nv50: implement multiple viewports/scissors, enable ARB_viewport_array
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_from_tgsi.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 extern "C" {
24 #include "tgsi/tgsi_dump.h"
25 #include "tgsi/tgsi_scan.h"
26 #include "tgsi/tgsi_util.h"
27 }
28
29 #include <set>
30
31 #include "codegen/nv50_ir.h"
32 #include "codegen/nv50_ir_util.h"
33 #include "codegen/nv50_ir_build_util.h"
34
35 namespace tgsi {
36
37 class Source;
38
39 static nv50_ir::operation translateOpcode(uint opcode);
40 static nv50_ir::DataFile translateFile(uint file);
41 static nv50_ir::TexTarget translateTexture(uint texTarg);
42 static nv50_ir::SVSemantic translateSysVal(uint sysval);
43
44 class Instruction
45 {
46 public:
47 Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
48
49 class SrcRegister
50 {
51 public:
52 SrcRegister(const struct tgsi_full_src_register *src)
53 : reg(src->Register),
54 fsr(src)
55 { }
56
57 SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
58
59 SrcRegister(const struct tgsi_ind_register& ind)
60 : reg(tgsi_util_get_src_from_ind(&ind)),
61 fsr(NULL)
62 { }
63
64 struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
65 {
66 struct tgsi_src_register reg;
67 memset(&reg, 0, sizeof(reg));
68 reg.Index = off.Index;
69 reg.File = off.File;
70 reg.SwizzleX = off.SwizzleX;
71 reg.SwizzleY = off.SwizzleY;
72 reg.SwizzleZ = off.SwizzleZ;
73 return reg;
74 }
75
76 SrcRegister(const struct tgsi_texture_offset& off) :
77 reg(offsetToSrc(off)),
78 fsr(NULL)
79 { }
80
81 uint getFile() const { return reg.File; }
82
83 bool is2D() const { return reg.Dimension; }
84
85 bool isIndirect(int dim) const
86 {
87 return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
88 }
89
90 int getIndex(int dim) const
91 {
92 return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
93 }
94
95 int getSwizzle(int chan) const
96 {
97 return tgsi_util_get_src_register_swizzle(&reg, chan);
98 }
99
100 nv50_ir::Modifier getMod(int chan) const;
101
102 SrcRegister getIndirect(int dim) const
103 {
104 assert(fsr && isIndirect(dim));
105 if (dim)
106 return SrcRegister(fsr->DimIndirect);
107 return SrcRegister(fsr->Indirect);
108 }
109
110 uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
111 {
112 assert(reg.File == TGSI_FILE_IMMEDIATE);
113 assert(!reg.Absolute);
114 assert(!reg.Negate);
115 return info->immd.data[reg.Index * 4 + getSwizzle(c)];
116 }
117
118 private:
119 const struct tgsi_src_register reg;
120 const struct tgsi_full_src_register *fsr;
121 };
122
123 class DstRegister
124 {
125 public:
126 DstRegister(const struct tgsi_full_dst_register *dst)
127 : reg(dst->Register),
128 fdr(dst)
129 { }
130
131 DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
132
133 uint getFile() const { return reg.File; }
134
135 bool is2D() const { return reg.Dimension; }
136
137 bool isIndirect(int dim) const
138 {
139 return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
140 }
141
142 int getIndex(int dim) const
143 {
144 return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
145 }
146
147 unsigned int getMask() const { return reg.WriteMask; }
148
149 bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
150
151 SrcRegister getIndirect(int dim) const
152 {
153 assert(fdr && isIndirect(dim));
154 if (dim)
155 return SrcRegister(fdr->DimIndirect);
156 return SrcRegister(fdr->Indirect);
157 }
158
159 private:
160 const struct tgsi_dst_register reg;
161 const struct tgsi_full_dst_register *fdr;
162 };
163
164 inline uint getOpcode() const { return insn->Instruction.Opcode; }
165
166 unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
167 unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
168
169 // mask of used components of source s
170 unsigned int srcMask(unsigned int s) const;
171
172 SrcRegister getSrc(unsigned int s) const
173 {
174 assert(s < srcCount());
175 return SrcRegister(&insn->Src[s]);
176 }
177
178 DstRegister getDst(unsigned int d) const
179 {
180 assert(d < dstCount());
181 return DstRegister(&insn->Dst[d]);
182 }
183
184 SrcRegister getTexOffset(unsigned int i) const
185 {
186 assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
187 return SrcRegister(insn->TexOffsets[i]);
188 }
189
190 unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
191
192 bool checkDstSrcAliasing() const;
193
194 inline nv50_ir::operation getOP() const {
195 return translateOpcode(getOpcode()); }
196
197 nv50_ir::DataType inferSrcType() const;
198 nv50_ir::DataType inferDstType() const;
199
200 nv50_ir::CondCode getSetCond() const;
201
202 nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
203
204 inline uint getLabel() { return insn->Label.Label; }
205
206 unsigned getSaturate() const { return insn->Instruction.Saturate; }
207
208 void print() const
209 {
210 tgsi_dump_instruction(insn, 1);
211 }
212
213 private:
214 const struct tgsi_full_instruction *insn;
215 };
216
217 unsigned int Instruction::srcMask(unsigned int s) const
218 {
219 unsigned int mask = insn->Dst[0].Register.WriteMask;
220
221 switch (insn->Instruction.Opcode) {
222 case TGSI_OPCODE_COS:
223 case TGSI_OPCODE_SIN:
224 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
225 case TGSI_OPCODE_DP2:
226 return 0x3;
227 case TGSI_OPCODE_DP3:
228 return 0x7;
229 case TGSI_OPCODE_DP4:
230 case TGSI_OPCODE_DPH:
231 case TGSI_OPCODE_KILL_IF: /* WriteMask ignored */
232 return 0xf;
233 case TGSI_OPCODE_DST:
234 return mask & (s ? 0xa : 0x6);
235 case TGSI_OPCODE_EX2:
236 case TGSI_OPCODE_EXP:
237 case TGSI_OPCODE_LG2:
238 case TGSI_OPCODE_LOG:
239 case TGSI_OPCODE_POW:
240 case TGSI_OPCODE_RCP:
241 case TGSI_OPCODE_RSQ:
242 case TGSI_OPCODE_SCS:
243 return 0x1;
244 case TGSI_OPCODE_IF:
245 case TGSI_OPCODE_UIF:
246 return 0x1;
247 case TGSI_OPCODE_LIT:
248 return 0xb;
249 case TGSI_OPCODE_TEX2:
250 case TGSI_OPCODE_TXB2:
251 case TGSI_OPCODE_TXL2:
252 return (s == 0) ? 0xf : 0x3;
253 case TGSI_OPCODE_TEX:
254 case TGSI_OPCODE_TXB:
255 case TGSI_OPCODE_TXD:
256 case TGSI_OPCODE_TXL:
257 case TGSI_OPCODE_TXP:
258 {
259 const struct tgsi_instruction_texture *tex = &insn->Texture;
260
261 assert(insn->Instruction.Texture);
262
263 mask = 0x7;
264 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
265 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
266 mask |= 0x8; /* bias, lod or proj */
267
268 switch (tex->Texture) {
269 case TGSI_TEXTURE_1D:
270 mask &= 0x9;
271 break;
272 case TGSI_TEXTURE_SHADOW1D:
273 mask &= 0xd;
274 break;
275 case TGSI_TEXTURE_1D_ARRAY:
276 case TGSI_TEXTURE_2D:
277 case TGSI_TEXTURE_RECT:
278 mask &= 0xb;
279 break;
280 case TGSI_TEXTURE_CUBE_ARRAY:
281 case TGSI_TEXTURE_SHADOW2D_ARRAY:
282 case TGSI_TEXTURE_SHADOWCUBE:
283 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
284 mask |= 0x8;
285 break;
286 default:
287 break;
288 }
289 }
290 return mask;
291 case TGSI_OPCODE_XPD:
292 {
293 unsigned int x = 0;
294 if (mask & 1) x |= 0x6;
295 if (mask & 2) x |= 0x5;
296 if (mask & 4) x |= 0x3;
297 return x;
298 }
299 default:
300 break;
301 }
302
303 return mask;
304 }
305
306 nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
307 {
308 nv50_ir::Modifier m(0);
309
310 if (reg.Absolute)
311 m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
312 if (reg.Negate)
313 m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
314 return m;
315 }
316
317 static nv50_ir::DataFile translateFile(uint file)
318 {
319 switch (file) {
320 case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST;
321 case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT;
322 case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT;
323 case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR;
324 case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS;
325 case TGSI_FILE_PREDICATE: return nv50_ir::FILE_PREDICATE;
326 case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE;
327 case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE;
328 case TGSI_FILE_RESOURCE: return nv50_ir::FILE_MEMORY_GLOBAL;
329 case TGSI_FILE_SAMPLER:
330 case TGSI_FILE_NULL:
331 default:
332 return nv50_ir::FILE_NULL;
333 }
334 }
335
336 static nv50_ir::SVSemantic translateSysVal(uint sysval)
337 {
338 switch (sysval) {
339 case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE;
340 case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE;
341 case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID;
342 case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
343 case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID;
344 case TGSI_SEMANTIC_GRID_SIZE: return nv50_ir::SV_NCTAID;
345 case TGSI_SEMANTIC_BLOCK_ID: return nv50_ir::SV_CTAID;
346 case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID;
347 case TGSI_SEMANTIC_THREAD_ID: return nv50_ir::SV_TID;
348 default:
349 assert(0);
350 return nv50_ir::SV_CLOCK;
351 }
352 }
353
354 #define NV50_IR_TEX_TARG_CASE(a, b) \
355 case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
356
357 static nv50_ir::TexTarget translateTexture(uint tex)
358 {
359 switch (tex) {
360 NV50_IR_TEX_TARG_CASE(1D, 1D);
361 NV50_IR_TEX_TARG_CASE(2D, 2D);
362 NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS);
363 NV50_IR_TEX_TARG_CASE(3D, 3D);
364 NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
365 NV50_IR_TEX_TARG_CASE(RECT, RECT);
366 NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
367 NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
368 NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY);
369 NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY);
370 NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
371 NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
372 NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
373 NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
374 NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
375 NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
