Merge remote-tracking branch 'mesa-public/master' into vulkan
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_from_tgsi.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "tgsi/tgsi_dump.h"
24 #include "tgsi/tgsi_scan.h"
25 #include "tgsi/tgsi_util.h"
26
27 #include <set>
28
29 #include "codegen/nv50_ir.h"
30 #include "codegen/nv50_ir_util.h"
31 #include "codegen/nv50_ir_build_util.h"
32
33 namespace tgsi {
34
35 class Source;
36
37 static nv50_ir::operation translateOpcode(uint opcode);
38 static nv50_ir::DataFile translateFile(uint file);
39 static nv50_ir::TexTarget translateTexture(uint texTarg);
40 static nv50_ir::SVSemantic translateSysVal(uint sysval);
41
42 class Instruction
43 {
44 public:
45 Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
46
47 class SrcRegister
48 {
49 public:
50 SrcRegister(const struct tgsi_full_src_register *src)
51 : reg(src->Register),
52 fsr(src)
53 { }
54
55 SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
56
57 SrcRegister(const struct tgsi_ind_register& ind)
58 : reg(tgsi_util_get_src_from_ind(&ind)),
59 fsr(NULL)
60 { }
61
62 struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
63 {
64 struct tgsi_src_register reg;
65 memset(&reg, 0, sizeof(reg));
66 reg.Index = off.Index;
67 reg.File = off.File;
68 reg.SwizzleX = off.SwizzleX;
69 reg.SwizzleY = off.SwizzleY;
70 reg.SwizzleZ = off.SwizzleZ;
71 return reg;
72 }
73
74 SrcRegister(const struct tgsi_texture_offset& off) :
75 reg(offsetToSrc(off)),
76 fsr(NULL)
77 { }
78
79 uint getFile() const { return reg.File; }
80
81 bool is2D() const { return reg.Dimension; }
82
83 bool isIndirect(int dim) const
84 {
85 return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
86 }
87
88 int getIndex(int dim) const
89 {
90 return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
91 }
92
93 int getSwizzle(int chan) const
94 {
95 return tgsi_util_get_src_register_swizzle(&reg, chan);
96 }
97
98 nv50_ir::Modifier getMod(int chan) const;
99
100 SrcRegister getIndirect(int dim) const
101 {
102 assert(fsr && isIndirect(dim));
103 if (dim)
104 return SrcRegister(fsr->DimIndirect);
105 return SrcRegister(fsr->Indirect);
106 }
107
108 uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
109 {
110 assert(reg.File == TGSI_FILE_IMMEDIATE);
111 assert(!reg.Absolute);
112 assert(!reg.Negate);
113 return info->immd.data[reg.Index * 4 + getSwizzle(c)];
114 }
115
116 private:
117 const struct tgsi_src_register reg;
118 const struct tgsi_full_src_register *fsr;
119 };
120
121 class DstRegister
122 {
123 public:
124 DstRegister(const struct tgsi_full_dst_register *dst)
125 : reg(dst->Register),
126 fdr(dst)
127 { }
128
129 DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
130
131 uint getFile() const { return reg.File; }
132
133 bool is2D() const { return reg.Dimension; }
134
135 bool isIndirect(int dim) const
136 {
137 return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
138 }
139
140 int getIndex(int dim) const
141 {
142 return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
143 }
144
145 unsigned int getMask() const { return reg.WriteMask; }
146
147 bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
148
149 SrcRegister getIndirect(int dim) const
150 {
151 assert(fdr && isIndirect(dim));
152 if (dim)
153 return SrcRegister(fdr->DimIndirect);
154 return SrcRegister(fdr->Indirect);
155 }
156
157 private:
158 const struct tgsi_dst_register reg;
159 const struct tgsi_full_dst_register *fdr;
160 };
161
162 inline uint getOpcode() const { return insn->Instruction.Opcode; }
163
164 unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
165 unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
166
167 // mask of used components of source s
168 unsigned int srcMask(unsigned int s) const;
169
170 SrcRegister getSrc(unsigned int s) const
171 {
172 assert(s < srcCount());
173 return SrcRegister(&insn->Src[s]);
174 }
175
176 DstRegister getDst(unsigned int d) const
177 {
178 assert(d < dstCount());
179 return DstRegister(&insn->Dst[d]);
180 }
181
182 SrcRegister getTexOffset(unsigned int i) const
183 {
184 assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
185 return SrcRegister(insn->TexOffsets[i]);
186 }
187
188 unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
189
190 bool checkDstSrcAliasing() const;
191
192 inline nv50_ir::operation getOP() const {
193 return translateOpcode(getOpcode()); }
194
195 nv50_ir::DataType inferSrcType() const;
196 nv50_ir::DataType inferDstType() const;
197
198 nv50_ir::CondCode getSetCond() const;
199
200 nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
201
202 inline uint getLabel() { return insn->Label.Label; }
203
204 unsigned getSaturate() const { return insn->Instruction.Saturate; }
205
206 void print() const
207 {
208 tgsi_dump_instruction(insn, 1);
209 }
210
211 private:
212 const struct tgsi_full_instruction *insn;
213 };
214
215 unsigned int Instruction::srcMask(unsigned int s) const
216 {
217 unsigned int mask = insn->Dst[0].Register.WriteMask;
218
219 switch (insn->Instruction.Opcode) {
220 case TGSI_OPCODE_COS:
221 case TGSI_OPCODE_SIN:
222 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
223 case TGSI_OPCODE_DP2:
224 return 0x3;
225 case TGSI_OPCODE_DP3:
226 return 0x7;
227 case TGSI_OPCODE_DP4:
228 case TGSI_OPCODE_DPH:
229 case TGSI_OPCODE_KILL_IF: /* WriteMask ignored */
230 return 0xf;
231 case TGSI_OPCODE_DST:
232 return mask & (s ? 0xa : 0x6);
233 case TGSI_OPCODE_EX2:
234 case TGSI_OPCODE_EXP:
235 case TGSI_OPCODE_LG2:
236 case TGSI_OPCODE_LOG:
237 case TGSI_OPCODE_POW:
238 case TGSI_OPCODE_RCP:
239 case TGSI_OPCODE_RSQ:
240 case TGSI_OPCODE_SCS:
241 return 0x1;
242 case TGSI_OPCODE_IF:
243 case TGSI_OPCODE_UIF:
244 return 0x1;
245 case TGSI_OPCODE_LIT:
246 return 0xb;
247 case TGSI_OPCODE_TEX2:
248 case TGSI_OPCODE_TXB2:
249 case TGSI_OPCODE_TXL2:
250 return (s == 0) ? 0xf : 0x3;
251 case TGSI_OPCODE_TEX:
252 case TGSI_OPCODE_TXB:
253 case TGSI_OPCODE_TXD:
254 case TGSI_OPCODE_TXL:
255 case TGSI_OPCODE_TXP:
256 case TGSI_OPCODE_LODQ:
257 {
258 const struct tgsi_instruction_texture *tex = &insn->Texture;
259
260 assert(insn->Instruction.Texture);
261
262 mask = 0x7;
263 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
264 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
265 mask |= 0x8; /* bias, lod or proj */
266
267 switch (tex->Texture) {
268 case TGSI_TEXTURE_1D:
269 mask &= 0x9;
270 break;
271 case TGSI_TEXTURE_SHADOW1D:
272 mask &= 0xd;
273 break;
274 case TGSI_TEXTURE_1D_ARRAY:
275 case TGSI_TEXTURE_2D:
276 case TGSI_TEXTURE_RECT:
277 mask &= 0xb;
278 break;
279 case TGSI_TEXTURE_CUBE_ARRAY:
280 case TGSI_TEXTURE_SHADOW2D_ARRAY:
281 case TGSI_TEXTURE_SHADOWCUBE:
282 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
283 mask |= 0x8;
284 break;
285 default:
286 break;
287 }
288 }
289 return mask;
290 case TGSI_OPCODE_XPD:
291 {
292 unsigned int x = 0;
293 if (mask & 1) x |= 0x6;
294 if (mask & 2) x |= 0x5;
295 if (mask & 4) x |= 0x3;
296 return x;
297 }
298 case TGSI_OPCODE_D2I:
299 case TGSI_OPCODE_D2U:
300 case TGSI_OPCODE_D2F:
301 case TGSI_OPCODE_DSLT:
302 case TGSI_OPCODE_DSGE:
303 case TGSI_OPCODE_DSEQ:
304 case TGSI_OPCODE_DSNE:
305 switch (util_bitcount(mask)) {
306 case 1: return 0x3;
307 case 2: return 0xf;
308 default:
309 assert(!"unexpected mask");
310 return 0xf;
311 }
312 case TGSI_OPCODE_I2D:
313 case TGSI_OPCODE_U2D:
314 case TGSI_OPCODE_F2D: {
315 unsigned int x = 0;
316 if ((mask & 0x3) == 0x3)
317 x |= 1;
318 if ((mask & 0xc) == 0xc)
319 x |= 2;
320 return x;
321 }
322 default:
323 break;
324 }
325
326 return mask;
327 }
328
329 nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
330 {
331 nv50_ir::Modifier m(0);
332
333 if (reg.Absolute)
334 m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
335 if (reg.Negate)
336 m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
337 return m;
338 }
339
340 static nv50_ir::DataFile translateFile(uint file)
341 {
342 switch (file) {
343 case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST;
344 case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT;
345 case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT;
346 case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR;
347 case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS;
348 case TGSI_FILE_PREDICATE: return nv50_ir::FILE_PREDICATE;
349 case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE;
350 case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE;
351 case TGSI_FILE_RESOURCE: return nv50_ir::FILE_MEMORY_GLOBAL;
352 case TGSI_FILE_SAMPLER:
353 case TGSI_FILE_NULL:
354 default:
355 return nv50_ir::FILE_NULL;
356 }
357 }
358
359 static nv50_ir::SVSemantic translateSysVal(uint sysval)
360 {
361 switch (sysval) {
362 case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE;
363 case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE;
364 case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID;
365 case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
366 case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID;
367 case TGSI_SEMANTIC_GRID_SIZE: return nv50_ir::SV_NCTAID;
368 case TGSI_SEMANTIC_BLOCK_ID: return nv50_ir::SV_CTAID;
369 case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID;
370 case TGSI_SEMANTIC_THREAD_ID: return nv50_ir::SV_TID;
371 case TGSI_SEMANTIC_SAMPLEID: return nv50_ir::SV_SAMPLE_INDEX;
372 case TGSI_SEMANTIC_SAMPLEPOS: return nv50_ir::SV_SAMPLE_POS;
373 case TGSI_SEMANTIC_SAMPLEMASK: return nv50_ir::SV_SAMPLE_MASK;
374 case TGSI_SEMANTIC_INVOCATIONID: return nv50_ir::SV_INVOCATION_ID;
375 case TGSI_SEMANTIC_TESSCOORD: return nv50_ir::SV_TESS_COORD;
376 case TGSI_SEMANTIC_TESSOUTER: return nv50_ir::SV_TESS_OUTER;
377 case TGSI_SEMANTIC_TESSINNER: return nv50_ir::SV_TESS_INNER;
378 case TGSI_SEMANTIC_VERTICESIN: return nv50_ir::SV_VERTEX_COUNT;
379 default:
380 assert(0);
381 return nv50_ir::SV_CLOCK;
382 }
383 }
384
385 #define NV50_IR_TEX_TARG_CASE(a, b) \
386 case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
387
388 static nv50_ir::TexTarget translateTexture(uint tex)
389 {
390 switch (tex) {
391 NV50_IR_TEX_TARG_CASE(1D, 1D);
392 NV50_IR_TEX_TARG_CASE(2D, 2D);
393 NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS);
394 NV50_IR_TEX_TARG_CASE(3D, 3D);
395 NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
396 NV50_IR_TEX_TARG_CASE(RECT, RECT);
397 NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
398 NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
399 NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY);
400 NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY);
401 NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
402 NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
403 NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
404 NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
405 NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
406 NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
407 NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW);
408 NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
409
410 case TGSI_TEXTURE_UNKNOWN:
411 default:
412 assert(!"invalid texture target");
413 return nv50_ir::TEX_TARGET_2D;
414 }
415 }
416
417 nv50_ir::DataType Instruction::inferSrcType() const
418 {
419 switch (getOpcode()) {
420 case TGSI_OPCODE_UIF:
421 case TGSI_OPCODE_AND:
422 case TGSI_OPCODE_OR:
423 case TGSI_OPCODE_XOR:
424 case TGSI_OPCODE_NOT:
425 case TGSI_OPCODE_SHL:
426 case TGSI_OPCODE_U2F:
427 case TGSI_OPCODE_U2D:
428 case TGSI_OPCODE_UADD:
429 case TGSI_OPCODE_UDIV:
430 case TGSI_OPCODE_UMOD:
431 case TGSI_OPCODE_UMAD:
432 case TGSI_OPCODE_UMUL:
433 case TGSI_OPCODE_UMUL_HI:
434 case TGSI_OPCODE_UMAX:
435 case TGSI_OPCODE_UMIN:
436 case TGSI_OPCODE_USEQ:
437 case TGSI_OPCODE_USGE:
438 case TGSI_OPCODE_USLT:
439 case TGSI_OPCODE_USNE:
440 case TGSI_OPCODE_USHR:
441 case TGSI_OPCODE_ATOMUADD:
442 case TGSI_OPCODE_ATOMXCHG:
443 case TGSI_OPCODE_ATOMCAS:
444 case TGSI_OPCODE_ATOMAND:
445 case TGSI_OPCODE_ATOMOR:
446 case TGSI_OPCODE_ATOMXOR:
447 case TGSI_OPCODE_ATOMUMIN:
448 case TGSI_OPCODE_ATOMUMAX:
449 case TGSI_OPCODE_UBFE:
450 case TGSI_OPCODE_UMSB:
451 return nv50_ir::TYPE_U32;
452 case TGSI_OPCODE_I2F:
453 case TGSI_OPCODE_I2D:
454 case TGSI_OPCODE_IDIV:
455 case TGSI_OPCODE_IMUL_HI:
456 case TGSI_OPCODE_IMAX:
457 case TGSI_OPCODE_IMIN:
458 case TGSI_OPCODE_IABS:
459 case TGSI_OPCODE_INEG:
460 case TGSI_OPCODE_ISGE:
461 case TGSI_OPCODE_ISHR:
462 case TGSI_OPCODE_ISLT:
463 case TGSI_OPCODE_ISSG:
464 case TGSI_OPCODE_SAD: // not sure about SAD, but no one has a float version
465 case TGSI_OPCODE_MOD:
466 case TGSI_OPCODE_UARL:
467 case TGSI_OPCODE_ATOMIMIN:
468 case TGSI_OPCODE_ATOMIMAX:
469 case TGSI_OPCODE_IBFE:
470 case TGSI_OPCODE_IMSB:
471 return nv50_ir::TYPE_S32;
472 case TGSI_OPCODE_D2F:
473 case TGSI_OPCODE_D2I:
474 case TGSI_OPCODE_D2U:
475 case TGSI_OPCODE_DABS:
476 case TGSI_OPCODE_DNEG:
477 case TGSI_OPCODE_DADD:
478 case TGSI_OPCODE_DMUL:
479 case TGSI_OPCODE_DMAX:
480 case TGSI_OPCODE_DMIN:
481 case TGSI_OPCODE_DSLT:
482 case TGSI_OPCODE_DSGE:
483 case TGSI_OPCODE_DSEQ:
484 case TGSI_OPCODE_DSNE:
485 case TGSI_OPCODE_DRCP:
486 case TGSI_OPCODE_DSQRT:
487 case TGSI_OPCODE_DMAD:
488 case TGSI_OPCODE_DFRAC:
489 case TGSI_OPCODE_DRSQ:
490 case TGSI_OPCODE_DTRUNC:
491 case TGSI_OPCODE_DCEIL:
492 case TGSI_OPCODE_DFLR:
493 case TGSI_OPCODE_DROUND:
494 return nv50_ir::TYPE_F64;
495 default:
496 return nv50_ir::TYPE_F32;
497 }
498 }
499
500 nv50_ir::DataType Instruction::inferDstType() const
501 {
502 switch (getOpcode()) {
503 case TGSI_OPCODE_D2U:
504 case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
505 case TGSI_OPCODE_D2I:
506 case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
507 case TGSI_OPCODE_FSEQ:
508 case TGSI_OPCODE_FSGE:
509 case TGSI_OPCODE_FSLT:
510 case TGSI_OPCODE_FSNE:
511 case TGSI_OPCODE_DSEQ:
512 case TGSI_OPCODE_DSGE:
513 case TGSI_OPCODE_DSLT:
514 case TGSI_OPCODE_DSNE:
515 return nv50_ir::TYPE_U32;
516 case TGSI_OPCODE_I2F:
517 case TGSI_OPCODE_U2F:
518 case TGSI_OPCODE_D2F:
519 return nv50_ir::TYPE_F32;
520 case TGSI_OPCODE_I2D:
521 case TGSI_OPCODE_U2D:
522 case TGSI_OPCODE_F2D:
523 return nv50_ir::TYPE_F64;
524 default:
525 return inferSrcType();
526 }
527 }
528
529 nv50_ir::CondCode Instruction::getSetCond() const
530 {
531 using namespace nv50_ir;
532
533 switch (getOpcode()) {
534 case TGSI_OPCODE_SLT:
535 case TGSI_OPCODE_ISLT:
536 case TGSI_OPCODE_USLT:
537 case TGSI_OPCODE_FSLT:
538 case TGSI_OPCODE_DSLT:
539 return CC_LT;
540 case TGSI_OPCODE_SLE:
541 return CC_LE;
542 case TGSI_OPCODE_SGE:
543 case TGSI_OPCODE_ISGE:
544 case TGSI_OPCODE_USGE:
545 case TGSI_OPCODE_FSGE:
546 case TGSI_OPCODE_DSGE:
547 return CC_GE;
548 case TGSI_OPCODE_SGT:
549 return CC_GT;
550 case TGSI_OPCODE_SEQ:
551 case TGSI_OPCODE_USEQ:
552 case TGSI_OPCODE_FSEQ:
553 case TGSI_OPCODE_DSEQ:
554 return CC_EQ;
555 case TGSI_OPCODE_SNE:
556 case TGSI_OPCODE_FSNE:
557 case TGSI_OPCODE_DSNE:
558 return CC_NEU;
559 case TGSI_OPCODE_USNE:
560 return CC_NE;
561 default:
562 return CC_ALWAYS;
563 }
564 }
565
566 #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
567
568 static nv50_ir::operation translateOpcode(uint opcode)
569 {
570 switch (opcode) {
571 NV50_IR_OPCODE_CASE(ARL, SHL);
572 NV50_IR_OPCODE_CASE(MOV, MOV);
573
574 NV50_IR_OPCODE_CASE(RCP, RCP);
575 NV50_IR_OPCODE_CASE(RSQ, RSQ);
576
577 NV50_IR_OPCODE_CASE(MUL, MUL);
578 NV50_IR_OPCODE_CASE(ADD, ADD);
579
580 NV50_IR_OPCODE_CASE(MIN, MIN);
581 NV50_IR_OPCODE_CASE(MAX, MAX);
582 NV50_IR_OPCODE_CASE(SLT, SET);
583 NV50_IR_OPCODE_CASE(SGE, SET);
584 NV50_IR_OPCODE_CASE(MAD, MAD);
585 NV50_IR_OPCODE_CASE(SUB, SUB);
586
587 NV50_IR_OPCODE_CASE(FLR, FLOOR);
588 NV50_IR_OPCODE_CASE(ROUND, CVT);
589 NV50_IR_OPCODE_CASE(EX2, EX2);
590 NV50_IR_OPCODE_CASE(LG2, LG2);
591 NV50_IR_OPCODE_CASE(POW, POW);
592
593 NV50_IR_OPCODE_CASE(ABS, ABS);
594
595 NV50_IR_OPCODE_CASE(COS, COS);
596 NV50_IR_OPCODE_CASE(DDX, DFDX);
597 NV50_IR_OPCODE_CASE(DDX_FINE, DFDX);
598 NV50_IR_OPCODE_CASE(DDY, DFDY);
599 NV50_IR_OPCODE_CASE(DDY_FINE, DFDY);
600 NV50_IR_OPCODE_CASE(KILL, DISCARD);
601
602 NV50_IR_OPCODE_CASE(SEQ, SET);
603 NV50_IR_OPCODE_CASE(SGT, SET);
604 NV50_IR_OPCODE_CASE(SIN, SIN);
605 NV50_IR_OPCODE_CASE(SLE, SET);
606 NV50_IR_OPCODE_CASE(SNE, SET);
607 NV50_IR_OPCODE_CASE(TEX, TEX);
608 NV50_IR_OPCODE_CASE(TXD, TXD);
609 NV50_IR_OPCODE_CASE(TXP, TEX);
610
611 NV50_IR_OPCODE_CASE(CAL, CALL);
612 NV50_IR_OPCODE_CASE(RET, RET);
613 NV50_IR_OPCODE_CASE(CMP, SLCT);
614
615 NV50_IR_OPCODE_CASE(TXB, TXB);
616
617 NV50_IR_OPCODE_CASE(DIV, DIV);
618
619 NV50_IR_OPCODE_CASE(TXL, TXL);
620
621 NV50_IR_OPCODE_CASE(CEIL, CEIL);
622 NV50_IR_OPCODE_CASE(I2F, CVT);
623 NV50_IR_OPCODE_CASE(NOT, NOT);
624 NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
625 NV50_IR_OPCODE_CASE(SHL, SHL);
626
627 NV50_IR_OPCODE_CASE(AND, AND);
628 NV50_IR_OPCODE_CASE(OR, OR);
629 NV50_IR_OPCODE_CASE(MOD, MOD);
630 NV50_IR_OPCODE_CASE(XOR, XOR);
631 NV50_IR_OPCODE_CASE(SAD, SAD);
632 NV50_IR_OPCODE_CASE(TXF, TXF);
633 NV50_IR_OPCODE_CASE(TXQ, TXQ);
634 NV50_IR_OPCODE_CASE(TG4, TXG);
635 NV50_IR_OPCODE_CASE(LODQ, TXLQ);
636
637 NV50_IR_OPCODE_CASE(EMIT, EMIT);
638 NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
639
640 NV50_IR_OPCODE_CASE(KILL_IF, DISCARD);
641
642 NV50_IR_OPCODE_CASE(F2I, CVT);
643 NV50_IR_OPCODE_CASE(FSEQ, SET);
644 NV50_IR_OPCODE_CASE(FSGE, SET);
645 NV50_IR_OPCODE_CASE(FSLT, SET);
646 NV50_IR_OPCODE_CASE(FSNE, SET);
647 NV50_IR_OPCODE_CASE(IDIV, DIV);
648 NV50_IR_OPCODE_CASE(IMAX, MAX);
649 NV50_IR_OPCODE_CASE(IMIN, MIN);
650 NV50_IR_OPCODE_CASE(IABS, ABS);
651 NV50_IR_OPCODE_CASE(INEG, NEG);
652 NV50_IR_OPCODE_CASE(ISGE, SET);
653 NV50_IR_OPCODE_CASE(ISHR, SHR);
654 NV50_IR_OPCODE_CASE(ISLT, SET);
655 NV50_IR_OPCODE_CASE(F2U, CVT);
656 NV50_IR_OPCODE_CASE(U2F, CVT);
657 NV50_IR_OPCODE_CASE(UADD, ADD);
658 NV50_IR_OPCODE_CASE(UDIV, DIV);
659 NV50_IR_OPCODE_CASE(UMAD, MAD);
660 NV50_IR_OPCODE_CASE(UMAX, MAX);
661 NV50_IR_OPCODE_CASE(UMIN, MIN);
662 NV50_IR_OPCODE_CASE(UMOD, MOD);
663 NV50_IR_OPCODE_CASE(UMUL, MUL);
664 NV50_IR_OPCODE_CASE(USEQ, SET);
665 NV50_IR_OPCODE_CASE(USGE, SET);
666 NV50_IR_OPCODE_CASE(USHR, SHR);
667 NV50_IR_OPCODE_CASE(USLT, SET);
668 NV50_IR_OPCODE_CASE(USNE, SET);
669
670 NV50_IR_OPCODE_CASE(DABS, ABS);
671 NV50_IR_OPCODE_CASE(DNEG, NEG);
672 NV50_IR_OPCODE_CASE(DADD, ADD);
673 NV50_IR_OPCODE_CASE(DMUL, MUL);
674 NV50_IR_OPCODE_CASE(DMAX, MAX);
675 NV50_IR_OPCODE_CASE(DMIN, MIN);
676 NV50_IR_OPCODE_CASE(DSLT, SET);
677 NV50_IR_OPCODE_CASE(DSGE, SET);
678 NV50_IR_OPCODE_CASE(DSEQ, SET);
679 NV50_IR_OPCODE_CASE(DSNE, SET);
680 NV50_IR_OPCODE_CASE(DRCP, RCP);
681 NV50_IR_OPCODE_CASE(DSQRT, SQRT);
682 NV50_IR_OPCODE_CASE(DMAD, MAD);
683 NV50_IR_OPCODE_CASE(D2I, CVT);
684 NV50_IR_OPCODE_CASE(D2U, CVT);
685 NV50_IR_OPCODE_CASE(I2D, CVT);
686 NV50_IR_OPCODE_CASE(U2D, CVT);
687 NV50_IR_OPCODE_CASE(DRSQ, RSQ);
688 NV50_IR_OPCODE_CASE(DTRUNC, TRUNC);
689 NV50_IR_OPCODE_CASE(DCEIL, CEIL);
690 NV50_IR_OPCODE_CASE(DFLR, FLOOR);
691 NV50_IR_OPCODE_CASE(DROUND, CVT);
692
693 NV50_IR_OPCODE_CASE(IMUL_HI, MUL);
694 NV50_IR_OPCODE_CASE(UMUL_HI, MUL);
695
696 NV50_IR_OPCODE_CASE(SAMPLE, TEX);
697 NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
698 NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
699 NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
700 NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
701 NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
702 NV50_IR_OPCODE_CASE(SAMPLE_I, TXF);
703 NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF);
704 NV50_IR_OPCODE_CASE(GATHER4, TXG);
705 NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
706
707 NV50_IR_OPCODE_CASE(ATOMUADD, ATOM);
708 NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM);
709 NV50_IR_OPCODE_CASE(ATOMCAS, ATOM);
710 NV50_IR_OPCODE_CASE(ATOMAND, ATOM);
711 NV50_IR_OPCODE_CASE(ATOMOR, ATOM);
712 NV50_IR_OPCODE_CASE(ATOMXOR, ATOM);
713 NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM);
714 NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM);
715 NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM);
716 NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM);
717
718 NV50_IR_OPCODE_CASE(TEX2, TEX);
719 NV50_IR_OPCODE_CASE(TXB2, TXB);
720 NV50_IR_OPCODE_CASE(TXL2, TXL);
721
722 NV50_IR_OPCODE_CASE(IBFE, EXTBF);
723 NV50_IR_OPCODE_CASE(UBFE, EXTBF);
724 NV50_IR_OPCODE_CASE(BFI, INSBF);
725 NV50_IR_OPCODE_CASE(BREV, EXTBF);
726 NV50_IR_OPCODE_CASE(POPC, POPCNT);
727 NV50_IR_OPCODE_CASE(LSB, BFIND);
728 NV50_IR_OPCODE_CASE(IMSB, BFIND);
729 NV50_IR_OPCODE_CASE(UMSB, BFIND);
730
731 NV50_IR_OPCODE_CASE(END, EXIT);
732
733 default:
734 return nv50_ir::OP_NOP;
735 }
736 }
737
738 static uint16_t opcodeToSubOp(uint opcode)
739 {
740 switch (opcode) {
741 case TGSI_OPCODE_LFENCE: return NV50_IR_SUBOP_MEMBAR(L, GL);
742 case TGSI_OPCODE_SFENCE: return NV50_IR_SUBOP_MEMBAR(S, GL);
743 case TGSI_OPCODE_MFENCE: return NV50_IR_SUBOP_MEMBAR(M, GL);
744 case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD;
745 case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH;
746 case TGSI_OPCODE_ATOMCAS: return NV50_IR_SUBOP_ATOM_CAS;
747 case TGSI_OPCODE_ATOMAND: return NV50_IR_SUBOP_ATOM_AND;
748 case TGSI_OPCODE_ATOMOR: return NV50_IR_SUBOP_ATOM_OR;
749 case TGSI_OPCODE_ATOMXOR: return NV50_IR_SUBOP_ATOM_XOR;
750 case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN;
751 case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN;
752 case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX;
753 case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX;
754 case TGSI_OPCODE_IMUL_HI:
755 case TGSI_OPCODE_UMUL_HI:
756 return NV50_IR_SUBOP_MUL_HIGH;
757 default:
758 return 0;
759 }
760 }
761
762 bool Instruction::checkDstSrcAliasing() const
763 {
764 if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
765 return false;
766
767 for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
768 if (insn->Src[s].Register.File == TGSI_FILE_NULL)
769 break;
770 if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
771 insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
772 return true;
773 }
774 return false;
775 }
776
777 class Source
778 {
779 public:
780 Source(struct nv50_ir_prog_info *);
781 ~Source();
782
783 public:
784 bool scanSource();
785 unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
786
787 public:
788 struct tgsi_shader_info scan;
789 struct tgsi_full_instruction *insns;
790 const struct tgsi_token *tokens;
791 struct nv50_ir_prog_info *info;
792
793 nv50_ir::DynArray tempArrays;
794 nv50_ir::DynArray immdArrays;
795
796 typedef nv50_ir::BuildUtil::Location Location;
797 // these registers are per-subroutine, cannot be used for parameter passing
798 std::set<Location> locals;
799
800 bool mainTempsInLMem;
801
802 int clipVertexOutput;
803
804 struct TextureView {
805 uint8_t target; // TGSI_TEXTURE_*
806 };
807 std::vector<TextureView> textureViews;
808
809 struct Resource {
810 uint8_t target; // TGSI_TEXTURE_*
811 bool raw;
812 uint8_t slot; // $surface index
813 };
814 std::vector<Resource> resources;
815
816 private:
817 int inferSysValDirection(unsigned sn) const;
818 bool scanDeclaration(const struct tgsi_full_declaration *);
