nvc0: handle TGSI_SEMANTIC_LAYER
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_from_tgsi.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 extern "C" {
24 #include "tgsi/tgsi_dump.h"
25 #include "tgsi/tgsi_scan.h"
26 #include "tgsi/tgsi_util.h"
27 }
28
29 #include <set>
30
31 #include "codegen/nv50_ir.h"
32 #include "codegen/nv50_ir_util.h"
33 #include "codegen/nv50_ir_build_util.h"
34
35 namespace tgsi {
36
37 class Source;
38
39 static nv50_ir::operation translateOpcode(uint opcode);
40 static nv50_ir::DataFile translateFile(uint file);
41 static nv50_ir::TexTarget translateTexture(uint texTarg);
42 static nv50_ir::SVSemantic translateSysVal(uint sysval);
43
44 class Instruction
45 {
46 public:
47 Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
48
49 class SrcRegister
50 {
51 public:
52 SrcRegister(const struct tgsi_full_src_register *src)
53 : reg(src->Register),
54 fsr(src)
55 { }
56
57 SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
58
59 SrcRegister(const struct tgsi_ind_register& ind)
60 : reg(tgsi_util_get_src_from_ind(&ind)),
61 fsr(NULL)
62 { }
63
64 struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
65 {
66 struct tgsi_src_register reg;
67 memset(&reg, 0, sizeof(reg));
68 reg.Index = off.Index;
69 reg.File = off.File;
70 reg.SwizzleX = off.SwizzleX;
71 reg.SwizzleY = off.SwizzleY;
72 reg.SwizzleZ = off.SwizzleZ;
73 return reg;
74 }
75
76 SrcRegister(const struct tgsi_texture_offset& off) :
77 reg(offsetToSrc(off)),
78 fsr(NULL)
79 { }
80
81 uint getFile() const { return reg.File; }
82
83 bool is2D() const { return reg.Dimension; }
84
85 bool isIndirect(int dim) const
86 {
87 return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
88 }
89
90 int getIndex(int dim) const
91 {
92 return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
93 }
94
95 int getSwizzle(int chan) const
96 {
97 return tgsi_util_get_src_register_swizzle(&reg, chan);
98 }
99
100 nv50_ir::Modifier getMod(int chan) const;
101
102 SrcRegister getIndirect(int dim) const
103 {
104 assert(fsr && isIndirect(dim));
105 if (dim)
106 return SrcRegister(fsr->DimIndirect);
107 return SrcRegister(fsr->Indirect);
108 }
109
110 uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
111 {
112 assert(reg.File == TGSI_FILE_IMMEDIATE);
113 assert(!reg.Absolute);
114 assert(!reg.Negate);
115 return info->immd.data[reg.Index * 4 + getSwizzle(c)];
116 }
117
118 private:
119 const struct tgsi_src_register reg;
120 const struct tgsi_full_src_register *fsr;
121 };
122
123 class DstRegister
124 {
125 public:
126 DstRegister(const struct tgsi_full_dst_register *dst)
127 : reg(dst->Register),
128 fdr(dst)
129 { }
130
131 DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
132
133 uint getFile() const { return reg.File; }
134
135 bool is2D() const { return reg.Dimension; }
136
137 bool isIndirect(int dim) const
138 {
139 return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
140 }
141
142 int getIndex(int dim) const
143 {
144 return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
145 }
146
147 unsigned int getMask() const { return reg.WriteMask; }
148
149 bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
150
151 SrcRegister getIndirect(int dim) const
152 {
153 assert(fdr && isIndirect(dim));
154 if (dim)
155 return SrcRegister(fdr->DimIndirect);
156 return SrcRegister(fdr->Indirect);
157 }
158
159 private:
160 const struct tgsi_dst_register reg;
161 const struct tgsi_full_dst_register *fdr;
162 };
163
164 inline uint getOpcode() const { return insn->Instruction.Opcode; }
165
166 unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
167 unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
168
169 // mask of used components of source s
170 unsigned int srcMask(unsigned int s) const;
171
172 SrcRegister getSrc(unsigned int s) const
173 {
174 assert(s < srcCount());
175 return SrcRegister(&insn->Src[s]);
176 }
177
178 DstRegister getDst(unsigned int d) const
179 {
180 assert(d < dstCount());
181 return DstRegister(&insn->Dst[d]);
182 }
183
184 SrcRegister getTexOffset(unsigned int i) const
185 {
186 assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
187 return SrcRegister(insn->TexOffsets[i]);
188 }
189
190 unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
191
192 bool checkDstSrcAliasing() const;
193
194 inline nv50_ir::operation getOP() const {
195 return translateOpcode(getOpcode()); }
196
197 nv50_ir::DataType inferSrcType() const;
198 nv50_ir::DataType inferDstType() const;
199
200 nv50_ir::CondCode getSetCond() const;
201
202 nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
203
204 inline uint getLabel() { return insn->Label.Label; }
205
206 unsigned getSaturate() const { return insn->Instruction.Saturate; }
207
208 void print() const
209 {
210 tgsi_dump_instruction(insn, 1);
211 }
212
213 private:
214 const struct tgsi_full_instruction *insn;
215 };
216
217 unsigned int Instruction::srcMask(unsigned int s) const
218 {
219 unsigned int mask = insn->Dst[0].Register.WriteMask;
220
221 switch (insn->Instruction.Opcode) {
222 case TGSI_OPCODE_COS:
223 case TGSI_OPCODE_SIN:
224 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
225 case TGSI_OPCODE_DP2:
226 return 0x3;
227 case TGSI_OPCODE_DP3:
228 return 0x7;
229 case TGSI_OPCODE_DP4:
230 case TGSI_OPCODE_DPH:
231 case TGSI_OPCODE_KILL_IF: /* WriteMask ignored */
232 return 0xf;
233 case TGSI_OPCODE_DST:
234 return mask & (s ? 0xa : 0x6);
235 case TGSI_OPCODE_EX2:
236 case TGSI_OPCODE_EXP:
237 case TGSI_OPCODE_LG2:
238 case TGSI_OPCODE_LOG:
239 case TGSI_OPCODE_POW:
240 case TGSI_OPCODE_RCP:
241 case TGSI_OPCODE_RSQ:
242 case TGSI_OPCODE_SCS:
243 return 0x1;
244 case TGSI_OPCODE_IF:
245 case TGSI_OPCODE_UIF:
246 return 0x1;
247 case TGSI_OPCODE_LIT:
248 return 0xb;
249 case TGSI_OPCODE_TEX2:
250 case TGSI_OPCODE_TXB2:
251 case TGSI_OPCODE_TXL2:
252 return (s == 0) ? 0xf : 0x3;
253 case TGSI_OPCODE_TEX:
254 case TGSI_OPCODE_TXB:
255 case TGSI_OPCODE_TXD:
256 case TGSI_OPCODE_TXL:
257 case TGSI_OPCODE_TXP:
258 {
259 const struct tgsi_instruction_texture *tex = &insn->Texture;
260
261 assert(insn->Instruction.Texture);
262
263 mask = 0x7;
264 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
265 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
266 mask |= 0x8; /* bias, lod or proj */
267
268 switch (tex->Texture) {
269 case TGSI_TEXTURE_1D:
270 mask &= 0x9;
271 break;
272 case TGSI_TEXTURE_SHADOW1D:
273 mask &= 0xd;
274 break;
275 case TGSI_TEXTURE_1D_ARRAY:
276 case TGSI_TEXTURE_2D:
277 case TGSI_TEXTURE_RECT:
278 mask &= 0xb;
279 break;
280 case TGSI_TEXTURE_CUBE_ARRAY:
281 case TGSI_TEXTURE_SHADOW2D_ARRAY:
282 case TGSI_TEXTURE_SHADOWCUBE:
283 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
284 mask |= 0x8;
285 break;
286 default:
287 break;
288 }
289 }
290 return mask;
291 case TGSI_OPCODE_XPD:
292 {
293 unsigned int x = 0;
294 if (mask & 1) x |= 0x6;
295 if (mask & 2) x |= 0x5;
296 if (mask & 4) x |= 0x3;
297 return x;
298 }
299 default:
300 break;
301 }
302
303 return mask;
304 }
305
306 nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
307 {
308 nv50_ir::Modifier m(0);
309
310 if (reg.Absolute)
311 m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
312 if (reg.Negate)
313 m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
314 return m;
315 }
316
317 static nv50_ir::DataFile translateFile(uint file)
318 {
319 switch (file) {
320 case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST;
321 case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT;
322 case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT;
323 case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR;
324 case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS;
325 case TGSI_FILE_PREDICATE: return nv50_ir::FILE_PREDICATE;
326 case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE;
327 case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE;
328 case TGSI_FILE_RESOURCE: return nv50_ir::FILE_MEMORY_GLOBAL;
329 case TGSI_FILE_SAMPLER:
330 case TGSI_FILE_NULL:
331 default:
332 return nv50_ir::FILE_NULL;
333 }
334 }
335
336 static nv50_ir::SVSemantic translateSysVal(uint sysval)
337 {
338 switch (sysval) {
339 case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE;
340 case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE;
341 case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID;
342 case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
343 case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID;
344 case TGSI_SEMANTIC_GRID_SIZE: return nv50_ir::SV_NCTAID;
345 case TGSI_SEMANTIC_BLOCK_ID: return nv50_ir::SV_CTAID;
346 case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID;
347 case TGSI_SEMANTIC_THREAD_ID: return nv50_ir::SV_TID;
348 default:
349 assert(0);
350 return nv50_ir::SV_CLOCK;
351 }
352 }
353
354 #define NV50_IR_TEX_TARG_CASE(a, b) \
355 case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
356
357 static nv50_ir::TexTarget translateTexture(uint tex)
358 {
359 switch (tex) {
360 NV50_IR_TEX_TARG_CASE(1D, 1D);
361 NV50_IR_TEX_TARG_CASE(2D, 2D);
362 NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS);
363 NV50_IR_TEX_TARG_CASE(3D, 3D);
364 NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
365 NV50_IR_TEX_TARG_CASE(RECT, RECT);
366 NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
367 NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
368 NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY);
369 NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY);
370 NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
371 NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
372 NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
373 NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
374 NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
375 NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
