480 case TGSI_FILE_OUTPUT:
1481 assert(!"load from output file");
1482 return NULL;
1483 case TGSI_FILE_SYSTEM_VALUE:
1484 assert(!ptr);
1485 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
1486 default:
1487 return getArrayForFile(src.getFile(), idx2d)->load(
1488 sub.cur->values, idx, swz, shiftAddress(ptr));
1489 }
1490 }
1491
1492 Value *
1493 Converter::acquireDst(int d, int c)
1494 {
1495 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1496 const unsigned f = dst.getFile();
1497 const int idx = dst.getIndex(0);
1498 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1499
1500 if (dst.isMasked(c) || f == TGSI_FILE_RESOURCE)
1501 return NULL;
1502
1503 if (dst.isIndirect(0) ||
1504 f == TGSI_FILE_SYSTEM_VALUE ||
1505 (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
1506 return getScratch();
1507
1508 return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
1509 }
1510
1511 void
1512 Converter::storeDst(int d, int c, Value *val)
1513 {
1514 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1515
1516 switch (tgsi.getSaturate()) {
1517 case TGSI_SAT_NONE:
1518 break;
1519 case TGSI_SAT_ZERO_ONE:
1520 mkOp1(OP_SAT, dstTy, val, val);
1521 break;
1522 case TGSI_SAT_MINUS_PLUS_ONE:
1523 mkOp2(OP_MAX, dstTy, val, val, mkImm(-1.0f));
1524 mkOp2(OP_MIN, dstTy, val, val, mkImm(+1.0f));
1525 break;
1526 default:
1527 assert(!"invalid saturation mode");
1528 break;
1529 }
1530
1531 Value *ptr = NULL;
1532 if (dst.isIndirect(0))
1533 ptr = shiftAddress(fetchSrc(dst.getIndirect(0), 0, NULL));
1534
1535 if (info->io.genUserClip > 0 &&
1536 dst.getFile() == TGSI_FILE_OUTPUT &&
1537 !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
1538 mkMov(clipVtx[c], val);
1539 val = clipVtx[c];
1540 }
1541
1542 storeDst(dst, c, val, ptr);
1543 }
1544
1545 void
1546 Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
1547 Value *val, Value *ptr)
1548 {
1549 const unsigned f = dst.getFile();
1550 const int idx = dst.getIndex(0);
1551 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1552
1553 if (f == TGSI_FILE_SYSTEM_VALUE) {
1554 assert(!ptr);
1555 mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
1556 } else
1557 if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
1558 if (ptr || (info->out[idx].mask & (1 << c)))
1559 mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val);
1560 } else
1561 if (f == TGSI_FILE_TEMPORARY ||
1562 f == TGSI_FILE_PREDICATE ||
1563 f == TGSI_FILE_ADDRESS ||
1564 f == TGSI_FILE_OUTPUT) {
1565 getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
1566 } else {
1567 assert(!"invalid dst file");
1568 }
1569 }
1570
1571 #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
1572 for (chan = 0; chan < 4; ++chan) \
1573 if (!inst.getDst(d).isMasked(chan))
1574
1575 Value *
1576 Converter::buildDot(int dim)
1577 {
1578 assert(dim > 0);
1579
1580 Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
1581 Value *dotp = getScratch();
1582
1583 mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1);
1584
1585 for (int c = 1; c < dim; ++c) {
1586 src0 = fetchSrc(0, c);
1587 src1 = fetchSrc(1, c);
1588 mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp);
1589 }
1590 return dotp;
1591 }
1592
1593 void
1594 Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
1595 {
1596 FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
1597 join->fixed = 1;
1598 conv->insertHead(join);
1599
1600 fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
1601 fork->insertBefore(fork->getExit(), fork->joinAt);
1602 }
1603
1604 void
1605 Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
1606 {
1607 unsigned rIdx = 0, sIdx = 0;
1608
1609 if (R >= 0)
1610 rIdx = tgsi.getSrc(R).getIndex(0);
1611 if (S >= 0)
1612 sIdx = tgsi.getSrc(S).getIndex(0);
1613
1614 tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
1615
1616 if (tgsi.getSrc(R).isIndirect(0)) {
1617 tex->tex.rIndirectSrc = s;
1618 tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
1619 }
1620 if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
1621 tex->tex.sIndirectSrc = s;
1622 tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
1623 }
1624 }
1625
1626 void
1627 Converter::handleTXQ(Value *dst0[4], enum TexQuery query)
1628 {
1629 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1630 tex->tex.query = query;
1631 unsigned int c, d;
1632
1633 for (d = 0, c = 0; c < 4; ++c) {
1634 if (!dst0[c])
1635 continue;
1636 tex->tex.mask |= 1 << c;
1637 tex->setDef(d++, dst0[c]);
1638 }
1639 tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
1640
1641 setTexRS(tex, c, 1, -1);
1642
1643 bb->insertTail(tex);
1644 }
1645
1646 void
1647 Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
1648 {
1649 Value *proj = fetchSrc(0, 3);
1650 Instruction *insn = proj->getUniqueInsn();
1651 int c;
1652
1653 if (insn->op == OP_PINTERP) {
1654 bb->insertTail(insn = cloneForward(func, insn));
1655 insn->op = OP_LINTERP;
1656 insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
1657 insn->setSrc(1, NULL);
1658 proj = insn->getDef(0);
1659 }
1660 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
1661
1662 for (c = 0; c < 4; ++c) {
1663 if (!(mask & (1 << c)))
1664 continue;
1665 if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
1666 continue;
1667 mask &= ~(1 << c);
1668
1669 bb->insertTail(insn = cloneForward(func, insn));
1670 insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
1671 insn->setSrc(1, proj);
1672 dst[c] = insn->getDef(0);
1673 }
1674 if (!mask)
1675 return;
1676
1677 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
1678
1679 for (c = 0; c < 4; ++c)
1680 if (mask & (1 << c))
1681 dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
1682 }
1683
1684 // order of nv50 ir sources: x y z layer lod/bias shadow
1685 // order of TGSI TEX sources: x y z layer shadow lod/bias
1686 // lowering will finally set the hw specific order (like array first on nvc0)
1687 void
1688 Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
1689 {
1690 Value *val;
1691 Value *arg[4], *src[8];
1692 Value *lod = NULL, *shd = NULL;
1693 unsigned int s, c, d;
1694 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1695
1696 TexInstruction::Target tgt = tgsi.getTexture(code, R);
1697
1698 for (s = 0; s < tgt.getArgCount(); ++s)
1699 arg[s] = src[s] = fetchSrc(0, s);
1700
1701 if (texi->op == OP_TXL || texi->op == OP_TXB)
1702 lod = fetchSrc(L >> 4, L & 3);
1703
1704 if (C == 0x0f)
1705 C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
1706
1707 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 &&
1708 tgt == TEX_TARGET_CUBE_ARRAY_SHADOW)
1709 shd = fetchSrc(1, 0);
1710 else if (tgt.isShadow())
1711 shd = fetchSrc(C >> 4, C & 3);