819 bool scanInstruction(const struct tgsi_full_instruction *);
820 void scanProperty(const struct tgsi_full_property *);
821 void scanImmediate(const struct tgsi_full_immediate *);
822
823 inline bool isEdgeFlagPassthrough(const Instruction&) const;
824 };
825
826 Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
827 {
828 tokens = (const struct tgsi_token *)info->bin.source;
829
830 if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
831 tgsi_dump(tokens, 0);
832
833 mainTempsInLMem = false;
834 }
835
836 Source::~Source()
837 {
838 if (insns)
839 FREE(insns);
840
841 if (info->immd.data)
842 FREE(info->immd.data);
843 if (info->immd.type)
844 FREE(info->immd.type);
845 }
846
847 bool Source::scanSource()
848 {
849 unsigned insnCount = 0;
850 struct tgsi_parse_context parse;
851
852 tgsi_scan_shader(tokens, &scan);
853
854 insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
855 sizeof(insns[0]));
856 if (!insns)
857 return false;
858
859 clipVertexOutput = -1;
860
861 textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1);
862 resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1);
863
864 info->immd.bufSize = 0;
865
866 info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
867 info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
868 info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
869
870 if (info->type == PIPE_SHADER_FRAGMENT) {
871 info->prop.fp.writesDepth = scan.writes_z;
872 info->prop.fp.usesDiscard = scan.uses_kill;
873 } else
874 if (info->type == PIPE_SHADER_GEOMETRY) {
875 info->prop.gp.instanceCount = 1; // default value
876 }
877
878 info->io.viewportId = -1;
879
880 info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
881 info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
882
883 tgsi_parse_init(&parse, tokens);
884 while (!tgsi_parse_end_of_tokens(&parse)) {
885 tgsi_parse_token(&parse);
886
887 switch (parse.FullToken.Token.Type) {
888 case TGSI_TOKEN_TYPE_IMMEDIATE:
889 scanImmediate(&parse.FullToken.FullImmediate);
890 break;
891 case TGSI_TOKEN_TYPE_DECLARATION:
892 scanDeclaration(&parse.FullToken.FullDeclaration);
893 break;
894 case TGSI_TOKEN_TYPE_INSTRUCTION:
895 insns[insnCount++] = parse.FullToken.FullInstruction;
896 scanInstruction(&parse.FullToken.FullInstruction);
897 break;
898 case TGSI_TOKEN_TYPE_PROPERTY:
899 scanProperty(&parse.FullToken.FullProperty);
900 break;
901 default:
902 INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
903 break;
904 }
905 }
906 tgsi_parse_free(&parse);
907
908 if (mainTempsInLMem)
909 info->bin.tlsSpace += (scan.file_max[TGSI_FILE_TEMPORARY] + 1) * 16;
910
911 if (info->io.genUserClip > 0) {
912 info->io.clipDistanceMask = (1 << info->io.genUserClip) - 1;
913
914 const unsigned int nOut = (info->io.genUserClip + 3) / 4;
915
916 for (unsigned int n = 0; n < nOut; ++n) {
917 unsigned int i = info->numOutputs++;
918 info->out[i].id = i;
919 info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
920 info->out[i].si = n;
921 info->out[i].mask = info->io.clipDistanceMask >> (n * 4);
922 }
923 }
924
925 return info->assignSlots(info) == 0;
926 }
927
928 void Source::scanProperty(const struct tgsi_full_property *prop)
929 {
930 switch (prop->Property.PropertyName) {
931 case TGSI_PROPERTY_GS_OUTPUT_PRIM:
932 info->prop.gp.outputPrim = prop->u[0].Data;
933 break;
934 case TGSI_PROPERTY_GS_INPUT_PRIM:
935 info->prop.gp.inputPrim = prop->u[0].Data;
936 break;
937 case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
938 info->prop.gp.maxVertices = prop->u[0].Data;
939 break;
940 case TGSI_PROPERTY_GS_INVOCATIONS:
941 info->prop.gp.instanceCount = prop->u[0].Data;
942 break;
943 case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
944 info->prop.fp.separateFragData = true;
945 break;
946 case TGSI_PROPERTY_FS_COORD_ORIGIN:
947 case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
948 // we don't care
949 break;
950 case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
951 info->io.genUserClip = -1;
952 break;
953 case TGSI_PROPERTY_TCS_VERTICES_OUT:
954 info->prop.tp.outputPatchSize = prop->u[0].Data;
955 break;
956 case TGSI_PROPERTY_TES_PRIM_MODE:
957 info->prop.tp.domain = prop->u[0].Data;
958 break;
959 case TGSI_PROPERTY_TES_SPACING:
960 info->prop.tp.partitioning = prop->u[0].Data;
961 break;
962 case TGSI_PROPERTY_TES_VERTEX_ORDER_CW:
963 info->prop.tp.winding = prop->u[0].Data;
964 break;
965 case TGSI_PROPERTY_TES_POINT_MODE:
966 if (prop->u[0].Data)
967 info->prop.tp.outputPrim = PIPE_PRIM_POINTS;
968 else
969 info->prop.tp.outputPrim = PIPE_PRIM_TRIANGLES; /* anything but points */
970 break;
971 default:
972 INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
973 break;
974 }
975 }
976
977 void Source::scanImmediate(const struct tgsi_full_immediate *imm)
978 {
979 const unsigned n = info->immd.count++;
980
981 assert(n < scan.immediate_count);
982
983 for (int c = 0; c < 4; ++c)
984 info->immd.data[n * 4 + c] = imm->u[c].Uint;
985
986 info->immd.type[n] = imm->Immediate.DataType;
987 }
988
989 int Source::inferSysValDirection(unsigned sn) const
990 {
991 switch (sn) {
992 case TGSI_SEMANTIC_INSTANCEID:
993 case TGSI_SEMANTIC_VERTEXID:
994 return 1;
995 case TGSI_SEMANTIC_LAYER:
996 #if 0
997 case TGSI_SEMANTIC_VIEWPORTINDEX:
998 return 0;
999 #endif
1000 case TGSI_SEMANTIC_PRIMID:
1001 return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
1002 default:
1003 return 0;
1004 }
1005 }
1006
1007 bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
1008 {
1009 unsigned i, c;
1010 unsigned sn = TGSI_SEMANTIC_GENERIC;
1011 unsigned si = 0;
1012 const unsigned first = decl->Range.First, last = decl->Range.Last;
1013
1014 if (decl->Declaration.Semantic) {
1015 sn = decl->Semantic.Name;
1016 si = decl->Semantic.Index;
1017 }
1018
1019 if (decl->Declaration.Local) {
1020 for (i = first; i <= last; ++i) {
1021 for (c = 0; c < 4; ++c) {
1022 locals.insert(
1023 Location(decl->Declaration.File, decl->Dim.Index2D, i, c));
1024 }
1025 }
1026 }
1027
1028 switch (decl->Declaration.File) {
1029 case TGSI_FILE_INPUT:
1030 if (info->type == PIPE_SHADER_VERTEX) {
1031 // all vertex attributes are equal
1032 for (i = first; i <= last; ++i) {
1033 info->in[i].sn = TGSI_SEMANTIC_GENERIC;
1034 info->in[i].si = i;
1035 }
1036 } else {
1037 for (i = first; i <= last; ++i, ++si) {
1038 info->in[i].id = i;
1039 info->in[i].sn = sn;
1040 info->in[i].si = si;
1041 if (info->type == PIPE_SHADER_FRAGMENT) {
1042 // translate interpolation mode
1043 switch (decl->Interp.Interpolate) {
1044 case TGSI_INTERPOLATE_CONSTANT:
1045 info->in[i].flat = 1;
1046 break;
1047 case TGSI_INTERPOLATE_COLOR:
1048 info->in[i].sc = 1;
1049 break;
1050 case TGSI_INTERPOLATE_LINEAR:
1051 info->in[i].linear = 1;
1052 break;
1053 default:
1054 break;
1055 }
1056 if (decl->Interp.Location || info->io.sampleInterp)
1057 info->in[i].centroid = 1;
1058 }
1059
1060 if (sn == TGSI_SEMANTIC_PATCH)
1061 info->in[i].patch = 1;
1062 if (sn == TGSI_SEMANTIC_PATCH)
1063 info->numPatchConstants = MAX2(info->numPatchConstants, si + 1);
1064 }
1065 }
1066 break;
1067 case TGSI_FILE_OUTPUT:
1068 for (i = first; i <= last; ++i, ++si) {
1069 switch (sn) {
1070 case TGSI_SEMANTIC_POSITION:
1071 if (info->type == PIPE_SHADER_FRAGMENT)
1072 info->io.fragDepth = i;
1073 else
1074 if (clipVertexOutput < 0)
1075 clipVertexOutput = i;
1076 break;
1077 case TGSI_SEMANTIC_COLOR:
1078 if (info->type == PIPE_SHADER_FRAGMENT)
1079 info->prop.fp.numColourResults++;
1080 break;
1081 case TGSI_SEMANTIC_EDGEFLAG:
1082 info->io.edgeFlagOut = i;
1083 break;
1084 case TGSI_SEMANTIC_CLIPVERTEX:
1085 clipVertexOutput = i;
1086 break;
1087 case TGSI_SEMANTIC_CLIPDIST:
1088 info->io.clipDistanceMask |=
1089 decl->Declaration.UsageMask << (si * 4);
1090 info->io.genUserClip = -1;
1091 break;
1092 case TGSI_SEMANTIC_SAMPLEMASK:
1093 info->io.sampleMask = i;
1094 break;
1095 case TGSI_SEMANTIC_VIEWPORT_INDEX:
1096 info->io.viewportId = i;
1097 break;
1098 case TGSI_SEMANTIC_PATCH:
1099 info->numPatchConstants = MAX2(info->numPatchConstants, si + 1);
1100 /* fallthrough */
1101 case TGSI_SEMANTIC_TESSOUTER:
1102 case TGSI_SEMANTIC_TESSINNER:
1103 info->out[i].patch = 1;
1104 break;
1105 default:
1106 break;
1107 }
1108 info->out[i].id = i;
1109 info->out[i].sn = sn;
1110 info->out[i].si = si;
1111 }
1112 break;
1113 case TGSI_FILE_SYSTEM_VALUE:
1114 switch (sn) {
1115 case TGSI_SEMANTIC_INSTANCEID:
1116 info->io.instanceId = first;
1117 break;
1118 case TGSI_SEMANTIC_VERTEXID:
1119 info->io.vertexId = first;
1120 break;
1121 default:
1122 break;
1123 }
1124 for (i = first; i <= last; ++i, ++si) {
1125 info->sv[i].sn = sn;
1126 info->sv[i].si = si;
1127 info->sv[i].input = inferSysValDirection(sn);
1128
1129 switch (sn) {
1130 case TGSI_SEMANTIC_TESSOUTER:
1131 case TGSI_SEMANTIC_TESSINNER:
1132 info->sv[i].patch = 1;
1133 break;
1134 }
1135 }
1136 break;
1137 case TGSI_FILE_RESOURCE:
1138 for (i = first; i <= last; ++i) {
1139 resources[i].target = decl->Resource.Resource;
1140 resources[i].raw = decl->Resource.Raw;
1141 resources[i].slot = i;
1142 }
1143 break;
1144 case TGSI_FILE_SAMPLER_VIEW:
1145 for (i = first; i <= last; ++i)
1146 textureViews[i].target = decl->SamplerView.Resource;
1147 break;
1148 case TGSI_FILE_NULL:
1149 case TGSI_FILE_TEMPORARY:
1150 case TGSI_FILE_ADDRESS:
1151 case TGSI_FILE_CONSTANT:
1152 case TGSI_FILE_IMMEDIATE:
1153 case TGSI_FILE_PREDICATE:
1154 case TGSI_FILE_SAMPLER:
1155 break;
1156 default:
1157 ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
1158 return false;
1159 }
1160 return true;
1161 }
1162
1163 inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
1164 {
1165 return insn.getOpcode() == TGSI_OPCODE_MOV &&
1166 insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
1167 insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
1168 }
1169
1170 bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
1171 {
1172 Instruction insn(inst);
1173
1174 if (insn.getOpcode() == TGSI_OPCODE_BARRIER)
1175 info->numBarriers = 1;
1176
1177 if (insn.dstCount()) {
1178 if (insn.getDst(0).getFile() == TGSI_FILE_OUTPUT) {
1179 Instruction::DstRegister dst = insn.getDst(0);
1180
1181 if (dst.isIndirect(0))
1182 for (unsigned i = 0; i < info->numOutputs; ++i)
1183 info->out[i].mask = 0xf;
1184 else
1185 info->out[dst.getIndex(0)].mask |= dst.getMask();
1186
1187 if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE ||
1188 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID ||
1189 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_LAYER ||
1190 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_VIEWPORT_INDEX ||
1191 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG)
1192 info->out[dst.getIndex(0)].mask &= 1;
1193
1194 if (isEdgeFlagPassthrough(insn))
1195 info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
1196 } else
1197 if (insn.getDst(0).getFile() == TGSI_FILE_TEMPORARY) {
1198 if (insn.getDst(0).isIndirect(0))
1199 mainTempsInLMem = true;
1200 }
1201 }
1202
1203 for (unsigned s = 0; s < insn.srcCount(); ++s) {
1204 Instruction::SrcRegister src = insn.getSrc(s);
1205 if (src.getFile() == TGSI_FILE_TEMPORARY) {
1206 if (src.isIndirect(0))
1207 mainTempsInLMem = true;
1208 } else
1209 if (src.getFile() == TGSI_FILE_RESOURCE) {
1210 if (src.getIndex(0) == TGSI_RESOURCE_GLOBAL)
1211 info->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ?
1212 0x1 : 0x2;
1213 } else
1214 if (src.getFile() == TGSI_FILE_OUTPUT) {
1215 if (src.isIndirect(0)) {
1216 // We don't know which one is accessed, just mark everything for
1217 // reading. This is an extremely unlikely occurrence.