376 NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW);
377 NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
378
379 case TGSI_TEXTURE_UNKNOWN:
380 default:
381 assert(!"invalid texture target");
382 return nv50_ir::TEX_TARGET_2D;
383 }
384 }
385
386 nv50_ir::DataType Instruction::inferSrcType() const
387 {
388 switch (getOpcode()) {
389 case TGSI_OPCODE_UIF:
390 case TGSI_OPCODE_AND:
391 case TGSI_OPCODE_OR:
392 case TGSI_OPCODE_XOR:
393 case TGSI_OPCODE_NOT:
394 case TGSI_OPCODE_U2F:
395 case TGSI_OPCODE_UADD:
396 case TGSI_OPCODE_UDIV:
397 case TGSI_OPCODE_UMOD:
398 case TGSI_OPCODE_UMAD:
399 case TGSI_OPCODE_UMUL:
400 case TGSI_OPCODE_UMAX:
401 case TGSI_OPCODE_UMIN:
402 case TGSI_OPCODE_USEQ:
403 case TGSI_OPCODE_USGE:
404 case TGSI_OPCODE_USLT:
405 case TGSI_OPCODE_USNE:
406 case TGSI_OPCODE_USHR:
407 case TGSI_OPCODE_UCMP:
408 case TGSI_OPCODE_ATOMUADD:
409 case TGSI_OPCODE_ATOMXCHG:
410 case TGSI_OPCODE_ATOMCAS:
411 case TGSI_OPCODE_ATOMAND:
412 case TGSI_OPCODE_ATOMOR:
413 case TGSI_OPCODE_ATOMXOR:
414 case TGSI_OPCODE_ATOMUMIN:
415 case TGSI_OPCODE_ATOMUMAX:
416 return nv50_ir::TYPE_U32;
417 case TGSI_OPCODE_I2F:
418 case TGSI_OPCODE_IDIV:
419 case TGSI_OPCODE_IMAX:
420 case TGSI_OPCODE_IMIN:
421 case TGSI_OPCODE_IABS:
422 case TGSI_OPCODE_INEG:
423 case TGSI_OPCODE_ISGE:
424 case TGSI_OPCODE_ISHR:
425 case TGSI_OPCODE_ISLT:
426 case TGSI_OPCODE_ISSG:
427 case TGSI_OPCODE_SAD: // not sure about SAD, but no one has a float version
428 case TGSI_OPCODE_MOD:
429 case TGSI_OPCODE_UARL:
430 case TGSI_OPCODE_ATOMIMIN:
431 case TGSI_OPCODE_ATOMIMAX:
432 return nv50_ir::TYPE_S32;
433 default:
434 return nv50_ir::TYPE_F32;
435 }
436 }
437
438 nv50_ir::DataType Instruction::inferDstType() const
439 {
440 switch (getOpcode()) {
441 case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
442 case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
443 case TGSI_OPCODE_FSEQ:
444 case TGSI_OPCODE_FSGE:
445 case TGSI_OPCODE_FSLT:
446 case TGSI_OPCODE_FSNE:
447 return nv50_ir::TYPE_U32;
448 case TGSI_OPCODE_I2F:
449 case TGSI_OPCODE_U2F:
450 return nv50_ir::TYPE_F32;
451 default:
452 return inferSrcType();
453 }
454 }
455
456 nv50_ir::CondCode Instruction::getSetCond() const
457 {
458 using namespace nv50_ir;
459
460 switch (getOpcode()) {
461 case TGSI_OPCODE_SLT:
462 case TGSI_OPCODE_ISLT:
463 case TGSI_OPCODE_USLT:
464 case TGSI_OPCODE_FSLT:
465 return CC_LT;
466 case TGSI_OPCODE_SLE:
467 return CC_LE;
468 case TGSI_OPCODE_SGE:
469 case TGSI_OPCODE_ISGE:
470 case TGSI_OPCODE_USGE:
471 case TGSI_OPCODE_FSGE:
472 return CC_GE;
473 case TGSI_OPCODE_SGT:
474 return CC_GT;
475 case TGSI_OPCODE_SEQ:
476 case TGSI_OPCODE_USEQ:
477 case TGSI_OPCODE_FSEQ:
478 return CC_EQ;
479 case TGSI_OPCODE_SNE:
480 case TGSI_OPCODE_FSNE:
481 return CC_NEU;
482 case TGSI_OPCODE_USNE:
483 return CC_NE;
484 case TGSI_OPCODE_SFL:
485 return CC_NEVER;
486 case TGSI_OPCODE_STR:
487 default:
488 return CC_ALWAYS;
489 }
490 }
491
492 #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
493
494 static nv50_ir::operation translateOpcode(uint opcode)
495 {
496 switch (opcode) {
497 NV50_IR_OPCODE_CASE(ARL, SHL);
498 NV50_IR_OPCODE_CASE(MOV, MOV);
499
500 NV50_IR_OPCODE_CASE(RCP, RCP);
501 NV50_IR_OPCODE_CASE(RSQ, RSQ);
502
503 NV50_IR_OPCODE_CASE(MUL, MUL);
504 NV50_IR_OPCODE_CASE(ADD, ADD);
505
506 NV50_IR_OPCODE_CASE(MIN, MIN);
507 NV50_IR_OPCODE_CASE(MAX, MAX);
508 NV50_IR_OPCODE_CASE(SLT, SET);
509 NV50_IR_OPCODE_CASE(SGE, SET);
510 NV50_IR_OPCODE_CASE(MAD, MAD);
511 NV50_IR_OPCODE_CASE(SUB, SUB);
512
513 NV50_IR_OPCODE_CASE(FLR, FLOOR);
514 NV50_IR_OPCODE_CASE(ROUND, CVT);
515 NV50_IR_OPCODE_CASE(EX2, EX2);
516 NV50_IR_OPCODE_CASE(LG2, LG2);
517 NV50_IR_OPCODE_CASE(POW, POW);
518
519 NV50_IR_OPCODE_CASE(ABS, ABS);
520
521 NV50_IR_OPCODE_CASE(COS, COS);
522 NV50_IR_OPCODE_CASE(DDX, DFDX);
523 NV50_IR_OPCODE_CASE(DDY, DFDY);
524 NV50_IR_OPCODE_CASE(KILL, DISCARD);
525
526 NV50_IR_OPCODE_CASE(SEQ, SET);
527 NV50_IR_OPCODE_CASE(SFL, SET);
528 NV50_IR_OPCODE_CASE(SGT, SET);
529 NV50_IR_OPCODE_CASE(SIN, SIN);
530 NV50_IR_OPCODE_CASE(SLE, SET);
531 NV50_IR_OPCODE_CASE(SNE, SET);
532 NV50_IR_OPCODE_CASE(STR, SET);
533 NV50_IR_OPCODE_CASE(TEX, TEX);
534 NV50_IR_OPCODE_CASE(TXD, TXD);
535 NV50_IR_OPCODE_CASE(TXP, TEX);
536
537 NV50_IR_OPCODE_CASE(BRA, BRA);
538 NV50_IR_OPCODE_CASE(CAL, CALL);
539 NV50_IR_OPCODE_CASE(RET, RET);
540 NV50_IR_OPCODE_CASE(CMP, SLCT);
541
542 NV50_IR_OPCODE_CASE(TXB, TXB);
543
544 NV50_IR_OPCODE_CASE(DIV, DIV);
545
546 NV50_IR_OPCODE_CASE(TXL, TXL);
547
548 NV50_IR_OPCODE_CASE(CEIL, CEIL);
549 NV50_IR_OPCODE_CASE(I2F, CVT);
550 NV50_IR_OPCODE_CASE(NOT, NOT);
551 NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
552 NV50_IR_OPCODE_CASE(SHL, SHL);
553
554 NV50_IR_OPCODE_CASE(AND, AND);
555 NV50_IR_OPCODE_CASE(OR, OR);
556 NV50_IR_OPCODE_CASE(MOD, MOD);
557 NV50_IR_OPCODE_CASE(XOR, XOR);
558 NV50_IR_OPCODE_CASE(SAD, SAD);
559 NV50_IR_OPCODE_CASE(TXF, TXF);
560 NV50_IR_OPCODE_CASE(TXQ, TXQ);
561
562 NV50_IR_OPCODE_CASE(EMIT, EMIT);
563 NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
564
565 NV50_IR_OPCODE_CASE(KILL_IF, DISCARD);
566
567 NV50_IR_OPCODE_CASE(F2I, CVT);
568 NV50_IR_OPCODE_CASE(FSEQ, SET);
569 NV50_IR_OPCODE_CASE(FSGE, SET);
570 NV50_IR_OPCODE_CASE(FSLT, SET);
571 NV50_IR_OPCODE_CASE(FSNE, SET);
572 NV50_IR_OPCODE_CASE(IDIV, DIV);
573 NV50_IR_OPCODE_CASE(IMAX, MAX);
574 NV50_IR_OPCODE_CASE(IMIN, MIN);
575 NV50_IR_OPCODE_CASE(IABS, ABS);
576 NV50_IR_OPCODE_CASE(INEG, NEG);
577 NV50_IR_OPCODE_CASE(ISGE, SET);
578 NV50_IR_OPCODE_CASE(ISHR, SHR);
579 NV50_IR_OPCODE_CASE(ISLT, SET);
580 NV50_IR_OPCODE_CASE(F2U, CVT);
581 NV50_IR_OPCODE_CASE(U2F, CVT);
582 NV50_IR_OPCODE_CASE(UADD, ADD);
583 NV50_IR_OPCODE_CASE(UDIV, DIV);
584 NV50_IR_OPCODE_CASE(UMAD, MAD);
585 NV50_IR_OPCODE_CASE(UMAX, MAX);
586 NV50_IR_OPCODE_CASE(UMIN, MIN);
587 NV50_IR_OPCODE_CASE(UMOD, MOD);
588 NV50_IR_OPCODE_CASE(UMUL, MUL);
589 NV50_IR_OPCODE_CASE(USEQ, SET);
590 NV50_IR_OPCODE_CASE(USGE, SET);
591 NV50_IR_OPCODE_CASE(USHR, SHR);
592 NV50_IR_OPCODE_CASE(USLT, SET);
593 NV50_IR_OPCODE_CASE(USNE, SET);
594
595 NV50_IR_OPCODE_CASE(SAMPLE, TEX);
596 NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
597 NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
598 NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
599 NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
600 NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
601 NV50_IR_OPCODE_CASE(SAMPLE_I, TXF);
602 NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF);
603 NV50_IR_OPCODE_CASE(GATHER4, TXG);
604 NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
605
606 NV50_IR_OPCODE_CASE(ATOMUADD, ATOM);
607 NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM);
608 NV50_IR_OPCODE_CASE(ATOMCAS, ATOM);
609 NV50_IR_OPCODE_CASE(ATOMAND, ATOM);
610 NV50_IR_OPCODE_CASE(ATOMOR, ATOM);
611 NV50_IR_OPCODE_CASE(ATOMXOR, ATOM);
612 NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM);
613 NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM);
614 NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM);
615 NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM);
616
617 NV50_IR_OPCODE_CASE(TEX2, TEX);
618 NV50_IR_OPCODE_CASE(TXB2, TXB);
619 NV50_IR_OPCODE_CASE(TXL2, TXL);
620
621 NV50_IR_OPCODE_CASE(END, EXIT);
622
623 default:
624 return nv50_ir::OP_NOP;
625 }
626 }
627
628 static uint16_t opcodeToSubOp(uint opcode)
629 {
630 switch (opcode) {
631 case TGSI_OPCODE_LFENCE: return NV50_IR_SUBOP_MEMBAR(L, GL);
632 case TGSI_OPCODE_SFENCE: return NV50_IR_SUBOP_MEMBAR(S, GL);
633 case TGSI_OPCODE_MFENCE: return NV50_IR_SUBOP_MEMBAR(M, GL);
634 case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD;
635 case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH;
636 case TGSI_OPCODE_ATOMCAS: return NV50_IR_SUBOP_ATOM_CAS;
637 case TGSI_OPCODE_ATOMAND: return NV50_IR_SUBOP_ATOM_AND;
638 case TGSI_OPCODE_ATOMOR: return NV50_IR_SUBOP_ATOM_OR;
639 case TGSI_OPCODE_ATOMXOR: return NV50_IR_SUBOP_ATOM_XOR;
640 case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN;
641 case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN;
642 case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX;
643 case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX;
644 default:
645 return 0;
646 }
647 }
648
649 bool Instruction::checkDstSrcAliasing() const
650 {
651 if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
652 return false;
653
654 for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
655 if (insn->Src[s].Register.File == TGSI_FILE_NULL)
656 break;
657 if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
658 insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
659 return true;
660 }
661 return false;
662 }
663
664 class Source
665 {
666 public:
667 Source(struct nv50_ir_prog_info *);
668 ~Source();
669
670 public:
671 bool scanSource();
672 unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
673
674 public:
675 struct tgsi_shader_info scan;
676 struct tgsi_full_instruction *insns;
677 const struct tgsi_token *tokens;
678 struct nv50_ir_prog_info *info;
679
680 nv50_ir::DynArray tempArrays;
681 nv50_ir::DynArray immdArrays;
682
683 typedef nv50_ir::BuildUtil::Location Location;
684 // these registers are per-subroutine, cannot be used for parameter passing
685 std::set<Location> locals;
686
687 bool mainTempsInLMem;
688
689 int clipVertexOutput;
690
691 struct TextureView {
692 uint8_t target; // TGSI_TEXTURE_*
693 };
694 std::vector<TextureView> textureViews;
695
696 struct Resource {
697 uint8_t target; // TGSI_TEXTURE_*
698 bool raw;
699 uint8_t slot; // $surface index
700 };
701 std::vector<Resource> resources;
702
703 private:
704 int inferSysValDirection(unsigned sn) const;
705 bool scanDeclaration(const struct tgsi_full_declaration *);