376 NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW);
377 NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
378
379 case TGSI_TEXTURE_UNKNOWN:
380 default:
381 assert(!"invalid texture target");
382 return nv50_ir::TEX_TARGET_2D;
383 }
384 }
385
386 nv50_ir::DataType Instruction::inferSrcType() const
387 {
388 switch (getOpcode()) {
389 case TGSI_OPCODE_UIF:
390 case TGSI_OPCODE_AND:
391 case TGSI_OPCODE_OR:
392 case TGSI_OPCODE_XOR:
393 case TGSI_OPCODE_NOT:
394 case TGSI_OPCODE_U2F:
395 case TGSI_OPCODE_UADD:
396 case TGSI_OPCODE_UDIV:
397 case TGSI_OPCODE_UMOD:
398 case TGSI_OPCODE_UMAD:
399 case TGSI_OPCODE_UMUL:
400 case TGSI_OPCODE_UMAX:
401 case TGSI_OPCODE_UMIN:
402 case TGSI_OPCODE_USEQ:
403 case TGSI_OPCODE_USGE:
404 case TGSI_OPCODE_USLT:
405 case TGSI_OPCODE_USNE:
406 case TGSI_OPCODE_USHR:
407 case TGSI_OPCODE_UCMP:
408 case TGSI_OPCODE_ATOMUADD:
409 case TGSI_OPCODE_ATOMXCHG:
410 case TGSI_OPCODE_ATOMCAS:
411 case TGSI_OPCODE_ATOMAND:
412 case TGSI_OPCODE_ATOMOR:
413 case TGSI_OPCODE_ATOMXOR:
414 case TGSI_OPCODE_ATOMUMIN:
415 case TGSI_OPCODE_ATOMUMAX:
416 return nv50_ir::TYPE_U32;
417 case TGSI_OPCODE_I2F:
418 case TGSI_OPCODE_IDIV:
419 case TGSI_OPCODE_IMAX:
420 case TGSI_OPCODE_IMIN:
421 case TGSI_OPCODE_IABS:
422 case TGSI_OPCODE_INEG:
423 case TGSI_OPCODE_ISGE:
424 case TGSI_OPCODE_ISHR:
425 case TGSI_OPCODE_ISLT:
426 case TGSI_OPCODE_ISSG:
427 case TGSI_OPCODE_SAD: // not sure about SAD, but no one has a float version
428 case TGSI_OPCODE_MOD:
429 case TGSI_OPCODE_UARL:
430 case TGSI_OPCODE_ATOMIMIN:
431 case TGSI_OPCODE_ATOMIMAX:
432 return nv50_ir::TYPE_S32;
433 default:
434 return nv50_ir::TYPE_F32;
435 }
436 }
437
438 nv50_ir::DataType Instruction::inferDstType() const
439 {
440 switch (getOpcode()) {
441 case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
442 case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
443 case TGSI_OPCODE_FSEQ:
444 case TGSI_OPCODE_FSGE:
445 case TGSI_OPCODE_FSLT:
446 case TGSI_OPCODE_FSNE:
447 return nv50_ir::TYPE_U32;
448 case TGSI_OPCODE_I2F:
449 case TGSI_OPCODE_U2F:
450 return nv50_ir::TYPE_F32;
451 default:
452 return inferSrcType();
453 }
454 }
455
456 nv50_ir::CondCode Instruction::getSetCond() const
457 {
458 using namespace nv50_ir;
459
460 switch (getOpcode()) {
461 case TGSI_OPCODE_SLT:
462 case TGSI_OPCODE_ISLT:
463 case TGSI_OPCODE_USLT:
464 case TGSI_OPCODE_FSLT:
465 return CC_LT;
466 case TGSI_OPCODE_SLE:
467 return CC_LE;
468 case TGSI_OPCODE_SGE:
469 case TGSI_OPCODE_ISGE:
470 case TGSI_OPCODE_USGE:
471 case TGSI_OPCODE_FSGE:
472 return CC_GE;
473 case TGSI_OPCODE_SGT:
474 return CC_GT;
475 case TGSI_OPCODE_SEQ:
476 case TGSI_OPCODE_USEQ:
477 case TGSI_OPCODE_FSEQ:
478 return CC_EQ;
479 case TGSI_OPCODE_SNE:
480 case TGSI_OPCODE_FSNE:
481 return CC_NEU;
482 case TGSI_OPCODE_USNE:
483 return CC_NE;
484 case TGSI_OPCODE_SFL:
485 return CC_NEVER;
486 case TGSI_OPCODE_STR:
487 default:
488 return CC_ALWAYS;
489 }
490 }
491
492 #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
493
494 static nv50_ir::operation translateOpcode(uint opcode)
495 {
496 switch (opcode) {
497 NV50_IR_OPCODE_CASE(ARL, SHL);
498 NV50_IR_OPCODE_CASE(MOV, MOV);
499
500 NV50_IR_OPCODE_CASE(RCP, RCP);
501 NV50_IR_OPCODE_CASE(RSQ, RSQ);
502
503 NV50_IR_OPCODE_CASE(MUL, MUL);
504 NV50_IR_OPCODE_CASE(ADD, ADD);
505
506 NV50_IR_OPCODE_CASE(MIN, MIN);
507 NV50_IR_OPCODE_CASE(MAX, MAX);
508 NV50_IR_OPCODE_CASE(SLT, SET);
509 NV50_IR_OPCODE_CASE(SGE, SET);
510 NV50_IR_OPCODE_CASE(MAD, MAD);
511 NV50_IR_OPCODE_CASE(SUB, SUB);
512
513 NV50_IR_OPCODE_CASE(FLR, FLOOR);
514 NV50_IR_OPCODE_CASE(ROUND, CVT);
515 NV50_IR_OPCODE_CASE(EX2, EX2);
516 NV50_IR_OPCODE_CASE(LG2, LG2);
517 NV50_IR_OPCODE_CASE(POW, POW);
518
519 NV50_IR_OPCODE_CASE(ABS, ABS);
520
521 NV50_IR_OPCODE_CASE(COS, COS);
522 NV50_IR_OPCODE_CASE(DDX, DFDX);
523 NV50_IR_OPCODE_CASE(DDY, DFDY);
524 NV50_IR_OPCODE_CASE(KILL, DISCARD);
525
526 NV50_IR_OPCODE_CASE(SEQ, SET);
527 NV50_IR_OPCODE_CASE(SFL, SET);
528 NV50_IR_OPCODE_CASE(SGT, SET);
529 NV50_IR_OPCODE_CASE(SIN, SIN);
530 NV50_IR_OPCODE_CASE(SLE, SET);
531 NV50_IR_OPCODE_CASE(SNE, SET);
532 NV50_IR_OPCODE_CASE(STR, SET);
533 NV50_IR_OPCODE_CASE(TEX, TEX);
534 NV50_IR_OPCODE_CASE(TXD, TXD);
535 NV50_IR_OPCODE_CASE(TXP, TEX);
536
537 NV50_IR_OPCODE_CASE(BRA, BRA);
538 NV50_IR_OPCODE_CASE(CAL, CALL);
539 NV50_IR_OPCODE_CASE(RET, RET);
540 NV50_IR_OPCODE_CASE(CMP, SLCT);
541
542 NV50_IR_OPCODE_CASE(TXB, TXB);
543
544 NV50_IR_OPCODE_CASE(DIV, DIV);
545
546 NV50_IR_OPCODE_CASE(TXL, TXL);
547
548 NV50_IR_OPCODE_CASE(CEIL, CEIL);
549 NV50_IR_OPCODE_CASE(I2F, CVT);
550 NV50_IR_OPCODE_CASE(NOT, NOT);
551 NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
552 NV50_IR_OPCODE_CASE(SHL, SHL);
553
554 NV50_IR_OPCODE_CASE(AND, AND);
555 NV50_IR_OPCODE_CASE(OR, OR);
556 NV50_IR_OPCODE_CASE(MOD, MOD);
557 NV50_IR_OPCODE_CASE(XOR, XOR);
558 NV50_IR_OPCODE_CASE(SAD, SAD);
559 NV50_IR_OPCODE_CASE(TXF, TXF);
560 NV50_IR_OPCODE_CASE(TXQ, TXQ);
561
562 NV50_IR_OPCODE_CASE(EMIT, EMIT);
563 NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
564
565 NV50_IR_OPCODE_CASE(KILL_IF, DISCARD);
566
567 NV50_IR_OPCODE_CASE(F2I, CVT);
568 NV50_IR_OPCODE_CASE(FSEQ, SET);
569 NV50_IR_OPCODE_CASE(FSGE, SET);
570 NV50_IR_OPCODE_CASE(FSLT, SET);
571 NV50_IR_OPCODE_CASE(FSNE, SET);
572 NV50_IR_OPCODE_CASE(IDIV, DIV);
573 NV50_IR_OPCODE_CASE(IMAX, MAX);
574 NV50_IR_OPCODE_CASE(IMIN, MIN);
575 NV50_IR_OPCODE_CASE(IABS, ABS);
576 NV50_IR_OPCODE_CASE(INEG, NEG);
577 NV50_IR_OPCODE_CASE(ISGE, SET);
578 NV50_IR_OPCODE_CASE(ISHR, SHR);
579 NV50_IR_OPCODE_CASE(ISLT, SET);
580 NV50_IR_OPCODE_CASE(F2U, CVT);
581 NV50_IR_OPCODE_CASE(U2F, CVT);
582 NV50_IR_OPCODE_CASE(UADD, ADD);
583 NV50_IR_OPCODE_CASE(UDIV, DIV);
584 NV50_IR_OPCODE_CASE(UMAD, MAD);
585 NV50_IR_OPCODE_CASE(UMAX, MAX);
586 NV50_IR_OPCODE_CASE(UMIN, MIN);
587 NV50_IR_OPCODE_CASE(UMOD, MOD);
588 NV50_IR_OPCODE_CASE(UMUL, MUL);
589 NV50_IR_OPCODE_CASE(USEQ, SET);
590 NV50_IR_OPCODE_CASE(USGE, SET);
591 NV50_IR_OPCODE_CASE(USHR, SHR);
592 NV50_IR_OPCODE_CASE(USLT, SET);
593 NV50_IR_OPCODE_CASE(USNE, SET);
594
595 NV50_IR_OPCODE_CASE(SAMPLE, TEX);
596 NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
597 NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
598 NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
599 NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
600 NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
601 NV50_IR_OPCODE_CASE(SAMPLE_I, TXF);
602 NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF);
603 NV50_IR_OPCODE_CASE(GATHER4, TXG);
604 NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
605
606 NV50_IR_OPCODE_CASE(ATOMUADD, ATOM);
607 NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM);
608 NV50_IR_OPCODE_CASE(ATOMCAS, ATOM);
609 NV50_IR_OPCODE_CASE(ATOMAND, ATOM);
610 NV50_IR_OPCODE_CASE(ATOMOR, ATOM);
611 NV50_IR_OPCODE_CASE(ATOMXOR, ATOM);
612 NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM);
613 NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM);
614 NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM);
615 NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM);
616
617 NV50_IR_OPCODE_CASE(TEX2, TEX);
618 NV50_IR_OPCODE_CASE(TXB2, TXB);
619 NV50_IR_OPCODE_CASE(TXL2, TXL);
620
621 NV50_IR_OPCODE_CASE(END, EXIT);
622
623 default:
624 return nv50_ir::OP_NOP;
625 }
626 }
627
628 static uint16_t opcodeToSubOp(uint opcode)
629 {
630 switch (opcode) {
631 case TGSI_OPCODE_LFENCE: return NV50_IR_SUBOP_MEMBAR(L, GL);
632 case TGSI_OPCODE_SFENCE: return NV50_IR_SUBOP_MEMBAR(S, GL);
633 case TGSI_OPCODE_MFENCE: return NV50_IR_SUBOP_MEMBAR(M, GL);
634 case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD;
635 case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH;
636 case TGSI_OPCODE_ATOMCAS: return NV50_IR_SUBOP_ATOM_CAS;
637 case TGSI_OPCODE_ATOMAND: return NV50_IR_SUBOP_ATOM_AND;
638 case TGSI_OPCODE_ATOMOR: return NV50_IR_SUBOP_ATOM_OR;
639 case TGSI_OPCODE_ATOMXOR: return NV50_IR_SUBOP_ATOM_XOR;
640 case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN;
641 case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN;
642 case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX;
643 case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX;
644 default:
645 return 0;
646 }
647 }
648
649 bool Instruction::checkDstSrcAliasing() const
650 {
651 if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
652 return false;
653
654 for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
655 if (insn->Src[s].Register.File == TGSI_FILE_NULL)
656 break;
657 if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
658 insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
659 return true;
660 }
661 return false;
662 }
663
664 class Source
665 {
666 public:
667 Source(struct nv50_ir_prog_info *);
668 ~Source();
669
670 public:
671 bool scanSource();
672 unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
673
674 public:
675 struct tgsi_shader_info scan;
676 struct tgsi_full_instruction *insns;
677 const struct tgsi_token *tokens;
678 struct nv50_ir_prog_info *info;
679
680 nv50_ir::DynArray tempArrays;
681 nv50_ir::DynArray immdArrays;
682
683 typedef nv50_ir::BuildUtil::Location Location;
684 // these registers are per-subroutine, cannot be used for parameter passing
685 std::set<Location> locals;
686
687 bool mainTempsInLMem;
688
689 int clipVertexOutput;
690
691 struct TextureView {
692 uint8_t target; // TGSI_TEXTURE_*
693 };
694 std::vector<TextureView> textureViews;
695
696 struct Resource {
697 uint8_t target; // TGSI_TEXTURE_*
698 bool raw;
699 uint8_t slot; // $surface index
700 };
701 std::vector<Resource> resources;
702
703 private:
704 int inferSysValDirection(unsigned sn) const;
705 bool scanDeclaration(const struct tgsi_full_declaration *);