1218 for (unsigned i = 0; i < info->numOutputs; ++i)
1219 info->out[i].oread = 1;
1220 } else {
1221 info->out[src.getIndex(0)].oread = 1;
1222 }
1223 }
1224 if (src.getFile() != TGSI_FILE_INPUT)
1225 continue;
1226 unsigned mask = insn.srcMask(s);
1227
1228 if (src.isIndirect(0)) {
1229 for (unsigned i = 0; i < info->numInputs; ++i)
1230 info->in[i].mask = 0xf;
1231 } else {
1232 const int i = src.getIndex(0);
1233 for (unsigned c = 0; c < 4; ++c) {
1234 if (!(mask & (1 << c)))
1235 continue;
1236 int k = src.getSwizzle(c);
1237 if (k <= TGSI_SWIZZLE_W)
1238 info->in[i].mask |= 1 << k;
1239 }
1240 switch (info->in[i].sn) {
1241 case TGSI_SEMANTIC_PSIZE:
1242 case TGSI_SEMANTIC_PRIMID:
1243 case TGSI_SEMANTIC_FOG:
1244 info->in[i].mask &= 0x1;
1245 break;
1246 case TGSI_SEMANTIC_PCOORD:
1247 info->in[i].mask &= 0x3;
1248 break;
1249 default:
1250 break;
1251 }
1252 }
1253 }
1254 return true;
1255 }
1256
1257 nv50_ir::TexInstruction::Target
1258 Instruction::getTexture(const tgsi::Source *code, int s) const
1259 {
1260 // XXX: indirect access
1261 unsigned int r;
1262
1263 switch (getSrc(s).getFile()) {
1264 case TGSI_FILE_RESOURCE:
1265 r = getSrc(s).getIndex(0);
1266 return translateTexture(code->resources.at(r).target);
1267 case TGSI_FILE_SAMPLER_VIEW:
1268 r = getSrc(s).getIndex(0);
1269 return translateTexture(code->textureViews.at(r).target);
1270 default:
1271 return translateTexture(insn->Texture.Texture);
1272 }
1273 }
1274
1275 } // namespace tgsi
1276
1277 namespace {
1278
1279 using namespace nv50_ir;
1280
1281 class Converter : public BuildUtil
1282 {
1283 public:
1284 Converter(Program *, const tgsi::Source *);
1285 ~Converter();
1286
1287 bool run();
1288
1289 private:
1290 struct Subroutine
1291 {
1292 Subroutine(Function *f) : f(f) { }
1293 Function *f;
1294 ValueMap values;
1295 };
1296
1297 Value *shiftAddress(Value *);
1298 Value *getVertexBase(int s);
1299 Value *getOutputBase(int s);
1300 DataArray *getArrayForFile(unsigned file, int idx);
1301 Value *fetchSrc(int s, int c);
1302 Value *acquireDst(int d, int c);
1303 void storeDst(int d, int c, Value *);
1304
1305 Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1306 void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1307 Value *val, Value *ptr);
1308
1309 Value *applySrcMod(Value *, int s, int c);
1310
1311 Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1312 Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1313 Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1314
1315 bool handleInstruction(const struct tgsi_full_instruction *);
1316 void exportOutputs();
1317 inline Subroutine *getSubroutine(unsigned ip);
1318 inline Subroutine *getSubroutine(Function *);
1319 inline bool isEndOfSubroutine(uint ip);
1320
1321 void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1322
1323 // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1324 void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1325 void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1326 void handleTXF(Value *dst0[4], int R, int L_M);
1327 void handleTXQ(Value *dst0[4], enum TexQuery);
1328 void handleLIT(Value *dst0[4]);
1329 void handleUserClipPlanes();
1330
1331 Symbol *getResourceBase(int r);
1332 void getResourceCoords(std::vector<Value *>&, int r, int s);
1333
1334 void handleLOAD(Value *dst0[4]);
1335 void handleSTORE();
1336 void handleATOM(Value *dst0[4], DataType, uint16_t subOp);
1337
1338 void handleINTERP(Value *dst0[4]);
1339
1340 Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1341
1342 void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1343
1344 Value *buildDot(int dim);
1345
1346 class BindArgumentsPass : public Pass {
1347 public:
1348 BindArgumentsPass(Converter &conv) : conv(conv) { }
1349
1350 private:
1351 Converter &conv;
1352 Subroutine *sub;
1353
1354 inline const Location *getValueLocation(Subroutine *, Value *);
1355
1356 template<typename T> inline void
1357 updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1358 T (Function::*proto));
1359
1360 template<typename T> inline void
1361 updatePrototype(BitSet *set, void (Function::*updateSet)(),
1362 T (Function::*proto));
1363
1364 protected:
1365 bool visit(Function *);
1366 bool visit(BasicBlock *bb) { return false; }
1367 };
1368
1369 private:
1370 const tgsi::Source *code;
1371 const struct nv50_ir_prog_info *info;
1372
1373 struct {
1374 std::map<unsigned, Subroutine> map;
1375 Subroutine *cur;
1376 } sub;
1377
1378 uint ip; // instruction pointer
1379
1380 tgsi::Instruction tgsi;
1381
1382 DataType dstTy;
1383 DataType srcTy;
1384
1385 DataArray tData; // TGSI_FILE_TEMPORARY
1386 DataArray aData; // TGSI_FILE_ADDRESS
1387 DataArray pData; // TGSI_FILE_PREDICATE
1388 DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1389
1390 Value *zero;
1391 Value *fragCoord[4];
1392 Value *clipVtx[4];
1393
1394 Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1395 uint8_t vtxBaseValid;
1396
1397 Value *outBase; // base address of vertex out patch (for TCP)
1398
1399 Stack condBBs; // fork BB, then else clause BB
1400 Stack joinBBs; // fork BB, for inserting join ops on ENDIF
1401 Stack loopBBs; // loop headers
1402 Stack breakBBs; // end of / after loop
1403
1404 Value *viewport;
1405 };
1406
1407 Symbol *
1408 Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1409 {
1410 const int swz = src.getSwizzle(c);
1411
1412 /* TODO: Use Array ID when it's available for the index */
1413 return makeSym(src.getFile(),
1414 src.is2D() ? src.getIndex(1) : 0,
1415 src.getIndex(0), swz,
1416 src.getIndex(0) * 16 + swz * 4);
1417 }
1418
1419 Symbol *
1420 Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1421 {
1422 /* TODO: Use Array ID when it's available for the index */
1423 return makeSym(dst.getFile(),
1424 dst.is2D() ? dst.getIndex(1) : 0,
1425 dst.getIndex(0), c,
1426 dst.getIndex(0) * 16 + c * 4);
1427 }
1428
1429 Symbol *
1430 Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1431 {
1432 Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1433
1434 sym->reg.fileIndex = fileIdx;
1435
1436 if (idx >= 0) {
1437 if (sym->reg.file == FILE_SHADER_INPUT)
1438 sym->setOffset(info->in[idx].slot[c] * 4);
1439 else
1440 if (sym->reg.file == FILE_SHADER_OUTPUT)
1441 sym->setOffset(info->out[idx].slot[c] * 4);
1442 else
1443 if (sym->reg.file == FILE_SYSTEM_VALUE)
1444 sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
1445 else
1446 sym->setOffset(address);
1447 } else {
1448 sym->setOffset(address);
1449 }
1450 return sym;
1451 }
1452
1453 static inline uint8_t
1454 translateInterpMode(const struct nv50_ir_varying *var, operation& op)
1455 {
1456 uint8_t mode = NV50_IR_INTERP_PERSPECTIVE;
1457
1458 if (var->flat)
1459 mode = NV50_IR_INTERP_FLAT;
1460 else
1461 if (var->linear)
1462 mode = NV50_IR_INTERP_LINEAR;
1463 else
1464 if (var->sc)
1465 mode = NV50_IR_INTERP_SC;
1466
1467 op = (mode == NV50_IR_INTERP_PERSPECTIVE || mode == NV50_IR_INTERP_SC)
1468 ? OP_PINTERP : OP_LINTERP;
1469
1470 if (var->centroid)
1471 mode |= NV50_IR_INTERP_CENTROID;
1472
1473 return mode;
1474 }
1475
1476 Value *
1477 Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1478 {
1479 operation op;
1480
1481 // XXX: no way to know interpolation mode if we don't know what's accessed
1482 const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
1483 src.getIndex(0)], op);
1484
1485 Instruction *insn = new_Instruction(func, op, TYPE_F32);
1486
1487 insn->setDef(0, getScratch());
1488 insn->setSrc(0, srcToSym(src, c));
1489 if (op == OP_PINTERP)
1490 insn->setSrc(1, fragCoord[3]);
1491 if (ptr)
1492 insn->setIndirect(0, 0, ptr);
1493
1494 insn->setInterpolate(mode);
1495
1496 bb->insertTail(insn);
1497 return insn->getDef(0);
1498 }
1499
1500 Value *
1501 Converter::applySrcMod(Value *val, int s, int c)
1502 {
1503 Modifier m = tgsi.getSrc(s).getMod(c);
1504 DataType ty = tgsi.inferSrcType();
1505
1506 if (m & Modifier(NV50_IR_MOD_ABS))
1507 val = mkOp1v(OP_ABS, ty, getScratch(), val);
1508
1509 if (m & Modifier(NV50_IR_MOD_NEG))
1510 val = mkOp1v(OP_NEG, ty, getScratch(), val);
1511
1512 return val;
1513 }
1514
1515 Value *
1516 Converter::getVertexBase(int s)
1517 {
1518 assert(s < 5);
1519 if (!(vtxBaseValid & (1 << s))) {
1520 const int index = tgsi.getSrc(s).getIndex(1);
1521 Value *rel = NULL;
1522 if (tgsi.getSrc(s).isIndirect(1))
1523 rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1524 vtxBaseValid |= 1 << s;
1525 vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1526 mkImm(index), rel);
1527 }
1528 return vtxBase[s];
1529 }
1530
1531 Value *
1532 Converter::getOutputBase(int s)
1533 {
1534 assert(s < 5);
1535 if (!(vtxBaseValid & (1 << s))) {
1536 Value *offset = loadImm(NULL, tgsi.getSrc(s).getIndex(1));
1537 if (tgsi.getSrc(s).isIndirect(1))
1538 offset = mkOp2v(OP_ADD, TYPE_U32, getSSA(),
1539 fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL),
1540 offset);
1541 vtxBaseValid |= 1 << s;
1542 vtxBase[s] = mkOp2v(OP_ADD, TYPE_U32, getSSA(), outBase, offset);
1543 }
1544 return vtxBase[s];
1545 }
1546
1547 Value *
1548 Converter::fetchSrc(int s, int c)
1549 {
1550 Value *res;
1551 Value *ptr = NULL, *dimRel = NULL;
1552
1553 tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1554
1555 if (src.isIndirect(0))
1556 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1557
1558 if (src.is2D()) {
1559 switch (src.getFile()) {
1560 case TGSI_FILE_OUTPUT:
1561 dimRel = getOutputBase(s);
1562 break;
1563 case TGSI_FILE_INPUT:
1564 dimRel = getVertexBase(s);
1565 break;
1566 case TGSI_FILE_CONSTANT:
1567 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1568 if (src.isIndirect(1))
1569 dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1570 break;
1571 default:
1572 break;
1573 }
1574 }
1575
1576 res = fetchSrc(src, c, ptr);
1577
1578 if (dimRel)
1579 res->getInsn()->setIndirect(0, 1, dimRel);
1580
1581 return applySrcMod(res, s, c);
1582 }
1583
1584 Converter::DataArray *
1585 Converter::getArrayForFile(unsigned file, int idx)
1586 {
1587 switch (file) {
1588 case TGSI_FILE_TEMPORARY:
1589 return &tData;
1590 case TGSI_FILE_PREDICATE:
1591 return &pData;
1592 case TGSI_FILE_ADDRESS:
1593 return &aData;
1594 case TGSI_FILE_OUTPUT:
1595 assert(prog->getType() == Program::TYPE_FRAGMENT);
1596 return &oData;
1597 default:
1598 assert(!"invalid/unhandled TGSI source file");
1599 return NULL;
1600 }
1601 }
1602
1603 Value *
1604 Converter::shiftAddress(Value *index)
1605 {
1606 if (!index)
1607 return NULL;
1608 return mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), index, mkImm(4));
1609 }
1610
1611 Value *
1612 Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1613 {
1614 const int idx2d = src.is2D() ? src.getIndex(1) : 0;
1615 const int idx = src.getIndex(0);
1616 const int swz = src.getSwizzle(c);
1617 Instruction *ld;
1618
1619 switch (src.getFile()) {
1620 case TGSI_FILE_IMMEDIATE:
1621 assert(!ptr);
1622 return loadImm(NULL, info->immd.data[idx * 4 + swz]);
1623 case TGSI_FILE_CONSTANT:
1624 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1625 case TGSI_FILE_INPUT:
1626 if (prog->getType() == Program::TYPE_FRAGMENT) {
1627 // don't load masked inputs, won't be assigned a slot
1628 if (!ptr && !(info->in[idx].mask & (1 << swz)))
1629 return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
1630 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_FACE)
1631 return mkOp1v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_FACE, 0));
1632 return interpolate(src, c, shiftAddress(ptr));
1633 } else
1634 if (prog->getType() == Program::TYPE_GEOMETRY) {
1635 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_PRIMID)
1636 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_PRIMITIVE_ID, 0));
1637 // XXX: This is going to be a problem with scalar arrays, i.e. when
1638 // we cannot assume that the address is given in units of vec4.
