nv50: enable texture query lod
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_from_tgsi.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 extern "C" {
24 #include "tgsi/tgsi_dump.h"
25 #include "tgsi/tgsi_scan.h"
26 #include "tgsi/tgsi_util.h"
27 }
28
29 #include <set>
30
31 #include "codegen/nv50_ir.h"
32 #include "codegen/nv50_ir_util.h"
33 #include "codegen/nv50_ir_build_util.h"
34
35 namespace tgsi {
36
37 class Source;
38
39 static nv50_ir::operation translateOpcode(uint opcode);
40 static nv50_ir::DataFile translateFile(uint file);
41 static nv50_ir::TexTarget translateTexture(uint texTarg);
42 static nv50_ir::SVSemantic translateSysVal(uint sysval);
43
44 class Instruction
45 {
46 public:
47 Instruction(const struct tgsi_full_instruction *inst) : insn(inst) { }
48
49 class SrcRegister
50 {
51 public:
52 SrcRegister(const struct tgsi_full_src_register *src)
53 : reg(src->Register),
54 fsr(src)
55 { }
56
57 SrcRegister(const struct tgsi_src_register& src) : reg(src), fsr(NULL) { }
58
59 SrcRegister(const struct tgsi_ind_register& ind)
60 : reg(tgsi_util_get_src_from_ind(&ind)),
61 fsr(NULL)
62 { }
63
64 struct tgsi_src_register offsetToSrc(struct tgsi_texture_offset off)
65 {
66 struct tgsi_src_register reg;
67 memset(&reg, 0, sizeof(reg));
68 reg.Index = off.Index;
69 reg.File = off.File;
70 reg.SwizzleX = off.SwizzleX;
71 reg.SwizzleY = off.SwizzleY;
72 reg.SwizzleZ = off.SwizzleZ;
73 return reg;
74 }
75
76 SrcRegister(const struct tgsi_texture_offset& off) :
77 reg(offsetToSrc(off)),
78 fsr(NULL)
79 { }
80
81 uint getFile() const { return reg.File; }
82
83 bool is2D() const { return reg.Dimension; }
84
85 bool isIndirect(int dim) const
86 {
87 return (dim && fsr) ? fsr->Dimension.Indirect : reg.Indirect;
88 }
89
90 int getIndex(int dim) const
91 {
92 return (dim && fsr) ? fsr->Dimension.Index : reg.Index;
93 }
94
95 int getSwizzle(int chan) const
96 {
97 return tgsi_util_get_src_register_swizzle(&reg, chan);
98 }
99
100 nv50_ir::Modifier getMod(int chan) const;
101
102 SrcRegister getIndirect(int dim) const
103 {
104 assert(fsr && isIndirect(dim));
105 if (dim)
106 return SrcRegister(fsr->DimIndirect);
107 return SrcRegister(fsr->Indirect);
108 }
109
110 uint32_t getValueU32(int c, const struct nv50_ir_prog_info *info) const
111 {
112 assert(reg.File == TGSI_FILE_IMMEDIATE);
113 assert(!reg.Absolute);
114 assert(!reg.Negate);
115 return info->immd.data[reg.Index * 4 + getSwizzle(c)];
116 }
117
118 private:
119 const struct tgsi_src_register reg;
120 const struct tgsi_full_src_register *fsr;
121 };
122
123 class DstRegister
124 {
125 public:
126 DstRegister(const struct tgsi_full_dst_register *dst)
127 : reg(dst->Register),
128 fdr(dst)
129 { }
130
131 DstRegister(const struct tgsi_dst_register& dst) : reg(dst), fdr(NULL) { }
132