706 bool scanInstruction(const struct tgsi_full_instruction *);
707 void scanProperty(const struct tgsi_full_property *);
708 void scanImmediate(const struct tgsi_full_immediate *);
709
710 inline bool isEdgeFlagPassthrough(const Instruction&) const;
711 };
712
713 Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
714 {
715 tokens = (const struct tgsi_token *)info->bin.source;
716
717 if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
718 tgsi_dump(tokens, 0);
719
720 mainTempsInLMem = FALSE;
721 }
722
723 Source::~Source()
724 {
725 if (insns)
726 FREE(insns);
727
728 if (info->immd.data)
729 FREE(info->immd.data);
730 if (info->immd.type)
731 FREE(info->immd.type);
732 }
733
734 bool Source::scanSource()
735 {
736 unsigned insnCount = 0;
737 struct tgsi_parse_context parse;
738
739 tgsi_scan_shader(tokens, &scan);
740
741 insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
742 sizeof(insns[0]));
743 if (!insns)
744 return false;
745
746 clipVertexOutput = -1;
747
748 textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1);
749 resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1);
750
751 info->immd.bufSize = 0;
752
753 info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
754 info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
755 info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
756
757 if (info->type == PIPE_SHADER_FRAGMENT) {
758 info->prop.fp.writesDepth = scan.writes_z;
759 info->prop.fp.usesDiscard = scan.uses_kill;
760 } else
761 if (info->type == PIPE_SHADER_GEOMETRY) {
762 info->prop.gp.instanceCount = 1; // default value
763 }
764
765 info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
766 info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
767
768 tgsi_parse_init(&parse, tokens);
769 while (!tgsi_parse_end_of_tokens(&parse)) {
770 tgsi_parse_token(&parse);
771
772 switch (parse.FullToken.Token.Type) {
773 case TGSI_TOKEN_TYPE_IMMEDIATE:
774 scanImmediate(&parse.FullToken.FullImmediate);
775 break;
776 case TGSI_TOKEN_TYPE_DECLARATION:
777 scanDeclaration(&parse.FullToken.FullDeclaration);
778 break;
779 case TGSI_TOKEN_TYPE_INSTRUCTION:
780 insns[insnCount++] = parse.FullToken.FullInstruction;
781 scanInstruction(&parse.FullToken.FullInstruction);
782 break;
783 case TGSI_TOKEN_TYPE_PROPERTY:
784 scanProperty(&parse.FullToken.FullProperty);
785 break;
786 default:
787 INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
788 break;
789 }
790 }
791 tgsi_parse_free(&parse);
792
793 if (mainTempsInLMem)
794 info->bin.tlsSpace += (scan.file_max[TGSI_FILE_TEMPORARY] + 1) * 16;
795
796 if (info->io.genUserClip > 0) {
797 info->io.clipDistanceMask = (1 << info->io.genUserClip) - 1;
798
799 const unsigned int nOut = (info->io.genUserClip + 3) / 4;
800
801 for (unsigned int n = 0; n < nOut; ++n) {
802 unsigned int i = info->numOutputs++;
803 info->out[i].id = i;
804 info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
805 info->out[i].si = n;
806 info->out[i].mask = info->io.clipDistanceMask >> (n * 4);
807 }
808 }
809
810 return info->assignSlots(info) == 0;
811 }
812
813 void Source::scanProperty(const struct tgsi_full_property *prop)
814 {
815 switch (prop->Property.PropertyName) {
816 case TGSI_PROPERTY_GS_OUTPUT_PRIM:
817 info->prop.gp.outputPrim = prop->u[0].Data;
818 break;
819 case TGSI_PROPERTY_GS_INPUT_PRIM:
820 info->prop.gp.inputPrim = prop->u[0].Data;
821 break;
822 case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
823 info->prop.gp.maxVertices = prop->u[0].Data;
824 break;
825 #if 0
826 case TGSI_PROPERTY_GS_INSTANCE_COUNT:
827 info->prop.gp.instanceCount = prop->u[0].Data;
828 break;
829 #endif
830 case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
831 info->prop.fp.separateFragData = TRUE;
832 break;
833 case TGSI_PROPERTY_FS_COORD_ORIGIN:
834 case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
835 // we don't care
836 break;
837 case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
838 info->io.genUserClip = -1;
839 break;
840 default:
841 INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
842 break;
843 }
844 }
845
846 void Source::scanImmediate(const struct tgsi_full_immediate *imm)
847 {
848 const unsigned n = info->immd.count++;
849
850 assert(n < scan.immediate_count);
851
852 for (int c = 0; c < 4; ++c)
853 info->immd.data[n * 4 + c] = imm->u[c].Uint;
854
855 info->immd.type[n] = imm->Immediate.DataType;
856 }
857
858 int Source::inferSysValDirection(unsigned sn) const
859 {
860 switch (sn) {
861 case TGSI_SEMANTIC_INSTANCEID:
862 case TGSI_SEMANTIC_VERTEXID:
863 return 1;
864 case TGSI_SEMANTIC_LAYER:
865 #if 0
866 case TGSI_SEMANTIC_VIEWPORTINDEX:
867 return 0;
868 #endif
869 case TGSI_SEMANTIC_PRIMID:
870 return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
871 default:
872 return 0;
873 }
874 }
875
876 bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
877 {
878 unsigned i, c;
879 unsigned sn = TGSI_SEMANTIC_GENERIC;
880 unsigned si = 0;
881 const unsigned first = decl->Range.First, last = decl->Range.Last;
882
883 if (decl->Declaration.Semantic) {
884 sn = decl->Semantic.Name;
885 si = decl->Semantic.Index;
886 }
887
888 if (decl->Declaration.Local) {
889 for (i = first; i <= last; ++i) {
890 for (c = 0; c < 4; ++c) {
891 locals.insert(
892 Location(decl->Declaration.File, decl->Dim.Index2D, i, c));
893 }
894 }
895 }
896
897 switch (decl->Declaration.File) {
898 case TGSI_FILE_INPUT:
899 if (info->type == PIPE_SHADER_VERTEX) {
900 // all vertex attributes are equal
901 for (i = first; i <= last; ++i) {
902 info->in[i].sn = TGSI_SEMANTIC_GENERIC;
903 info->in[i].si = i;
904 }
905 } else {
906 for (i = first; i <= last; ++i, ++si) {
907 info->in[i].id = i;
908 info->in[i].sn = sn;
909 info->in[i].si = si;
910 if (info->type == PIPE_SHADER_FRAGMENT) {
911 // translate interpolation mode
912 switch (decl->Interp.Interpolate) {
913 case TGSI_INTERPOLATE_CONSTANT:
914 info->in[i].flat = 1;
915 break;
916 case TGSI_INTERPOLATE_COLOR:
917 info->in[i].sc = 1;
918 break;
919 case TGSI_INTERPOLATE_LINEAR:
920 info->in[i].linear = 1;
921 break;
922 default:
923 break;
924 }
925 if (decl->Interp.Centroid)
926 info->in[i].centroid = 1;
927 }
928 }
929 }
930 break;
931 case TGSI_FILE_OUTPUT:
932 for (i = first; i <= last; ++i, ++si) {
933 switch (sn) {
934 case TGSI_SEMANTIC_POSITION:
935 if (info->type == PIPE_SHADER_FRAGMENT)
936 info->io.fragDepth = i;
937 else
938 if (clipVertexOutput < 0)
939 clipVertexOutput = i;
940 break;
941 case TGSI_SEMANTIC_COLOR:
942 if (info->type == PIPE_SHADER_FRAGMENT)
943 info->prop.fp.numColourResults++;
944 break;
945 case TGSI_SEMANTIC_EDGEFLAG:
946 info->io.edgeFlagOut = i;
947 break;
948 case TGSI_SEMANTIC_CLIPVERTEX:
949 clipVertexOutput = i;
950 break;
951 case TGSI_SEMANTIC_CLIPDIST:
952 info->io.clipDistanceMask |=
953 decl->Declaration.UsageMask << (si * 4);
954 info->io.genUserClip = -1;
955 break;
956 default:
957 break;
958 }
959 info->out[i].id = i;
960 info->out[i].sn = sn;
961 info->out[i].si = si;
962 }
963 break;
964 case TGSI_FILE_SYSTEM_VALUE:
965 switch (sn) {
966 case TGSI_SEMANTIC_INSTANCEID:
967 info->io.instanceId = first;
968 break;
969 case TGSI_SEMANTIC_VERTEXID:
970 info->io.vertexId = first;
971 break;
972 default:
973 break;
974 }
975 for (i = first; i <= last; ++i, ++si) {
976 info->sv[i].sn = sn;
977 info->sv[i].si = si;
978 info->sv[i].input = inferSysValDirection(sn);
979 }
980 break;
981 case TGSI_FILE_RESOURCE:
982 for (i = first; i <= last; ++i) {
983 resources[i].target = decl->Resource.Resource;
984 resources[i].raw = decl->Resource.Raw;
985 resources[i].slot = i;
986 }
987 break;
988 case TGSI_FILE_SAMPLER_VIEW:
989 for (i = first; i <= last; ++i)
990 textureViews[i].target = decl->SamplerView.Resource;
991 break;
992 case TGSI_FILE_NULL:
993 case TGSI_FILE_TEMPORARY:
994 case TGSI_FILE_ADDRESS:
995 case TGSI_FILE_CONSTANT:
996 case TGSI_FILE_IMMEDIATE:
997 case TGSI_FILE_PREDICATE:
998 case TGSI_FILE_SAMPLER:
999 break;
1000 default:
1001 ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
1002 return false;
1003 }
1004 return true;
1005 }
1006
1007 inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
1008 {
1009 return insn.getOpcode() == TGSI_OPCODE_MOV &&
1010 insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
1011 insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
1012 }
1013
1014 bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
1015 {
1016 Instruction insn(inst);
1017
1018 if (insn.getOpcode() == TGSI_OPCODE_BARRIER)
1019 info->numBarriers = 1;
1020
1021 if (insn.dstCount()) {
1022 if (insn.getDst(0).getFile() == TGSI_FILE_OUTPUT) {
1023 Instruction::DstRegister dst = insn.getDst(0);
1024
1025 if (dst.isIndirect(0))
1026 for (unsigned i = 0; i < info->numOutputs; ++i)
1027 info->out[i].mask = 0xf;
1028 else
1029 info->out[dst.getIndex(0)].mask |= dst.getMask();
1030
1031 if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE ||
1032 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID ||
1033 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_LAYER ||
1034 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_VIEWPORT_INDEX ||
1035 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG)
1036 info->out[dst.getIndex(0)].mask &= 1;
1037
1038 if (isEdgeFlagPassthrough(insn))
1039 info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
1040 } else
1041 if (insn.getDst(0).getFile() == TGSI_FILE_TEMPORARY) {
1042 if (insn.getDst(0).isIndirect(0))
1043 mainTempsInLMem = TRUE;
1044 }
1045 }
1046
1047 for (unsigned s = 0; s < insn.srcCount(); ++s) {
1048 Instruction::SrcRegister src = insn.getSrc(s);
1049 if (src.getFile() == TGSI_FILE_TEMPORARY) {
1050 if (src.isIndirect(0))
1051 mainTempsInLMem = TRUE;
1052 } else
1053 if (src.getFile() == TGSI_FILE_RESOURCE) {
1054 if (src.getIndex(0) == TGSI_RESOURCE_GLOBAL)
1055 info->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ?