1712
1713 if (texi->op == OP_TXD) {
1714 for (c = 0; c < tgt.getDim(); ++c) {
1715 texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
1716 texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
1717 }
1718 }
1719
1720 // cube textures don't care about projection value, it's divided out
1721 if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
1722 unsigned int n = tgt.getDim();
1723 if (shd) {
1724 arg[n] = shd;
1725 ++n;
1726 assert(tgt.getDim() == tgt.getArgCount());
1727 }
1728 loadProjTexCoords(src, arg, (1 << n) - 1);
1729 if (shd)
1730 shd = src[n - 1];
1731 }
1732
1733 if (tgt.isCube()) {
1734 for (c = 0; c < 3; ++c)
1735 src[c] = mkOp1v(OP_ABS, TYPE_F32, getSSA(), arg[c]);
1736 val = getScratch();
1737 mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1738 mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1739 mkOp1(OP_RCP, TYPE_F32, val, val);
1740 for (c = 0; c < 3; ++c)
1741 src[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), arg[c], val);
1742 }
1743
1744 for (c = 0, d = 0; c < 4; ++c) {
1745 if (dst[c]) {
1746 texi->setDef(d++, dst[c]);
1747 texi->tex.mask |= 1 << c;
1748 } else {
1749 // NOTE: maybe hook up def too, for CSE
1750 }
1751 }
1752 for (s = 0; s < tgt.getArgCount(); ++s)
1753 texi->setSrc(s, src[s]);
1754 if (lod)
1755 texi->setSrc(s++, lod);
1756 if (shd)
1757 texi->setSrc(s++, shd);
1758
1759 setTexRS(texi, s, R, S);
1760
1761 if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
1762 texi->tex.levelZero = true;
1763 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 && !tgt.isShadow())
1764 texi->tex.gatherComp = tgsi.getSrc(1).getValueU32(0, info);
1765
1766 texi->tex.useOffsets = tgsi.getNumTexOffsets();
1767 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1768 for (c = 0; c < 3; ++c) {
1769 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
1770 texi->offset[s][c].setInsn(texi);
1771 }
1772 }
1773
1774 bb->insertTail(texi);
1775 }
1776
1777 // 1st source: xyz = coordinates, w = lod/sample
1778 // 2nd source: offset
1779 void
1780 Converter::handleTXF(Value *dst[4], int R, int L_M)
1781 {
1782 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1783 int ms;
1784 unsigned int c, d, s;
1785
1786 texi->tex.target = tgsi.getTexture(code, R);
1787
1788 ms = texi->tex.target.isMS() ? 1 : 0;
1789 texi->tex.levelZero = ms; /* MS textures don't have mip-maps */
1790
1791 for (c = 0, d = 0; c < 4; ++c) {
1792 if (dst[c]) {
1793 texi->setDef(d++, dst[c]);
1794 texi->tex.mask |= 1 << c;
1795 }
1796 }
1797 for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c)
1798 texi->setSrc(c, fetchSrc(0, c));
1799 texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms
1800
1801 setTexRS(texi, c, R, -1);
1802
1803 texi->tex.useOffsets = tgsi.getNumTexOffsets();
1804 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1805 for (c = 0; c < 3; ++c) {
1806 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
1807 texi->offset[s][c].setInsn(texi);
1808 }
1809 }
1810
1811 bb->insertTail(texi);
1812 }
1813
1814 void
1815 Converter::handleLIT(Value *dst0[4])
1816 {
1817 Value *val0 = NULL;
1818 unsigned int mask = tgsi.getDst(0).getMask();
1819
1820 if (mask & (1 << 0))
1821 loadImm(dst0[0], 1.0f);
1822
1823 if (mask & (1 << 3))
1824 loadImm(dst0[3], 1.0f);
1825
1826 if (mask & (3 << 1)) {
1827 val0 = getScratch();
1828 mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
1829 if (mask & (1 << 1))
1830 mkMov(dst0[1], val0);
1831 }
1832
1833 if (mask & (1 << 2)) {
1834 Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
1835 Value *val1 = getScratch(), *val3 = getScratch();
1836
1837 Value *pos128 = loadImm(NULL, +127.999999f);
1838 Value *neg128 = loadImm(NULL, -127.999999f);
1839
1840 mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
1841 mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
1842 mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
1843 mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
1844
1845 mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], TYPE_F32, val3, zero, val0);
1846 }
1847 }
1848
1849 static inline bool
1850 isResourceSpecial(const int r)
1851 {
1852 return (r == TGSI_RESOURCE_GLOBAL ||
1853 r == TGSI_RESOURCE_LOCAL ||
1854 r == TGSI_RESOURCE_PRIVATE ||
1855 r == TGSI_RESOURCE_INPUT);
1856 }
1857
1858 static inline bool
1859 isResourceRaw(const struct tgsi::Source *code, const int r)
1860 {
1861 return isResourceSpecial(r) || code->resources[r].raw;
1862 }
1863
1864 static inline nv50_ir::TexTarget
1865 getResourceTarget(const struct tgsi::Source *code, int r)
1866 {
1867 if (isResourceSpecial(r))
1868 return nv50_ir::TEX_TARGET_BUFFER;
1869 return tgsi::translateTexture(code->resources.at(r).target);
1870 }
1871
1872 Symbol *
1873 Converter::getResourceBase(const int r)
1874 {
1875 Symbol *sym = NULL;
1876
1877 switch (r) {
1878 case TGSI_RESOURCE_GLOBAL:
1879 sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL, 15);
1880 break;
1881 case TGSI_RESOURCE_LOCAL:
1882 assert(prog->getType() == Program::TYPE_COMPUTE);
1883 sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32,
1884 info->prop.cp.sharedOffset);
1885 break;
1886 case TGSI_RESOURCE_PRIVATE:
1887 sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32,
1888 info->bin.tlsSpace);
1889 break;
1890 case TGSI_RESOURCE_INPUT:
1891 assert(prog->getType() == Program::TYPE_COMPUTE);
1892 sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32,
1893 info->prop.cp.inputOffset);
1894 break;
1895 default:
1896 sym = new_Symbol(prog,
1897 nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot);
1898 break;
1899 }
1900 return sym;
1901 }
1902
1903 void
1904 Converter::getResourceCoords(std::vector<Value *> &coords, int r, int s)
1905 {
1906 const int arg =
1907 TexInstruction::Target(getResourceTarget(code, r)).getArgCount();
1908
1909 for (int c = 0; c < arg; ++c)
1910 coords.push_back(fetchSrc(s, c));
1911
1912 // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk
1913 if (r == TGSI_RESOURCE_LOCAL ||
1914 r == TGSI_RESOURCE_PRIVATE ||
1915 r == TGSI_RESOURCE_INPUT)
1916 coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS),
1917 coords[0]);
1918 }
1919
1920 static inline int
1921 partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask)
1922 {
1923 int n = 0;
1924
1925 while (mask) {
1926 if (mask & 1) {
1927 size[n]++;
1928 } else {
1929 if (size[n])
1930 comp[n = 1] = size[0] + 1;
1931 else
1932 comp[n]++;
1933 }
1934 mask >>= 1;
1935 }
1936 if (size[0] == 3) {
1937 n = 1;
1938 size[0] = (comp[0] == 1) ? 1 : 2;
1939 size[1] = 3 - size[0];
1940 comp[1] = comp[0] + size[0];
1941 }
1942 return n + 1;
1943 }
1944
1945 // For raw loads, granularity is 4 byte.