706 bool scanInstruction(const struct tgsi_full_instruction *);
707 void scanProperty(const struct tgsi_full_property *);
708 void scanImmediate(const struct tgsi_full_immediate *);
709
710 inline bool isEdgeFlagPassthrough(const Instruction&) const;
711 };
712
713 Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
714 {
715 tokens = (const struct tgsi_token *)info->bin.source;
716
717 if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
718 tgsi_dump(tokens, 0);
719
720 mainTempsInLMem = FALSE;
721 }
722
723 Source::~Source()
724 {
725 if (insns)
726 FREE(insns);
727
728 if (info->immd.data)
729 FREE(info->immd.data);
730 if (info->immd.type)
731 FREE(info->immd.type);
732 }
733
734 bool Source::scanSource()
735 {
736 unsigned insnCount = 0;
737 struct tgsi_parse_context parse;
738
739 tgsi_scan_shader(tokens, &scan);
740
741 insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
742 sizeof(insns[0]));
743 if (!insns)
744 return false;
745
746 clipVertexOutput = -1;
747
748 textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1);
749 resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1);
750
751 info->immd.bufSize = 0;
752
753 info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
754 info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
755 info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
756
757 if (info->type == PIPE_SHADER_FRAGMENT) {
758 info->prop.fp.writesDepth = scan.writes_z;
759 info->prop.fp.usesDiscard = scan.uses_kill;
760 } else
761 if (info->type == PIPE_SHADER_GEOMETRY) {
762 info->prop.gp.instanceCount = 1; // default value
763 }
764
765 info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
766 info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
767
768 tgsi_parse_init(&parse, tokens);
769 while (!tgsi_parse_end_of_tokens(&parse)) {
770 tgsi_parse_token(&parse);
771
772 switch (parse.FullToken.Token.Type) {
773 case TGSI_TOKEN_TYPE_IMMEDIATE:
774 scanImmediate(&parse.FullToken.FullImmediate);
775 break;
776 case TGSI_TOKEN_TYPE_DECLARATION:
777 scanDeclaration(&parse.FullToken.FullDeclaration);
778 break;
779 case TGSI_TOKEN_TYPE_INSTRUCTION:
780 insns[insnCount++] = parse.FullToken.FullInstruction;
781 scanInstruction(&parse.FullToken.FullInstruction);
782 break;
783 case TGSI_TOKEN_TYPE_PROPERTY:
784 scanProperty(&parse.FullToken.FullProperty);
785 break;
786 default:
787 INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
788 break;
789 }
790 }
791 tgsi_parse_free(&parse);
792
793 if (mainTempsInLMem)
794 info->bin.tlsSpace += (scan.file_max[TGSI_FILE_TEMPORARY] + 1) * 16;
795
796 if (info->io.genUserClip > 0) {
797 info->io.clipDistanceMask = (1 << info->io.genUserClip) - 1;
798
799 const unsigned int nOut = (info->io.genUserClip + 3) / 4;
800
801 for (unsigned int n = 0; n < nOut; ++n) {
802 unsigned int i = info->numOutputs++;
803 info->out[i].id = i;
804 info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
805 info->out[i].si = n;
806 info->out[i].mask = info->io.clipDistanceMask >> (n * 4);
807 }
808 }
809
810 return info->assignSlots(info) == 0;
811 }
812
813 void Source::scanProperty(const struct tgsi_full_property *prop)
814 {
815 switch (prop->Property.PropertyName) {
816 case TGSI_PROPERTY_GS_OUTPUT_PRIM:
817 info->prop.gp.outputPrim = prop->u[0].Data;
818 break;
819 case TGSI_PROPERTY_GS_INPUT_PRIM:
820 info->prop.gp.inputPrim = prop->u[0].Data;
821 break;
822 case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
823 info->prop.gp.maxVertices = prop->u[0].Data;
824 break;
825 #if 0
826 case TGSI_PROPERTY_GS_INSTANCE_COUNT:
827 info->prop.gp.instanceCount = prop->u[0].Data;
828 break;
829 #endif
830 case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
831 info->prop.fp.separateFragData = TRUE;
832 break;
833 case TGSI_PROPERTY_FS_COORD_ORIGIN:
834 case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
835 // we don't care
836 break;
837 case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
838 info->io.genUserClip = -1;
839 break;
840 default:
841 INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
842 break;
843 }
844 }
845
846 void Source::scanImmediate(const struct tgsi_full_immediate *imm)
847 {
848 const unsigned n = info->immd.count++;
849
850 assert(n < scan.immediate_count);
851
852 for (int c = 0; c < 4; ++c)
853 info->immd.data[n * 4 + c] = imm->u[c].Uint;
854
855 info->immd.type[n] = imm->Immediate.DataType;
856 }
857
858 int Source::inferSysValDirection(unsigned sn) const
859 {
860 switch (sn) {
861 case TGSI_SEMANTIC_INSTANCEID:
862 case TGSI_SEMANTIC_VERTEXID:
863 return 1;
864 case TGSI_SEMANTIC_LAYER:
865 #if 0
866 case TGSI_SEMANTIC_VIEWPORTINDEX:
867 return 0;
868 #endif
869 case TGSI_SEMANTIC_PRIMID:
870 return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
871 default:
872 return 0;
873 }
874 }
875
876 bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
877 {
878 unsigned i, c;
879 unsigned sn = TGSI_SEMANTIC_GENERIC;
880 unsigned si = 0;
881 const unsigned first = decl->Range.First, last = decl->Range.Last;
882
883 if (decl->Declaration.Semantic) {
884 sn = decl->Semantic.Name;
885 si = decl->Semantic.Index;
886 }
887
888 if (decl->Declaration.Local) {
889 for (i = first; i <= last; ++i) {
890 for (c = 0; c < 4; ++c) {
891 locals.insert(
892 Location(decl->Declaration.File, decl->Dim.Index2D, i, c));
893 }
894 }
895 }
896
897 switch (decl->Declaration.File) {
898 case TGSI_FILE_INPUT:
899 if (info->type == PIPE_SHADER_VERTEX) {
900 // all vertex attributes are equal
901 for (i = first; i <= last; ++i) {
902 info->in[i].sn = TGSI_SEMANTIC_GENERIC;
903 info->in[i].si = i;
904 }
905 } else {
906 for (i = first; i <= last; ++i, ++si) {
907 info->in[i].id = i;
908 info->in[i].sn = sn;
909 info->in[i].si = si;
910 if (info->type == PIPE_SHADER_FRAGMENT) {
911 // translate interpolation mode
912 switch (decl->Interp.Interpolate) {
913 case TGSI_INTERPOLATE_CONSTANT:
914 info->in[i].flat = 1;
915 break;
916 case TGSI_INTERPOLATE_COLOR:
917 info->in[i].sc = 1;
918 break;
919 case TGSI_INTERPOLATE_LINEAR:
920 info->in[i].linear = 1;
921 break;
922 default:
923 break;
924 }
925 if (decl->Interp.Centroid)
926 info->in[i].centroid = 1;
927 }
928 }
929 }
930 break;
931 case TGSI_FILE_OUTPUT:
932 for (i = first; i <= last; ++i, ++si) {
933 switch (sn) {
934 case TGSI_SEMANTIC_POSITION:
935 if (info->type == PIPE_SHADER_FRAGMENT)
936 info->io.fragDepth = i;
937 else
938 if (clipVertexOutput < 0)
939 clipVertexOutput = i;
940 break;
941 case TGSI_SEMANTIC_COLOR:
942 if (info->type == PIPE_SHADER_FRAGMENT)
943 info->prop.fp.numColourResults++;
944 break;
945 case TGSI_SEMANTIC_EDGEFLAG:
946 info->io.edgeFlagOut = i;
947 break;
948 case TGSI_SEMANTIC_CLIPVERTEX:
949 clipVertexOutput = i;
950 break;
951 case TGSI_SEMANTIC_CLIPDIST:
952 info->io.clipDistanceMask |=
953 decl->Declaration.UsageMask << (si * 4);
954 info->io.genUserClip = -1;
955 break;
956 default:
957 break;
958 }
959 info->out[i].id = i;
960 info->out[i].sn = sn;
961 info->out[i].si = si;
962 }
963 break;
964 case TGSI_FILE_SYSTEM_VALUE:
965 switch (sn) {
966 case TGSI_SEMANTIC_INSTANCEID:
967 info->io.instanceId = first;
968 break;
969 case TGSI_SEMANTIC_VERTEXID:
970 info->io.vertexId = first;
971 break;
972 default:
973 break;
974 }
975 for (i = first; i <= last; ++i, ++si) {
976 info->sv[i].sn = sn;
977 info->sv[i].si = si;
978 info->sv[i].input = inferSysValDirection(sn);
979 }
980 break;
981 case TGSI_FILE_RESOURCE:
982 for (i = first; i <= last; ++i) {
983 resources[i].target = decl->Resource.Resource;
984 resources[i].raw = decl->Resource.Raw;
985 resources[i].slot = i;
986 }
987 break;
988 case TGSI_FILE_SAMPLER_VIEW:
989 for (i = first; i <= last; ++i)
990 textureViews[i].target = decl->SamplerView.Resource;
991 break;
992 case TGSI_FILE_NULL:
993 case TGSI_FILE_TEMPORARY:
994 case TGSI_FILE_ADDRESS:
995 case TGSI_FILE_CONSTANT:
996 case TGSI_FILE_IMMEDIATE:
997 case TGSI_FILE_PREDICATE:
998 case TGSI_FILE_SAMPLER:
999 break;
1000 default:
1001 ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
1002 return false;
1003 }
1004 return true;
1005 }
1006
1007 inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
1008 {
1009 return insn.getOpcode() == TGSI_OPCODE_MOV &&
1010 insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
1011 insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
1012 }
1013
1014 bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
1015 {
1016 Instruction insn(inst);
1017
1018 if (insn.getOpcode() == TGSI_OPCODE_BARRIER)
1019 info->numBarriers = 1;
1020
1021 if (insn.dstCount()) {
1022 if (insn.getDst(0).getFile() == TGSI_FILE_OUTPUT) {
1023 Instruction::DstRegister dst = insn.getDst(0);
1024
1025 if (dst.isIndirect(0))
1026 for (unsigned i = 0; i < info->numOutputs; ++i)
1027 info->out[i].mask = 0xf;
1028 else
1029 info->out[dst.getIndex(0)].mask |= dst.getMask();
1030
1031 if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE ||
1032 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID ||
1033 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_LAYER ||
1034 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG)
1035 info->out[dst.getIndex(0)].mask &= 1;
1036
1037 if (isEdgeFlagPassthrough(insn))
1038 info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
1039 } else
1040 if (insn.getDst(0).getFile() == TGSI_FILE_TEMPORARY) {
1041 if (insn.getDst(0).isIndirect(0))
1042 mainTempsInLMem = TRUE;
1043 }
1044 }
1045
1046 for (unsigned s = 0; s < insn.srcCount(); ++s) {
1047 Instruction::SrcRegister src = insn.getSrc(s);
1048 if (src.getFile() == TGSI_FILE_TEMPORARY) {
1049 if (src.isIndirect(0))
1050 mainTempsInLMem = TRUE;
1051 } else
1052 if (src.getFile() == TGSI_FILE_RESOURCE) {
1053 if (src.getIndex(0) == TGSI_RESOURCE_GLOBAL)
1054 info->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ?