1056 0x1 : 0x2;
1057 }
1058 if (src.getFile() != TGSI_FILE_INPUT)
1059 continue;
1060 unsigned mask = insn.srcMask(s);
1061
1062 if (src.isIndirect(0)) {
1063 for (unsigned i = 0; i < info->numInputs; ++i)
1064 info->in[i].mask = 0xf;
1065 } else {
1066 const int i = src.getIndex(0);
1067 for (unsigned c = 0; c < 4; ++c) {
1068 if (!(mask & (1 << c)))
1069 continue;
1070 int k = src.getSwizzle(c);
1071 if (k <= TGSI_SWIZZLE_W)
1072 info->in[i].mask |= 1 << k;
1073 }
1074 switch (info->in[i].sn) {
1075 case TGSI_SEMANTIC_PSIZE:
1076 case TGSI_SEMANTIC_PRIMID:
1077 case TGSI_SEMANTIC_FOG:
1078 info->in[i].mask &= 0x1;
1079 break;
1080 case TGSI_SEMANTIC_PCOORD:
1081 info->in[i].mask &= 0x3;
1082 break;
1083 default:
1084 break;
1085 }
1086 }
1087 }
1088 return true;
1089 }
1090
1091 nv50_ir::TexInstruction::Target
1092 Instruction::getTexture(const tgsi::Source *code, int s) const
1093 {
1094 // XXX: indirect access
1095 unsigned int r;
1096
1097 switch (getSrc(s).getFile()) {
1098 case TGSI_FILE_RESOURCE:
1099 r = getSrc(s).getIndex(0);
1100 return translateTexture(code->resources.at(r).target);
1101 case TGSI_FILE_SAMPLER_VIEW:
1102 r = getSrc(s).getIndex(0);
1103 return translateTexture(code->textureViews.at(r).target);
1104 default:
1105 return translateTexture(insn->Texture.Texture);
1106 }
1107 }
1108
1109 } // namespace tgsi
1110
1111 namespace {
1112
1113 using namespace nv50_ir;
1114
1115 class Converter : public BuildUtil
1116 {
1117 public:
1118 Converter(Program *, const tgsi::Source *);
1119 ~Converter();
1120
1121 bool run();
1122
1123 private:
1124 struct Subroutine
1125 {
1126 Subroutine(Function *f) : f(f) { }
1127 Function *f;
1128 ValueMap values;
1129 };
1130
1131 Value *shiftAddress(Value *);
1132 Value *getVertexBase(int s);
1133 DataArray *getArrayForFile(unsigned file, int idx);
1134 Value *fetchSrc(int s, int c);
1135 Value *acquireDst(int d, int c);
1136 void storeDst(int d, int c, Value *);
1137
1138 Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1139 void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1140 Value *val, Value *ptr);
1141
1142 Value *applySrcMod(Value *, int s, int c);
1143
1144 Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1145 Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1146 Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1147
1148 bool handleInstruction(const struct tgsi_full_instruction *);
1149 void exportOutputs();
1150 inline Subroutine *getSubroutine(unsigned ip);
1151 inline Subroutine *getSubroutine(Function *);
1152 inline bool isEndOfSubroutine(uint ip);
1153
1154 void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1155
1156 // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1157 void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1158 void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1159 void handleTXF(Value *dst0[4], int R, int L_M);
1160 void handleTXQ(Value *dst0[4], enum TexQuery);
1161 void handleLIT(Value *dst0[4]);
1162 void handleUserClipPlanes();
1163
1164 Symbol *getResourceBase(int r);
1165 void getResourceCoords(std::vector<Value *>&, int r, int s);
1166
1167 void handleLOAD(Value *dst0[4]);
1168 void handleSTORE();
1169 void handleATOM(Value *dst0[4], DataType, uint16_t subOp);
1170
1171 Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1172
1173 void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1174
1175 Value *buildDot(int dim);
1176
1177 class BindArgumentsPass : public Pass {
1178 public:
1179 BindArgumentsPass(Converter &conv) : conv(conv) { }
1180
1181 private:
1182 Converter &conv;
1183 Subroutine *sub;
1184
1185 inline const Location *getValueLocation(Subroutine *, Value *);
1186
1187 template<typename T> inline void
1188 updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1189 T (Function::*proto));
1190
1191 template<typename T> inline void
1192 updatePrototype(BitSet *set, void (Function::*updateSet)(),
1193 T (Function::*proto));
1194
1195 protected:
1196 bool visit(Function *);
1197 bool visit(BasicBlock *bb) { return false; }
1198 };
1199
1200 private:
1201 const struct tgsi::Source *code;
1202 const struct nv50_ir_prog_info *info;
1203
1204 struct {
1205 std::map<unsigned, Subroutine> map;
1206 Subroutine *cur;
1207 } sub;
1208
1209 uint ip; // instruction pointer
1210
1211 tgsi::Instruction tgsi;
1212
1213 DataType dstTy;
1214 DataType srcTy;
1215
1216 DataArray tData; // TGSI_FILE_TEMPORARY
1217 DataArray aData; // TGSI_FILE_ADDRESS
1218 DataArray pData; // TGSI_FILE_PREDICATE
1219 DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1220
1221 Value *zero;
1222 Value *fragCoord[4];
1223 Value *clipVtx[4];
1224
1225 Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1226 uint8_t vtxBaseValid;
1227
1228 Stack condBBs; // fork BB, then else clause BB
1229 Stack joinBBs; // fork BB, for inserting join ops on ENDIF
1230 Stack loopBBs; // loop headers
1231 Stack breakBBs; // end of / after loop
1232 };
1233
1234 Symbol *
1235 Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1236 {
1237 const int swz = src.getSwizzle(c);
1238
1239 return makeSym(src.getFile(),
1240 src.is2D() ? src.getIndex(1) : 0,
1241 src.isIndirect(0) ? -1 : src.getIndex(0), swz,
1242 src.getIndex(0) * 16 + swz * 4);
1243 }
1244
1245 Symbol *
1246 Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1247 {
1248 return makeSym(dst.getFile(),
1249 dst.is2D() ? dst.getIndex(1) : 0,
1250 dst.isIndirect(0) ? -1 : dst.getIndex(0), c,
1251 dst.getIndex(0) * 16 + c * 4);
1252 }
1253
1254 Symbol *
1255 Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1256 {
1257 Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1258
1259 sym->reg.fileIndex = fileIdx;
1260
1261 if (idx >= 0) {
1262 if (sym->reg.file == FILE_SHADER_INPUT)
1263 sym->setOffset(info->in[idx].slot[c] * 4);
1264 else
1265 if (sym->reg.file == FILE_SHADER_OUTPUT)
1266 sym->setOffset(info->out[idx].slot[c] * 4);
1267 else
1268 if (sym->reg.file == FILE_SYSTEM_VALUE)
1269 sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
1270 else
1271 sym->setOffset(address);
1272 } else {
1273 sym->setOffset(address);
1274 }
1275 return sym;
1276 }
1277
1278 static inline uint8_t
1279 translateInterpMode(const struct nv50_ir_varying *var, operation& op)
1280 {
1281 uint8_t mode = NV50_IR_INTERP_PERSPECTIVE;
1282
1283 if (var->flat)
1284 mode = NV50_IR_INTERP_FLAT;
1285 else
1286 if (var->linear)
1287 mode = NV50_IR_INTERP_LINEAR;
1288 else
1289 if (var->sc)
1290 mode = NV50_IR_INTERP_SC;
1291
1292 op = (mode == NV50_IR_INTERP_PERSPECTIVE || mode == NV50_IR_INTERP_SC)
1293 ? OP_PINTERP : OP_LINTERP;
1294
1295 if (var->centroid)
1296 mode |= NV50_IR_INTERP_CENTROID;
1297
1298 return mode;
1299 }
1300
1301 Value *
1302 Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1303 {
1304 operation op;
1305
1306 // XXX: no way to know interpolation mode if we don't know what's accessed
1307 const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
1308 src.getIndex(0)], op);
1309
1310 Instruction *insn = new_Instruction(func, op, TYPE_F32);
1311
1312 insn->setDef(0, getScratch());
1313 insn->setSrc(0, srcToSym(src, c));
1314 if (op == OP_PINTERP)
1315 insn->setSrc(1, fragCoord[3]);
1316 if (ptr)
1317 insn->setIndirect(0, 0, ptr);
1318
1319 insn->setInterpolate(mode);
1320
1321 bb->insertTail(insn);
1322 return insn->getDef(0);
1323 }
1324
1325 Value *
1326 Converter::applySrcMod(Value *val, int s, int c)
1327 {
1328 Modifier m = tgsi.getSrc(s).getMod(c);
1329 DataType ty = tgsi.inferSrcType();
1330
1331 if (m & Modifier(NV50_IR_MOD_ABS))
1332 val = mkOp1v(OP_ABS, ty, getScratch(), val);
1333
1334 if (m & Modifier(NV50_IR_MOD_NEG))
1335 val = mkOp1v(OP_NEG, ty, getScratch(), val);
1336
1337 return val;
1338 }
1339
1340 Value *
1341 Converter::getVertexBase(int s)
1342 {
1343 assert(s < 5);
1344 if (!(vtxBaseValid & (1 << s))) {
1345 const int index = tgsi.getSrc(s).getIndex(1);
1346 Value *rel = NULL;
1347 if (tgsi.getSrc(s).isIndirect(1))
1348 rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1349 vtxBaseValid |= 1 << s;
1350 vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1351 mkImm(index), rel);
1352 }
1353 return vtxBase[s];
1354 }
1355
1356 Value *
1357 Converter::fetchSrc(int s, int c)
1358 {
1359 Value *res;
1360 Value *ptr = NULL, *dimRel = NULL;
1361
1362 tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1363
1364 if (src.isIndirect(0))
1365 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1366
1367 if (src.is2D()) {
1368 switch (src.getFile()) {
1369 case TGSI_FILE_INPUT:
1370 dimRel = getVertexBase(s);
1371 break;
1372 case TGSI_FILE_CONSTANT:
1373 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1374 if (src.isIndirect(1))
1375 dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1376 break;
1377 default:
1378 break;
1379 }
1380 }
1381
1382 res = fetchSrc(src, c, ptr);
1383
1384 if (dimRel)
1385 res->getInsn()->setIndirect(0, 1, dimRel);
1386
1387 return applySrcMod(res, s, c);
1388 }
1389
1390 Converter::DataArray *
1391 Converter::getArrayForFile(unsigned file, int idx)
1392 {
1393 switch (file) {
1394 case TGSI_FILE_TEMPORARY:
1395 return &tData;
1396 case TGSI_FILE_PREDICATE:
1397 return &pData;
1398 case TGSI_FILE_ADDRESS:
1399 return &aData;
1400 case TGSI_FILE_OUTPUT:
1401 assert(prog->getType() == Program::TYPE_FRAGMENT);
1402 return &oData;
1403 default:
1404 assert(!"invalid/unhandled TGSI source file");
1405 return NULL;
1406 }
1407 }
1408
1409 Value *
1410 Converter::shiftAddress(Value *index)
1411 {
1412 if (!index)
1413 return NULL;
1414 return mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), index, mkImm(4));
1415 }
1416
1417 Value *
1418 Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1419 {
1420 const int idx2d = src.is2D() ? src.getIndex(1) : 0;
1421 const int idx = src.getIndex(0);
1422 const int swz = src.getSwizzle(c);
1423
1424 switch (src.getFile()) {
1425 case TGSI_FILE_IMMEDIATE:
1426 assert(!ptr);
1427 return loadImm(NULL, info->immd.data[idx * 4 + swz]);
1428 case TGSI_FILE_CONSTANT:
1429 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1430 case TGSI_FILE_INPUT:
1431 if (prog->getType() == Program::TYPE_FRAGMENT) {
1432 // don't load masked inputs, won't be assigned a slot
1433 if (!ptr && !(info->in[idx].mask & (1 << swz)))
1434 return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
1435 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_FACE)
1436 return mkOp1v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_FACE, 0));
1437 return interpolate(src, c, shiftAddress(ptr));
1438 } else
1439 if (prog->getType() == Program::TYPE_GEOMETRY) {
1440 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_PRIMID)
1441 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_PRIMITIVE_ID, 0));
1442 // XXX: This is going to be a problem with scalar arrays, i.e. when
1443 // we cannot assume that the address is given in units of vec4.