1946 // Usage of the texture read mask on OP_SULDP is not allowed.
1947 void
1948 Converter::handleLOAD(Value *dst0[4])
1949 {
1950 const int r = tgsi.getSrc(0).getIndex(0);
1951 int c;
1952 std::vector<Value *> off, src, ldv, def;
1953
1954 getResourceCoords(off, r, 1);
1955
1956 if (isResourceRaw(code, r)) {
1957 uint8_t mask = 0;
1958 uint8_t comp[2] = { 0, 0 };
1959 uint8_t size[2] = { 0, 0 };
1960
1961 Symbol *base = getResourceBase(r);
1962
1963 // determine the base and size of the at most 2 load ops
1964 for (c = 0; c < 4; ++c)
1965 if (!tgsi.getDst(0).isMasked(c))
1966 mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X);
1967
1968 int n = partitionLoadStore(comp, size, mask);
1969
1970 src = off;
1971
1972 def.resize(4); // index by component, the ones we need will be non-NULL
1973 for (c = 0; c < 4; ++c) {
1974 if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c))
1975 def[c] = dst0[c];
1976 else
1977 if (mask & (1 << c))
1978 def[c] = getScratch();
1979 }
1980
1981 const bool useLd = isResourceSpecial(r) ||
1982 (info->io.nv50styleSurfaces &&
1983 code->resources[r].target == TGSI_TEXTURE_BUFFER);
1984
1985 for (int i = 0; i < n; ++i) {
1986 ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]);
1987
1988 if (comp[i]) // adjust x component of source address if necessary
1989 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
1990 off[0], mkImm(comp[i] * 4));
1991 else
1992 src[0] = off[0];
1993
1994 if (useLd) {
1995 Instruction *ld =
1996 mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]);
1997 for (size_t c = 1; c < ldv.size(); ++c)
1998 ld->setDef(c, ldv[c]);
1999 } else {
2000 mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot,
2001 0, ldv, src)->dType = typeOfSize(size[i] * 4);
2002 }
2003 }
2004 } else {
2005 def.resize(4);
2006 for (c = 0; c < 4; ++c) {
2007 if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
2008 def[c] = getScratch();
2009 else
2010 def[c] = dst0[c];
2011 }
2012
2013 mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0,
2014 def, off);
2015 }
2016 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2017 if (dst0[c] != def[c])
2018 mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
2019 }
2020
2021 // For formatted stores, the write mask on OP_SUSTP can be used.
2022 // Raw stores have to be split.
2023 void
2024 Converter::handleSTORE()
2025 {
2026 const int r = tgsi.getDst(0).getIndex(0);
2027 int c;
2028 std::vector<Value *> off, src, dummy;
2029
2030 getResourceCoords(off, r, 0);
2031 src = off;
2032 const int s = src.size();
2033
2034 if (isResourceRaw(code, r)) {
2035 uint8_t comp[2] = { 0, 0 };
2036 uint8_t size[2] = { 0, 0 };
2037
2038 int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask());
2039
2040 Symbol *base = getResourceBase(r);
2041
2042 const bool useSt = isResourceSpecial(r) ||
2043 (info->io.nv50styleSurfaces &&
2044 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2045
2046 for (int i = 0; i < n; ++i) {
2047 if (comp[i]) // adjust x component of source address if necessary
2048 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2049 off[0], mkImm(comp[i] * 4));
2050 else
2051 src[0] = off[0];
2052
2053 const DataType stTy = typeOfSize(size[i] * 4);
2054
2055 if (useSt) {
2056 Instruction *st =
2057 mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i]));
2058 for (c = 1; c < size[i]; ++c)
2059 st->setSrc(1 + c, fetchSrc(1, comp[i] + c));
2060 st->setIndirect(0, 0, src[0]);
2061 } else {
2062 // attach values to be stored
2063 src.resize(s + size[i]);
2064 for (c = 0; c < size[i]; ++c)
2065 src[s + c] = fetchSrc(1, comp[i] + c);
2066 mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot,
2067 0, dummy, src)->setType(stTy);
2068 }
2069 }
2070 } else {
2071 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2072 src.push_back(fetchSrc(1, c));
2073
2074 mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0,
2075 dummy, src)->tex.mask = tgsi.getDst(0).getMask();
2076 }
2077 }
2078
2079 // XXX: These only work on resources with the single-component u32/s32 formats.
2080 // Therefore the result is replicated. This might not be intended by TGSI, but
2081 // operating on more than 1 component would produce undefined results because
2082 // they do not exist.