133 uint getFile() const { return reg.File; }
134
135 bool is2D() const { return reg.Dimension; }
136
137 bool isIndirect(int dim) const
138 {
139 return (dim && fdr) ? fdr->Dimension.Indirect : reg.Indirect;
140 }
141
142 int getIndex(int dim) const
143 {
144 return (dim && fdr) ? fdr->Dimension.Dimension : reg.Index;
145 }
146
147 unsigned int getMask() const { return reg.WriteMask; }
148
149 bool isMasked(int chan) const { return !(getMask() & (1 << chan)); }
150
151 SrcRegister getIndirect(int dim) const
152 {
153 assert(fdr && isIndirect(dim));
154 if (dim)
155 return SrcRegister(fdr->DimIndirect);
156 return SrcRegister(fdr->Indirect);
157 }
158
159 private:
160 const struct tgsi_dst_register reg;
161 const struct tgsi_full_dst_register *fdr;
162 };
163
164 inline uint getOpcode() const { return insn->Instruction.Opcode; }
165
166 unsigned int srcCount() const { return insn->Instruction.NumSrcRegs; }
167 unsigned int dstCount() const { return insn->Instruction.NumDstRegs; }
168
169 // mask of used components of source s
170 unsigned int srcMask(unsigned int s) const;
171
172 SrcRegister getSrc(unsigned int s) const
173 {
174 assert(s < srcCount());
175 return SrcRegister(&insn->Src[s]);
176 }
177
178 DstRegister getDst(unsigned int d) const
179 {
180 assert(d < dstCount());
181 return DstRegister(&insn->Dst[d]);
182 }
183
184 SrcRegister getTexOffset(unsigned int i) const
185 {
186 assert(i < TGSI_FULL_MAX_TEX_OFFSETS);
187 return SrcRegister(insn->TexOffsets[i]);
188 }
189
190 unsigned int getNumTexOffsets() const { return insn->Texture.NumOffsets; }
191
192 bool checkDstSrcAliasing() const;
193
194 inline nv50_ir::operation getOP() const {
195 return translateOpcode(getOpcode()); }
196
197 nv50_ir::DataType inferSrcType() const;
198 nv50_ir::DataType inferDstType() const;
199
200 nv50_ir::CondCode getSetCond() const;
201
202 nv50_ir::TexInstruction::Target getTexture(const Source *, int s) const;
203
204 inline uint getLabel() { return insn->Label.Label; }
205
206 unsigned getSaturate() const { return insn->Instruction.Saturate; }
207
208 void print() const
209 {
210 tgsi_dump_instruction(insn, 1);
211 }
212
213 private:
214 const struct tgsi_full_instruction *insn;
215 };
216
217 unsigned int Instruction::srcMask(unsigned int s) const
218 {
219 unsigned int mask = insn->Dst[0].Register.WriteMask;
220
221 switch (insn->Instruction.Opcode) {
222 case TGSI_OPCODE_COS:
223 case TGSI_OPCODE_SIN:
224 return (mask & 0x8) | ((mask & 0x7) ? 0x1 : 0x0);
225 case TGSI_OPCODE_DP2:
226 return 0x3;
227 case TGSI_OPCODE_DP3:
228 return 0x7;
229 case TGSI_OPCODE_DP4:
230 case TGSI_OPCODE_DPH:
231 case TGSI_OPCODE_KILL_IF: /* WriteMask ignored */
232 return 0xf;
233 case TGSI_OPCODE_DST:
234 return mask & (s ? 0xa : 0x6);
235 case TGSI_OPCODE_EX2:
236 case TGSI_OPCODE_EXP:
237 case TGSI_OPCODE_LG2:
238 case TGSI_OPCODE_LOG:
239 case TGSI_OPCODE_POW:
240 case TGSI_OPCODE_RCP:
241 case TGSI_OPCODE_RSQ:
242 case TGSI_OPCODE_SCS:
243 return 0x1;
244 case TGSI_OPCODE_IF:
245 case TGSI_OPCODE_UIF:
246 return 0x1;
247 case TGSI_OPCODE_LIT:
248 return 0xb;
249 case TGSI_OPCODE_TEX2:
250 case TGSI_OPCODE_TXB2:
251 case TGSI_OPCODE_TXL2:
252 return (s == 0) ? 0xf : 0x3;
253 case TGSI_OPCODE_TEX:
254 case TGSI_OPCODE_TXB:
255 case TGSI_OPCODE_TXD:
256 case TGSI_OPCODE_TXL:
257 case TGSI_OPCODE_TXP:
258 case TGSI_OPCODE_LODQ:
259 {
260 const struct tgsi_instruction_texture *tex = &insn->Texture;
261
262 assert(insn->Instruction.Texture);
263
264 mask = 0x7;
265 if (insn->Instruction.Opcode != TGSI_OPCODE_TEX &&
266 insn->Instruction.Opcode != TGSI_OPCODE_TXD)
267 mask |= 0x8; /* bias, lod or proj */
268
269 switch (tex->Texture) {
270 case TGSI_TEXTURE_1D:
271 mask &= 0x9;
272 break;
273 case TGSI_TEXTURE_SHADOW1D:
274 mask &= 0xd;
275 break;
276 case TGSI_TEXTURE_1D_ARRAY:
277 case TGSI_TEXTURE_2D:
278 case TGSI_TEXTURE_RECT:
279 mask &= 0xb;
280 break;
281 case TGSI_TEXTURE_CUBE_ARRAY:
282 case TGSI_TEXTURE_SHADOW2D_ARRAY:
283 case TGSI_TEXTURE_SHADOWCUBE:
284 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
285 mask |= 0x8;
286 break;
287 default:
288 break;
289 }
290 }
291 return mask;
292 case TGSI_OPCODE_XPD:
293 {
294 unsigned int x = 0;
295 if (mask & 1) x |= 0x6;
296 if (mask & 2) x |= 0x5;
297 if (mask & 4) x |= 0x3;
298 return x;
299 }
300 default:
301 break;
302 }
303
304 return mask;
305 }
306
307 nv50_ir::Modifier Instruction::SrcRegister::getMod(int chan) const
308 {
309 nv50_ir::Modifier m(0);
310
311 if (reg.Absolute)
312 m = m | nv50_ir::Modifier(NV50_IR_MOD_ABS);
313 if (reg.Negate)
314 m = m | nv50_ir::Modifier(NV50_IR_MOD_NEG);
315 return m;
316 }
317
318 static nv50_ir::DataFile translateFile(uint file)
319 {
320 switch (file) {
321 case TGSI_FILE_CONSTANT: return nv50_ir::FILE_MEMORY_CONST;
322 case TGSI_FILE_INPUT: return nv50_ir::FILE_SHADER_INPUT;
323 case TGSI_FILE_OUTPUT: return nv50_ir::FILE_SHADER_OUTPUT;
324 case TGSI_FILE_TEMPORARY: return nv50_ir::FILE_GPR;
325 case TGSI_FILE_ADDRESS: return nv50_ir::FILE_ADDRESS;
326 case TGSI_FILE_PREDICATE: return nv50_ir::FILE_PREDICATE;
327 case TGSI_FILE_IMMEDIATE: return nv50_ir::FILE_IMMEDIATE;
328 case TGSI_FILE_SYSTEM_VALUE: return nv50_ir::FILE_SYSTEM_VALUE;
329 case TGSI_FILE_RESOURCE: return nv50_ir::FILE_MEMORY_GLOBAL;
330 case TGSI_FILE_SAMPLER:
331 case TGSI_FILE_NULL:
332 default:
333 return nv50_ir::FILE_NULL;
334 }
335 }
336
337 static nv50_ir::SVSemantic translateSysVal(uint sysval)
338 {
339 switch (sysval) {
340 case TGSI_SEMANTIC_FACE: return nv50_ir::SV_FACE;
341 case TGSI_SEMANTIC_PSIZE: return nv50_ir::SV_POINT_SIZE;