1444 //
1445 // nv50 and nvc0 need different things here, so let the lowering
1446 // passes decide what to do with the address
1447 if (ptr)
1448 return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
1449 }
1450 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1451 case TGSI_FILE_OUTPUT:
1452 assert(!"load from output file");
1453 return NULL;
1454 case TGSI_FILE_SYSTEM_VALUE:
1455 assert(!ptr);
1456 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
1457 default:
1458 return getArrayForFile(src.getFile(), idx2d)->load(
1459 sub.cur->values, idx, swz, shiftAddress(ptr));
1460 }
1461 }
1462
1463 Value *
1464 Converter::acquireDst(int d, int c)
1465 {
1466 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1467 const unsigned f = dst.getFile();
1468 const int idx = dst.getIndex(0);
1469 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1470
1471 if (dst.isMasked(c) || f == TGSI_FILE_RESOURCE)
1472 return NULL;
1473
1474 if (dst.isIndirect(0) ||
1475 f == TGSI_FILE_SYSTEM_VALUE ||
1476 (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
1477 return getScratch();
1478
1479 return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
1480 }
1481
1482 void
1483 Converter::storeDst(int d, int c, Value *val)
1484 {
1485 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1486
1487 switch (tgsi.getSaturate()) {
1488 case TGSI_SAT_NONE:
1489 break;
1490 case TGSI_SAT_ZERO_ONE:
1491 mkOp1(OP_SAT, dstTy, val, val);
1492 break;
1493 case TGSI_SAT_MINUS_PLUS_ONE:
1494 mkOp2(OP_MAX, dstTy, val, val, mkImm(-1.0f));
1495 mkOp2(OP_MIN, dstTy, val, val, mkImm(+1.0f));
1496 break;
1497 default:
1498 assert(!"invalid saturation mode");
1499 break;
1500 }
1501
1502 Value *ptr = NULL;
1503 if (dst.isIndirect(0))
1504 ptr = shiftAddress(fetchSrc(dst.getIndirect(0), 0, NULL));
1505
1506 if (info->io.genUserClip > 0 &&
1507 dst.getFile() == TGSI_FILE_OUTPUT &&
1508 !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
1509 mkMov(clipVtx[c], val);
1510 val = clipVtx[c];
1511 }
1512
1513 storeDst(dst, c, val, ptr);
1514 }
1515
1516 void
1517 Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
1518 Value *val, Value *ptr)
1519 {
1520 const unsigned f = dst.getFile();
1521 const int idx = dst.getIndex(0);
1522 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1523
1524 if (f == TGSI_FILE_SYSTEM_VALUE) {
1525 assert(!ptr);
1526 mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
1527 } else
1528 if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
1529 if (ptr || (info->out[idx].mask & (1 << c)))
1530 mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val);
1531 } else
1532 if (f == TGSI_FILE_TEMPORARY ||
1533 f == TGSI_FILE_PREDICATE ||
1534 f == TGSI_FILE_ADDRESS ||
1535 f == TGSI_FILE_OUTPUT) {
1536 getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
1537 } else {
1538 assert(!"invalid dst file");
1539 }
1540 }
1541
1542 #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
1543 for (chan = 0; chan < 4; ++chan) \
1544 if (!inst.getDst(d).isMasked(chan))
1545
1546 Value *
1547 Converter::buildDot(int dim)
1548 {
1549 assert(dim > 0);
1550
1551 Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
1552 Value *dotp = getScratch();
1553
1554 mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1);
1555
1556 for (int c = 1; c < dim; ++c) {
1557 src0 = fetchSrc(0, c);
1558 src1 = fetchSrc(1, c);
1559 mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp);
1560 }
1561 return dotp;
1562 }
1563
1564 void
1565 Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
1566 {
1567 FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
1568 join->fixed = 1;
1569 conv->insertHead(join);
1570
1571 fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
1572 fork->insertBefore(fork->getExit(), fork->joinAt);
1573 }
1574
1575 void
1576 Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
1577 {
1578 unsigned rIdx = 0, sIdx = 0;
1579
1580 if (R >= 0)
1581 rIdx = tgsi.getSrc(R).getIndex(0);
1582 if (S >= 0)
1583 sIdx = tgsi.getSrc(S).getIndex(0);
1584
1585 tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
1586
1587 if (tgsi.getSrc(R).isIndirect(0)) {
1588 tex->tex.rIndirectSrc = s;
1589 tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
1590 }
1591 if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
1592 tex->tex.sIndirectSrc = s;
1593 tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
1594 }
1595 }
1596
1597 void
1598 Converter::handleTXQ(Value *dst0[4], enum TexQuery query)
1599 {
1600 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1601 tex->tex.query = query;
1602 unsigned int c, d;
1603
1604 for (d = 0, c = 0; c < 4; ++c) {
1605 if (!dst0[c])
1606 continue;
1607 tex->tex.mask |= 1 << c;
1608 tex->setDef(d++, dst0[c]);
1609 }
1610 tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
1611
1612 setTexRS(tex, c, 1, -1);
1613
1614 bb->insertTail(tex);
1615 }
1616
1617 void
1618 Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
1619 {
1620 Value *proj = fetchSrc(0, 3);
1621 Instruction *insn = proj->getUniqueInsn();
1622 int c;
1623
1624 if (insn->op == OP_PINTERP) {
1625 bb->insertTail(insn = cloneForward(func, insn));
1626 insn->op = OP_LINTERP;
1627 insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
1628 insn->setSrc(1, NULL);
1629 proj = insn->getDef(0);
1630 }
1631 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
1632
1633 for (c = 0; c < 4; ++c) {
1634 if (!(mask & (1 << c)))
1635 continue;
1636 if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
1637 continue;
1638 mask &= ~(1 << c);
1639
1640 bb->insertTail(insn = cloneForward(func, insn));
1641 insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
1642 insn->setSrc(1, proj);
1643 dst[c] = insn->getDef(0);
1644 }
1645 if (!mask)
1646 return;
1647
1648 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
1649
1650 for (c = 0; c < 4; ++c)
1651 if (mask & (1 << c))
1652 dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
1653 }
1654
1655 // order of nv50 ir sources: x y z layer lod/bias shadow
1656 // order of TGSI TEX sources: x y z layer shadow lod/bias
1657 // lowering will finally set the hw specific order (like array first on nvc0)
1658 void
1659 Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
1660 {
1661 Value *val;
1662 Value *arg[4], *src[8];
1663 Value *lod = NULL, *shd = NULL;
1664 unsigned int s, c, d;
1665 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1666
1667 TexInstruction::Target tgt = tgsi.getTexture(code, R);
1668
1669 for (s = 0; s < tgt.getArgCount(); ++s)
1670 arg[s] = src[s] = fetchSrc(0, s);
1671
1672 if (texi->op == OP_TXL || texi->op == OP_TXB)
1673 lod = fetchSrc(L >> 4, L & 3);
1674
1675 if (C == 0x0f)
1676 C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
1677
1678 if (tgt.isShadow())
1679 shd = fetchSrc(C >> 4, C & 3);
1680
1681 if (texi->op == OP_TXD) {
1682 for (c = 0; c < tgt.getDim(); ++c) {
1683 texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
1684 texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
1685 }
1686 }
1687
1688 // cube textures don't care about projection value, it's divided out
1689 if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
1690 unsigned int n = tgt.getDim();
1691 if (shd) {
1692 arg[n] = shd;
1693 ++n;
1694 assert(tgt.getDim() == tgt.getArgCount());
1695 }
1696 loadProjTexCoords(src, arg, (1 << n) - 1);
1697 if (shd)
1698 shd = src[n - 1];
1699 }
1700
1701 if (tgt.isCube()) {
1702 for (c = 0; c < 3; ++c)
1703 src[c] = mkOp1v(OP_ABS, TYPE_F32, getSSA(), arg[c]);
1704 val = getScratch();
1705 mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1706 mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1707 mkOp1(OP_RCP, TYPE_F32, val, val);
1708 for (c = 0; c < 3; ++c)
1709 src[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), arg[c], val);
1710 }
1711
1712 for (c = 0, d = 0; c < 4; ++c) {
1713 if (dst[c]) {
1714 texi->setDef(d++, dst[c]);
1715 texi->tex.mask |= 1 << c;
1716 } else {
1717 // NOTE: maybe hook up def too, for CSE
1718 }
1719 }
1720 for (s = 0; s < tgt.getArgCount(); ++s)
1721 texi->setSrc(s, src[s]);
1722 if (lod)
1723 texi->setSrc(s++, lod);
1724 if (shd)
1725 texi->setSrc(s++, shd);
1726
1727 setTexRS(texi, s, R, S);
1728
1729 if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
1730 texi->tex.levelZero = true;
1731
1732 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1733 for (c = 0; c < 3; ++c) {
1734 texi->tex.offset[s][c] = tgsi.getTexOffset(s).getValueU32(c, info);
1735 if (texi->tex.offset[s][c])
1736 texi->tex.useOffsets = s + 1;
1737 }
1738 }
1739
1740 bb->insertTail(texi);
1741 }
1742
1743 // 1st source: xyz = coordinates, w = lod/sample
1744 // 2nd source: offset
1745 void
1746 Converter::handleTXF(Value *dst[4], int R, int L_M)
1747 {
1748 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1749 int ms;
1750 unsigned int c, d, s;
1751
1752 texi->tex.target = tgsi.getTexture(code, R);
1753
1754 ms = texi->tex.target.isMS() ? 1 : 0;
1755 texi->tex.levelZero = ms; /* MS textures don't have mip-maps */
1756
1757 for (c = 0, d = 0; c < 4; ++c) {
1758 if (dst[c]) {
1759 texi->setDef(d++, dst[c]);
1760 texi->tex.mask |= 1 << c;
1761 }
1762 }
1763 for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c)
1764 texi->setSrc(c, fetchSrc(0, c));
1765 texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms
1766
1767 setTexRS(texi, c, R, -1);
1768
1769 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1770 for (c = 0; c < 3; ++c) {
1771 texi->tex.offset[s][c] = tgsi.getTexOffset(s).getValueU32(c, info);
1772 if (texi->tex.offset[s][c])
1773 texi->tex.useOffsets = s + 1;
1774 }
1775 }
1776
1777 bb->insertTail(texi);
1778 }
1779
1780 void
1781 Converter::handleLIT(Value *dst0[4])
1782 {
1783 Value *val0 = NULL;
1784 unsigned int mask = tgsi.getDst(0).getMask();
1785
1786 if (mask & (1 << 0))
1787 loadImm(dst0[0], 1.0f);
1788
1789 if (mask & (1 << 3))
1790 loadImm(dst0[3], 1.0f);
1791
1792 if (mask & (3 << 1)) {
1793 val0 = getScratch();
1794 mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
1795 if (mask & (1 << 1))
1796 mkMov(dst0[1], val0);
1797 }
1798
1799 if (mask & (1 << 2)) {
1800 Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
1801 Value *val1 = getScratch(), *val3 = getScratch();
1802
1803 Value *pos128 = loadImm(NULL, +127.999999f);
1804 Value *neg128 = loadImm(NULL, -127.999999f);
1805
1806 mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
1807 mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
1808 mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
1809 mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
1810
1811 mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], TYPE_F32, val3, zero, val0);
1812 }
1813 }
1814
1815 static inline bool
1816 isResourceSpecial(const int r)
1817 {
1818 return (r == TGSI_RESOURCE_GLOBAL ||
1819 r == TGSI_RESOURCE_LOCAL ||
1820 r == TGSI_RESOURCE_PRIVATE ||
1821 r == TGSI_RESOURCE_INPUT);
1822 }
1823
1824 static inline bool
1825 isResourceRaw(const struct tgsi::Source *code, const int r)
1826 {
1827 return isResourceSpecial(r) || code->resources[r].raw;
1828 }
1829
1830 static inline nv50_ir::TexTarget
1831 getResourceTarget(const struct tgsi::Source *code, int r)
1832 {
1833 if (isResourceSpecial(r))
1834 return nv50_ir::TEX_TARGET_BUFFER;
1835 return tgsi::translateTexture(code->resources.at(r).target);
1836 }
1837
1838 Symbol *
1839 Converter::getResourceBase(const int r)
1840 {
1841 Symbol *sym = NULL;
1842
1843 switch (r) {
1844 case TGSI_RESOURCE_GLOBAL:
1845 sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL, 15);
1846 break;
1847 case TGSI_RESOURCE_LOCAL:
1848 assert(prog->getType() == Program::TYPE_COMPUTE);
1849 sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32,
1850 info->prop.cp.sharedOffset);
1851 break;
1852 case TGSI_RESOURCE_PRIVATE:
1853 sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32,
1854 info->bin.tlsSpace);
1855 break;
1856 case TGSI_RESOURCE_INPUT:
1857 assert(prog->getType() == Program::TYPE_COMPUTE);
1858 sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32,
1859 info->prop.cp.inputOffset);
1860 break;
1861 default:
1862 sym = new_Symbol(prog,
1863 nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot);
1864 break;
1865 }
1866 return sym;
1867 }
1868
1869 void
1870 Converter::getResourceCoords(std::vector<Value *> &coords, int r, int s)
1871 {
1872 const int arg =
1873 TexInstruction::Target(getResourceTarget(code, r)).getArgCount();
1874
1875 for (int c = 0; c < arg; ++c)
1876 coords.push_back(fetchSrc(s, c));
1877
1878 // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk
1879 if (r == TGSI_RESOURCE_LOCAL ||
1880 r == TGSI_RESOURCE_PRIVATE ||
1881 r == TGSI_RESOURCE_INPUT)
1882 coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS),
1883 coords[0]);
1884 }
1885
1886 static inline int
1887 partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask)
1888 {
1889 int n = 0;
1890
1891 while (mask) {
1892 if (mask & 1) {
1893 size[n]++;
1894 } else {
1895 if (size[n])
1896 comp[n = 1] = size[0] + 1;
1897 else
1898 comp[n]++;
1899 }
1900 mask >>= 1;
1901 }
1902 if (size[0] == 3) {
1903 n = 1;
1904 size[0] = (comp[0] == 1) ? 1 : 2;
1905 size[1] = 3 - size[0];
1906 comp[1] = comp[0] + size[0];
1907 }
1908 return n + 1;
1909 }
1910
1911 // For raw loads, granularity is 4 byte.