2083 void
2084 Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp)
2085 {
2086 const int r = tgsi.getSrc(0).getIndex(0);
2087 std::vector<Value *> srcv;
2088 std::vector<Value *> defv;
2089 LValue *dst = getScratch();
2090
2091 getResourceCoords(srcv, r, 1);
2092
2093 if (isResourceSpecial(r)) {
2094 assert(r != TGSI_RESOURCE_INPUT);
2095 Instruction *insn;
2096 insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0));
2097 insn->subOp = subOp;
2098 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2099 insn->setSrc(2, fetchSrc(3, 0));
2100 insn->setIndirect(0, 0, srcv.at(0));
2101 } else {
2102 operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP;
2103 TexTarget targ = getResourceTarget(code, r);
2104 int idx = code->resources[r].slot;
2105 defv.push_back(dst);
2106 srcv.push_back(fetchSrc(2, 0));
2107 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2108 srcv.push_back(fetchSrc(3, 0));
2109 TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv);
2110 tex->subOp = subOp;
2111 tex->tex.mask = 1;
2112 tex->setType(ty);
2113 }
2114
2115 for (int c = 0; c < 4; ++c)
2116 if (dst0[c])
2117 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2118 }
2119
2120 Converter::Subroutine *
2121 Converter::getSubroutine(unsigned ip)
2122 {
2123 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2124
2125 if (it == sub.map.end())
2126 it = sub.map.insert(std::make_pair(
2127 ip, Subroutine(new Function(prog, "SUB", ip)))).first;
2128
2129 return &it->second;
2130 }
2131
2132 Converter::Subroutine *
2133 Converter::getSubroutine(Function *f)
2134 {
2135 unsigned ip = f->getLabel();
2136 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2137
2138 if (it == sub.map.end())
2139 it = sub.map.insert(std::make_pair(ip, Subroutine(f))).first;
2140
2141 return &it->second;
2142 }
2143
2144 bool
2145 Converter::isEndOfSubroutine(uint ip)
2146 {
2147 assert(ip < code->scan.num_instructions);
2148 tgsi::Instruction insn(&code->insns[ip]);
2149 return (insn.getOpcode() == TGSI_OPCODE_END ||
2150 insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
2151 // does END occur at end of main or the very end ?
2152 insn.getOpcode() == TGSI_OPCODE_BGNSUB);
2153 }
2154
2155 bool
2156 Converter::handleInstruction(const struct tgsi_full_instruction *insn)
2157 {
2158 Instruction *geni;
2159
2160 Value *dst0[4], *rDst0[4];
2161 Value *src0, *src1, *src2, *src3;
2162 Value *val0, *val1;
2163 int c;
2164
2165 tgsi = tgsi::Instruction(insn);
2166
2167 bool useScratchDst = tgsi.checkDstSrcAliasing();
2168
2169 operation op = tgsi.getOP();
2170 dstTy = tgsi.inferDstType();
2171 srcTy = tgsi.inferSrcType();
2172
2173 unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
2174
2175 if (tgsi.dstCount()) {
2176 for (c = 0; c < 4; ++c) {
2177 rDst0[c] = acquireDst(0, c);
2178 dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
2179 }
2180 }
2181
2182 switch (tgsi.getOpcode()) {
2183 case TGSI_OPCODE_ADD:
2184 case TGSI_OPCODE_UADD:
2185 case TGSI_OPCODE_AND:
2186 case TGSI_OPCODE_DIV:
2187 case TGSI_OPCODE_IDIV:
2188 case TGSI_OPCODE_UDIV:
2189 case TGSI_OPCODE_MAX:
2190 case TGSI_OPCODE_MIN:
2191 case TGSI_OPCODE_IMAX:
2192 case TGSI_OPCODE_IMIN:
2193 case TGSI_OPCODE_UMAX:
2194 case TGSI_OPCODE_UMIN:
2195 case TGSI_OPCODE_MOD:
2196 case TGSI_OPCODE_UMOD:
2197 case TGSI_OPCODE_MUL:
2198 case TGSI_OPCODE_UMUL:
2199 case TGSI_OPCODE_IMUL_HI:
2200 case TGSI_OPCODE_UMUL_HI:
2201 case TGSI_OPCODE_OR:
2202 case TGSI_OPCODE_SHL:
2203 case TGSI_OPCODE_ISHR:
2204 case TGSI_OPCODE_USHR:
2205 case TGSI_OPCODE_SUB:
2206 case TGSI_OPCODE_XOR:
2207 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2208 src0 = fetchSrc(0, c);
2209 src1 = fetchSrc(1, c);
2210 geni = mkOp2(op, dstTy, dst0[c], src0, src1);
2211 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2212 }
2213 break;
2214 case TGSI_OPCODE_MAD:
2215 case TGSI_OPCODE_UMAD:
2216 case TGSI_OPCODE_SAD:
2217 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2218 src0 = fetchSrc(0, c);
2219 src1 = fetchSrc(1, c);
2220 src2 = fetchSrc(2, c);
2221 mkOp3(op, dstTy, dst0[c], src0, src1, src2);
2222 }
2223 break;
2224 case TGSI_OPCODE_MOV:
2225 case TGSI_OPCODE_ABS:
2226 case TGSI_OPCODE_CEIL:
2227 case TGSI_OPCODE_FLR:
2228 case TGSI_OPCODE_TRUNC:
2229 case TGSI_OPCODE_RCP:
2230 case TGSI_OPCODE_IABS:
2231 case TGSI_OPCODE_INEG:
2232 case TGSI_OPCODE_NOT:
2233 case TGSI_OPCODE_DDX:
2234 case TGSI_OPCODE_DDY:
2235 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2236 mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
2237 break;
2238 case TGSI_OPCODE_RSQ:
2239 src0 = fetchSrc(0, 0);
2240 val0 = getScratch();
2241 mkOp1(OP_ABS, TYPE_F32, val0, src0);
2242 mkOp1(OP_RSQ, TYPE_F32, val0, val0);
2243 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2244 mkMov(dst0[c], val0);
2245 break;
2246 case TGSI_OPCODE_ARL:
2247 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2248 src0 = fetchSrc(0, c);
2249 mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = ROUND_M;
2250 }
2251 break;
2252 case TGSI_OPCODE_UARL:
2253 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2254 mkOp1(OP_MOV, TYPE_U32, dst0[c], fetchSrc(0, c));
2255 break;
2256 case TGSI_OPCODE_POW:
2257 val0 = mkOp2v(op, TYPE_F32, getScratch(), fetchSrc(0, 0), fetchSrc(1, 0));
2258 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2259 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2260 break;
2261 case TGSI_OPCODE_EX2:
2262 case TGSI_OPCODE_LG2:
2263 val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