1639 //
1640 // nv50 and nvc0 need different things here, so let the lowering
1641 // passes decide what to do with the address
1642 if (ptr)
1643 return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
1644 }
1645 ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr));
1646 ld->perPatch = info->in[idx].patch;
1647 return ld->getDef(0);
1648 case TGSI_FILE_OUTPUT:
1649 assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
1650 ld = mkLoad(TYPE_U32, getSSA(), srcToSym(src, c), shiftAddress(ptr));
1651 ld->perPatch = info->out[idx].patch;
1652 return ld->getDef(0);
1653 case TGSI_FILE_SYSTEM_VALUE:
1654 assert(!ptr);
1655 ld = mkOp1(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
1656 ld->perPatch = info->sv[idx].patch;
1657 return ld->getDef(0);
1658 default:
1659 return getArrayForFile(src.getFile(), idx2d)->load(
1660 sub.cur->values, idx, swz, shiftAddress(ptr));
1661 }
1662 }
1663
1664 Value *
1665 Converter::acquireDst(int d, int c)
1666 {
1667 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1668 const unsigned f = dst.getFile();
1669 const int idx = dst.getIndex(0);
1670 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1671
1672 if (dst.isMasked(c) || f == TGSI_FILE_RESOURCE)
1673 return NULL;
1674
1675 if (dst.isIndirect(0) ||
1676 f == TGSI_FILE_SYSTEM_VALUE ||
1677 (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
1678 return getScratch();
1679
1680 return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
1681 }
1682
1683 void
1684 Converter::storeDst(int d, int c, Value *val)
1685 {
1686 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1687
1688 if (tgsi.getSaturate()) {
1689 mkOp1(OP_SAT, dstTy, val, val);
1690 }
1691
1692 Value *ptr = NULL;
1693 if (dst.isIndirect(0))
1694 ptr = shiftAddress(fetchSrc(dst.getIndirect(0), 0, NULL));
1695
1696 if (info->io.genUserClip > 0 &&
1697 dst.getFile() == TGSI_FILE_OUTPUT &&
1698 !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
1699 mkMov(clipVtx[c], val);
1700 val = clipVtx[c];
1701 }
1702
1703 storeDst(dst, c, val, ptr);
1704 }
1705
1706 void
1707 Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
1708 Value *val, Value *ptr)
1709 {
1710 const unsigned f = dst.getFile();
1711 const int idx = dst.getIndex(0);
1712 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1713
1714 if (f == TGSI_FILE_SYSTEM_VALUE) {
1715 assert(!ptr);
1716 mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
1717 } else
1718 if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
1719
1720 if (ptr || (info->out[idx].mask & (1 << c))) {
1721 /* Save the viewport index into a scratch register so that it can be
1722 exported at EMIT time */
1723 if (info->out[idx].sn == TGSI_SEMANTIC_VIEWPORT_INDEX &&
1724 viewport != NULL)
1725 mkOp1(OP_MOV, TYPE_U32, viewport, val);
1726 else
1727 mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val)->perPatch =
1728 info->out[idx].patch;
1729 }
1730 } else
1731 if (f == TGSI_FILE_TEMPORARY ||
1732 f == TGSI_FILE_PREDICATE ||
1733 f == TGSI_FILE_ADDRESS ||
1734 f == TGSI_FILE_OUTPUT) {
1735 getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
1736 } else {
1737 assert(!"invalid dst file");
1738 }
1739 }
1740
1741 #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
1742 for (chan = 0; chan < 4; ++chan) \
1743 if (!inst.getDst(d).isMasked(chan))
1744
1745 Value *
1746 Converter::buildDot(int dim)
1747 {
1748 assert(dim > 0);
1749
1750 Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
1751 Value *dotp = getScratch();
1752
1753 mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1);
1754
1755 for (int c = 1; c < dim; ++c) {
1756 src0 = fetchSrc(0, c);
1757 src1 = fetchSrc(1, c);
1758 mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp);
1759 }
1760 return dotp;
1761 }
1762
1763 void
1764 Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
1765 {
1766 FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
1767 join->fixed = 1;
1768 conv->insertHead(join);
1769
1770 assert(!fork->joinAt);
1771 fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
1772 fork->insertBefore(fork->getExit(), fork->joinAt);
1773 }
1774
1775 void
1776 Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
1777 {
1778 unsigned rIdx = 0, sIdx = 0;
1779
1780 if (R >= 0)
1781 rIdx = tgsi.getSrc(R).getIndex(0);
1782 if (S >= 0)
1783 sIdx = tgsi.getSrc(S).getIndex(0);
1784
1785 tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
1786
1787 if (tgsi.getSrc(R).isIndirect(0)) {
1788 tex->tex.rIndirectSrc = s;
1789 tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
1790 }
1791 if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
1792 tex->tex.sIndirectSrc = s;
1793 tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
1794 }
1795 }
1796
1797 void
1798 Converter::handleTXQ(Value *dst0[4], enum TexQuery query)
1799 {
1800 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1801 tex->tex.query = query;
1802 unsigned int c, d;
1803
1804 for (d = 0, c = 0; c < 4; ++c) {
1805 if (!dst0[c])
1806 continue;
1807 tex->tex.mask |= 1 << c;
1808 tex->setDef(d++, dst0[c]);
1809 }
1810 tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
1811
1812 setTexRS(tex, ++c, 1, -1);
1813
1814 bb->insertTail(tex);
1815 }
1816
1817 void
1818 Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
1819 {
1820 Value *proj = fetchSrc(0, 3);
1821 Instruction *insn = proj->getUniqueInsn();
1822 int c;
1823
1824 if (insn->op == OP_PINTERP) {
1825 bb->insertTail(insn = cloneForward(func, insn));
1826 insn->op = OP_LINTERP;
1827 insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
1828 insn->setSrc(1, NULL);
1829 proj = insn->getDef(0);
1830 }
1831 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
1832
1833 for (c = 0; c < 4; ++c) {
1834 if (!(mask & (1 << c)))
1835 continue;
1836 if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
1837 continue;
1838 mask &= ~(1 << c);
1839
1840 bb->insertTail(insn = cloneForward(func, insn));
1841 insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
1842 insn->setSrc(1, proj);
1843 dst[c] = insn->getDef(0);
1844 }
1845 if (!mask)
1846 return;
1847
1848 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
1849
1850 for (c = 0; c < 4; ++c)
1851 if (mask & (1 << c))
1852 dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
1853 }
1854
1855 // order of nv50 ir sources: x y z layer lod/bias shadow
1856 // order of TGSI TEX sources: x y z layer shadow lod/bias
1857 // lowering will finally set the hw specific order (like array first on nvc0)
1858 void
1859 Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
1860 {
1861 Value *val;
1862 Value *arg[4], *src[8];
1863 Value *lod = NULL, *shd = NULL;
1864 unsigned int s, c, d;
1865 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1866
1867 TexInstruction::Target tgt = tgsi.getTexture(code, R);
1868
1869 for (s = 0; s < tgt.getArgCount(); ++s)
1870 arg[s] = src[s] = fetchSrc(0, s);
1871
1872 if (texi->op == OP_TXL || texi->op == OP_TXB)
1873 lod = fetchSrc(L >> 4, L & 3);
1874
1875 if (C == 0x0f)
1876 C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
1877
1878 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 &&
1879 tgt == TEX_TARGET_CUBE_ARRAY_SHADOW)
1880 shd = fetchSrc(1, 0);
1881 else if (tgt.isShadow())
1882 shd = fetchSrc(C >> 4, C & 3);
1883
1884 if (texi->op == OP_TXD) {
1885 for (c = 0; c < tgt.getDim(); ++c) {
1886 texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
1887 texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
1888 }
1889 }
1890
1891 // cube textures don't care about projection value, it's divided out
1892 if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
1893 unsigned int n = tgt.getDim();
1894 if (shd) {
1895 arg[n] = shd;
1896 ++n;
1897 assert(tgt.getDim() == tgt.getArgCount());
1898 }
1899 loadProjTexCoords(src, arg, (1 << n) - 1);
1900 if (shd)
1901 shd = src[n - 1];
1902 }
1903
1904 if (tgt.isCube()) {
1905 for (c = 0; c < 3; ++c)
1906 src[c] = mkOp1v(OP_ABS, TYPE_F32, getSSA(), arg[c]);
1907 val = getScratch();
1908 mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1909 mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1910 mkOp1(OP_RCP, TYPE_F32, val, val);
1911 for (c = 0; c < 3; ++c)
1912 src[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), arg[c], val);
1913 }
1914
1915 for (c = 0, d = 0; c < 4; ++c) {
1916 if (dst[c]) {
1917 texi->setDef(d++, dst[c]);
1918 texi->tex.mask |= 1 << c;
1919 } else {
1920 // NOTE: maybe hook up def too, for CSE
1921 }
1922 }
1923 for (s = 0; s < tgt.getArgCount(); ++s)
1924 texi->setSrc(s, src[s]);
1925 if (lod)
1926 texi->setSrc(s++, lod);
1927 if (shd)
1928 texi->setSrc(s++, shd);
1929
1930 setTexRS(texi, s, R, S);
1931
1932 if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
1933 texi->tex.levelZero = true;
1934 if (tgsi.getOpcode() == TGSI_OPCODE_TG4 && !tgt.isShadow())
1935 texi->tex.gatherComp = tgsi.getSrc(1).getValueU32(0, info);
1936
1937 texi->tex.useOffsets = tgsi.getNumTexOffsets();
1938 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1939 for (c = 0; c < 3; ++c) {
1940 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
1941 texi->offset[s][c].setInsn(texi);
1942 }
1943 }
1944
1945 bb->insertTail(texi);
1946 }
1947
1948 // 1st source: xyz = coordinates, w = lod/sample
1949 // 2nd source: offset
1950 void
1951 Converter::handleTXF(Value *dst[4], int R, int L_M)
1952 {
1953 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1954 int ms;
1955 unsigned int c, d, s;
1956
1957 texi->tex.target = tgsi.getTexture(code, R);
1958
1959 ms = texi->tex.target.isMS() ? 1 : 0;
1960 texi->tex.levelZero = ms; /* MS textures don't have mip-maps */
1961
1962 for (c = 0, d = 0; c < 4; ++c) {
1963 if (dst[c]) {
1964 texi->setDef(d++, dst[c]);
1965 texi->tex.mask |= 1 << c;
1966 }
1967 }
1968 for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c)
1969 texi->setSrc(c, fetchSrc(0, c));
1970 texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms
1971
1972 setTexRS(texi, c, R, -1);
1973
1974 texi->tex.useOffsets = tgsi.getNumTexOffsets();
1975 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1976 for (c = 0; c < 3; ++c) {
1977 texi->offset[s][c].set(fetchSrc(tgsi.getTexOffset(s), c, NULL));
1978 texi->offset[s][c].setInsn(texi);
1979 }
1980 }
1981
1982 bb->insertTail(texi);
1983 }
1984
1985 void
1986 Converter::handleLIT(Value *dst0[4])
1987 {
1988 Value *val0 = NULL;
1989 unsigned int mask = tgsi.getDst(0).getMask();
1990
1991 if (mask & (1 << 0))
1992 loadImm(dst0[0], 1.0f);
1993
1994 if (mask & (1 << 3))
1995 loadImm(dst0[3], 1.0f);
1996
1997 if (mask & (3 << 1)) {
1998 val0 = getScratch();
1999 mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
2000 if (mask & (1 << 1))
2001 mkMov(dst0[1], val0);
2002 }
2003
2004 if (mask & (1 << 2)) {
2005 Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
2006 Value *val1 = getScratch(), *val3 = getScratch();
2007
2008 Value *pos128 = loadImm(NULL, +127.999999f);
2009 Value *neg128 = loadImm(NULL, -127.999999f);
2010
2011 mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
2012 mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
2013 mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
2014 mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
2015
2016 mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], TYPE_F32, val3, zero, val0);
2017 }
2018 }
2019
2020 static inline bool
2021 isResourceSpecial(const int r)
2022 {
2023 return (r == TGSI_RESOURCE_GLOBAL ||
2024 r == TGSI_RESOURCE_LOCAL ||
2025 r == TGSI_RESOURCE_PRIVATE ||
2026 r == TGSI_RESOURCE_INPUT);
2027 }
2028
2029 static inline bool
2030 isResourceRaw(const tgsi::Source *code, const int r)
2031 {
2032 return isResourceSpecial(r) || code->resources[r].raw;
2033 }
2034
2035 static inline nv50_ir::TexTarget
2036 getResourceTarget(const tgsi::Source *code, int r)
2037 {
2038 if (isResourceSpecial(r))
2039 return nv50_ir::TEX_TARGET_BUFFER;
2040 return tgsi::translateTexture(code->resources.at(r).target);
2041 }
2042
2043 Symbol *
2044 Converter::getResourceBase(const int r)
2045 {
2046 Symbol *sym = NULL;
2047
2048 switch (r) {
2049 case TGSI_RESOURCE_GLOBAL:
2050 sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL, 15);
2051 break;
2052 case TGSI_RESOURCE_LOCAL:
2053 assert(prog->getType() == Program::TYPE_COMPUTE);
2054 sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32,
2055 info->prop.cp.sharedOffset);
2056 break;
2057 case TGSI_RESOURCE_PRIVATE:
2058 sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32,
2059 info->bin.tlsSpace);
2060 break;
2061 case TGSI_RESOURCE_INPUT:
2062 assert(prog->getType() == Program::TYPE_COMPUTE);
2063 sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32,
2064 info->prop.cp.inputOffset);
2065 break;
2066 default:
2067 sym = new_Symbol(prog,
2068 nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot);
2069 break;
2070 }
2071 return sym;
2072 }
2073
2074 void
2075 Converter::getResourceCoords(std::vector<Value *> &coords, int r, int s)
2076 {
2077 const int arg =
2078 TexInstruction::Target(getResourceTarget(code, r)).getArgCount();
2079
2080 for (int c = 0; c < arg; ++c)
2081 coords.push_back(fetchSrc(s, c));
2082
2083 // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk
2084 if (r == TGSI_RESOURCE_LOCAL ||
2085 r == TGSI_RESOURCE_PRIVATE ||
2086 r == TGSI_RESOURCE_INPUT)
2087 coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS),
2088 coords[0]);
2089 }
2090
2091 static inline int
2092 partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask)
2093 {
2094 int n = 0;
2095
2096 while (mask) {
2097 if (mask & 1) {
2098 size[n]++;
2099 } else {
2100 if (size[n])
2101 comp[n = 1] = size[0] + 1;
2102 else
2103 comp[n]++;
2104 }
2105 mask >>= 1;
2106 }
2107 if (size[0] == 3) {
2108 n = 1;
2109 size[0] = (comp[0] == 1) ? 1 : 2;
2110 size[1] = 3 - size[0];
2111 comp[1] = comp[0] + size[0];
2112 }
2113 return n + 1;
2114 }
2115
2116 // For raw loads, granularity is 4 byte.
2117 // Usage of the texture read mask on OP_SULDP is not allowed.
2118 void
2119 Converter::handleLOAD(Value *dst0[4])
2120 {
2121 const int r = tgsi.getSrc(0).getIndex(0);
2122 int c;
2123 std::vector<Value *> off, src, ldv, def;
2124
2125 getResourceCoords(off, r, 1);
2126
2127 if (isResourceRaw(code, r)) {
2128 uint8_t mask = 0;
2129 uint8_t comp[2] = { 0, 0 };
2130 uint8_t size[2] = { 0, 0 };
2131
2132 Symbol *base = getResourceBase(r);
2133
2134 // determine the base and size of the at most 2 load ops
2135 for (c = 0; c < 4; ++c)
2136 if (!tgsi.getDst(0).isMasked(c))
2137 mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X);
2138
2139 int n = partitionLoadStore(comp, size, mask);
2140
2141 src = off;
2142
2143 def.resize(4); // index by component, the ones we need will be non-NULL
2144 for (c = 0; c < 4; ++c) {
2145 if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c))
2146 def[c] = dst0[c];
2147 else
2148 if (mask & (1 << c))
2149 def[c] = getScratch();
2150 }
2151
2152 const bool useLd = isResourceSpecial(r) ||
2153 (info->io.nv50styleSurfaces &&
2154 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2155
2156 for (int i = 0; i < n; ++i) {
2157 ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]);
2158
2159 if (comp[i]) // adjust x component of source address if necessary
2160 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2161 off[0], mkImm(comp[i] * 4));
2162 else
2163 src[0] = off[0];
2164
2165 if (useLd) {
2166 Instruction *ld =
2167 mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]);
2168 for (size_t c = 1; c < ldv.size(); ++c)
2169 ld->setDef(c, ldv[c]);
2170 } else {
2171 mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot,
2172 0, ldv, src)->dType = typeOfSize(size[i] * 4);
2173 }
2174 }
2175 } else {
2176 def.resize(4);
2177 for (c = 0; c < 4; ++c) {
2178 if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
2179 def[c] = getScratch();
2180 else
2181 def[c] = dst0[c];
2182 }
2183
2184 mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0,
2185 def, off);
2186 }
2187 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2188 if (dst0[c] != def[c])
2189 mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
2190 }
2191
2192 // For formatted stores, the write mask on OP_SUSTP can be used.
2193 // Raw stores have to be split.