1055 0x1 : 0x2;
1056 }
1057 if (src.getFile() != TGSI_FILE_INPUT)
1058 continue;
1059 unsigned mask = insn.srcMask(s);
1060
1061 if (src.isIndirect(0)) {
1062 for (unsigned i = 0; i < info->numInputs; ++i)
1063 info->in[i].mask = 0xf;
1064 } else {
1065 const int i = src.getIndex(0);
1066 for (unsigned c = 0; c < 4; ++c) {
1067 if (!(mask & (1 << c)))
1068 continue;
1069 int k = src.getSwizzle(c);
1070 if (k <= TGSI_SWIZZLE_W)
1071 info->in[i].mask |= 1 << k;
1072 }
1073 switch (info->in[i].sn) {
1074 case TGSI_SEMANTIC_PSIZE:
1075 case TGSI_SEMANTIC_PRIMID:
1076 case TGSI_SEMANTIC_FOG:
1077 info->in[i].mask &= 0x1;
1078 break;
1079 case TGSI_SEMANTIC_PCOORD:
1080 info->in[i].mask &= 0x3;
1081 break;
1082 default:
1083 break;
1084 }
1085 }
1086 }
1087 return true;
1088 }
1089
1090 nv50_ir::TexInstruction::Target
1091 Instruction::getTexture(const tgsi::Source *code, int s) const
1092 {
1093 // XXX: indirect access
1094 unsigned int r;
1095
1096 switch (getSrc(s).getFile()) {
1097 case TGSI_FILE_RESOURCE:
1098 r = getSrc(s).getIndex(0);
1099 return translateTexture(code->resources.at(r).target);
1100 case TGSI_FILE_SAMPLER_VIEW:
1101 r = getSrc(s).getIndex(0);
1102 return translateTexture(code->textureViews.at(r).target);
1103 default:
1104 return translateTexture(insn->Texture.Texture);
1105 }
1106 }
1107
1108 } // namespace tgsi
1109
1110 namespace {
1111
1112 using namespace nv50_ir;
1113
1114 class Converter : public BuildUtil
1115 {
1116 public:
1117 Converter(Program *, const tgsi::Source *);
1118 ~Converter();
1119
1120 bool run();
1121
1122 private:
1123 struct Subroutine
1124 {
1125 Subroutine(Function *f) : f(f) { }
1126 Function *f;
1127 ValueMap values;
1128 };
1129
1130 Value *shiftAddress(Value *);
1131 Value *getVertexBase(int s);
1132 DataArray *getArrayForFile(unsigned file, int idx);
1133 Value *fetchSrc(int s, int c);
1134 Value *acquireDst(int d, int c);
1135 void storeDst(int d, int c, Value *);
1136
1137 Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1138 void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1139 Value *val, Value *ptr);
1140
1141 Value *applySrcMod(Value *, int s, int c);
1142
1143 Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1144 Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1145 Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1146
1147 bool handleInstruction(const struct tgsi_full_instruction *);
1148 void exportOutputs();
1149 inline Subroutine *getSubroutine(unsigned ip);
1150 inline Subroutine *getSubroutine(Function *);
1151 inline bool isEndOfSubroutine(uint ip);
1152
1153 void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1154
1155 // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1156 void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1157 void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1158 void handleTXF(Value *dst0[4], int R, int L_M);
1159 void handleTXQ(Value *dst0[4], enum TexQuery);
1160 void handleLIT(Value *dst0[4]);
1161 void handleUserClipPlanes();
1162
1163 Symbol *getResourceBase(int r);
1164 void getResourceCoords(std::vector<Value *>&, int r, int s);
1165
1166 void handleLOAD(Value *dst0[4]);
1167 void handleSTORE();
1168 void handleATOM(Value *dst0[4], DataType, uint16_t subOp);
1169
1170 Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1171
1172 void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1173
1174 Value *buildDot(int dim);
1175
1176 class BindArgumentsPass : public Pass {
1177 public:
1178 BindArgumentsPass(Converter &conv) : conv(conv) { }
1179
1180 private:
1181 Converter &conv;
1182 Subroutine *sub;
1183
1184 inline const Location *getValueLocation(Subroutine *, Value *);
1185
1186 template<typename T> inline void
1187 updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1188 T (Function::*proto));
1189
1190 template<typename T> inline void
1191 updatePrototype(BitSet *set, void (Function::*updateSet)(),
1192 T (Function::*proto));
1193
1194 protected:
1195 bool visit(Function *);
1196 bool visit(BasicBlock *bb) { return false; }
1197 };
1198
1199 private:
1200 const struct tgsi::Source *code;
1201 const struct nv50_ir_prog_info *info;
1202
1203 struct {
1204 std::map<unsigned, Subroutine> map;
1205 Subroutine *cur;
1206 } sub;
1207
1208 uint ip; // instruction pointer
1209
1210 tgsi::Instruction tgsi;
1211
1212 DataType dstTy;
1213 DataType srcTy;
1214
1215 DataArray tData; // TGSI_FILE_TEMPORARY
1216 DataArray aData; // TGSI_FILE_ADDRESS
1217 DataArray pData; // TGSI_FILE_PREDICATE
1218 DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1219
1220 Value *zero;
1221 Value *fragCoord[4];
1222 Value *clipVtx[4];
1223
1224 Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1225 uint8_t vtxBaseValid;
1226
1227 Stack condBBs; // fork BB, then else clause BB
1228 Stack joinBBs; // fork BB, for inserting join ops on ENDIF
1229 Stack loopBBs; // loop headers
1230 Stack breakBBs; // end of / after loop
1231 };
1232
1233 Symbol *
1234 Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1235 {
1236 const int swz = src.getSwizzle(c);
1237
1238 return makeSym(src.getFile(),
1239 src.is2D() ? src.getIndex(1) : 0,
1240 src.isIndirect(0) ? -1 : src.getIndex(0), swz,
1241 src.getIndex(0) * 16 + swz * 4);
1242 }
1243
1244 Symbol *
1245 Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1246 {
1247 return makeSym(dst.getFile(),
1248 dst.is2D() ? dst.getIndex(1) : 0,
1249 dst.isIndirect(0) ? -1 : dst.getIndex(0), c,
1250 dst.getIndex(0) * 16 + c * 4);
1251 }
1252
1253 Symbol *
1254 Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1255 {
1256 Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1257
1258 sym->reg.fileIndex = fileIdx;
1259
1260 if (idx >= 0) {
1261 if (sym->reg.file == FILE_SHADER_INPUT)
1262 sym->setOffset(info->in[idx].slot[c] * 4);
1263 else
1264 if (sym->reg.file == FILE_SHADER_OUTPUT)
1265 sym->setOffset(info->out[idx].slot[c] * 4);
1266 else
1267 if (sym->reg.file == FILE_SYSTEM_VALUE)
1268 sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
1269 else
1270 sym->setOffset(address);
1271 } else {
1272 sym->setOffset(address);
1273 }
1274 return sym;
1275 }
1276
1277 static inline uint8_t
1278 translateInterpMode(const struct nv50_ir_varying *var, operation& op)
1279 {
1280 uint8_t mode = NV50_IR_INTERP_PERSPECTIVE;
1281
1282 if (var->flat)
1283 mode = NV50_IR_INTERP_FLAT;
1284 else
1285 if (var->linear)
1286 mode = NV50_IR_INTERP_LINEAR;
1287 else
1288 if (var->sc)
1289 mode = NV50_IR_INTERP_SC;
1290
1291 op = (mode == NV50_IR_INTERP_PERSPECTIVE || mode == NV50_IR_INTERP_SC)
1292 ? OP_PINTERP : OP_LINTERP;
1293
1294 if (var->centroid)
1295 mode |= NV50_IR_INTERP_CENTROID;
1296
1297 return mode;
1298 }
1299
1300 Value *
1301 Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1302 {
1303 operation op;
1304
1305 // XXX: no way to know interpolation mode if we don't know what's accessed
1306 const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
1307 src.getIndex(0)], op);
1308
1309 Instruction *insn = new_Instruction(func, op, TYPE_F32);
1310
1311 insn->setDef(0, getScratch());
1312 insn->setSrc(0, srcToSym(src, c));
1313 if (op == OP_PINTERP)
1314 insn->setSrc(1, fragCoord[3]);
1315 if (ptr)
1316 insn->setIndirect(0, 0, ptr);
1317
1318 insn->setInterpolate(mode);
1319
1320 bb->insertTail(insn);
1321 return insn->getDef(0);
1322 }
1323
1324 Value *
1325 Converter::applySrcMod(Value *val, int s, int c)
1326 {
1327 Modifier m = tgsi.getSrc(s).getMod(c);
1328 DataType ty = tgsi.inferSrcType();
1329
1330 if (m & Modifier(NV50_IR_MOD_ABS))
1331 val = mkOp1v(OP_ABS, ty, getScratch(), val);
1332
1333 if (m & Modifier(NV50_IR_MOD_NEG))
1334 val = mkOp1v(OP_NEG, ty, getScratch(), val);
1335
1336 return val;
1337 }
1338
1339 Value *
1340 Converter::getVertexBase(int s)
1341 {
1342 assert(s < 5);
1343 if (!(vtxBaseValid & (1 << s))) {
1344 const int index = tgsi.getSrc(s).getIndex(1);
1345 Value *rel = NULL;
1346 if (tgsi.getSrc(s).isIndirect(1))
1347 rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1348 vtxBaseValid |= 1 << s;
1349 vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1350 mkImm(index), rel);
1351 }
1352 return vtxBase[s];
1353 }
1354
1355 Value *
1356 Converter::fetchSrc(int s, int c)
1357 {
1358 Value *res;
1359 Value *ptr = NULL, *dimRel = NULL;
1360
1361 tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1362
1363 if (src.isIndirect(0))
1364 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1365
1366 if (src.is2D()) {
1367 switch (src.getFile()) {
1368 case TGSI_FILE_INPUT:
1369 dimRel = getVertexBase(s);
1370 break;
1371 case TGSI_FILE_CONSTANT:
1372 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1373 if (src.isIndirect(1))
1374 dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1375 break;
1376 default:
1377 break;
1378 }
1379 }
1380
1381 res = fetchSrc(src, c, ptr);
1382
1383 if (dimRel)
1384 res->getInsn()->setIndirect(0, 1, dimRel);
1385
1386 return applySrcMod(res, s, c);
1387 }
1388
1389 Converter::DataArray *
1390 Converter::getArrayForFile(unsigned file, int idx)
1391 {
1392 switch (file) {
1393 case TGSI_FILE_TEMPORARY:
1394 return &tData;
1395 case TGSI_FILE_PREDICATE:
1396 return &pData;
1397 case TGSI_FILE_ADDRESS:
1398 return &aData;
1399 case TGSI_FILE_OUTPUT:
1400 assert(prog->getType() == Program::TYPE_FRAGMENT);
1401 return &oData;
1402 default:
1403 assert(!"invalid/unhandled TGSI source file");
1404 return NULL;
1405 }
1406 }
1407
1408 Value *
1409 Converter::shiftAddress(Value *index)
1410 {
1411 if (!index)
1412 return NULL;
1413 return mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), index, mkImm(4));
1414 }
1415
1416 Value *
1417 Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1418 {
1419 const int idx2d = src.is2D() ? src.getIndex(1) : 0;
1420 const int idx = src.getIndex(0);
1421 const int swz = src.getSwizzle(c);
1422
1423 switch (src.getFile()) {
1424 case TGSI_FILE_IMMEDIATE:
1425 assert(!ptr);
1426 return loadImm(NULL, info->immd.data[idx * 4 + swz]);
1427 case TGSI_FILE_CONSTANT:
1428 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1429 case TGSI_FILE_INPUT:
1430 if (prog->getType() == Program::TYPE_FRAGMENT) {
1431 // don't load masked inputs, won't be assigned a slot
1432 if (!ptr && !(info->in[idx].mask & (1 << swz)))
1433 return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
1434 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_FACE)
1435 return mkOp1v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_FACE, 0));
1436 return interpolate(src, c, shiftAddress(ptr));
1437 } else
1438 if (prog->getType() == Program::TYPE_GEOMETRY) {
1439 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_PRIMID)
1440 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_PRIMITIVE_ID, 0));
1441 // XXX: This is going to be a problem with scalar arrays, i.e. when
1442 // we cannot assume that the address is given in units of vec4.