2264 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2265 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2266 break;
2267 case TGSI_OPCODE_COS:
2268 case TGSI_OPCODE_SIN:
2269 val0 = getScratch();
2270 if (mask & 7) {
2271 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
2272 mkOp1(op, TYPE_F32, val0, val0);
2273 for (c = 0; c < 3; ++c)
2274 if (dst0[c])
2275 mkMov(dst0[c], val0);
2276 }
2277 if (dst0[3]) {
2278 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
2279 mkOp1(op, TYPE_F32, dst0[3], val0);
2280 }
2281 break;
2282 case TGSI_OPCODE_SCS:
2283 if (mask & 3) {
2284 val0 = mkOp1v(OP_PRESIN, TYPE_F32, getSSA(), fetchSrc(0, 0));
2285 if (dst0[0])
2286 mkOp1(OP_COS, TYPE_F32, dst0[0], val0);
2287 if (dst0[1])
2288 mkOp1(OP_SIN, TYPE_F32, dst0[1], val0);
2289 }
2290 if (dst0[2])
2291 loadImm(dst0[2], 0.0f);
2292 if (dst0[3])
2293 loadImm(dst0[3], 1.0f);
2294 break;
2295 case TGSI_OPCODE_EXP:
2296 src0 = fetchSrc(0, 0);
2297 val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
2298 if (dst0[1])
2299 mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
2300 if (dst0[0])
2301 mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
2302 if (dst0[2])
2303 mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
2304 if (dst0[3])
2305 loadImm(dst0[3], 1.0f);
2306 break;
2307 case TGSI_OPCODE_LOG:
2308 src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
2309 val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
2310 if (dst0[0] || dst0[1])
2311 val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
2312 if (dst0[1]) {
2313 mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
2314 mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
2315 mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0);
2316 }
2317 if (dst0[3])
2318 loadImm(dst0[3], 1.0f);
2319 break;
2320 case TGSI_OPCODE_DP2:
2321 val0 = buildDot(2);
2322 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2323 mkMov(dst0[c], val0);
2324 break;
2325 case TGSI_OPCODE_DP3:
2326 val0 = buildDot(3);
2327 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2328 mkMov(dst0[c], val0);
2329 break;
2330 case TGSI_OPCODE_DP4:
2331 val0 = buildDot(4);
2332 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2333 mkMov(dst0[c], val0);
2334 break;
2335 case TGSI_OPCODE_DPH:
2336 val0 = buildDot(3);
2337 src1 = fetchSrc(1, 3);
2338 mkOp2(OP_ADD, TYPE_F32, val0, val0, src1);
2339 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2340 mkMov(dst0[c], val0);
2341 break;
2342 case TGSI_OPCODE_DST:
2343 if (dst0[0])
2344 loadImm(dst0[0], 1.0f);
2345 if (dst0[1]) {
2346 src0 = fetchSrc(0, 1);
2347 src1 = fetchSrc(1, 1);
2348 mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1);
2349 }
2350 if (dst0[2])
2351 mkMov(dst0[2], fetchSrc(0, 2));
2352 if (dst0[3])
2353 mkMov(dst0[3], fetchSrc(1, 3));
2354 break;
2355 case TGSI_OPCODE_LRP:
2356 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2357 src0 = fetchSrc(0, c);
2358 src1 = fetchSrc(1, c);
2359 src2 = fetchSrc(2, c);
2360 mkOp3(OP_MAD, TYPE_F32, dst0[c],
2361 mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2);
2362 }
2363 break;
2364 case TGSI_OPCODE_LIT:
2365 handleLIT(dst0);
2366 break;
2367 case TGSI_OPCODE_XPD:
2368 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2369 if (c < 3) {
2370 val0 = getSSA();
2371 src0 = fetchSrc(1, (c + 1) % 3);
2372 src1 = fetchSrc(0, (c + 2) % 3);
2373 mkOp2(OP_MUL, TYPE_F32, val0, src0, src1);
2374 mkOp1(OP_NEG, TYPE_F32, val0, val0);
2375
2376 src0 = fetchSrc(0, (c + 1) % 3);
2377 src1 = fetchSrc(1, (c + 2) % 3);
2378 mkOp3(OP_MAD, TYPE_F32, dst0[c], src0, src1, val0);
2379 } else {
2380 loadImm(dst0[c], 1.0f);
2381 }
2382 }
2383 break;
2384 case TGSI_OPCODE_ISSG:
2385 case TGSI_OPCODE_SSG:
2386 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2387 src0 = fetchSrc(0, c);
2388 val0 = getScratch();
2389 val1 = getScratch();
2390 mkCmp(OP_SET, CC_GT, srcTy, val0, srcTy, src0, zero);
2391 mkCmp(OP_SET, CC_LT, srcTy, val1, srcTy, src0, zero);
2392 if (srcTy == TYPE_F32)
2393 mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
2394 else
2395 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
2396 }
2397 break;
2398 case TGSI_OPCODE_UCMP:
2399 case TGSI_OPCODE_CMP:
2400 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2401 src0 = fetchSrc(0, c);
2402 src1 = fetchSrc(1, c);
2403 src2 = fetchSrc(2, c);
2404 if (src1 == src2)
2405 mkMov(dst0[c], src1);
2406 else
2407 mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
2408 srcTy, dst0[c], srcTy, src1, src2, src0);
2409 }
2410 break;
2411 case TGSI_OPCODE_FRC:
2412 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2413 src0 = fetchSrc(0, c);
2414 val0 = getScratch();
2415 mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
2416 mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
2417 }
2418 break;
2419 case TGSI_OPCODE_ROUND:
2420 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2421 mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
2422 ->rnd = ROUND_NI;
2423 break;
2424 case TGSI_OPCODE_CLAMP:
2425 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2426 src0 = fetchSrc(0, c);
2427 src1 = fetchSrc(1, c);
2428 src2 = fetchSrc(2, c);
2429 val0 = getScratch();
2430 mkOp2(OP_MIN, TYPE_F32, val0, src0, src1);
2431 mkOp2(OP_MAX, TYPE_F32, dst0[c], val0, src2);
2432 }
2433 break;
2434 case TGSI_OPCODE_SLT:
2435 case TGSI_OPCODE_SGE:
2436 case TGSI_OPCODE_SEQ:
2437 case TGSI_OPCODE_SFL:
2438 case TGSI_OPCODE_SGT:
2439 case TGSI_OPCODE_SLE:
2440 case TGSI_OPCODE_SNE:
2441 case TGSI_OPCODE_STR:
2442 case TGSI_OPCODE_FSEQ:
2443 case TGSI_OPCODE_FSGE:
2444 case TGSI_OPCODE_FSLT:
2445 case TGSI_OPCODE_FSNE:
2446 case TGSI_OPCODE_ISGE:
2447 case TGSI_OPCODE_ISLT:
2448 case TGSI_OPCODE_USEQ:
2449 case TGSI_OPCODE_USGE:
2450 case TGSI_OPCODE_USLT:
2451 case TGSI_OPCODE_USNE:
2452 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2453 src0 = fetchSrc(0, c);
2454 src1 = fetchSrc(1, c);
2455 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
2456 }
2457 break;
2458 case TGSI_OPCODE_KILL_IF:
2459 val0 = new_LValue(func, FILE_PREDICATE);
2460 for (c = 0; c < 4; ++c) {
2461 mkCmp(OP_SET, CC_LT, TYPE_F32, val0, TYPE_F32, fetchSrc(0, c), zero);
2462 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
2463 }
2464 break;
2465 case TGSI_OPCODE_KILL:
2466 mkOp(OP_DISCARD, TYPE_NONE, NULL);
2467 break;
2468 case TGSI_OPCODE_TEX:
2469 case TGSI_OPCODE_TXB:
2470 case TGSI_OPCODE_TXL:
2471 case TGSI_OPCODE_TXP:
2472 case TGSI_OPCODE_LODQ:
2473 // R S L C Dx Dy
2474 handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
2475 break;
2476 case TGSI_OPCODE_TXD:
2477 handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
2478 break;
2479 case TGSI_OPCODE_TG4:
2480 handleTEX(dst0, 2, 2, 0x03, 0x0f, 0x00, 0x00);
2481 break;
2482 case TGSI_OPCODE_TEX2:
2483 handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00);
2484 break;
2485 case TGSI_OPCODE_TXB2:
2486 case TGSI_OPCODE_TXL2:
2487 handleTEX(dst0, 2, 2, 0x10, 0x11, 0x00, 0x00);
2488 break;
2489 case TGSI_OPCODE_SAMPLE:
2490 case TGSI_OPCODE_SAMPLE_B:
2491 case TGSI_OPCODE_SAMPLE_D:
2492 case TGSI_OPCODE_SAMPLE_L:
2493 case TGSI_OPCODE_SAMPLE_C:
2494 case TGSI_OPCODE_SAMPLE_C_LZ:
2495 handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40);
2496 break;
2497 case TGSI_OPCODE_TXF:
2498 handleTXF(dst0, 1, 0x03);
2499 break;
2500 case TGSI_OPCODE_SAMPLE_I:
2501 handleTXF(dst0, 1, 0x03);
2502 break;
2503 case TGSI_OPCODE_SAMPLE_I_MS:
2504 handleTXF(dst0, 1, 0x20);
2505 break;
2506 case TGSI_OPCODE_TXQ:
2507 case TGSI_OPCODE_SVIEWINFO:
2508 handleTXQ(dst0, TXQ_DIMS);
2509 break;
2510 case TGSI_OPCODE_F2I:
2511 case TGSI_OPCODE_F2U:
2512 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2513 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
2514 break;
2515 case TGSI_OPCODE_I2F:
2516 case TGSI_OPCODE_U2F:
2517 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2518 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
2519 break;
2520 case TGSI_OPCODE_EMIT:
2521 case TGSI_OPCODE_ENDPRIM:
2522 // get vertex stream if specified (must be immediate)
2523 src0 = tgsi.srcCount() ?
2524 mkImm(tgsi.getSrc(0).getValueU32(0, info)) : zero;
2525 mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
2526 break;
2527 case TGSI_OPCODE_IF:
2528 case TGSI_OPCODE_UIF:
2529 {
2530 BasicBlock *ifBB = new BasicBlock(func);
2531
2532 bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
2533 condBBs.push(bb);
2534 joinBBs.push(bb);
2535
2536 mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy);
2537
2538 setPosition(ifBB, true);
2539 }
2540 break;
2541 case TGSI_OPCODE_ELSE:
2542 {
2543 BasicBlock *elseBB = new BasicBlock(func);
2544 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2545
2546 forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
2547 condBBs.push(bb);
2548
2549 forkBB->getExit()->asFlow()->target.bb = elseBB;
2550 if (!bb->isTerminated())
2551 mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
2552
2553 setPosition(elseBB, true);
2554 }
2555 break;
2556 case TGSI_OPCODE_ENDIF:
2557 {
2558 BasicBlock *convBB = new BasicBlock(func);
2559 BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2560 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
2561
2562 if (!bb->isTerminated()) {
2563 // we only want join if none of the clauses ended with CONT/BREAK/RET
2564 if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
2565 insertConvergenceOps(convBB, forkBB);
2566 mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
2567 bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2568 }
2569
2570 if (prevBB->getExit()->op == OP_BRA) {
2571 prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2572 prevBB->getExit()->asFlow()->target.bb = convBB;
2573 }
2574 setPosition(convBB, true);
2575 }
2576 break;
2577 case TGSI_OPCODE_BGNLOOP:
2578 {
2579 BasicBlock *lbgnBB = new BasicBlock(func);
2580 BasicBlock *lbrkBB = new BasicBlock(func);
2581
2582 loopBBs.push(lbgnBB);
2583 breakBBs.push(lbrkBB);
2584 if (loopBBs.getSize() > func->loopNestingBound)
2585 func->loopNestingBound++;
2586
2587 mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
2588
2589 bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
2590 setPosition(lbgnBB, true);
2591 mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
2592 }
2593 break;
2594 case TGSI_OPCODE_ENDLOOP:
2595 {
2596 BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
2597
2598 if (!bb->isTerminated()) {
2599 mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
2600 bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
2601 }
2602 setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
2603 }
2604 break;
2605 case TGSI_OPCODE_BRK:
2606 {
2607 if (bb->isTerminated())
2608 break;
2609 BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
2610 mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
2611 bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
2612 }
2613 break;
2614 case TGSI_OPCODE_CONT:
2615 {
2616 if (bb->isTerminated())
2617 break;