2194 void
2195 Converter::handleSTORE()
2196 {
2197 const int r = tgsi.getDst(0).getIndex(0);
2198 int c;
2199 std::vector<Value *> off, src, dummy;
2200
2201 getResourceCoords(off, r, 0);
2202 src = off;
2203 const int s = src.size();
2204
2205 if (isResourceRaw(code, r)) {
2206 uint8_t comp[2] = { 0, 0 };
2207 uint8_t size[2] = { 0, 0 };
2208
2209 int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask());
2210
2211 Symbol *base = getResourceBase(r);
2212
2213 const bool useSt = isResourceSpecial(r) ||
2214 (info->io.nv50styleSurfaces &&
2215 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2216
2217 for (int i = 0; i < n; ++i) {
2218 if (comp[i]) // adjust x component of source address if necessary
2219 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2220 off[0], mkImm(comp[i] * 4));
2221 else
2222 src[0] = off[0];
2223
2224 const DataType stTy = typeOfSize(size[i] * 4);
2225
2226 if (useSt) {
2227 Instruction *st =
2228 mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i]));
2229 for (c = 1; c < size[i]; ++c)
2230 st->setSrc(1 + c, fetchSrc(1, comp[i] + c));
2231 st->setIndirect(0, 0, src[0]);
2232 } else {
2233 // attach values to be stored
2234 src.resize(s + size[i]);
2235 for (c = 0; c < size[i]; ++c)
2236 src[s + c] = fetchSrc(1, comp[i] + c);
2237 mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot,
2238 0, dummy, src)->setType(stTy);
2239 }
2240 }
2241 } else {
2242 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2243 src.push_back(fetchSrc(1, c));
2244
2245 mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0,
2246 dummy, src)->tex.mask = tgsi.getDst(0).getMask();
2247 }
2248 }
2249
2250 // XXX: These only work on resources with the single-component u32/s32 formats.
2251 // Therefore the result is replicated. This might not be intended by TGSI, but
2252 // operating on more than 1 component would produce undefined results because
2253 // they do not exist.
2254 void
2255 Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp)
2256 {
2257 const int r = tgsi.getSrc(0).getIndex(0);
2258 std::vector<Value *> srcv;
2259 std::vector<Value *> defv;
2260 LValue *dst = getScratch();
2261
2262 getResourceCoords(srcv, r, 1);
2263
2264 if (isResourceSpecial(r)) {
2265 assert(r != TGSI_RESOURCE_INPUT);
2266 Instruction *insn;
2267 insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0));
2268 insn->subOp = subOp;
2269 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2270 insn->setSrc(2, fetchSrc(3, 0));
2271 insn->setIndirect(0, 0, srcv.at(0));
2272 } else {
2273 operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP;
2274 TexTarget targ = getResourceTarget(code, r);
2275 int idx = code->resources[r].slot;
2276 defv.push_back(dst);
2277 srcv.push_back(fetchSrc(2, 0));
2278 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2279 srcv.push_back(fetchSrc(3, 0));
2280 TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv);
2281 tex->subOp = subOp;
2282 tex->tex.mask = 1;
2283 tex->setType(ty);
2284 }
2285
2286 for (int c = 0; c < 4; ++c)
2287 if (dst0[c])
2288 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2289 }
2290
2291 void
2292 Converter::handleINTERP(Value *dst[4])
2293 {
2294 // Check whether the input is linear. All other attributes ignored.
2295 Instruction *insn;
2296 Value *offset = NULL, *ptr = NULL, *w = NULL;
2297 bool linear;
2298 operation op;
2299 int c, mode;
2300
2301 tgsi::Instruction::SrcRegister src = tgsi.getSrc(0);
2302 assert(src.getFile() == TGSI_FILE_INPUT);
2303
2304 if (src.isIndirect(0))
2305 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
2306
2307 // XXX: no way to know interp mode if we don't know the index
2308 linear = info->in[ptr ? 0 : src.getIndex(0)].linear;
2309 if (linear) {
2310 op = OP_LINTERP;
2311 mode = NV50_IR_INTERP_LINEAR;
2312 } else {
2313 op = OP_PINTERP;
2314 mode = NV50_IR_INTERP_PERSPECTIVE;
2315 }
2316
2317 switch (tgsi.getOpcode()) {
2318 case TGSI_OPCODE_INTERP_CENTROID:
2319 mode |= NV50_IR_INTERP_CENTROID;
2320 break;
2321 case TGSI_OPCODE_INTERP_SAMPLE:
2322 insn = mkOp1(OP_PIXLD, TYPE_U32, (offset = getScratch()), fetchSrc(1, 0));
2323 insn->subOp = NV50_IR_SUBOP_PIXLD_OFFSET;
2324 mode |= NV50_IR_INTERP_OFFSET;
2325 break;
2326 case TGSI_OPCODE_INTERP_OFFSET: {
2327 // The input in src1.xy is float, but we need a single 32-bit value
2328 // where the upper and lower 16 bits are encoded in S0.12 format. We need
2329 // to clamp the input coordinates to (-0.5, 0.4375), multiply by 4096,
2330 // and then convert to s32.
2331 Value *offs[2];
2332 for (c = 0; c < 2; c++) {
2333 offs[c] = fetchSrc(1, c);
2334 mkOp2(OP_MIN, TYPE_F32, offs[c], offs[c], loadImm(NULL, 0.4375f));
2335 mkOp2(OP_MAX, TYPE_F32, offs[c], offs[c], loadImm(NULL, -0.5f));
2336 mkOp2(OP_MUL, TYPE_F32, offs[c], offs[c], loadImm(NULL, 4096.0f));
2337 mkCvt(OP_CVT, TYPE_S32, offs[c], TYPE_F32, offs[c]);
2338 }
2339 offset = mkOp3v(OP_INSBF, TYPE_U32, getScratch(),
2340 offs[1], mkImm(0x1010), offs[0]);
2341 mode |= NV50_IR_INTERP_OFFSET;
2342 break;
2343 }
2344 }
2345
2346 if (op == OP_PINTERP) {
2347 if (offset) {
2348 w = mkOp2v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_POSITION, 3), offset);
2349 mkOp1(OP_RCP, TYPE_F32, w, w);
2350 } else {
2351 w = fragCoord[3];
2352 }
2353 }
2354
2355
2356 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2357 insn = mkOp1(op, TYPE_F32, dst[c], srcToSym(src, c));
2358 if (op == OP_PINTERP)
2359 insn->setSrc(1, w);
2360 if (ptr)
2361 insn->setIndirect(0, 0, ptr);
2362 if (offset)
2363 insn->setSrc(op == OP_PINTERP ? 2 : 1, offset);
2364
2365 insn->setInterpolate(mode);
2366 }
2367 }
2368
2369 Converter::Subroutine *
2370 Converter::getSubroutine(unsigned ip)
2371 {
2372 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2373
2374 if (it == sub.map.end())
2375 it = sub.map.insert(std::make_pair(
2376 ip, Subroutine(new Function(prog, "SUB", ip)))).first;
2377
2378 return &it->second;
2379 }
2380
2381 Converter::Subroutine *
2382 Converter::getSubroutine(Function *f)
2383 {
2384 unsigned ip = f->getLabel();
2385 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2386
2387 if (it == sub.map.end())
2388 it = sub.map.insert(std::make_pair(ip, Subroutine(f))).first;
2389
2390 return &it->second;
2391 }
2392
2393 bool
2394 Converter::isEndOfSubroutine(uint ip)
2395 {
2396 assert(ip < code->scan.num_instructions);
2397 tgsi::Instruction insn(&code->insns[ip]);
2398 return (insn.getOpcode() == TGSI_OPCODE_END ||
2399 insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
2400 // does END occur at end of main or the very end ?
2401 insn.getOpcode() == TGSI_OPCODE_BGNSUB);
2402 }
2403
2404 bool
2405 Converter::handleInstruction(const struct tgsi_full_instruction *insn)
2406 {
2407 Instruction *geni;
2408
2409 Value *dst0[4], *rDst0[4];
2410 Value *src0, *src1, *src2, *src3;
2411 Value *val0, *val1;
2412 int c;
2413
2414 tgsi = tgsi::Instruction(insn);
2415
2416 bool useScratchDst = tgsi.checkDstSrcAliasing();
2417
2418 operation op = tgsi.getOP();
2419 dstTy = tgsi.inferDstType();
2420 srcTy = tgsi.inferSrcType();
2421
2422 unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
2423
2424 if (tgsi.dstCount()) {
2425 for (c = 0; c < 4; ++c) {
2426 rDst0[c] = acquireDst(0, c);
2427 dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
2428 }
2429 }
2430
2431 switch (tgsi.getOpcode()) {
2432 case TGSI_OPCODE_ADD:
2433 case TGSI_OPCODE_UADD:
2434 case TGSI_OPCODE_AND:
2435 case TGSI_OPCODE_DIV:
2436 case TGSI_OPCODE_IDIV:
2437 case TGSI_OPCODE_UDIV:
2438 case TGSI_OPCODE_MAX:
2439 case TGSI_OPCODE_MIN:
2440 case TGSI_OPCODE_IMAX:
2441 case TGSI_OPCODE_IMIN:
2442 case TGSI_OPCODE_UMAX:
2443 case TGSI_OPCODE_UMIN:
2444 case TGSI_OPCODE_MOD:
2445 case TGSI_OPCODE_UMOD:
2446 case TGSI_OPCODE_MUL:
2447 case TGSI_OPCODE_UMUL:
2448 case TGSI_OPCODE_IMUL_HI:
2449 case TGSI_OPCODE_UMUL_HI:
2450 case TGSI_OPCODE_OR:
2451 case TGSI_OPCODE_SHL:
2452 case TGSI_OPCODE_ISHR:
2453 case TGSI_OPCODE_USHR:
2454 case TGSI_OPCODE_SUB:
2455 case TGSI_OPCODE_XOR:
2456 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2457 src0 = fetchSrc(0, c);
2458 src1 = fetchSrc(1, c);
2459 geni = mkOp2(op, dstTy, dst0[c], src0, src1);
2460 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2461 }
2462 break;
2463 case TGSI_OPCODE_MAD:
2464 case TGSI_OPCODE_UMAD:
2465 case TGSI_OPCODE_SAD:
2466 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2467 src0 = fetchSrc(0, c);
2468 src1 = fetchSrc(1, c);
2469 src2 = fetchSrc(2, c);
2470 mkOp3(op, dstTy, dst0[c], src0, src1, src2);
2471 }
2472 break;
2473 case TGSI_OPCODE_MOV:
2474 case TGSI_OPCODE_ABS:
2475 case TGSI_OPCODE_CEIL:
2476 case TGSI_OPCODE_FLR:
2477 case TGSI_OPCODE_TRUNC:
2478 case TGSI_OPCODE_RCP:
2479 case TGSI_OPCODE_IABS:
2480 case TGSI_OPCODE_INEG:
2481 case TGSI_OPCODE_NOT:
2482 case TGSI_OPCODE_DDX:
2483 case TGSI_OPCODE_DDY:
2484 case TGSI_OPCODE_DDX_FINE:
2485 case TGSI_OPCODE_DDY_FINE:
2486 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2487 mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
2488 break;
2489 case TGSI_OPCODE_RSQ:
2490 src0 = fetchSrc(0, 0);
2491 val0 = getScratch();
2492 mkOp1(OP_ABS, TYPE_F32, val0, src0);
2493 mkOp1(OP_RSQ, TYPE_F32, val0, val0);
2494 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2495 mkMov(dst0[c], val0);
2496 break;
2497 case TGSI_OPCODE_ARL:
2498 case TGSI_OPCODE_ARR:
2499 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2500 const RoundMode rnd =
2501 tgsi.getOpcode() == TGSI_OPCODE_ARR ? ROUND_N : ROUND_M;
2502 src0 = fetchSrc(0, c);
2503 mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = rnd;
2504 }
2505 break;
2506 case TGSI_OPCODE_UARL:
2507 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2508 mkOp1(OP_MOV, TYPE_U32, dst0[c], fetchSrc(0, c));
2509 break;
2510 case TGSI_OPCODE_POW:
2511 val0 = mkOp2v(op, TYPE_F32, getScratch(), fetchSrc(0, 0), fetchSrc(1, 0));
2512 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2513 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2514 break;
2515 case TGSI_OPCODE_EX2:
2516 case TGSI_OPCODE_LG2:
2517 val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
2518 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2519 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2520 break;
2521 case TGSI_OPCODE_COS:
2522 case TGSI_OPCODE_SIN:
2523 val0 = getScratch();
2524 if (mask & 7) {
2525 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
2526 mkOp1(op, TYPE_F32, val0, val0);
2527 for (c = 0; c < 3; ++c)
2528 if (dst0[c])
2529 mkMov(dst0[c], val0);
2530 }
2531 if (dst0[3]) {
2532 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
2533 mkOp1(op, TYPE_F32, dst0[3], val0);
2534 }
2535 break;
2536 case TGSI_OPCODE_SCS:
2537 if (mask & 3) {
2538 val0 = mkOp1v(OP_PRESIN, TYPE_F32, getSSA(), fetchSrc(0, 0));
2539 if (dst0[0])
2540 mkOp1(OP_COS, TYPE_F32, dst0[0], val0);
2541 if (dst0[1])
2542 mkOp1(OP_SIN, TYPE_F32, dst0[1], val0);
2543 }
2544 if (dst0[2])
2545 loadImm(dst0[2], 0.0f);
2546 if (dst0[3])
2547 loadImm(dst0[3], 1.0f);
2548 break;
2549 case TGSI_OPCODE_EXP:
2550 src0 = fetchSrc(0, 0);
2551 val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
2552 if (dst0[1])
2553 mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
2554 if (dst0[0])
2555 mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
2556 if (dst0[2])
2557 mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
2558 if (dst0[3])
2559 loadImm(dst0[3], 1.0f);
2560 break;
2561 case TGSI_OPCODE_LOG:
2562 src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
2563 val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
2564 if (dst0[0] || dst0[1])
2565 val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
2566 if (dst0[1]) {
2567 mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
2568 mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
2569 mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0);
2570 }
2571 if (dst0[3])
2572 loadImm(dst0[3], 1.0f);
2573 break;
2574 case TGSI_OPCODE_DP2:
2575 val0 = buildDot(2);
2576 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2577 mkMov(dst0[c], val0);
2578 break;
2579 case TGSI_OPCODE_DP3:
2580 val0 = buildDot(3);
2581 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2582 mkMov(dst0[c], val0);
2583 break;
2584 case TGSI_OPCODE_DP4:
2585 val0 = buildDot(4);
2586 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2587 mkMov(dst0[c], val0);
2588 break;
2589 case TGSI_OPCODE_DPH:
2590 val0 = buildDot(3);
2591 src1 = fetchSrc(1, 3);
2592 mkOp2(OP_ADD, TYPE_F32, val0, val0, src1);
2593 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2594 mkMov(dst0[c], val0);
2595 break;
2596 case TGSI_OPCODE_DST:
2597 if (dst0[0])
2598 loadImm(dst0[0], 1.0f);
2599 if (dst0[1]) {
2600 src0 = fetchSrc(0, 1);