1443 //
1444 // nv50 and nvc0 need different things here, so let the lowering
1445 // passes decide what to do with the address
1446 if (ptr)
1447 return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
1448 }
1449 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1450 case TGSI_FILE_OUTPUT:
1451 assert(!"load from output file");
1452 return NULL;
1453 case TGSI_FILE_SYSTEM_VALUE:
1454 assert(!ptr);
1455 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
1456 default:
1457 return getArrayForFile(src.getFile(), idx2d)->load(
1458 sub.cur->values, idx, swz, shiftAddress(ptr));
1459 }
1460 }
1461
1462 Value *
1463 Converter::acquireDst(int d, int c)
1464 {
1465 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1466 const unsigned f = dst.getFile();
1467 const int idx = dst.getIndex(0);
1468 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1469
1470 if (dst.isMasked(c) || f == TGSI_FILE_RESOURCE)
1471 return NULL;
1472
1473 if (dst.isIndirect(0) ||
1474 f == TGSI_FILE_SYSTEM_VALUE ||
1475 (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
1476 return getScratch();
1477
1478 return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
1479 }
1480
1481 void
1482 Converter::storeDst(int d, int c, Value *val)
1483 {
1484 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1485
1486 switch (tgsi.getSaturate()) {
1487 case TGSI_SAT_NONE:
1488 break;
1489 case TGSI_SAT_ZERO_ONE:
1490 mkOp1(OP_SAT, dstTy, val, val);
1491 break;
1492 case TGSI_SAT_MINUS_PLUS_ONE:
1493 mkOp2(OP_MAX, dstTy, val, val, mkImm(-1.0f));
1494 mkOp2(OP_MIN, dstTy, val, val, mkImm(+1.0f));
1495 break;
1496 default:
1497 assert(!"invalid saturation mode");
1498 break;
1499 }
1500
1501 Value *ptr = NULL;
1502 if (dst.isIndirect(0))
1503 ptr = shiftAddress(fetchSrc(dst.getIndirect(0), 0, NULL));
1504
1505 if (info->io.genUserClip > 0 &&
1506 dst.getFile() == TGSI_FILE_OUTPUT &&
1507 !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
1508 mkMov(clipVtx[c], val);
1509 val = clipVtx[c];
1510 }
1511
1512 storeDst(dst, c, val, ptr);
1513 }
1514
1515 void
1516 Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
1517 Value *val, Value *ptr)
1518 {
1519 const unsigned f = dst.getFile();
1520 const int idx = dst.getIndex(0);
1521 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1522
1523 if (f == TGSI_FILE_SYSTEM_VALUE) {
1524 assert(!ptr);
1525 mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
1526 } else
1527 if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
1528 if (ptr || (info->out[idx].mask & (1 << c)))
1529 mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val);
1530 } else
1531 if (f == TGSI_FILE_TEMPORARY ||
1532 f == TGSI_FILE_PREDICATE ||
1533 f == TGSI_FILE_ADDRESS ||
1534 f == TGSI_FILE_OUTPUT) {
1535 getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
1536 } else {
1537 assert(!"invalid dst file");
1538 }
1539 }
1540
1541 #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
1542 for (chan = 0; chan < 4; ++chan) \
1543 if (!inst.getDst(d).isMasked(chan))
1544
1545 Value *
1546 Converter::buildDot(int dim)
1547 {
1548 assert(dim > 0);
1549
1550 Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
1551 Value *dotp = getScratch();
1552
1553 mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1);
1554
1555 for (int c = 1; c < dim; ++c) {
1556 src0 = fetchSrc(0, c);
1557 src1 = fetchSrc(1, c);
1558 mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp);
1559 }
1560 return dotp;
1561 }
1562
1563 void
1564 Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
1565 {
1566 FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
1567 join->fixed = 1;
1568 conv->insertHead(join);
1569
1570 fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
1571 fork->insertBefore(fork->getExit(), fork->joinAt);
1572 }
1573
1574 void
1575 Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
1576 {
1577 unsigned rIdx = 0, sIdx = 0;
1578
1579 if (R >= 0)
1580 rIdx = tgsi.getSrc(R).getIndex(0);
1581 if (S >= 0)
1582 sIdx = tgsi.getSrc(S).getIndex(0);
1583
1584 tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
1585
1586 if (tgsi.getSrc(R).isIndirect(0)) {
1587 tex->tex.rIndirectSrc = s;
1588 tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
1589 }
1590 if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
1591 tex->tex.sIndirectSrc = s;
1592 tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
1593 }
1594 }
1595
1596 void
1597 Converter::handleTXQ(Value *dst0[4], enum TexQuery query)
1598 {
1599 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1600 tex->tex.query = query;
1601 unsigned int c, d;
1602
1603 for (d = 0, c = 0; c < 4; ++c) {
1604 if (!dst0[c])
1605 continue;
1606 tex->tex.mask |= 1 << c;
1607 tex->setDef(d++, dst0[c]);
1608 }
1609 tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
1610
1611 setTexRS(tex, c, 1, -1);
1612
1613 bb->insertTail(tex);
1614 }
1615
1616 void
1617 Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
1618 {
1619 Value *proj = fetchSrc(0, 3);
1620 Instruction *insn = proj->getUniqueInsn();
1621 int c;
1622
1623 if (insn->op == OP_PINTERP) {
1624 bb->insertTail(insn = cloneForward(func, insn));
1625 insn->op = OP_LINTERP;
1626 insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
1627 insn->setSrc(1, NULL);
1628 proj = insn->getDef(0);
1629 }
1630 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
1631
1632 for (c = 0; c < 4; ++c) {
1633 if (!(mask & (1 << c)))
1634 continue;
1635 if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
1636 continue;
1637 mask &= ~(1 << c);
1638
1639 bb->insertTail(insn = cloneForward(func, insn));
1640 insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
1641 insn->setSrc(1, proj);
1642 dst[c] = insn->getDef(0);
1643 }
1644 if (!mask)
1645 return;
1646
1647 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
1648
1649 for (c = 0; c < 4; ++c)
1650 if (mask & (1 << c))
1651 dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
1652 }
1653
1654 // order of nv50 ir sources: x y z layer lod/bias shadow
1655 // order of TGSI TEX sources: x y z layer shadow lod/bias
1656 // lowering will finally set the hw specific order (like array first on nvc0)
1657 void
1658 Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
1659 {
1660 Value *val;
1661 Value *arg[4], *src[8];
1662 Value *lod = NULL, *shd = NULL;
1663 unsigned int s, c, d;
1664 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1665
1666 TexInstruction::Target tgt = tgsi.getTexture(code, R);
1667
1668 for (s = 0; s < tgt.getArgCount(); ++s)
1669 arg[s] = src[s] = fetchSrc(0, s);
1670
1671 if (texi->op == OP_TXL || texi->op == OP_TXB)
1672 lod = fetchSrc(L >> 4, L & 3);
1673
1674 if (C == 0x0f)
1675 C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
1676
1677 if (tgt.isShadow())
1678 shd = fetchSrc(C >> 4, C & 3);
1679
1680 if (texi->op == OP_TXD) {
1681 for (c = 0; c < tgt.getDim(); ++c) {
1682 texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
1683 texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
1684 }
1685 }
1686
1687 // cube textures don't care about projection value, it's divided out
1688 if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
1689 unsigned int n = tgt.getDim();
1690 if (shd) {
1691 arg[n] = shd;
1692 ++n;
1693 assert(tgt.getDim() == tgt.getArgCount());
1694 }
1695 loadProjTexCoords(src, arg, (1 << n) - 1);
1696 if (shd)
1697 shd = src[n - 1];
1698 }
1699
1700 if (tgt.isCube()) {
1701 for (c = 0; c < 3; ++c)
1702 src[c] = mkOp1v(OP_ABS, TYPE_F32, getSSA(), arg[c]);
1703 val = getScratch();
1704 mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1705 mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1706 mkOp1(OP_RCP, TYPE_F32, val, val);
1707 for (c = 0; c < 3; ++c)
1708 src[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), arg[c], val);
1709 }
1710
1711 for (c = 0, d = 0; c < 4; ++c) {
1712 if (dst[c]) {
1713 texi->setDef(d++, dst[c]);
1714 texi->tex.mask |= 1 << c;
1715 } else {
1716 // NOTE: maybe hook up def too, for CSE
1717 }
1718 }
1719 for (s = 0; s < tgt.getArgCount(); ++s)
1720 texi->setSrc(s, src[s]);
1721 if (lod)
1722 texi->setSrc(s++, lod);
1723 if (shd)
1724 texi->setSrc(s++, shd);
1725
1726 setTexRS(texi, s, R, S);
1727
1728 if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
1729 texi->tex.levelZero = true;
1730
1731 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1732 for (c = 0; c < 3; ++c) {
1733 texi->tex.offset[s][c] = tgsi.getTexOffset(s).getValueU32(c, info);
1734 if (texi->tex.offset[s][c])
1735 texi->tex.useOffsets = s + 1;
1736 }
1737 }
1738
1739 bb->insertTail(texi);
1740 }
1741
1742 // 1st source: xyz = coordinates, w = lod/sample
1743 // 2nd source: offset
1744 void
1745 Converter::handleTXF(Value *dst[4], int R, int L_M)
1746 {
1747 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1748 int ms;
1749 unsigned int c, d, s;
1750
1751 texi->tex.target = tgsi.getTexture(code, R);
1752
1753 ms = texi->tex.target.isMS() ? 1 : 0;
1754 texi->tex.levelZero = ms; /* MS textures don't have mip-maps */
1755
1756 for (c = 0, d = 0; c < 4; ++c) {
1757 if (dst[c]) {
1758 texi->setDef(d++, dst[c]);
1759 texi->tex.mask |= 1 << c;
1760 }
1761 }
1762 for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c)
1763 texi->setSrc(c, fetchSrc(0, c));
1764 texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms
1765
1766 setTexRS(texi, c, R, -1);
1767
1768 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1769 for (c = 0; c < 3; ++c) {
1770 texi->tex.offset[s][c] = tgsi.getTexOffset(s).getValueU32(c, info);
1771 if (texi->tex.offset[s][c])
1772 texi->tex.useOffsets = s + 1;
1773 }
1774 }
1775
1776 bb->insertTail(texi);
1777 }
1778
1779 void
1780 Converter::handleLIT(Value *dst0[4])
1781 {
1782 Value *val0 = NULL;
1783 unsigned int mask = tgsi.getDst(0).getMask();
1784
1785 if (mask & (1 << 0))
1786 loadImm(dst0[0], 1.0f);
1787
1788 if (mask & (1 << 3))
1789 loadImm(dst0[3], 1.0f);
1790
1791 if (mask & (3 << 1)) {
1792 val0 = getScratch();
1793 mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
1794 if (mask & (1 << 1))
1795 mkMov(dst0[1], val0);
1796 }
1797
1798 if (mask & (1 << 2)) {
1799 Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
1800 Value *val1 = getScratch(), *val3 = getScratch();
1801
1802 Value *pos128 = loadImm(NULL, +127.999999f);
1803 Value *neg128 = loadImm(NULL, -127.999999f);
1804
1805 mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
1806 mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
1807 mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
1808 mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
1809
1810 mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], TYPE_F32, val3, zero, val0);
1811 }
1812 }
1813
1814 static inline bool
1815 isResourceSpecial(const int r)
1816 {
1817 return (r == TGSI_RESOURCE_GLOBAL ||
1818 r == TGSI_RESOURCE_LOCAL ||
1819 r == TGSI_RESOURCE_PRIVATE ||
1820 r == TGSI_RESOURCE_INPUT);
1821 }
1822
1823 static inline bool
1824 isResourceRaw(const struct tgsi::Source *code, const int r)
1825 {
1826 return isResourceSpecial(r) || code->resources[r].raw;
1827 }
1828
1829 static inline nv50_ir::TexTarget
1830 getResourceTarget(const struct tgsi::Source *code, int r)
1831 {
1832 if (isResourceSpecial(r))
1833 return nv50_ir::TEX_TARGET_BUFFER;
1834 return tgsi::translateTexture(code->resources.at(r).target);
1835 }
1836
1837 Symbol *
1838 Converter::getResourceBase(const int r)
1839 {
1840 Symbol *sym = NULL;
1841
1842 switch (r) {
1843 case TGSI_RESOURCE_GLOBAL:
1844 sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL, 15);
1845 break;
1846 case TGSI_RESOURCE_LOCAL:
1847 assert(prog->getType() == Program::TYPE_COMPUTE);
1848 sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32,
1849 info->prop.cp.sharedOffset);
1850 break;
1851 case TGSI_RESOURCE_PRIVATE:
1852 sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32,
1853 info->bin.tlsSpace);
1854 break;
1855 case TGSI_RESOURCE_INPUT:
1856 assert(prog->getType() == Program::TYPE_COMPUTE);
1857 sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32,
1858 info->prop.cp.inputOffset);
1859 break;
1860 default:
1861 sym = new_Symbol(prog,
1862 nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot);
1863 break;
1864 }
1865 return sym;
1866 }
1867
1868 void
1869 Converter::getResourceCoords(std::vector<Value *> &coords, int r, int s)
1870 {
1871 const int arg =
1872 TexInstruction::Target(getResourceTarget(code, r)).getArgCount();
1873
1874 for (int c = 0; c < arg; ++c)
1875 coords.push_back(fetchSrc(s, c));
1876
1877 // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk
1878 if (r == TGSI_RESOURCE_LOCAL ||
1879 r == TGSI_RESOURCE_PRIVATE ||
1880 r == TGSI_RESOURCE_INPUT)
1881 coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS),
1882 coords[0]);
1883 }
1884
1885 static inline int
1886 partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask)
1887 {
1888 int n = 0;
1889
1890 while (mask) {
1891 if (mask & 1) {
1892 size[n]++;
1893 } else {
1894 if (size[n])
1895 comp[n = 1] = size[0] + 1;
1896 else
1897 comp[n]++;
1898 }
1899 mask >>= 1;
1900 }
1901 if (size[0] == 3) {
1902 n = 1;
1903 size[0] = (comp[0] == 1) ? 1 : 2;
1904 size[1] = 3 - size[0];
1905 comp[1] = comp[0] + size[0];
1906 }
1907 return n + 1;
1908 }
1909
1910 // For raw loads, granularity is 4 byte.