2618 BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
2619 mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
2620 contBB->explicitCont = true;
2621 bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
2622 }
2623 break;
2624 case TGSI_OPCODE_BGNSUB:
2625 {
2626 Subroutine *s = getSubroutine(ip);
2627 BasicBlock *entry = new BasicBlock(s->f);
2628 BasicBlock *leave = new BasicBlock(s->f);
2629
2630 // multiple entrypoints possible, keep the graph connected
2631 if (prog->getType() == Program::TYPE_COMPUTE)
2632 prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
2633
2634 sub.cur = s;
2635 s->f->setEntry(entry);
2636 s->f->setExit(leave);
2637 setPosition(entry, true);
2638 return true;
2639 }
2640 case TGSI_OPCODE_ENDSUB:
2641 {
2642 sub.cur = getSubroutine(prog->main);
2643 setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
2644 return true;
2645 }
2646 case TGSI_OPCODE_CAL:
2647 {
2648 Subroutine *s = getSubroutine(tgsi.getLabel());
2649 mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
2650 func->call.attach(&s->f->call, Graph::Edge::TREE);
2651 return true;
2652 }
2653 case TGSI_OPCODE_RET:
2654 {
2655 if (bb->isTerminated())
2656 return true;
2657 BasicBlock *leave = BasicBlock::get(func->cfgExit);
2658
2659 if (!isEndOfSubroutine(ip + 1)) {
2660 // insert a PRERET at the entry if this is an early return
2661 // (only needed for sharing code in the epilogue)
2662 BasicBlock *pos = getBB();
2663 setPosition(BasicBlock::get(func->cfg.getRoot()), false);
2664 mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
2665 setPosition(pos, true);
2666 }
2667 mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
2668 bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
2669 }
2670 break;
2671 case TGSI_OPCODE_END:
2672 {
2673 // attach and generate epilogue code
2674 BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
2675 bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
2676 setPosition(epilogue, true);
2677 if (prog->getType() == Program::TYPE_FRAGMENT)
2678 exportOutputs();
2679 if (info->io.genUserClip > 0)
2680 handleUserClipPlanes();
2681 mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
2682 }
2683 break;
2684 case TGSI_OPCODE_SWITCH:
2685 case TGSI_OPCODE_CASE:
2686 ERROR("switch/case opcode encountered, should have been lowered\n");
2687 abort();
2688 break;
2689 case TGSI_OPCODE_LOAD:
2690 handleLOAD(dst0);
2691 break;
2692 case TGSI_OPCODE_STORE:
2693 handleSTORE();
2694 break;
2695 case TGSI_OPCODE_BARRIER:
2696 geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
2697 geni->fixed = 1;
2698 geni->subOp = NV50_IR_SUBOP_BAR_SYNC;
2699 break;
2700 case TGSI_OPCODE_MFENCE:
2701 case TGSI_OPCODE_LFENCE:
2702 case TGSI_OPCODE_SFENCE:
2703 geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
2704 geni->fixed = 1;
2705 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2706 break;
2707 case TGSI_OPCODE_ATOMUADD:
2708 case TGSI_OPCODE_ATOMXCHG:
2709 case TGSI_OPCODE_ATOMCAS:
2710 case TGSI_OPCODE_ATOMAND:
2711 case TGSI_OPCODE_ATOMOR:
2712 case TGSI_OPCODE_ATOMXOR:
2713 case TGSI_OPCODE_ATOMUMIN:
2714 case TGSI_OPCODE_ATOMIMIN:
2715 case TGSI_OPCODE_ATOMUMAX:
2716 case TGSI_OPCODE_ATOMIMAX:
2717 handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode()));
2718 break;
2719 case TGSI_OPCODE_IBFE:
2720 case TGSI_OPCODE_UBFE:
2721 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2722 src0 = fetchSrc(0, c);
2723 src1 = fetchSrc(1, c);
2724 src2 = fetchSrc(2, c);
2725 mkOp3(OP_INSBF, TYPE_U32, src1, src2, mkImm(0x808), src1);
2726 mkOp2(OP_EXTBF, dstTy, dst0[c], src0, src1);
2727 }
2728 break;
2729 case TGSI_OPCODE_BFI:
2730 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2731 src0 = fetchSrc(0, c);
2732 src1 = fetchSrc(1, c);
2733 src2 = fetchSrc(2, c);
2734 src3 = fetchSrc(3, c);
2735 mkOp3(OP_INSBF, TYPE_U32, src2, src3, mkImm(0x808), src2);
2736 mkOp3(OP_INSBF, TYPE_U32, dst0[c], src1, src2, src0);
2737 }
2738 break;
2739 case TGSI_OPCODE_LSB:
2740 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2741 src0 = fetchSrc(0, c);
2742 geni = mkOp2(OP_EXTBF, TYPE_U32, src0, src0, mkImm(0x2000));
2743 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
2744 geni = mkOp1(OP_BFIND, TYPE_U32, dst0[c], src0);
2745 geni->subOp = NV50_IR_SUBOP_BFIND_SAMT;
2746 }
2747 break;
2748 case TGSI_OPCODE_IMSB:
2749 case TGSI_OPCODE_UMSB:
2750 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2751 src0 = fetchSrc(0, c);
2752 mkOp1(OP_BFIND, srcTy, dst0[c], src0);
2753 }
2754 break;
2755 case TGSI_OPCODE_BREV:
2756 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2757 src0 = fetchSrc(0, c);
2758 geni = mkOp2(OP_EXTBF, TYPE_U32, dst0[c], src0, mkImm(0x2000));
2759 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
2760 }
2761 break;
2762 case TGSI_OPCODE_POPC:
2763 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2764 src0 = fetchSrc(0, c);
2765 mkOp2(OP_POPCNT, TYPE_U32, dst0[c], src0, src0);
2766 }
2767 break;
2768 default:
2769 ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
2770 assert(0);
2771 break;
2772 }
2773
2774 if (tgsi.dstCount()) {
2775 for (c = 0; c < 4; ++c) {
2776 if (!dst0[c])
2777 continue;
2778 if (dst0[c] != rDst0[c])
2779 mkMov(rDst0[c], dst0[c]);
2780 storeDst(0, c, rDst0[c]);
2781 }
2782 }
2783 vtxBaseValid = 0;
2784
2785 return true;
2786 }
2787
2788 void
2789 Converter::handleUserClipPlanes()
2790 {
2791 Value *res[8];
2792 int n, i, c;
2793
2794 for (c = 0; c < 4; ++c) {
2795 for (i = 0; i < info->io.genUserClip; ++i) {