2601 src1 = fetchSrc(1, 1);
2602 mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1);
2603 }
2604 if (dst0[2])
2605 mkMov(dst0[2], fetchSrc(0, 2));
2606 if (dst0[3])
2607 mkMov(dst0[3], fetchSrc(1, 3));
2608 break;
2609 case TGSI_OPCODE_LRP:
2610 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2611 src0 = fetchSrc(0, c);
2612 src1 = fetchSrc(1, c);
2613 src2 = fetchSrc(2, c);
2614 mkOp3(OP_MAD, TYPE_F32, dst0[c],
2615 mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2);
2616 }
2617 break;
2618 case TGSI_OPCODE_LIT:
2619 handleLIT(dst0);
2620 break;
2621 case TGSI_OPCODE_XPD:
2622 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2623 if (c < 3) {
2624 val0 = getSSA();
2625 src0 = fetchSrc(1, (c + 1) % 3);
2626 src1 = fetchSrc(0, (c + 2) % 3);
2627 mkOp2(OP_MUL, TYPE_F32, val0, src0, src1);
2628 mkOp1(OP_NEG, TYPE_F32, val0, val0);
2629
2630 src0 = fetchSrc(0, (c + 1) % 3);
2631 src1 = fetchSrc(1, (c + 2) % 3);
2632 mkOp3(OP_MAD, TYPE_F32, dst0[c], src0, src1, val0);
2633 } else {
2634 loadImm(dst0[c], 1.0f);
2635 }
2636 }
2637 break;
2638 case TGSI_OPCODE_ISSG:
2639 case TGSI_OPCODE_SSG:
2640 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2641 src0 = fetchSrc(0, c);
2642 val0 = getScratch();
2643 val1 = getScratch();
2644 mkCmp(OP_SET, CC_GT, srcTy, val0, srcTy, src0, zero);
2645 mkCmp(OP_SET, CC_LT, srcTy, val1, srcTy, src0, zero);
2646 if (srcTy == TYPE_F32)
2647 mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
2648 else
2649 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
2650 }
2651 break;
2652 case TGSI_OPCODE_UCMP:
2653 srcTy = TYPE_U32;
2654 /* fallthrough */
2655 case TGSI_OPCODE_CMP:
2656 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2657 src0 = fetchSrc(0, c);
2658 src1 = fetchSrc(1, c);
2659 src2 = fetchSrc(2, c);
2660 if (src1 == src2)
2661 mkMov(dst0[c], src1);
2662 else
2663 mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
2664 srcTy, dst0[c], srcTy, src1, src2, src0);
2665 }
2666 break;
2667 case TGSI_OPCODE_FRC:
2668 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2669 src0 = fetchSrc(0, c);
2670 val0 = getScratch();
2671 mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
2672 mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
2673 }
2674 break;
2675 case TGSI_OPCODE_ROUND:
2676 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2677 mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
2678 ->rnd = ROUND_NI;
2679 break;
2680 case TGSI_OPCODE_CLAMP:
2681 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2682 src0 = fetchSrc(0, c);
2683 src1 = fetchSrc(1, c);
2684 src2 = fetchSrc(2, c);
2685 val0 = getScratch();
2686 mkOp2(OP_MIN, TYPE_F32, val0, src0, src1);
2687 mkOp2(OP_MAX, TYPE_F32, dst0[c], val0, src2);
2688 }
2689 break;
2690 case TGSI_OPCODE_SLT:
2691 case TGSI_OPCODE_SGE:
2692 case TGSI_OPCODE_SEQ:
2693 case TGSI_OPCODE_SGT:
2694 case TGSI_OPCODE_SLE:
2695 case TGSI_OPCODE_SNE:
2696 case TGSI_OPCODE_FSEQ:
2697 case TGSI_OPCODE_FSGE:
2698 case TGSI_OPCODE_FSLT:
2699 case TGSI_OPCODE_FSNE:
2700 case TGSI_OPCODE_ISGE:
2701 case TGSI_OPCODE_ISLT:
2702 case TGSI_OPCODE_USEQ:
2703 case TGSI_OPCODE_USGE:
2704 case TGSI_OPCODE_USLT:
2705 case TGSI_OPCODE_USNE:
2706 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2707 src0 = fetchSrc(0, c);
2708 src1 = fetchSrc(1, c);
2709 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
2710 }
2711 break;
2712 case TGSI_OPCODE_KILL_IF:
2713 val0 = new_LValue(func, FILE_PREDICATE);
2714 mask = 0;
2715 for (c = 0; c < 4; ++c) {
2716 const int s = tgsi.getSrc(0).getSwizzle(c);
2717 if (mask & (1 << s))
2718 continue;
2719 mask |= 1 << s;
2720 mkCmp(OP_SET, CC_LT, TYPE_F32, val0, TYPE_F32, fetchSrc(0, c), zero);
2721 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
2722 }
2723 break;
2724 case TGSI_OPCODE_KILL:
2725 mkOp(OP_DISCARD, TYPE_NONE, NULL);
2726 break;
2727 case TGSI_OPCODE_TEX:
2728 case TGSI_OPCODE_TXB:
2729 case TGSI_OPCODE_TXL:
2730 case TGSI_OPCODE_TXP:
2731 case TGSI_OPCODE_LODQ:
2732 // R S L C Dx Dy
2733 handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
2734 break;
2735 case TGSI_OPCODE_TXD:
2736 handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
2737 break;
2738 case TGSI_OPCODE_TG4:
2739 handleTEX(dst0, 2, 2, 0x03, 0x0f, 0x00, 0x00);
2740 break;
2741 case TGSI_OPCODE_TEX2:
2742 handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00);
2743 break;
2744 case TGSI_OPCODE_TXB2:
2745 case TGSI_OPCODE_TXL2:
2746 handleTEX(dst0, 2, 2, 0x10, 0x0f, 0x00, 0x00);
2747 break;
2748 case TGSI_OPCODE_SAMPLE:
2749 case TGSI_OPCODE_SAMPLE_B:
2750 case TGSI_OPCODE_SAMPLE_D:
2751 case TGSI_OPCODE_SAMPLE_L:
2752 case TGSI_OPCODE_SAMPLE_C:
2753 case TGSI_OPCODE_SAMPLE_C_LZ:
2754 handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40);
2755 break;
2756 case TGSI_OPCODE_TXF:
2757 handleTXF(dst0, 1, 0x03);
2758 break;
2759 case TGSI_OPCODE_SAMPLE_I:
2760 handleTXF(dst0, 1, 0x03);
2761 break;
2762 case TGSI_OPCODE_SAMPLE_I_MS:
2763 handleTXF(dst0, 1, 0x20);
2764 break;
2765 case TGSI_OPCODE_TXQ:
2766 case TGSI_OPCODE_SVIEWINFO:
2767 handleTXQ(dst0, TXQ_DIMS);
2768 break;
2769 case TGSI_OPCODE_F2I:
2770 case TGSI_OPCODE_F2U:
2771 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2772 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
2773 break;
2774 case TGSI_OPCODE_I2F:
2775 case TGSI_OPCODE_U2F:
2776 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2777 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
2778 break;
2779 case TGSI_OPCODE_EMIT:
2780 /* export the saved viewport index */
2781 if (viewport != NULL) {
2782 Symbol *vpSym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_U32,
2783 info->out[info->io.viewportId].slot[0] * 4);
2784 mkStore(OP_EXPORT, TYPE_U32, vpSym, NULL, viewport);
2785 }
2786 /* fallthrough */
2787 case TGSI_OPCODE_ENDPRIM:
2788 {
2789 // get vertex stream (must be immediate)
2790 unsigned int stream = tgsi.getSrc(0).getValueU32(0, info);
2791 if (stream && op == OP_RESTART)
2792 break;
2793 src0 = mkImm(stream);
2794 mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
2795 break;
2796 }
2797 case TGSI_OPCODE_IF:
2798 case TGSI_OPCODE_UIF:
2799 {
2800 BasicBlock *ifBB = new BasicBlock(func);
2801
2802 bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
2803 condBBs.push(bb);
2804 joinBBs.push(bb);
2805
2806 mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy);
2807
2808 setPosition(ifBB, true);
2809 }
2810 break;
2811 case TGSI_OPCODE_ELSE:
2812 {
2813 BasicBlock *elseBB = new BasicBlock(func);
2814 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2815
2816 forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
2817 condBBs.push(bb);
2818
2819 forkBB->getExit()->asFlow()->target.bb = elseBB;
2820 if (!bb->isTerminated())
2821 mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
2822
2823 setPosition(elseBB, true);
2824 }
2825 break;
2826 case TGSI_OPCODE_ENDIF:
2827 {
2828 BasicBlock *convBB = new BasicBlock(func);
2829 BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2830 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
2831
2832 if (!bb->isTerminated()) {
2833 // we only want join if none of the clauses ended with CONT/BREAK/RET
2834 if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
2835 insertConvergenceOps(convBB, forkBB);
2836 mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
2837 bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2838 }
2839
2840 if (prevBB->getExit()->op == OP_BRA) {
2841 prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2842 prevBB->getExit()->asFlow()->target.bb = convBB;
2843 }
2844 setPosition(convBB, true);
2845 }
2846 break;
2847 case TGSI_OPCODE_BGNLOOP:
2848 {
2849 BasicBlock *lbgnBB = new BasicBlock(func);
2850 BasicBlock *lbrkBB = new BasicBlock(func);
2851
2852 loopBBs.push(lbgnBB);
2853 breakBBs.push(lbrkBB);
2854 if (loopBBs.getSize() > func->loopNestingBound)
2855 func->loopNestingBound++;
2856
2857 mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
2858
2859 bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
2860 setPosition(lbgnBB, true);
2861 mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
2862 }
2863 break;
2864 case TGSI_OPCODE_ENDLOOP:
2865 {
2866 BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
2867
2868 if (!bb->isTerminated()) {
2869 mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
2870 bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
2871 }
2872 setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
2873 }
2874 break;
2875 case TGSI_OPCODE_BRK:
2876 {
2877 if (bb->isTerminated())
2878 break;
2879 BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
2880 mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
2881 bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
2882 }
2883 break;
2884 case TGSI_OPCODE_CONT:
2885 {
2886 if (bb->isTerminated())
2887 break;
2888 BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
2889 mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
2890 contBB->explicitCont = true;
2891 bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
2892 }
2893 break;
2894 case TGSI_OPCODE_BGNSUB:
2895 {
2896 Subroutine *s = getSubroutine(ip);
2897 BasicBlock *entry = new BasicBlock(s->f);
2898 BasicBlock *leave = new BasicBlock(s->f);
2899
2900 // multiple entrypoints possible, keep the graph connected
2901 if (prog->getType() == Program::TYPE_COMPUTE)
2902 prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
2903
2904 sub.cur = s;
2905 s->f->setEntry(entry);
2906 s->f->setExit(leave);
2907 setPosition(entry, true);
2908 return true;
2909 }
2910 case TGSI_OPCODE_ENDSUB:
2911 {
2912 sub.cur = getSubroutine(prog->main);
2913 setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
2914 return true;
2915 }
2916 case TGSI_OPCODE_CAL:
2917 {
2918 Subroutine *s = getSubroutine(tgsi.getLabel());
2919 mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
2920 func->call.attach(&s->f->call, Graph::Edge::TREE);
2921 return true;
2922 }
2923 case TGSI_OPCODE_RET:
2924 {
2925 if (bb->isTerminated())
2926 return true;
2927 BasicBlock *leave = BasicBlock::get(func->cfgExit);
2928
2929 if (!isEndOfSubroutine(ip + 1)) {
2930 // insert a PRERET at the entry if this is an early return
2931 // (only needed for sharing code in the epilogue)
2932 BasicBlock *pos = getBB();
2933 setPosition(BasicBlock::get(func->cfg.getRoot()), false);
2934 mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
2935 setPosition(pos, true);
2936 }
2937 mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
2938 bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
2939 }
2940 break;
2941 case TGSI_OPCODE_END:
2942 {
2943 // attach and generate epilogue code
2944 BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
2945 bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
2946 setPosition(epilogue, true);
2947 if (prog->getType() == Program::TYPE_FRAGMENT)
2948 exportOutputs();
2949 if (info->io.genUserClip > 0)
2950 handleUserClipPlanes();
2951 mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
2952 }
2953 break;
2954 case TGSI_OPCODE_SWITCH:
2955 case TGSI_OPCODE_CASE:
2956 ERROR("switch/case opcode encountered, should have been lowered\n");
2957 abort();
2958 break;
2959 case TGSI_OPCODE_LOAD:
2960 handleLOAD(dst0);
2961 break;
2962 case TGSI_OPCODE_STORE:
2963 handleSTORE();
2964 break;
2965 case TGSI_OPCODE_BARRIER:
2966 geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
2967 geni->fixed = 1;
2968 geni->subOp = NV50_IR_SUBOP_BAR_SYNC;
2969 break;
2970 case TGSI_OPCODE_MFENCE:
2971 case TGSI_OPCODE_LFENCE:
2972 case TGSI_OPCODE_SFENCE:
2973 geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
2974 geni->fixed = 1;
2975 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2976 break;
2977 case TGSI_OPCODE_ATOMUADD:
2978 case TGSI_OPCODE_ATOMXCHG:
2979 case TGSI_OPCODE_ATOMCAS:
2980 case TGSI_OPCODE_ATOMAND:
2981 case TGSI_OPCODE_ATOMOR:
2982 case TGSI_OPCODE_ATOMXOR:
2983 case TGSI_OPCODE_ATOMUMIN:
2984 case TGSI_OPCODE_ATOMIMIN:
2985 case TGSI_OPCODE_ATOMUMAX:
2986 case TGSI_OPCODE_ATOMIMAX:
2987 handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode()));
2988 break;
2989 case TGSI_OPCODE_IBFE:
2990 case TGSI_OPCODE_UBFE:
2991 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2992 src0 = fetchSrc(0, c);
2993 if (tgsi.getSrc(1).getFile() == TGSI_FILE_IMMEDIATE &&
2994 tgsi.getSrc(2).getFile() == TGSI_FILE_IMMEDIATE) {
2995 src1 = loadImm(NULL, tgsi.getSrc(2).getValueU32(c, info) << 8 |
2996 tgsi.getSrc(1).getValueU32(c, info));
2997 } else {
2998 src1 = fetchSrc(1, c);
2999 src2 = fetchSrc(2, c);
3000 mkOp3(OP_INSBF, TYPE_U32, src1, src2, mkImm(0x808), src1);
3001 }
3002 mkOp2(OP_EXTBF, dstTy, dst0[c], src0, src1);
3003 }
3004 break;