1911 // Usage of the texture read mask on OP_SULDP is not allowed.
1912 void
1913 Converter::handleLOAD(Value *dst0[4])
1914 {
1915 const int r = tgsi.getSrc(0).getIndex(0);
1916 int c;
1917 std::vector<Value *> off, src, ldv, def;
1918
1919 getResourceCoords(off, r, 1);
1920
1921 if (isResourceRaw(code, r)) {
1922 uint8_t mask = 0;
1923 uint8_t comp[2] = { 0, 0 };
1924 uint8_t size[2] = { 0, 0 };
1925
1926 Symbol *base = getResourceBase(r);
1927
1928 // determine the base and size of the at most 2 load ops
1929 for (c = 0; c < 4; ++c)
1930 if (!tgsi.getDst(0).isMasked(c))
1931 mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X);
1932
1933 int n = partitionLoadStore(comp, size, mask);
1934
1935 src = off;
1936
1937 def.resize(4); // index by component, the ones we need will be non-NULL
1938 for (c = 0; c < 4; ++c) {
1939 if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c))
1940 def[c] = dst0[c];
1941 else
1942 if (mask & (1 << c))
1943 def[c] = getScratch();
1944 }
1945
1946 const bool useLd = isResourceSpecial(r) ||
1947 (info->io.nv50styleSurfaces &&
1948 code->resources[r].target == TGSI_TEXTURE_BUFFER);
1949
1950 for (int i = 0; i < n; ++i) {
1951 ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]);
1952
1953 if (comp[i]) // adjust x component of source address if necessary
1954 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
1955 off[0], mkImm(comp[i] * 4));
1956 else
1957 src[0] = off[0];
1958
1959 if (useLd) {
1960 Instruction *ld =
1961 mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]);
1962 for (size_t c = 1; c < ldv.size(); ++c)
1963 ld->setDef(c, ldv[c]);
1964 } else {
1965 mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot,
1966 0, ldv, src)->dType = typeOfSize(size[i] * 4);
1967 }
1968 }
1969 } else {
1970 def.resize(4);
1971 for (c = 0; c < 4; ++c) {
1972 if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
1973 def[c] = getScratch();
1974 else
1975 def[c] = dst0[c];
1976 }
1977
1978 mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0,
1979 def, off);
1980 }
1981 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
1982 if (dst0[c] != def[c])
1983 mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
1984 }
1985
1986 // For formatted stores, the write mask on OP_SUSTP can be used.
1987 // Raw stores have to be split.
1988 void
1989 Converter::handleSTORE()
1990 {
1991 const int r = tgsi.getDst(0).getIndex(0);
1992 int c;
1993 std::vector<Value *> off, src, dummy;
1994
1995 getResourceCoords(off, r, 0);
1996 src = off;
1997 const int s = src.size();
1998
1999 if (isResourceRaw(code, r)) {
2000 uint8_t comp[2] = { 0, 0 };
2001 uint8_t size[2] = { 0, 0 };
2002
2003 int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask());
2004
2005 Symbol *base = getResourceBase(r);
2006
2007 const bool useSt = isResourceSpecial(r) ||
2008 (info->io.nv50styleSurfaces &&
2009 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2010
2011 for (int i = 0; i < n; ++i) {
2012 if (comp[i]) // adjust x component of source address if necessary
2013 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2014 off[0], mkImm(comp[i] * 4));
2015 else
2016 src[0] = off[0];
2017
2018 const DataType stTy = typeOfSize(size[i] * 4);
2019
2020 if (useSt) {
2021 Instruction *st =
2022 mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i]));
2023 for (c = 1; c < size[i]; ++c)
2024 st->setSrc(1 + c, fetchSrc(1, comp[i] + c));
2025 st->setIndirect(0, 0, src[0]);
2026 } else {
2027 // attach values to be stored
2028 src.resize(s + size[i]);
2029 for (c = 0; c < size[i]; ++c)
2030 src[s + c] = fetchSrc(1, comp[i] + c);
2031 mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot,
2032 0, dummy, src)->setType(stTy);
2033 }
2034 }
2035 } else {
2036 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2037 src.push_back(fetchSrc(1, c));
2038
2039 mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0,
2040 dummy, src)->tex.mask = tgsi.getDst(0).getMask();
2041 }
2042 }
2043
2044 // XXX: These only work on resources with the single-component u32/s32 formats.
2045 // Therefore the result is replicated. This might not be intended by TGSI, but
2046 // operating on more than 1 component would produce undefined results because
2047 // they do not exist.
2048 void
2049 Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp)
2050 {
2051 const int r = tgsi.getSrc(0).getIndex(0);
2052 std::vector<Value *> srcv;
2053 std::vector<Value *> defv;
2054 LValue *dst = getScratch();
2055
2056 getResourceCoords(srcv, r, 1);
2057
2058 if (isResourceSpecial(r)) {
2059 assert(r != TGSI_RESOURCE_INPUT);
2060 Instruction *insn;
2061 insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0));
2062 insn->subOp = subOp;
2063 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2064 insn->setSrc(2, fetchSrc(3, 0));
2065 insn->setIndirect(0, 0, srcv.at(0));
2066 } else {
2067 operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP;
2068 TexTarget targ = getResourceTarget(code, r);
2069 int idx = code->resources[r].slot;
2070 defv.push_back(dst);
2071 srcv.push_back(fetchSrc(2, 0));
2072 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2073 srcv.push_back(fetchSrc(3, 0));
2074 TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv);
2075 tex->subOp = subOp;
2076 tex->tex.mask = 1;
2077 tex->setType(ty);
2078 }
2079
2080 for (int c = 0; c < 4; ++c)
2081 if (dst0[c])
2082 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2083 }
2084
2085 Converter::Subroutine *
2086 Converter::getSubroutine(unsigned ip)
2087 {
2088 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2089
2090 if (it == sub.map.end())
2091 it = sub.map.insert(std::make_pair(
2092 ip, Subroutine(new Function(prog, "SUB", ip)))).first;
2093
2094 return &it->second;
2095 }
2096
2097 Converter::Subroutine *
2098 Converter::getSubroutine(Function *f)
2099 {
2100 unsigned ip = f->getLabel();
2101 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2102
2103 if (it == sub.map.end())
2104 it = sub.map.insert(std::make_pair(ip, Subroutine(f))).first;
2105
2106 return &it->second;
2107 }
2108
2109 bool
2110 Converter::isEndOfSubroutine(uint ip)
2111 {
2112 assert(ip < code->scan.num_instructions);
2113 tgsi::Instruction insn(&code->insns[ip]);
2114 return (insn.getOpcode() == TGSI_OPCODE_END ||
2115 insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
2116 // does END occur at end of main or the very end ?