1912 // Usage of the texture read mask on OP_SULDP is not allowed.
1913 void
1914 Converter::handleLOAD(Value *dst0[4])
1915 {
1916 const int r = tgsi.getSrc(0).getIndex(0);
1917 int c;
1918 std::vector<Value *> off, src, ldv, def;
1919
1920 getResourceCoords(off, r, 1);
1921
1922 if (isResourceRaw(code, r)) {
1923 uint8_t mask = 0;
1924 uint8_t comp[2] = { 0, 0 };
1925 uint8_t size[2] = { 0, 0 };
1926
1927 Symbol *base = getResourceBase(r);
1928
1929 // determine the base and size of the at most 2 load ops
1930 for (c = 0; c < 4; ++c)
1931 if (!tgsi.getDst(0).isMasked(c))
1932 mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X);
1933
1934 int n = partitionLoadStore(comp, size, mask);
1935
1936 src = off;
1937
1938 def.resize(4); // index by component, the ones we need will be non-NULL
1939 for (c = 0; c < 4; ++c) {
1940 if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c))
1941 def[c] = dst0[c];
1942 else
1943 if (mask & (1 << c))
1944 def[c] = getScratch();
1945 }
1946
1947 const bool useLd = isResourceSpecial(r) ||
1948 (info->io.nv50styleSurfaces &&
1949 code->resources[r].target == TGSI_TEXTURE_BUFFER);
1950
1951 for (int i = 0; i < n; ++i) {
1952 ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]);
1953
1954 if (comp[i]) // adjust x component of source address if necessary
1955 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
1956 off[0], mkImm(comp[i] * 4));
1957 else
1958 src[0] = off[0];
1959
1960 if (useLd) {
1961 Instruction *ld =
1962 mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]);
1963 for (size_t c = 1; c < ldv.size(); ++c)
1964 ld->setDef(c, ldv[c]);
1965 } else {
1966 mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot,
1967 0, ldv, src)->dType = typeOfSize(size[i] * 4);
1968 }
1969 }
1970 } else {
1971 def.resize(4);
1972 for (c = 0; c < 4; ++c) {
1973 if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
1974 def[c] = getScratch();
1975 else
1976 def[c] = dst0[c];
1977 }
1978
1979 mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0,
1980 def, off);
1981 }
1982 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
1983 if (dst0[c] != def[c])
1984 mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
1985 }
1986
1987 // For formatted stores, the write mask on OP_SUSTP can be used.
1988 // Raw stores have to be split.
1989 void
1990 Converter::handleSTORE()
1991 {
1992 const int r = tgsi.getDst(0).getIndex(0);
1993 int c;
1994 std::vector<Value *> off, src, dummy;
1995
1996 getResourceCoords(off, r, 0);
1997 src = off;
1998 const int s = src.size();
1999
2000 if (isResourceRaw(code, r)) {
2001 uint8_t comp[2] = { 0, 0 };
2002 uint8_t size[2] = { 0, 0 };
2003
2004 int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask());
2005
2006 Symbol *base = getResourceBase(r);
2007
2008 const bool useSt = isResourceSpecial(r) ||
2009 (info->io.nv50styleSurfaces &&
2010 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2011
2012 for (int i = 0; i < n; ++i) {
2013 if (comp[i]) // adjust x component of source address if necessary
2014 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2015 off[0], mkImm(comp[i] * 4));
2016 else
2017 src[0] = off[0];
2018
2019 const DataType stTy = typeOfSize(size[i] * 4);
2020
2021 if (useSt) {
2022 Instruction *st =
2023 mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i]));
2024 for (c = 1; c < size[i]; ++c)
2025 st->setSrc(1 + c, fetchSrc(1, comp[i] + c));
2026 st->setIndirect(0, 0, src[0]);
2027 } else {
2028 // attach values to be stored
2029 src.resize(s + size[i]);
2030 for (c = 0; c < size[i]; ++c)
2031 src[s + c] = fetchSrc(1, comp[i] + c);
2032 mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot,
2033 0, dummy, src)->setType(stTy);
2034 }
2035 }
2036 } else {
2037 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2038 src.push_back(fetchSrc(1, c));
2039
2040 mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0,
2041 dummy, src)->tex.mask = tgsi.getDst(0).getMask();
2042 }
2043 }
2044
2045 // XXX: These only work on resources with the single-component u32/s32 formats.
2046 // Therefore the result is replicated. This might not be intended by TGSI, but
2047 // operating on more than 1 component would produce undefined results because
2048 // they do not exist.
2049 void
2050 Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp)
2051 {
2052 const int r = tgsi.getSrc(0).getIndex(0);
2053 std::vector<Value *> srcv;
2054 std::vector<Value *> defv;
2055 LValue *dst = getScratch();
2056
2057 getResourceCoords(srcv, r, 1);
2058
2059 if (isResourceSpecial(r)) {
2060 assert(r != TGSI_RESOURCE_INPUT);
2061 Instruction *insn;
2062 insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0));
2063 insn->subOp = subOp;
2064 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2065 insn->setSrc(2, fetchSrc(3, 0));
2066 insn->setIndirect(0, 0, srcv.at(0));
2067 } else {
2068 operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP;
2069 TexTarget targ = getResourceTarget(code, r);
2070 int idx = code->resources[r].slot;
2071 defv.push_back(dst);
2072 srcv.push_back(fetchSrc(2, 0));
2073 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2074 srcv.push_back(fetchSrc(3, 0));
2075 TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv);
2076 tex->subOp = subOp;
2077 tex->tex.mask = 1;
2078 tex->setType(ty);
2079 }
2080
2081 for (int c = 0; c < 4; ++c)
2082 if (dst0[c])
2083 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2084 }
2085
2086 Converter::Subroutine *
2087 Converter::getSubroutine(unsigned ip)
2088 {
2089 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2090
2091 if (it == sub.map.end())
2092 it = sub.map.insert(std::make_pair(
2093 ip, Subroutine(new Function(prog, "SUB", ip)))).first;
2094
2095 return &it->second;
2096 }
2097
2098 Converter::Subroutine *
2099 Converter::getSubroutine(Function *f)
2100 {
2101 unsigned ip = f->getLabel();
2102 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2103
2104 if (it == sub.map.end())
2105 it = sub.map.insert(std::make_pair(ip, Subroutine(f))).first;
2106
2107 return &it->second;
2108 }
2109
2110 bool
2111 Converter::isEndOfSubroutine(uint ip)
2112 {
2113 assert(ip < code->scan.num_instructions);
2114 tgsi::Instruction insn(&code->insns[ip]);
2115 return (insn.getOpcode() == TGSI_OPCODE_END ||
2116 insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
2117 // does END occur at end of main or the very end ?