3005 case TGSI_OPCODE_BFI:
3006 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3007 src0 = fetchSrc(0, c);
3008 src1 = fetchSrc(1, c);
3009 src2 = fetchSrc(2, c);
3010 src3 = fetchSrc(3, c);
3011 mkOp3(OP_INSBF, TYPE_U32, src2, src3, mkImm(0x808), src2);
3012 mkOp3(OP_INSBF, TYPE_U32, dst0[c], src1, src2, src0);
3013 }
3014 break;
3015 case TGSI_OPCODE_LSB:
3016 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3017 src0 = fetchSrc(0, c);
3018 geni = mkOp2(OP_EXTBF, TYPE_U32, src0, src0, mkImm(0x2000));
3019 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
3020 geni = mkOp1(OP_BFIND, TYPE_U32, dst0[c], src0);
3021 geni->subOp = NV50_IR_SUBOP_BFIND_SAMT;
3022 }
3023 break;
3024 case TGSI_OPCODE_IMSB:
3025 case TGSI_OPCODE_UMSB:
3026 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3027 src0 = fetchSrc(0, c);
3028 mkOp1(OP_BFIND, srcTy, dst0[c], src0);
3029 }
3030 break;
3031 case TGSI_OPCODE_BREV:
3032 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3033 src0 = fetchSrc(0, c);
3034 geni = mkOp2(OP_EXTBF, TYPE_U32, dst0[c], src0, mkImm(0x2000));
3035 geni->subOp = NV50_IR_SUBOP_EXTBF_REV;
3036 }
3037 break;
3038 case TGSI_OPCODE_POPC:
3039 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3040 src0 = fetchSrc(0, c);
3041 mkOp2(OP_POPCNT, TYPE_U32, dst0[c], src0, src0);
3042 }
3043 break;
3044 case TGSI_OPCODE_INTERP_CENTROID:
3045 case TGSI_OPCODE_INTERP_SAMPLE:
3046 case TGSI_OPCODE_INTERP_OFFSET:
3047 handleINTERP(dst0);
3048 break;
3049 case TGSI_OPCODE_D2I:
3050 case TGSI_OPCODE_D2U:
3051 case TGSI_OPCODE_D2F: {
3052 int pos = 0;
3053 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3054 Value *dreg = getSSA(8);
3055 src0 = fetchSrc(0, pos);
3056 src1 = fetchSrc(0, pos + 1);
3057 mkOp2(OP_MERGE, TYPE_U64, dreg, src0, src1);
3058 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, dreg);
3059 pos += 2;
3060 }
3061 break;
3062 }
3063 case TGSI_OPCODE_I2D:
3064 case TGSI_OPCODE_U2D:
3065 case TGSI_OPCODE_F2D:
3066 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3067 Value *dreg = getSSA(8);
3068 mkCvt(OP_CVT, dstTy, dreg, srcTy, fetchSrc(0, c / 2));
3069 mkSplit(&dst0[c], 4, dreg);
3070 c++;
3071 }
3072 break;
3073 case TGSI_OPCODE_DABS:
3074 case TGSI_OPCODE_DNEG:
3075 case TGSI_OPCODE_DRCP:
3076 case TGSI_OPCODE_DSQRT:
3077 case TGSI_OPCODE_DRSQ:
3078 case TGSI_OPCODE_DTRUNC:
3079 case TGSI_OPCODE_DCEIL:
3080 case TGSI_OPCODE_DFLR:
3081 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3082 src0 = getSSA(8);
3083 Value *dst = getSSA(8), *tmp[2];
3084 tmp[0] = fetchSrc(0, c);
3085 tmp[1] = fetchSrc(0, c + 1);
3086 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3087 mkOp1(op, dstTy, dst, src0);
3088 mkSplit(&dst0[c], 4, dst);
3089 c++;
3090 }
3091 break;
3092 case TGSI_OPCODE_DFRAC:
3093 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3094 src0 = getSSA(8);
3095 Value *dst = getSSA(8), *tmp[2];
3096 tmp[0] = fetchSrc(0, c);
3097 tmp[1] = fetchSrc(0, c + 1);
3098 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3099 mkOp1(OP_FLOOR, TYPE_F64, dst, src0);
3100 mkOp2(OP_SUB, TYPE_F64, dst, src0, dst);
3101 mkSplit(&dst0[c], 4, dst);
3102 c++;
3103 }
3104 break;
3105 case TGSI_OPCODE_DSLT:
3106 case TGSI_OPCODE_DSGE:
3107 case TGSI_OPCODE_DSEQ:
3108 case TGSI_OPCODE_DSNE: {
3109 int pos = 0;
3110 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3111 Value *tmp[2];
3112
3113 src0 = getSSA(8);
3114 src1 = getSSA(8);
3115 tmp[0] = fetchSrc(0, pos);
3116 tmp[1] = fetchSrc(0, pos + 1);
3117 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3118 tmp[0] = fetchSrc(1, pos);
3119 tmp[1] = fetchSrc(1, pos + 1);
3120 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3121 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
3122 pos += 2;
3123 }
3124 break;
3125 }
3126 case TGSI_OPCODE_DADD:
3127 case TGSI_OPCODE_DMUL:
3128 case TGSI_OPCODE_DMAX:
3129 case TGSI_OPCODE_DMIN:
3130 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3131 src0 = getSSA(8);
3132 src1 = getSSA(8);
3133 Value *dst = getSSA(8), *tmp[2];
3134 tmp[0] = fetchSrc(0, c);
3135 tmp[1] = fetchSrc(0, c + 1);
3136 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3137 tmp[0] = fetchSrc(1, c);
3138 tmp[1] = fetchSrc(1, c + 1);
3139 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3140 mkOp2(op, dstTy, dst, src0, src1);
3141 mkSplit(&dst0[c], 4, dst);
3142 c++;
3143 }
3144 break;
3145 case TGSI_OPCODE_DMAD:
3146 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3147 src0 = getSSA(8);
3148 src1 = getSSA(8);
3149 src2 = getSSA(8);
3150 Value *dst = getSSA(8), *tmp[2];
3151 tmp[0] = fetchSrc(0, c);
3152 tmp[1] = fetchSrc(0, c + 1);
3153 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3154 tmp[0] = fetchSrc(1, c);
3155 tmp[1] = fetchSrc(1, c + 1);
3156 mkOp2(OP_MERGE, TYPE_U64, src1, tmp[0], tmp[1]);
3157 tmp[0] = fetchSrc(2, c);
3158 tmp[1] = fetchSrc(2, c + 1);
3159 mkOp2(OP_MERGE, TYPE_U64, src2, tmp[0], tmp[1]);
3160 mkOp3(op, dstTy, dst, src0, src1, src2);
3161 mkSplit(&dst0[c], 4, dst);
3162 c++;
3163 }
3164 break;
3165 case TGSI_OPCODE_DROUND:
3166 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3167 src0 = getSSA(8);
3168 Value *dst = getSSA(8), *tmp[2];
3169 tmp[0] = fetchSrc(0, c);
3170 tmp[1] = fetchSrc(0, c + 1);
3171 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3172 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F64, src0)
3173 ->rnd = ROUND_NI;
3174 mkSplit(&dst0[c], 4, dst);
3175 c++;
3176 }
3177 break;
3178 case TGSI_OPCODE_DSSG:
3179 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
3180 src0 = getSSA(8);
3181 Value *dst = getSSA(8), *dstF32 = getSSA(), *tmp[2];
3182 tmp[0] = fetchSrc(0, c);
3183 tmp[1] = fetchSrc(0, c + 1);
3184 mkOp2(OP_MERGE, TYPE_U64, src0, tmp[0], tmp[1]);
3185
3186 val0 = getScratch();
3187 val1 = getScratch();
3188 // The zero is wrong here since it's only 32-bit, but it works out in
3189 // the end since it gets replaced with $r63.
3190 mkCmp(OP_SET, CC_GT, TYPE_F32, val0, TYPE_F64, src0, zero);
3191 mkCmp(OP_SET, CC_LT, TYPE_F32, val1, TYPE_F64, src0, zero);
3192 mkOp2(OP_SUB, TYPE_F32, dstF32, val0, val1);
3193 mkCvt(OP_CVT, TYPE_F64, dst, TYPE_F32, dstF32);
3194 mkSplit(&dst0[c], 4, dst);
3195 c++;
3196 }
3197 break;
3198 default:
3199 ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
3200 assert(0);
3201 break;
3202 }
3203
3204 if (tgsi.dstCount()) {
3205 for (c = 0; c < 4; ++c) {
3206 if (!dst0[c])
3207 continue;
3208 if (dst0[c] != rDst0[c])
3209 mkMov(rDst0[c], dst0[c]);
3210 storeDst(0, c, rDst0[c]);
3211 }
3212 }
3213 vtxBaseValid = 0;
3214
3215 return true;
3216 }
3217
3218 void
3219 Converter::handleUserClipPlanes()
3220 {
3221 Value *res[8];
3222 int n, i, c;
3223
3224 for (c = 0; c < 4; ++c) {
3225 for (i = 0; i < info->io.genUserClip; ++i) {
3226 Symbol *sym = mkSymbol(FILE_MEMORY_CONST, info->io.ucpCBSlot,
3227 TYPE_F32, info->io.ucpBase + i * 16 + c * 4);
3228 Value *ucp = mkLoadv(TYPE_F32, sym, NULL);
3229 if (c == 0)
3230 res[i] = mkOp2v(OP_MUL, TYPE_F32, getScratch(), clipVtx[c], ucp);
3231 else
3232 mkOp3(OP_MAD, TYPE_F32, res[i], clipVtx[c], ucp, res[i]);
3233 }
3234 }
3235
3236 const int first = info->numOutputs - (info->io.genUserClip + 3) / 4;
3237
3238 for (i = 0; i < info->io.genUserClip; ++i) {
3239 n = i / 4 + first;
3240 c = i % 4;
3241 Symbol *sym =
3242 mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[n].slot[c] * 4);
3243 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, res[i]);
3244 }
3245 }
3246
3247 void
3248 Converter::exportOutputs()
3249 {
3250 for (unsigned int i = 0; i < info->numOutputs; ++i) {
3251 for (unsigned int c = 0; c < 4; ++c) {
3252 if (!oData.exists(sub.cur->values, i, c))
3253 continue;
3254 Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
3255 info->out[i].slot[c] * 4);
3256 Value *val = oData.load(sub.cur->values, i, c, NULL);
3257 if (val)
3258 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
3259 }
3260 }
3261 }
3262
3263 Converter::Converter(Program *ir, const tgsi::Source *code) : BuildUtil(ir),
3264 code(code),
3265 tgsi(NULL),
3266 tData(this), aData(this), pData(this), oData(this)
3267 {
3268 info = code->info;
3269
3270 const DataFile tFile = code->mainTempsInLMem ? FILE_MEMORY_LOCAL : FILE_GPR;
3271
3272 const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
3273 const unsigned pSize = code->fileSize(TGSI_FILE_PREDICATE);
3274 const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
3275 const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
3276
3277 tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, tFile, 0);
3278 pData.setup(TGSI_FILE_PREDICATE, 0, 0, pSize, 4, 4, FILE_PREDICATE, 0);
3279 aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_GPR, 0);
3280 oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
3281
3282 zero = mkImm((uint32_t)0);
3283
3284 vtxBaseValid = 0;
3285 }
3286
3287 Converter::~Converter()
3288 {
3289 }
3290
3291 inline const Converter::Location *
3292 Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v)
3293 {
3294 ValueMap::l_iterator it = s->values.l.find(v);
3295 return it == s->values.l.end() ? NULL : &it->second;
3296 }
3297
3298 template<typename T> inline void
3299 Converter::BindArgumentsPass::updateCallArgs(
3300 Instruction *i, void (Instruction::*setArg)(int, Value *),
3301 T (Function::*proto))
3302 {
3303 Function *g = i->asFlow()->target.fn;
3304 Subroutine *subg = conv.getSubroutine(g);
3305
3306 for (unsigned a = 0; a < (g->*proto).size(); ++a) {
3307 Value *v = (g->*proto)[a].get();
3308 const Converter::Location &l = *getValueLocation(subg, v);
3309 Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
3310
3311 (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
3312 }
3313 }
3314
3315 template<typename T> inline void
3316 Converter::BindArgumentsPass::updatePrototype(
3317 BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
3318 {
3319 (func->*updateSet)();
3320
3321 for (unsigned i = 0; i < set->getSize(); ++i) {
3322 Value *v = func->getLValue(i);
3323 const Converter::Location *l = getValueLocation(sub, v);
3324
3325 // only include values with a matching TGSI register
3326 if (set->test(i) && l && !conv.code->locals.count(*l))
3327 (func->*proto).push_back(v);
3328 }
3329 }
3330
3331 bool
3332 Converter::BindArgumentsPass::visit(Function *f)
3333 {
3334 sub = conv.getSubroutine(f);
3335
3336 for (ArrayList::Iterator bi = f->allBBlocks.iterator();
3337 !bi.end(); bi.next()) {
3338 for (Instruction *i = BasicBlock::get(bi)->getFirst();
3339 i; i = i->next) {
3340 if (i->op == OP_CALL && !i->asFlow()->builtin) {
3341 updateCallArgs(i, &Instruction::setSrc, &Function::ins);
3342 updateCallArgs(i, &Instruction::setDef, &Function::outs);
3343 }
3344 }
3345 }
3346
3347 if (func == prog->main && prog->getType() != Program::TYPE_COMPUTE)
3348 return true;
3349 updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
3350 &Function::buildLiveSets, &Function::ins);
3351 updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
3352 &Function::buildDefSets, &Function::outs);
3353
3354 return true;
3355 }
3356
3357 bool
3358 Converter::run()
3359 {
3360 BasicBlock *entry = new BasicBlock(prog->main);
3361 BasicBlock *leave = new BasicBlock(prog->main);
3362
3363 prog->main->setEntry(entry);
3364 prog->main->setExit(leave);
3365
3366 setPosition(entry, true);
3367 sub.cur = getSubroutine(prog->main);
3368
3369 if (info->io.genUserClip > 0) {
3370 for (int c = 0; c < 4; ++c)
3371 clipVtx[c] = getScratch();
3372 }
3373
3374 switch (prog->getType()) {
3375 case Program::TYPE_TESSELLATION_CONTROL:
3376 outBase = mkOp2v(
3377 OP_SUB, TYPE_U32, getSSA(),
3378 mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_LANEID, 0)),
3379 mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_INVOCATION_ID, 0)));
3380 break;
3381 case Program::TYPE_FRAGMENT: {
3382 Symbol *sv = mkSysVal(SV_POSITION, 3);
3383 fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
3384 mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
3385 break;
3386 }
3387 default:
3388 break;
3389 }
3390
3391 if (info->io.viewportId >= 0)
3392 viewport = getScratch();
3393 else
3394 viewport = NULL;
3395
3396 for (ip = 0; ip < code->scan.num_instructions; ++ip) {
3397 if (!handleInstruction(&code->insns[ip]))
3398 return false;
3399 }
3400
3401 if (!BindArgumentsPass(*this).run(prog))
3402 return false;
3403
3404 return true;
3405 }
3406
3407 } // unnamed namespace
3408
3409 namespace nv50_ir {
3410
3411 bool
3412 Program::makeFromTGSI(struct nv50_ir_prog_info *info)
3413 {
3414 tgsi::Source src(info);
3415 if (!src.scanSource())
3416 return false;
3417 tlsSize = info->bin.tlsSpace;
3418
3419 Converter builder(this, &src);
3420 return builder.run();
3421 }
3422
3423 } // namespace nv50_ir