2117 insn.getOpcode() == TGSI_OPCODE_BGNSUB);
2118 }
2119
2120 bool
2121 Converter::handleInstruction(const struct tgsi_full_instruction *insn)
2122 {
2123 Instruction *geni;
2124
2125 Value *dst0[4], *rDst0[4];
2126 Value *src0, *src1, *src2;
2127 Value *val0, *val1;
2128 int c;
2129
2130 tgsi = tgsi::Instruction(insn);
2131
2132 bool useScratchDst = tgsi.checkDstSrcAliasing();
2133
2134 operation op = tgsi.getOP();
2135 dstTy = tgsi.inferDstType();
2136 srcTy = tgsi.inferSrcType();
2137
2138 unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
2139
2140 if (tgsi.dstCount()) {
2141 for (c = 0; c < 4; ++c) {
2142 rDst0[c] = acquireDst(0, c);
2143 dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
2144 }
2145 }
2146
2147 switch (tgsi.getOpcode()) {
2148 case TGSI_OPCODE_ADD:
2149 case TGSI_OPCODE_UADD:
2150 case TGSI_OPCODE_AND:
2151 case TGSI_OPCODE_DIV:
2152 case TGSI_OPCODE_IDIV:
2153 case TGSI_OPCODE_UDIV:
2154 case TGSI_OPCODE_MAX:
2155 case TGSI_OPCODE_MIN:
2156 case TGSI_OPCODE_IMAX:
2157 case TGSI_OPCODE_IMIN:
2158 case TGSI_OPCODE_UMAX:
2159 case TGSI_OPCODE_UMIN:
2160 case TGSI_OPCODE_MOD:
2161 case TGSI_OPCODE_UMOD:
2162 case TGSI_OPCODE_MUL:
2163 case TGSI_OPCODE_UMUL:
2164 case TGSI_OPCODE_OR:
2165 case TGSI_OPCODE_POW:
2166 case TGSI_OPCODE_SHL:
2167 case TGSI_OPCODE_ISHR:
2168 case TGSI_OPCODE_USHR:
2169 case TGSI_OPCODE_SUB:
2170 case TGSI_OPCODE_XOR:
2171 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2172 src0 = fetchSrc(0, c);
2173 src1 = fetchSrc(1, c);
2174 mkOp2(op, dstTy, dst0[c], src0, src1);
2175 }
2176 break;
2177 case TGSI_OPCODE_MAD:
2178 case TGSI_OPCODE_UMAD:
2179 case TGSI_OPCODE_SAD:
2180 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2181 src0 = fetchSrc(0, c);
2182 src1 = fetchSrc(1, c);
2183 src2 = fetchSrc(2, c);
2184 mkOp3(op, dstTy, dst0[c], src0, src1, src2);
2185 }
2186 break;
2187 case TGSI_OPCODE_MOV:
2188 case TGSI_OPCODE_ABS:
2189 case TGSI_OPCODE_CEIL:
2190 case TGSI_OPCODE_FLR:
2191 case TGSI_OPCODE_TRUNC:
2192 case TGSI_OPCODE_RCP:
2193 case TGSI_OPCODE_IABS:
2194 case TGSI_OPCODE_INEG:
2195 case TGSI_OPCODE_NOT:
2196 case TGSI_OPCODE_DDX:
2197 case TGSI_OPCODE_DDY:
2198 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2199 mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
2200 break;
2201 case TGSI_OPCODE_RSQ:
2202 src0 = fetchSrc(0, 0);
2203 val0 = getScratch();
2204 mkOp1(OP_ABS, TYPE_F32, val0, src0);
2205 mkOp1(OP_RSQ, TYPE_F32, val0, val0);
2206 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2207 mkMov(dst0[c], val0);
2208 break;
2209 case TGSI_OPCODE_ARL:
2210 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2211 src0 = fetchSrc(0, c);
2212 mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = ROUND_M;
2213 }
2214 break;
2215 case TGSI_OPCODE_UARL:
2216 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2217 mkOp1(OP_MOV, TYPE_U32, dst0[c], fetchSrc(0, c));
2218 break;
2219 case TGSI_OPCODE_EX2:
2220 case TGSI_OPCODE_LG2:
2221 val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
2222 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2223 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2224 break;
2225 case TGSI_OPCODE_COS:
2226 case TGSI_OPCODE_SIN:
2227 val0 = getScratch();
2228 if (mask & 7) {
2229 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
2230 mkOp1(op, TYPE_F32, val0, val0);
2231 for (c = 0; c < 3; ++c)
2232 if (dst0[c])
2233 mkMov(dst0[c], val0);
2234 }
2235 if (dst0[3]) {
2236 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
2237 mkOp1(op, TYPE_F32, dst0[3], val0);
2238 }
2239 break;
2240 case TGSI_OPCODE_SCS:
2241 if (mask & 3) {
2242 val0 = mkOp1v(OP_PRESIN, TYPE_F32, getSSA(), fetchSrc(0, 0));
2243 if (dst0[0])
2244 mkOp1(OP_COS, TYPE_F32, dst0[0], val0);
2245 if (dst0[1])
2246 mkOp1(OP_SIN, TYPE_F32, dst0[1], val0);
2247 }
2248 if (dst0[2])
2249 loadImm(dst0[2], 0.0f);
2250 if (dst0[3])
2251 loadImm(dst0[3], 1.0f);
2252 break;
2253 case TGSI_OPCODE_EXP:
2254 src0 = fetchSrc(0, 0);
2255 val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
2256 if (dst0[1])
2257 mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
2258 if (dst0[0])
2259 mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
2260 if (dst0[2])
2261 mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
2262 if (dst0[3])
2263 loadImm(dst0[3], 1.0f);
2264 break;
2265 case TGSI_OPCODE_LOG:
2266 src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
2267 val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
2268 if (dst0[0] || dst0[1])
2269 val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
2270 if (dst0[1]) {
2271 mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
2272 mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
2273 mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0);
2274 }
2275 if (dst0[3])
2276 loadImm(dst0[3], 1.0f);
2277 break;
2278 case TGSI_OPCODE_DP2:
2279 val0 = buildDot(2);
2280 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2281 mkMov(dst0[c], val0);
2282 break;
2283 case TGSI_OPCODE_DP3:
2284 val0 = buildDot(3);
2285 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2286 mkMov(dst0[c], val0);
2287 break;
2288 case TGSI_OPCODE_DP4:
2289 val0 = buildDot(4);
2290 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2291 mkMov(dst0[c], val0);
2292 break;
2293 case TGSI_OPCODE_DPH:
2294 val0 = buildDot(3);
2295 src1 = fetchSrc(1, 3);
2296 mkOp2(OP_ADD, TYPE_F32, val0, val0, src1);
2297 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2298 mkMov(dst0[c], val0);
2299 break;
2300 case TGSI_OPCODE_DST:
2301 if (dst0[0])
2302 loadImm(dst0[0], 1.0f);
2303 if (dst0[1]) {
2304 src0 = fetchSrc(0, 1);
2305 src1 = fetchSrc(1, 1);
2306 mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1);
2307 }
2308 if (dst0[2])
2309 mkMov(dst0[2], fetchSrc(0, 2));
2310 if (dst0[3])
2311 mkMov(dst0[3], fetchSrc(1, 3));
2312 break;
2313 case TGSI_OPCODE_LRP:
2314 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2315 src0 = fetchSrc(0, c);
2316 src1 = fetchSrc(1, c);
2317 src2 = fetchSrc(2, c);
2318 mkOp3(OP_MAD, TYPE_F32, dst0[c],
2319 mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2);
2320 }
2321 break;
2322 case TGSI_OPCODE_LIT:
2323 handleLIT(dst0);
2324 break;
2325 case TGSI_OPCODE_XPD:
2326 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2327 if (c < 3) {
2328 val0 = getSSA();
2329 src0 = fetchSrc(1, (c + 1) % 3);
2330 src1 = fetchSrc(0, (c + 2) % 3);
2331 mkOp2(OP_MUL, TYPE_F32, val0, src0, src1);
2332 mkOp1(OP_NEG, TYPE_F32, val0, val0);
2333
2334 src0 = fetchSrc(0, (c + 1) % 3);
2335 src1 = fetchSrc(1, (c + 2) % 3);
2336 mkOp3(OP_MAD, TYPE_F32, dst0[c], src0, src1, val0);
2337 } else {
2338 loadImm(dst0[c], 1.0f);
2339 }
2340 }
2341 break;
2342 case TGSI_OPCODE_ISSG:
2343 case TGSI_OPCODE_SSG:
2344 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2345 src0 = fetchSrc(0, c);
2346 val0 = getScratch();
2347 val1 = getScratch();
2348 mkCmp(OP_SET, CC_GT, srcTy, val0, srcTy, src0, zero);
2349 mkCmp(OP_SET, CC_LT, srcTy, val1, srcTy, src0, zero);
2350 if (srcTy == TYPE_F32)
2351 mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
2352 else
2353 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
2354 }
2355 break;
2356 case TGSI_OPCODE_UCMP:
2357 case TGSI_OPCODE_CMP:
2358 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2359 src0 = fetchSrc(0, c);
2360 src1 = fetchSrc(1, c);
2361 src2 = fetchSrc(2, c);
2362 if (src1 == src2)
2363 mkMov(dst0[c], src1);
2364 else
2365 mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
2366 srcTy, dst0[c], srcTy, src1, src2, src0);
2367 }
2368 break;
2369 case TGSI_OPCODE_FRC:
2370 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2371 src0 = fetchSrc(0, c);
2372 val0 = getScratch();
2373 mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
2374 mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
2375 }
2376 break;
2377 case TGSI_OPCODE_ROUND:
2378 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2379 mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
2380 ->rnd = ROUND_NI;
2381 break;
2382 case TGSI_OPCODE_CLAMP:
2383 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2384 src0 = fetchSrc(0, c);
2385 src1 = fetchSrc(1, c);
2386 src2 = fetchSrc(2, c);
2387 val0 = getScratch();
2388 mkOp2(OP_MIN, TYPE_F32, val0, src0, src1);
2389 mkOp2(OP_MAX, TYPE_F32, dst0[c], val0, src2);
2390 }
2391 break;
2392 case TGSI_OPCODE_SLT:
2393 case TGSI_OPCODE_SGE:
2394 case TGSI_OPCODE_SEQ:
2395 case TGSI_OPCODE_SFL:
2396 case TGSI_OPCODE_SGT:
2397 case TGSI_OPCODE_SLE:
2398 case TGSI_OPCODE_SNE:
2399 case TGSI_OPCODE_STR:
2400 case TGSI_OPCODE_FSEQ:
2401 case TGSI_OPCODE_FSGE:
2402 case TGSI_OPCODE_FSLT:
2403 case TGSI_OPCODE_FSNE:
2404 case TGSI_OPCODE_ISGE:
2405 case TGSI_OPCODE_ISLT:
2406 case TGSI_OPCODE_USEQ:
2407 case TGSI_OPCODE_USGE:
2408 case TGSI_OPCODE_USLT:
2409 case TGSI_OPCODE_USNE:
2410 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2411 src0 = fetchSrc(0, c);
2412 src1 = fetchSrc(1, c);
2413 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
2414 }
2415 break;
2416 case TGSI_OPCODE_KILL_IF:
2417 val0 = new_LValue(func, FILE_PREDICATE);
2418 for (c = 0; c < 4; ++c) {
2419 mkCmp(OP_SET, CC_LT, TYPE_F32, val0, TYPE_F32, fetchSrc(0, c), zero);
2420 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
2421 }
2422 break;
2423 case TGSI_OPCODE_KILL:
2424 mkOp(OP_DISCARD, TYPE_NONE, NULL);
2425 break;
2426 case TGSI_OPCODE_TEX:
2427 case TGSI_OPCODE_TXB:
2428 case TGSI_OPCODE_TXL:
2429 case TGSI_OPCODE_TXP:
2430 // R S L C Dx Dy
2431 handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
2432 break;
2433 case TGSI_OPCODE_TXD:
2434 handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
2435 break;
2436 case TGSI_OPCODE_TEX2:
2437 handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00);
2438 break;
2439 case TGSI_OPCODE_TXB2:
2440 case TGSI_OPCODE_TXL2:
2441 handleTEX(dst0, 2, 2, 0x10, 0x11, 0x00, 0x00);
2442 break;
2443 case TGSI_OPCODE_SAMPLE:
2444 case TGSI_OPCODE_SAMPLE_B:
2445 case TGSI_OPCODE_SAMPLE_D:
2446 case TGSI_OPCODE_SAMPLE_L:
2447 case TGSI_OPCODE_SAMPLE_C:
2448 case TGSI_OPCODE_SAMPLE_C_LZ:
2449 handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40);
2450 break;
2451 case TGSI_OPCODE_TXF:
2452 handleTXF(dst0, 1, 0x03);
2453 break;
2454 case TGSI_OPCODE_SAMPLE_I:
2455 handleTXF(dst0, 1, 0x03);
2456 break;
2457 case TGSI_OPCODE_SAMPLE_I_MS:
2458 handleTXF(dst0, 1, 0x20);
2459 break;
2460 case TGSI_OPCODE_TXQ:
2461 case TGSI_OPCODE_SVIEWINFO:
2462 handleTXQ(dst0, TXQ_DIMS);
2463 break;
2464 case TGSI_OPCODE_F2I:
2465 case TGSI_OPCODE_F2U:
2466 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2467 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
2468 break;
2469 case TGSI_OPCODE_I2F:
2470 case TGSI_OPCODE_U2F:
2471 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2472 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
2473 break;
2474 case TGSI_OPCODE_EMIT:
2475 case TGSI_OPCODE_ENDPRIM:
2476 // get vertex stream if specified (must be immediate)
2477 src0 = tgsi.srcCount() ?