2118 insn.getOpcode() == TGSI_OPCODE_BGNSUB);
2119 }
2120
2121 bool
2122 Converter::handleInstruction(const struct tgsi_full_instruction *insn)
2123 {
2124 Instruction *geni;
2125
2126 Value *dst0[4], *rDst0[4];
2127 Value *src0, *src1, *src2;
2128 Value *val0, *val1;
2129 int c;
2130
2131 tgsi = tgsi::Instruction(insn);
2132
2133 bool useScratchDst = tgsi.checkDstSrcAliasing();
2134
2135 operation op = tgsi.getOP();
2136 dstTy = tgsi.inferDstType();
2137 srcTy = tgsi.inferSrcType();
2138
2139 unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
2140
2141 if (tgsi.dstCount()) {
2142 for (c = 0; c < 4; ++c) {
2143 rDst0[c] = acquireDst(0, c);
2144 dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
2145 }
2146 }
2147
2148 switch (tgsi.getOpcode()) {
2149 case TGSI_OPCODE_ADD:
2150 case TGSI_OPCODE_UADD:
2151 case TGSI_OPCODE_AND:
2152 case TGSI_OPCODE_DIV:
2153 case TGSI_OPCODE_IDIV:
2154 case TGSI_OPCODE_UDIV:
2155 case TGSI_OPCODE_MAX:
2156 case TGSI_OPCODE_MIN:
2157 case TGSI_OPCODE_IMAX:
2158 case TGSI_OPCODE_IMIN:
2159 case TGSI_OPCODE_UMAX:
2160 case TGSI_OPCODE_UMIN:
2161 case TGSI_OPCODE_MOD:
2162 case TGSI_OPCODE_UMOD:
2163 case TGSI_OPCODE_MUL:
2164 case TGSI_OPCODE_UMUL:
2165 case TGSI_OPCODE_OR:
2166 case TGSI_OPCODE_POW:
2167 case TGSI_OPCODE_SHL:
2168 case TGSI_OPCODE_ISHR:
2169 case TGSI_OPCODE_USHR:
2170 case TGSI_OPCODE_SUB:
2171 case TGSI_OPCODE_XOR:
2172 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2173 src0 = fetchSrc(0, c);
2174 src1 = fetchSrc(1, c);
2175 mkOp2(op, dstTy, dst0[c], src0, src1);
2176 }
2177 break;
2178 case TGSI_OPCODE_MAD:
2179 case TGSI_OPCODE_UMAD:
2180 case TGSI_OPCODE_SAD:
2181 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2182 src0 = fetchSrc(0, c);
2183 src1 = fetchSrc(1, c);
2184 src2 = fetchSrc(2, c);
2185 mkOp3(op, dstTy, dst0[c], src0, src1, src2);
2186 }
2187 break;
2188 case TGSI_OPCODE_MOV:
2189 case TGSI_OPCODE_ABS:
2190 case TGSI_OPCODE_CEIL:
2191 case TGSI_OPCODE_FLR:
2192 case TGSI_OPCODE_TRUNC:
2193 case TGSI_OPCODE_RCP:
2194 case TGSI_OPCODE_IABS:
2195 case TGSI_OPCODE_INEG:
2196 case TGSI_OPCODE_NOT:
2197 case TGSI_OPCODE_DDX:
2198 case TGSI_OPCODE_DDY:
2199 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2200 mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
2201 break;
2202 case TGSI_OPCODE_RSQ:
2203 src0 = fetchSrc(0, 0);
2204 val0 = getScratch();
2205 mkOp1(OP_ABS, TYPE_F32, val0, src0);
2206 mkOp1(OP_RSQ, TYPE_F32, val0, val0);
2207 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2208 mkMov(dst0[c], val0);
2209 break;
2210 case TGSI_OPCODE_ARL:
2211 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2212 src0 = fetchSrc(0, c);
2213 mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = ROUND_M;
2214 }
2215 break;
2216 case TGSI_OPCODE_UARL:
2217 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2218 mkOp1(OP_MOV, TYPE_U32, dst0[c], fetchSrc(0, c));
2219 break;
2220 case TGSI_OPCODE_EX2:
2221 case TGSI_OPCODE_LG2:
2222 val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
2223 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2224 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2225 break;
2226 case TGSI_OPCODE_COS:
2227 case TGSI_OPCODE_SIN:
2228 val0 = getScratch();
2229 if (mask & 7) {
2230 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
2231 mkOp1(op, TYPE_F32, val0, val0);
2232 for (c = 0; c < 3; ++c)
2233 if (dst0[c])
2234 mkMov(dst0[c], val0);
2235 }
2236 if (dst0[3]) {
2237 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
2238 mkOp1(op, TYPE_F32, dst0[3], val0);
2239 }
2240 break;
2241 case TGSI_OPCODE_SCS:
2242 if (mask & 3) {
2243 val0 = mkOp1v(OP_PRESIN, TYPE_F32, getSSA(), fetchSrc(0, 0));
2244 if (dst0[0])
2245 mkOp1(OP_COS, TYPE_F32, dst0[0], val0);
2246 if (dst0[1])
2247 mkOp1(OP_SIN, TYPE_F32, dst0[1], val0);
2248 }
2249 if (dst0[2])
2250 loadImm(dst0[2], 0.0f);
2251 if (dst0[3])
2252 loadImm(dst0[3], 1.0f);
2253 break;
2254 case TGSI_OPCODE_EXP:
2255 src0 = fetchSrc(0, 0);
2256 val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
2257 if (dst0[1])
2258 mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
2259 if (dst0[0])
2260 mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
2261 if (dst0[2])
2262 mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
2263 if (dst0[3])
2264 loadImm(dst0[3], 1.0f);
2265 break;
2266 case TGSI_OPCODE_LOG:
2267 src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
2268 val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
2269 if (dst0[0] || dst0[1])
2270 val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
2271 if (dst0[1]) {
2272 mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
2273 mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
2274 mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0);
2275 }
2276 if (dst0[3])
2277 loadImm(dst0[3], 1.0f);
2278 break;
2279 case TGSI_OPCODE_DP2:
2280 val0 = buildDot(2);
2281 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2282 mkMov(dst0[c], val0);
2283 break;
2284 case TGSI_OPCODE_DP3:
2285 val0 = buildDot(3);
2286 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2287 mkMov(dst0[c], val0);
2288 break;
2289 case TGSI_OPCODE_DP4:
2290 val0 = buildDot(4);
2291 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2292 mkMov(dst0[c], val0);
2293 break;
2294 case TGSI_OPCODE_DPH:
2295 val0 = buildDot(3);
2296 src1 = fetchSrc(1, 3);
2297 mkOp2(OP_ADD, TYPE_F32, val0, val0, src1);
2298 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2299 mkMov(dst0[c], val0);
2300 break;
2301 case TGSI_OPCODE_DST:
2302 if (dst0[0])
2303 loadImm(dst0[0], 1.0f);
2304 if (dst0[1]) {
2305 src0 = fetchSrc(0, 1);
2306 src1 = fetchSrc(1, 1);
2307 mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1);
2308 }
2309 if (dst0[2])
2310 mkMov(dst0[2], fetchSrc(0, 2));
2311 if (dst0[3])
2312 mkMov(dst0[3], fetchSrc(1, 3));
2313 break;
2314 case TGSI_OPCODE_LRP:
2315 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2316 src0 = fetchSrc(0, c);
2317 src1 = fetchSrc(1, c);
2318 src2 = fetchSrc(2, c);
2319 mkOp3(OP_MAD, TYPE_F32, dst0[c],
2320 mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2);
2321 }
2322 break;
2323 case TGSI_OPCODE_LIT:
2324 handleLIT(dst0);
2325 break;
2326 case TGSI_OPCODE_XPD:
2327 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2328 if (c < 3) {
2329 val0 = getSSA();
2330 src0 = fetchSrc(1, (c + 1) % 3);
2331 src1 = fetchSrc(0, (c + 2) % 3);
2332 mkOp2(OP_MUL, TYPE_F32, val0, src0, src1);
2333 mkOp1(OP_NEG, TYPE_F32, val0, val0);
2334
2335 src0 = fetchSrc(0, (c + 1) % 3);
2336 src1 = fetchSrc(1, (c + 2) % 3);
2337 mkOp3(OP_MAD, TYPE_F32, dst0[c], src0, src1, val0);
2338 } else {
2339 loadImm(dst0[c], 1.0f);
2340 }
2341 }
2342 break;
2343 case TGSI_OPCODE_ISSG:
2344 case TGSI_OPCODE_SSG:
2345 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2346 src0 = fetchSrc(0, c);
2347 val0 = getScratch();
2348 val1 = getScratch();
2349 mkCmp(OP_SET, CC_GT, srcTy, val0, srcTy, src0, zero);
2350 mkCmp(OP_SET, CC_LT, srcTy, val1, srcTy, src0, zero);
2351 if (srcTy == TYPE_F32)
2352 mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
2353 else
2354 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
2355 }
2356 break;
2357 case TGSI_OPCODE_UCMP:
2358 case TGSI_OPCODE_CMP:
2359 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2360 src0 = fetchSrc(0, c);
2361 src1 = fetchSrc(1, c);
2362 src2 = fetchSrc(2, c);
2363 if (src1 == src2)
2364 mkMov(dst0[c], src1);
2365 else
2366 mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
2367 srcTy, dst0[c], srcTy, src1, src2, src0);
2368 }
2369 break;
2370 case TGSI_OPCODE_FRC:
2371 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2372 src0 = fetchSrc(0, c);
2373 val0 = getScratch();
2374 mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
2375 mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
2376 }
2377 break;
2378 case TGSI_OPCODE_ROUND:
2379 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2380 mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
2381 ->rnd = ROUND_NI;
2382 break;
2383 case TGSI_OPCODE_CLAMP:
2384 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2385 src0 = fetchSrc(0, c);
2386 src1 = fetchSrc(1, c);
2387 src2 = fetchSrc(2, c);
2388 val0 = getScratch();
2389 mkOp2(OP_MIN, TYPE_F32, val0, src0, src1);
2390 mkOp2(OP_MAX, TYPE_F32, dst0[c], val0, src2);
2391 }
2392 break;
2393 case TGSI_OPCODE_SLT:
2394 case TGSI_OPCODE_SGE:
2395 case TGSI_OPCODE_SEQ:
2396 case TGSI_OPCODE_SFL:
2397 case TGSI_OPCODE_SGT:
2398 case TGSI_OPCODE_SLE:
2399 case TGSI_OPCODE_SNE:
2400 case TGSI_OPCODE_STR:
2401 case TGSI_OPCODE_FSEQ:
2402 case TGSI_OPCODE_FSGE:
2403 case TGSI_OPCODE_FSLT:
2404 case TGSI_OPCODE_FSNE:
2405 case TGSI_OPCODE_ISGE:
2406 case TGSI_OPCODE_ISLT:
2407 case TGSI_OPCODE_USEQ:
2408 case TGSI_OPCODE_USGE:
2409 case TGSI_OPCODE_USLT:
2410 case TGSI_OPCODE_USNE:
2411 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2412 src0 = fetchSrc(0, c);
2413 src1 = fetchSrc(1, c);
2414 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
2415 }
2416 break;
2417 case TGSI_OPCODE_KILL_IF:
2418 val0 = new_LValue(func, FILE_PREDICATE);
2419 for (c = 0; c < 4; ++c) {
2420 mkCmp(OP_SET, CC_LT, TYPE_F32, val0, TYPE_F32, fetchSrc(0, c), zero);
2421 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
2422 }
2423 break;
2424 case TGSI_OPCODE_KILL:
2425 mkOp(OP_DISCARD, TYPE_NONE, NULL);
2426 break;
2427 case TGSI_OPCODE_TEX:
2428 case TGSI_OPCODE_TXB:
2429 case TGSI_OPCODE_TXL:
2430 case TGSI_OPCODE_TXP:
2431 // R S L C Dx Dy
2432 handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
2433 break;
2434 case TGSI_OPCODE_TXD:
2435 handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
2436 break;
2437 case TGSI_OPCODE_TEX2:
2438 handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00);
2439 break;
2440 case TGSI_OPCODE_TXB2:
2441 case TGSI_OPCODE_TXL2:
2442 handleTEX(dst0, 2, 2, 0x10, 0x11, 0x00, 0x00);
2443 break;
2444 case TGSI_OPCODE_SAMPLE:
2445 case TGSI_OPCODE_SAMPLE_B:
2446 case TGSI_OPCODE_SAMPLE_D:
2447 case TGSI_OPCODE_SAMPLE_L:
2448 case TGSI_OPCODE_SAMPLE_C:
2449 case TGSI_OPCODE_SAMPLE_C_LZ:
2450 handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40);
2451 break;
2452 case TGSI_OPCODE_TXF:
2453 handleTXF(dst0, 1, 0x03);
2454 break;
2455 case TGSI_OPCODE_SAMPLE_I:
2456 handleTXF(dst0, 1, 0x03);
2457 break;
2458 case TGSI_OPCODE_SAMPLE_I_MS:
2459 handleTXF(dst0, 1, 0x20);
2460 break;
2461 case TGSI_OPCODE_TXQ:
2462 case TGSI_OPCODE_SVIEWINFO:
2463 handleTXQ(dst0, TXQ_DIMS);
2464 break;
2465 case TGSI_OPCODE_F2I:
2466 case TGSI_OPCODE_F2U:
2467 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2468 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
2469 break;
2470 case TGSI_OPCODE_I2F:
2471 case TGSI_OPCODE_U2F:
2472 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2473 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
2474 break;
2475 case TGSI_OPCODE_EMIT:
2476 case TGSI_OPCODE_ENDPRIM:
2477 // get vertex stream if specified (must be immediate)
2478 src0 = tgsi.srcCount() ?