2796 Symbol *sym = mkSymbol(FILE_MEMORY_CONST, info->io.ucpCBSlot,
2797 TYPE_F32, info->io.ucpBase + i * 16 + c * 4);
2798 Value *ucp = mkLoadv(TYPE_F32, sym, NULL);
2799 if (c == 0)
2800 res[i] = mkOp2v(OP_MUL, TYPE_F32, getScratch(), clipVtx[c], ucp);
2801 else
2802 mkOp3(OP_MAD, TYPE_F32, res[i], clipVtx[c], ucp, res[i]);
2803 }
2804 }
2805
2806 const int first = info->numOutputs - (info->io.genUserClip + 3) / 4;
2807
2808 for (i = 0; i < info->io.genUserClip; ++i) {
2809 n = i / 4 + first;
2810 c = i % 4;
2811 Symbol *sym =
2812 mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[n].slot[c] * 4);
2813 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, res[i]);
2814 }
2815 }
2816
2817 void
2818 Converter::exportOutputs()
2819 {
2820 for (unsigned int i = 0; i < info->numOutputs; ++i) {
2821 for (unsigned int c = 0; c < 4; ++c) {
2822 if (!oData.exists(sub.cur->values, i, c))
2823 continue;
2824 Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
2825 info->out[i].slot[c] * 4);
2826 Value *val = oData.load(sub.cur->values, i, c, NULL);
2827 if (val)
2828 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
2829 }
2830 }
2831 }
2832
2833 Converter::Converter(Program *ir, const tgsi::Source *code) : BuildUtil(ir),
2834 code(code),
2835 tgsi(NULL),
2836 tData(this), aData(this), pData(this), oData(this)
2837 {
2838 info = code->info;
2839
2840 const DataFile tFile = code->mainTempsInLMem ? FILE_MEMORY_LOCAL : FILE_GPR;
2841
2842 const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
2843 const unsigned pSize = code->fileSize(TGSI_FILE_PREDICATE);
2844 const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
2845 const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
2846
2847 tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, tFile, 0);
2848 pData.setup(TGSI_FILE_PREDICATE, 0, 0, pSize, 4, 4, FILE_PREDICATE, 0);
2849 aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_GPR, 0);
2850 oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
2851
2852 zero = mkImm((uint32_t)0);
2853
2854 vtxBaseValid = 0;
2855 }
2856
2857 Converter::~Converter()
2858 {
2859 }
2860
2861 inline const Converter::Location *
2862 Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v)
2863 {
2864 ValueMap::l_iterator it = s->values.l.find(v);
2865 return it == s->values.l.end() ? NULL : &it->second;
2866 }
2867
2868 template<typename T> inline void
2869 Converter::BindArgumentsPass::updateCallArgs(
2870 Instruction *i, void (Instruction::*setArg)(int, Value *),
2871 T (Function::*proto))
2872 {
2873 Function *g = i->asFlow()->target.fn;
2874 Subroutine *subg = conv.getSubroutine(g);
2875
2876 for (unsigned a = 0; a < (g->*proto).size(); ++a) {
2877 Value *v = (g->*proto)[a].get();
2878 const Converter::Location &l = *getValueLocation(subg, v);
2879 Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
2880
2881 (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
2882 }
2883 }
2884
2885 template<typename T> inline void
2886 Converter::BindArgumentsPass::updatePrototype(
2887 BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
2888 {
2889 (func->*updateSet)();
2890
2891 for (unsigned i = 0; i < set->getSize(); ++i) {
2892 Value *v = func->getLValue(i);
2893 const Converter::Location *l = getValueLocation(sub, v);
2894
2895 // only include values with a matching TGSI register
2896 if (set->test(i) && l && !conv.code->locals.count(*l))
2897 (func->*proto).push_back(v);
2898 }
2899 }
2900
2901 bool
2902 Converter::BindArgumentsPass::visit(Function *f)
2903 {
2904 sub = conv.getSubroutine(f);
2905
2906 for (ArrayList::Iterator bi = f->allBBlocks.iterator();
2907 !bi.end(); bi.next()) {
2908 for (Instruction *i = BasicBlock::get(bi)->getFirst();
2909 i; i = i->next) {
2910 if (i->op == OP_CALL && !i->asFlow()->builtin) {
2911 updateCallArgs(i, &Instruction::setSrc, &Function::ins);
2912 updateCallArgs(i, &Instruction::setDef, &Function::outs);
2913 }
2914 }
2915 }
2916
2917 if (func == prog->main && prog->getType() != Program::TYPE_COMPUTE)
2918 return true;
2919 updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
2920 &Function::buildLiveSets, &Function::ins);
2921 updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
2922 &Function::buildDefSets, &Function::outs);
2923
2924 return true;
2925 }
2926
2927 bool
2928 Converter::run()
2929 {
2930 BasicBlock *entry = new BasicBlock(prog->main);
2931 BasicBlock *leave = new BasicBlock(prog->main);
2932
2933 prog->main->setEntry(entry);
2934 prog->main->setExit(leave);
2935
2936 setPosition(entry, true);
2937 sub.cur = getSubroutine(prog->main);
2938
2939 if (info->io.genUserClip > 0) {
2940 for (int c = 0; c < 4; ++c)
2941 clipVtx[c] = getScratch();
2942 }
2943
2944 if (prog->getType() == Program::TYPE_FRAGMENT) {
2945 Symbol *sv = mkSysVal(SV_POSITION, 3);
2946 fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
2947 mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
2948 }
2949
2950 for (ip = 0; ip < code->scan.num_instructions; ++ip) {
2951 if (!handleInstruction(&code->insns[ip]))
2952 return false;
2953 }
2954
2955 if (!BindArgumentsPass(*this).run(prog))
2956 return false;
2957
2958 return true;
2959 }
2960
2961 } // unnamed namespace
2962
2963 namespace nv50_ir {
2964
2965 bool
2966 Program::makeFromTGSI(struct nv50_ir_prog_info *info)
2967 {
2968 tgsi::Source src(info);
2969 if (!src.scanSource())
2970 return false;
2971 tlsSize = info->bin.tlsSpace;
2972
2973 Converter builder(this, &src);
2974 return builder.run();
2975 }
2976
2977 } // namespace nv50_ir