2478 mkImm(tgsi.getSrc(0).getValueU32(0, info)) : zero;
2479 mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
2480 break;
2481 case TGSI_OPCODE_IF:
2482 case TGSI_OPCODE_UIF:
2483 {
2484 BasicBlock *ifBB = new BasicBlock(func);
2485
2486 bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
2487 condBBs.push(bb);
2488 joinBBs.push(bb);
2489
2490 mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy);
2491
2492 setPosition(ifBB, true);
2493 }
2494 break;
2495 case TGSI_OPCODE_ELSE:
2496 {
2497 BasicBlock *elseBB = new BasicBlock(func);
2498 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2499
2500 forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
2501 condBBs.push(bb);
2502
2503 forkBB->getExit()->asFlow()->target.bb = elseBB;
2504 if (!bb->isTerminated())
2505 mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
2506
2507 setPosition(elseBB, true);
2508 }
2509 break;
2510 case TGSI_OPCODE_ENDIF:
2511 {
2512 BasicBlock *convBB = new BasicBlock(func);
2513 BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2514 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
2515
2516 if (!bb->isTerminated()) {
2517 // we only want join if none of the clauses ended with CONT/BREAK/RET
2518 if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
2519 insertConvergenceOps(convBB, forkBB);
2520 mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
2521 bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2522 }
2523
2524 if (prevBB->getExit()->op == OP_BRA) {
2525 prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2526 prevBB->getExit()->asFlow()->target.bb = convBB;
2527 }
2528 setPosition(convBB, true);
2529 }
2530 break;
2531 case TGSI_OPCODE_BGNLOOP:
2532 {
2533 BasicBlock *lbgnBB = new BasicBlock(func);
2534 BasicBlock *lbrkBB = new BasicBlock(func);
2535
2536 loopBBs.push(lbgnBB);
2537 breakBBs.push(lbrkBB);
2538 if (loopBBs.getSize() > func->loopNestingBound)
2539 func->loopNestingBound++;
2540
2541 mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
2542
2543 bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
2544 setPosition(lbgnBB, true);
2545 mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
2546 }
2547 break;
2548 case TGSI_OPCODE_ENDLOOP:
2549 {
2550 BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
2551
2552 if (!bb->isTerminated()) {
2553 mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
2554 bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
2555 }
2556 setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
2557 }
2558 break;
2559 case TGSI_OPCODE_BRK:
2560 {
2561 if (bb->isTerminated())
2562 break;
2563 BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
2564 mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
2565 bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
2566 }
2567 break;
2568 case TGSI_OPCODE_CONT:
2569 {
2570 if (bb->isTerminated())
2571 break;
2572 BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
2573 mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
2574 contBB->explicitCont = true;
2575 bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
2576 }
2577 break;
2578 case TGSI_OPCODE_BGNSUB:
2579 {
2580 Subroutine *s = getSubroutine(ip);
2581 BasicBlock *entry = new BasicBlock(s->f);
2582 BasicBlock *leave = new BasicBlock(s->f);
2583
2584 // multiple entrypoints possible, keep the graph connected
2585 if (prog->getType() == Program::TYPE_COMPUTE)
2586 prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
2587
2588 sub.cur = s;
2589 s->f->setEntry(entry);
2590 s->f->setExit(leave);
2591 setPosition(entry, true);
2592 return true;
2593 }
2594 case TGSI_OPCODE_ENDSUB:
2595 {
2596 sub.cur = getSubroutine(prog->main);
2597 setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
2598 return true;
2599 }
2600 case TGSI_OPCODE_CAL:
2601 {
2602 Subroutine *s = getSubroutine(tgsi.getLabel());
2603 mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
2604 func->call.attach(&s->f->call, Graph::Edge::TREE);
2605 return true;
2606 }
2607 case TGSI_OPCODE_RET:
2608 {
2609 if (bb->isTerminated())
2610 return true;
2611 BasicBlock *leave = BasicBlock::get(func->cfgExit);
2612
2613 if (!isEndOfSubroutine(ip + 1)) {
2614 // insert a PRERET at the entry if this is an early return
2615 // (only needed for sharing code in the epilogue)
2616 BasicBlock *pos = getBB();
2617 setPosition(BasicBlock::get(func->cfg.getRoot()), false);
2618 mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
2619 setPosition(pos, true);
2620 }
2621 mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
2622 bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
2623 }
2624 break;
2625 case TGSI_OPCODE_END:
2626 {
2627 // attach and generate epilogue code
2628 BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
2629 bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
2630 setPosition(epilogue, true);
2631 if (prog->getType() == Program::TYPE_FRAGMENT)
2632 exportOutputs();
2633 if (info->io.genUserClip > 0)
2634 handleUserClipPlanes();
2635 mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
2636 }
2637 break;
2638 case TGSI_OPCODE_SWITCH:
2639 case TGSI_OPCODE_CASE:
2640 ERROR("switch/case opcode encountered, should have been lowered\n");
2641 abort();
2642 break;
2643 case TGSI_OPCODE_LOAD:
2644 handleLOAD(dst0);
2645 break;
2646 case TGSI_OPCODE_STORE:
2647 handleSTORE();
2648 break;
2649 case TGSI_OPCODE_BARRIER:
2650 geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
2651 geni->fixed = 1;
2652 geni->subOp = NV50_IR_SUBOP_BAR_SYNC;
2653 break;
2654 case TGSI_OPCODE_MFENCE:
2655 case TGSI_OPCODE_LFENCE:
2656 case TGSI_OPCODE_SFENCE:
2657 geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
2658 geni->fixed = 1;
2659 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2660 break;
2661 case TGSI_OPCODE_ATOMUADD:
2662 case TGSI_OPCODE_ATOMXCHG:
2663 case TGSI_OPCODE_ATOMCAS:
2664 case TGSI_OPCODE_ATOMAND:
2665 case TGSI_OPCODE_ATOMOR:
2666 case TGSI_OPCODE_ATOMXOR:
2667 case TGSI_OPCODE_ATOMUMIN:
2668 case TGSI_OPCODE_ATOMIMIN:
2669 case TGSI_OPCODE_ATOMUMAX:
2670 case TGSI_OPCODE_ATOMIMAX:
2671 handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode()));
2672 break;
2673 default:
2674 ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
2675 assert(0);
2676 break;
2677 }
2678
2679 if (tgsi.dstCount()) {
2680 for (c = 0; c < 4; ++c) {
2681 if (!dst0[c])
2682 continue;
2683 if (dst0[c] != rDst0[c])
2684 mkMov(rDst0[c], dst0[c]);
2685 storeDst(0, c, rDst0[c]);
2686 }
2687 }
2688 vtxBaseValid = 0;
2689
2690 return true;
2691 }
2692
2693 void
2694 Converter::handleUserClipPlanes()
2695 {
2696 Value *res[8];
2697 int n, i, c;
2698
2699 for (c = 0; c < 4; ++c) {
2700 for (i = 0; i < info->io.genUserClip; ++i) {
2701 Symbol *sym = mkSymbol(FILE_MEMORY_CONST, info->io.ucpCBSlot,
2702 TYPE_F32, info->io.ucpBase + i * 16 + c * 4);
2703 Value *ucp = mkLoadv(TYPE_F32, sym, NULL);
2704 if (c == 0)
2705 res[i] = mkOp2v(OP_MUL, TYPE_F32, getScratch(), clipVtx[c], ucp);
2706 else
2707 mkOp3(OP_MAD, TYPE_F32, res[i], clipVtx[c], ucp, res[i]);
2708 }
2709 }
2710
2711 const int first = info->numOutputs - (info->io.genUserClip + 3) / 4;
2712
2713 for (i = 0; i < info->io.genUserClip; ++i) {
2714 n = i / 4 + first;
2715 c = i % 4;
2716 Symbol *sym =
2717 mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[n].slot[c] * 4);
2718 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, res[i]);
2719 }
2720 }
2721
2722 void
2723 Converter::exportOutputs()
2724 {
2725 for (unsigned int i = 0; i < info->numOutputs; ++i) {
2726 for (unsigned int c = 0; c < 4; ++c) {
2727 if (!oData.exists(sub.cur->values, i, c))
2728 continue;
2729 Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
2730 info->out[i].slot[c] * 4);
2731 Value *val = oData.load(sub.cur->values, i, c, NULL);
2732 if (val)
2733 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
2734 }
2735 }
2736 }
2737
2738 Converter::Converter(Program *ir, const tgsi::Source *code) : BuildUtil(ir),
2739 code(code),
2740 tgsi(NULL),
2741 tData(this), aData(this), pData(this), oData(this)
2742 {
2743 info = code->info;
2744
2745 const DataFile tFile = code->mainTempsInLMem ? FILE_MEMORY_LOCAL : FILE_GPR;
2746
2747 const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
2748 const unsigned pSize = code->fileSize(TGSI_FILE_PREDICATE);
2749 const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
2750 const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
2751
2752 tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, tFile, 0);
2753 pData.setup(TGSI_FILE_PREDICATE, 0, 0, pSize, 4, 4, FILE_PREDICATE, 0);
2754 aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_GPR, 0);
2755 oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
2756
2757 zero = mkImm((uint32_t)0);
2758
2759 vtxBaseValid = 0;
2760 }
2761
2762 Converter::~Converter()
2763 {
2764 }
2765
2766 inline const Converter::Location *
2767 Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v)
2768 {
2769 ValueMap::l_iterator it = s->values.l.find(v);
2770 return it == s->values.l.end() ? NULL : &it->second;
2771 }
2772
2773 template<typename T> inline void
2774 Converter::BindArgumentsPass::updateCallArgs(
2775 Instruction *i, void (Instruction::*setArg)(int, Value *),
2776 T (Function::*proto))
2777 {
2778 Function *g = i->asFlow()->target.fn;
2779 Subroutine *subg = conv.getSubroutine(g);
2780
2781 for (unsigned a = 0; a < (g->*proto).size(); ++a) {
2782 Value *v = (g->*proto)[a].get();
2783 const Converter::Location &l = *getValueLocation(subg, v);
2784 Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
2785
2786 (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
2787 }
2788 }
2789
2790 template<typename T> inline void
2791 Converter::BindArgumentsPass::updatePrototype(
2792 BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
2793 {
2794 (func->*updateSet)();
2795
2796 for (unsigned i = 0; i < set->getSize(); ++i) {
2797 Value *v = func->getLValue(i);
2798 const Converter::Location *l = getValueLocation(sub, v);
2799
2800 // only include values with a matching TGSI register
2801 if (set->test(i) && l && !conv.code->locals.count(*l))
2802 (func->*proto).push_back(v);
2803 }
2804 }
2805
2806 bool
2807 Converter::BindArgumentsPass::visit(Function *f)
2808 {
2809 sub = conv.getSubroutine(f);
2810
2811 for (ArrayList::Iterator bi = f->allBBlocks.iterator();
2812 !bi.end(); bi.next()) {
2813 for (Instruction *i = BasicBlock::get(bi)->getFirst();
2814 i; i = i->next) {
2815 if (i->op == OP_CALL && !i->asFlow()->builtin) {
2816 updateCallArgs(i, &Instruction::setSrc, &Function::ins);
2817 updateCallArgs(i, &Instruction::setDef, &Function::outs);
2818 }
2819 }
2820 }
2821
2822 if (func == prog->main && prog->getType() != Program::TYPE_COMPUTE)
2823 return true;
2824 updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
2825 &Function::buildLiveSets, &Function::ins);
2826 updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
2827 &Function::buildDefSets, &Function::outs);
2828
2829 return true;
2830 }
2831
2832 bool
2833 Converter::run()
2834 {
2835 BasicBlock *entry = new BasicBlock(prog->main);
2836 BasicBlock *leave = new BasicBlock(prog->main);
2837
2838 prog->main->setEntry(entry);
2839 prog->main->setExit(leave);
2840
2841 setPosition(entry, true);
2842 sub.cur = getSubroutine(prog->main);
2843
2844 if (info->io.genUserClip > 0) {
2845 for (int c = 0; c < 4; ++c)
2846 clipVtx[c] = getScratch();
2847 }
2848
2849 if (prog->getType() == Program::TYPE_FRAGMENT) {
2850 Symbol *sv = mkSysVal(SV_POSITION, 3);
2851 fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
2852 mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
2853 }
2854
2855 for (ip = 0; ip < code->scan.num_instructions; ++ip) {
2856 if (!handleInstruction(&code->insns[ip]))
2857 return false;
2858 }
2859
2860 if (!BindArgumentsPass(*this).run(prog))
2861 return false;
2862
2863 return true;
2864 }
2865
2866 } // unnamed namespace
2867
2868 namespace nv50_ir {
2869
2870 bool
2871 Program::makeFromTGSI(struct nv50_ir_prog_info *info)
2872 {
2873 tgsi::Source src(info);
2874 if (!src.scanSource())
2875 return false;
2876 tlsSize = info->bin.tlsSpace;
2877
2878 Converter builder(this, &src);
2879 return builder.run();
2880 }
2881
2882 } // namespace nv50_ir