2479 mkImm(tgsi.getSrc(0).getValueU32(0, info)) : zero;
2480 mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
2481 break;
2482 case TGSI_OPCODE_IF:
2483 case TGSI_OPCODE_UIF:
2484 {
2485 BasicBlock *ifBB = new BasicBlock(func);
2486
2487 bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
2488 condBBs.push(bb);
2489 joinBBs.push(bb);
2490
2491 mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy);
2492
2493 setPosition(ifBB, true);
2494 }
2495 break;
2496 case TGSI_OPCODE_ELSE:
2497 {
2498 BasicBlock *elseBB = new BasicBlock(func);
2499 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2500
2501 forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
2502 condBBs.push(bb);
2503
2504 forkBB->getExit()->asFlow()->target.bb = elseBB;
2505 if (!bb->isTerminated())
2506 mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
2507
2508 setPosition(elseBB, true);
2509 }
2510 break;
2511 case TGSI_OPCODE_ENDIF:
2512 {
2513 BasicBlock *convBB = new BasicBlock(func);
2514 BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2515 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
2516
2517 if (!bb->isTerminated()) {
2518 // we only want join if none of the clauses ended with CONT/BREAK/RET
2519 if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
2520 insertConvergenceOps(convBB, forkBB);
2521 mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
2522 bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2523 }
2524
2525 if (prevBB->getExit()->op == OP_BRA) {
2526 prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2527 prevBB->getExit()->asFlow()->target.bb = convBB;
2528 }
2529 setPosition(convBB, true);
2530 }
2531 break;
2532 case TGSI_OPCODE_BGNLOOP:
2533 {
2534 BasicBlock *lbgnBB = new BasicBlock(func);
2535 BasicBlock *lbrkBB = new BasicBlock(func);
2536
2537 loopBBs.push(lbgnBB);
2538 breakBBs.push(lbrkBB);
2539 if (loopBBs.getSize() > func->loopNestingBound)
2540 func->loopNestingBound++;
2541
2542 mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
2543
2544 bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
2545 setPosition(lbgnBB, true);
2546 mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
2547 }
2548 break;
2549 case TGSI_OPCODE_ENDLOOP:
2550 {
2551 BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
2552
2553 if (!bb->isTerminated()) {
2554 mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
2555 bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
2556 }
2557 setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
2558 }
2559 break;
2560 case TGSI_OPCODE_BRK:
2561 {
2562 if (bb->isTerminated())
2563 break;
2564 BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
2565 mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
2566 bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
2567 }
2568 break;
2569 case TGSI_OPCODE_CONT:
2570 {
2571 if (bb->isTerminated())
2572 break;
2573 BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
2574 mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
2575 contBB->explicitCont = true;
2576 bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
2577 }
2578 break;
2579 case TGSI_OPCODE_BGNSUB:
2580 {
2581 Subroutine *s = getSubroutine(ip);
2582 BasicBlock *entry = new BasicBlock(s->f);
2583 BasicBlock *leave = new BasicBlock(s->f);
2584
2585 // multiple entrypoints possible, keep the graph connected
2586 if (prog->getType() == Program::TYPE_COMPUTE)
2587 prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
2588
2589 sub.cur = s;
2590 s->f->setEntry(entry);
2591 s->f->setExit(leave);
2592 setPosition(entry, true);
2593 return true;
2594 }
2595 case TGSI_OPCODE_ENDSUB:
2596 {
2597 sub.cur = getSubroutine(prog->main);
2598 setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
2599 return true;
2600 }
2601 case TGSI_OPCODE_CAL:
2602 {
2603 Subroutine *s = getSubroutine(tgsi.getLabel());
2604 mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
2605 func->call.attach(&s->f->call, Graph::Edge::TREE);
2606 return true;
2607 }
2608 case TGSI_OPCODE_RET:
2609 {
2610 if (bb->isTerminated())
2611 return true;
2612 BasicBlock *leave = BasicBlock::get(func->cfgExit);
2613
2614 if (!isEndOfSubroutine(ip + 1)) {
2615 // insert a PRERET at the entry if this is an early return
2616 // (only needed for sharing code in the epilogue)
2617 BasicBlock *pos = getBB();
2618 setPosition(BasicBlock::get(func->cfg.getRoot()), false);
2619 mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
2620 setPosition(pos, true);
2621 }
2622 mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
2623 bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
2624 }
2625 break;
2626 case TGSI_OPCODE_END:
2627 {
2628 // attach and generate epilogue code
2629 BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
2630 bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
2631 setPosition(epilogue, true);
2632 if (prog->getType() == Program::TYPE_FRAGMENT)
2633 exportOutputs();
2634 if (info->io.genUserClip > 0)
2635 handleUserClipPlanes();
2636 mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
2637 }
2638 break;
2639 case TGSI_OPCODE_SWITCH:
2640 case TGSI_OPCODE_CASE:
2641 ERROR("switch/case opcode encountered, should have been lowered\n");
2642 abort();
2643 break;
2644 case TGSI_OPCODE_LOAD:
2645 handleLOAD(dst0);
2646 break;
2647 case TGSI_OPCODE_STORE:
2648 handleSTORE();
2649 break;
2650 case TGSI_OPCODE_BARRIER:
2651 geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
2652 geni->fixed = 1;
2653 geni->subOp = NV50_IR_SUBOP_BAR_SYNC;
2654 break;
2655 case TGSI_OPCODE_MFENCE:
2656 case TGSI_OPCODE_LFENCE:
2657 case TGSI_OPCODE_SFENCE:
2658 geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
2659 geni->fixed = 1;
2660 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2661 break;
2662 case TGSI_OPCODE_ATOMUADD:
2663 case TGSI_OPCODE_ATOMXCHG:
2664 case TGSI_OPCODE_ATOMCAS:
2665 case TGSI_OPCODE_ATOMAND:
2666 case TGSI_OPCODE_ATOMOR:
2667 case TGSI_OPCODE_ATOMXOR:
2668 case TGSI_OPCODE_ATOMUMIN:
2669 case TGSI_OPCODE_ATOMIMIN:
2670 case TGSI_OPCODE_ATOMUMAX:
2671 case TGSI_OPCODE_ATOMIMAX:
2672 handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode()));
2673 break;
2674 default:
2675 ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
2676 assert(0);
2677 break;
2678 }
2679
2680 if (tgsi.dstCount()) {
2681 for (c = 0; c < 4; ++c) {
2682 if (!dst0[c])
2683 continue;
2684 if (dst0[c] != rDst0[c])
2685 mkMov(rDst0[c], dst0[c]);
2686 storeDst(0, c, rDst0[c]);
2687 }
2688 }
2689 vtxBaseValid = 0;
2690
2691 return true;
2692 }
2693
2694 void
2695 Converter::handleUserClipPlanes()
2696 {
2697 Value *res[8];
2698 int n, i, c;
2699
2700 for (c = 0; c < 4; ++c) {
2701 for (i = 0; i < info->io.genUserClip; ++i) {
2702 Symbol *sym = mkSymbol(FILE_MEMORY_CONST, info->io.ucpCBSlot,
2703 TYPE_F32, info->io.ucpBase + i * 16 + c * 4);
2704 Value *ucp = mkLoadv(TYPE_F32, sym, NULL);
2705 if (c == 0)
2706 res[i] = mkOp2v(OP_MUL, TYPE_F32, getScratch(), clipVtx[c], ucp);
2707 else
2708 mkOp3(OP_MAD, TYPE_F32, res[i], clipVtx[c], ucp, res[i]);
2709 }
2710 }
2711
2712 const int first = info->numOutputs - (info->io.genUserClip + 3) / 4;
2713
2714 for (i = 0; i < info->io.genUserClip; ++i) {
2715 n = i / 4 + first;
2716 c = i % 4;
2717 Symbol *sym =
2718 mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[n].slot[c] * 4);
2719 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, res[i]);
2720 }
2721 }
2722
2723 void
2724 Converter::exportOutputs()
2725 {
2726 for (unsigned int i = 0; i < info->numOutputs; ++i) {
2727 for (unsigned int c = 0; c < 4; ++c) {
2728 if (!oData.exists(sub.cur->values, i, c))
2729 continue;
2730 Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
2731 info->out[i].slot[c] * 4);
2732 Value *val = oData.load(sub.cur->values, i, c, NULL);
2733 if (val)
2734 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
2735 }
2736 }
2737 }
2738
2739 Converter::Converter(Program *ir, const tgsi::Source *code) : BuildUtil(ir),
2740 code(code),
2741 tgsi(NULL),
2742 tData(this), aData(this), pData(this), oData(this)
2743 {
2744 info = code->info;
2745
2746 const DataFile tFile = code->mainTempsInLMem ? FILE_MEMORY_LOCAL : FILE_GPR;
2747
2748 const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
2749 const unsigned pSize = code->fileSize(TGSI_FILE_PREDICATE);
2750 const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
2751 const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
2752
2753 tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, tFile, 0);
2754 pData.setup(TGSI_FILE_PREDICATE, 0, 0, pSize, 4, 4, FILE_PREDICATE, 0);
2755 aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_GPR, 0);
2756 oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
2757
2758 zero = mkImm((uint32_t)0);
2759
2760 vtxBaseValid = 0;
2761 }
2762
2763 Converter::~Converter()
2764 {
2765 }
2766
2767 inline const Converter::Location *
2768 Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v)
2769 {
2770 ValueMap::l_iterator it = s->values.l.find(v);
2771 return it == s->values.l.end() ? NULL : &it->second;
2772 }
2773
2774 template<typename T> inline void
2775 Converter::BindArgumentsPass::updateCallArgs(
2776 Instruction *i, void (Instruction::*setArg)(int, Value *),
2777 T (Function::*proto))
2778 {
2779 Function *g = i->asFlow()->target.fn;
2780 Subroutine *subg = conv.getSubroutine(g);
2781
2782 for (unsigned a = 0; a < (g->*proto).size(); ++a) {
2783 Value *v = (g->*proto)[a].get();
2784 const Converter::Location &l = *getValueLocation(subg, v);
2785 Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
2786
2787 (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
2788 }
2789 }
2790
2791 template<typename T> inline void
2792 Converter::BindArgumentsPass::updatePrototype(
2793 BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
2794 {
2795 (func->*updateSet)();
2796
2797 for (unsigned i = 0; i < set->getSize(); ++i) {
2798 Value *v = func->getLValue(i);
2799 const Converter::Location *l = getValueLocation(sub, v);
2800
2801 // only include values with a matching TGSI register
2802 if (set->test(i) && l && !conv.code->locals.count(*l))
2803 (func->*proto).push_back(v);
2804 }
2805 }
2806
2807 bool
2808 Converter::BindArgumentsPass::visit(Function *f)
2809 {
2810 sub = conv.getSubroutine(f);
2811
2812 for (ArrayList::Iterator bi = f->allBBlocks.iterator();
2813 !bi.end(); bi.next()) {
2814 for (Instruction *i = BasicBlock::get(bi)->getFirst();
2815 i; i = i->next) {
2816 if (i->op == OP_CALL && !i->asFlow()->builtin) {
2817 updateCallArgs(i, &Instruction::setSrc, &Function::ins);
2818 updateCallArgs(i, &Instruction::setDef, &Function::outs);
2819 }
2820 }
2821 }
2822
2823 if (func == prog->main && prog->getType() != Program::TYPE_COMPUTE)
2824 return true;
2825 updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
2826 &Function::buildLiveSets, &Function::ins);
2827 updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
2828 &Function::buildDefSets, &Function::outs);
2829
2830 return true;
2831 }
2832
2833 bool
2834 Converter::run()
2835 {
2836 BasicBlock *entry = new BasicBlock(prog->main);
2837 BasicBlock *leave = new BasicBlock(prog->main);
2838
2839 prog->main->setEntry(entry);
2840 prog->main->setExit(leave);
2841
2842 setPosition(entry, true);
2843 sub.cur = getSubroutine(prog->main);
2844
2845 if (info->io.genUserClip > 0) {
2846 for (int c = 0; c < 4; ++c)
2847 clipVtx[c] = getScratch();
2848 }
2849
2850 if (prog->getType() == Program::TYPE_FRAGMENT) {
2851 Symbol *sv = mkSysVal(SV_POSITION, 3);
2852 fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
2853 mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
2854 }
2855
2856 for (ip = 0; ip < code->scan.num_instructions; ++ip) {
2857 if (!handleInstruction(&code->insns[ip]))
2858 return false;
2859 }
2860
2861 if (!BindArgumentsPass(*this).run(prog))
2862 return false;
2863
2864 return true;
2865 }
2866
2867 } // unnamed namespace
2868
2869 namespace nv50_ir {
2870
2871 bool
2872 Program::makeFromTGSI(struct nv50_ir_prog_info *info)
2873 {
2874 tgsi::Source src(info);
2875 if (!src.scanSource())
2876 return false;
2877 tlsSize = info->bin.tlsSpace;
2878
2879 Converter builder(this, &src);
2880 return builder.run();
2881 }
2882
2883 } // namespace nv50_ir