342 case TGSI_SEMANTIC_PRIMID: return nv50_ir::SV_PRIMITIVE_ID;
343 case TGSI_SEMANTIC_INSTANCEID: return nv50_ir::SV_INSTANCE_ID;
344 case TGSI_SEMANTIC_VERTEXID: return nv50_ir::SV_VERTEX_ID;
345 case TGSI_SEMANTIC_GRID_SIZE: return nv50_ir::SV_NCTAID;
346 case TGSI_SEMANTIC_BLOCK_ID: return nv50_ir::SV_CTAID;
347 case TGSI_SEMANTIC_BLOCK_SIZE: return nv50_ir::SV_NTID;
348 case TGSI_SEMANTIC_THREAD_ID: return nv50_ir::SV_TID;
349 default:
350 assert(0);
351 return nv50_ir::SV_CLOCK;
352 }
353 }
354
355 #define NV50_IR_TEX_TARG_CASE(a, b) \
356 case TGSI_TEXTURE_##a: return nv50_ir::TEX_TARGET_##b;
357
358 static nv50_ir::TexTarget translateTexture(uint tex)
359 {
360 switch (tex) {
361 NV50_IR_TEX_TARG_CASE(1D, 1D);
362 NV50_IR_TEX_TARG_CASE(2D, 2D);
363 NV50_IR_TEX_TARG_CASE(2D_MSAA, 2D_MS);
364 NV50_IR_TEX_TARG_CASE(3D, 3D);
365 NV50_IR_TEX_TARG_CASE(CUBE, CUBE);
366 NV50_IR_TEX_TARG_CASE(RECT, RECT);
367 NV50_IR_TEX_TARG_CASE(1D_ARRAY, 1D_ARRAY);
368 NV50_IR_TEX_TARG_CASE(2D_ARRAY, 2D_ARRAY);
369 NV50_IR_TEX_TARG_CASE(2D_ARRAY_MSAA, 2D_MS_ARRAY);
370 NV50_IR_TEX_TARG_CASE(CUBE_ARRAY, CUBE_ARRAY);
371 NV50_IR_TEX_TARG_CASE(SHADOW1D, 1D_SHADOW);
372 NV50_IR_TEX_TARG_CASE(SHADOW2D, 2D_SHADOW);
373 NV50_IR_TEX_TARG_CASE(SHADOWCUBE, CUBE_SHADOW);
374 NV50_IR_TEX_TARG_CASE(SHADOWRECT, RECT_SHADOW);
375 NV50_IR_TEX_TARG_CASE(SHADOW1D_ARRAY, 1D_ARRAY_SHADOW);
376 NV50_IR_TEX_TARG_CASE(SHADOW2D_ARRAY, 2D_ARRAY_SHADOW);
377 NV50_IR_TEX_TARG_CASE(SHADOWCUBE_ARRAY, CUBE_ARRAY_SHADOW);
378 NV50_IR_TEX_TARG_CASE(BUFFER, BUFFER);
379
380 case TGSI_TEXTURE_UNKNOWN:
381 default:
382 assert(!"invalid texture target");
383 return nv50_ir::TEX_TARGET_2D;
384 }
385 }
386
387 nv50_ir::DataType Instruction::inferSrcType() const
388 {
389 switch (getOpcode()) {
390 case TGSI_OPCODE_UIF:
391 case TGSI_OPCODE_AND:
392 case TGSI_OPCODE_OR:
393 case TGSI_OPCODE_XOR:
394 case TGSI_OPCODE_NOT:
395 case TGSI_OPCODE_U2F:
396 case TGSI_OPCODE_UADD:
397 case TGSI_OPCODE_UDIV:
398 case TGSI_OPCODE_UMOD:
399 case TGSI_OPCODE_UMAD:
400 case TGSI_OPCODE_UMUL:
401 case TGSI_OPCODE_UMAX:
402 case TGSI_OPCODE_UMIN:
403 case TGSI_OPCODE_USEQ:
404 case TGSI_OPCODE_USGE:
405 case TGSI_OPCODE_USLT:
406 case TGSI_OPCODE_USNE:
407 case TGSI_OPCODE_USHR:
408 case TGSI_OPCODE_UCMP:
409 case TGSI_OPCODE_ATOMUADD:
410 case TGSI_OPCODE_ATOMXCHG:
411 case TGSI_OPCODE_ATOMCAS:
412 case TGSI_OPCODE_ATOMAND:
413 case TGSI_OPCODE_ATOMOR:
414 case TGSI_OPCODE_ATOMXOR:
415 case TGSI_OPCODE_ATOMUMIN:
416 case TGSI_OPCODE_ATOMUMAX:
417 return nv50_ir::TYPE_U32;
418 case TGSI_OPCODE_I2F:
419 case TGSI_OPCODE_IDIV:
420 case TGSI_OPCODE_IMAX:
421 case TGSI_OPCODE_IMIN:
422 case TGSI_OPCODE_IABS:
423 case TGSI_OPCODE_INEG:
424 case TGSI_OPCODE_ISGE:
425 case TGSI_OPCODE_ISHR:
426 case TGSI_OPCODE_ISLT:
427 case TGSI_OPCODE_ISSG:
428 case TGSI_OPCODE_SAD: // not sure about SAD, but no one has a float version
429 case TGSI_OPCODE_MOD:
430 case TGSI_OPCODE_UARL:
431 case TGSI_OPCODE_ATOMIMIN:
432 case TGSI_OPCODE_ATOMIMAX:
433 return nv50_ir::TYPE_S32;
434 default:
435 return nv50_ir::TYPE_F32;
436 }
437 }
438
439 nv50_ir::DataType Instruction::inferDstType() const
440 {
441 switch (getOpcode()) {
442 case TGSI_OPCODE_F2U: return nv50_ir::TYPE_U32;
443 case TGSI_OPCODE_F2I: return nv50_ir::TYPE_S32;
444 case TGSI_OPCODE_FSEQ:
445 case TGSI_OPCODE_FSGE:
446 case TGSI_OPCODE_FSLT:
447 case TGSI_OPCODE_FSNE:
448 return nv50_ir::TYPE_U32;
449 case TGSI_OPCODE_I2F:
450 case TGSI_OPCODE_U2F:
451 return nv50_ir::TYPE_F32;
452 default:
453 return inferSrcType();
454 }
455 }
456
457 nv50_ir::CondCode Instruction::getSetCond() const
458 {
459 using namespace nv50_ir;
460
461 switch (getOpcode()) {
462 case TGSI_OPCODE_SLT:
463 case TGSI_OPCODE_ISLT:
464 case TGSI_OPCODE_USLT:
465 case TGSI_OPCODE_FSLT:
466 return CC_LT;
467 case TGSI_OPCODE_SLE:
468 return CC_LE;
469 case TGSI_OPCODE_SGE:
470 case TGSI_OPCODE_ISGE:
471 case TGSI_OPCODE_USGE:
472 case TGSI_OPCODE_FSGE:
473 return CC_GE;
474 case TGSI_OPCODE_SGT:
475 return CC_GT;
476 case TGSI_OPCODE_SEQ:
477 case TGSI_OPCODE_USEQ:
478 case TGSI_OPCODE_FSEQ:
479 return CC_EQ;
480 case TGSI_OPCODE_SNE:
481 case TGSI_OPCODE_FSNE:
482 return CC_NEU;
483 case TGSI_OPCODE_USNE:
484 return CC_NE;
485 case TGSI_OPCODE_SFL:
486 return CC_NEVER;
487 case TGSI_OPCODE_STR:
488 default:
489 return CC_ALWAYS;
490 }
491 }
492
493 #define NV50_IR_OPCODE_CASE(a, b) case TGSI_OPCODE_##a: return nv50_ir::OP_##b
494
495 static nv50_ir::operation translateOpcode(uint opcode)
496 {
497 switch (opcode) {
498 NV50_IR_OPCODE_CASE(ARL, SHL);
499 NV50_IR_OPCODE_CASE(MOV, MOV);
500
501 NV50_IR_OPCODE_CASE(RCP, RCP);
502 NV50_IR_OPCODE_CASE(RSQ, RSQ);
503
504 NV50_IR_OPCODE_CASE(MUL, MUL);
505 NV50_IR_OPCODE_CASE(ADD, ADD);
506
507 NV50_IR_OPCODE_CASE(MIN, MIN);
508 NV50_IR_OPCODE_CASE(MAX, MAX);
509 NV50_IR_OPCODE_CASE(SLT, SET);
510 NV50_IR_OPCODE_CASE(SGE, SET);
511 NV50_IR_OPCODE_CASE(MAD, MAD);
512 NV50_IR_OPCODE_CASE(SUB, SUB);
513
514 NV50_IR_OPCODE_CASE(FLR, FLOOR);
515 NV50_IR_OPCODE_CASE(ROUND, CVT);
516 NV50_IR_OPCODE_CASE(EX2, EX2);
517 NV50_IR_OPCODE_CASE(LG2, LG2);
518 NV50_IR_OPCODE_CASE(POW, POW);
519
520 NV50_IR_OPCODE_CASE(ABS, ABS);
521
522 NV50_IR_OPCODE_CASE(COS, COS);
523 NV50_IR_OPCODE_CASE(DDX, DFDX);
524 NV50_IR_OPCODE_CASE(DDY, DFDY);
525 NV50_IR_OPCODE_CASE(KILL, DISCARD);
526
527 NV50_IR_OPCODE_CASE(SEQ, SET);
528 NV50_IR_OPCODE_CASE(SFL, SET);
529 NV50_IR_OPCODE_CASE(SGT, SET);
530 NV50_IR_OPCODE_CASE(SIN, SIN);
531 NV50_IR_OPCODE_CASE(SLE, SET);
532 NV50_IR_OPCODE_CASE(SNE, SET);
533 NV50_IR_OPCODE_CASE(STR, SET);
534 NV50_IR_OPCODE_CASE(TEX, TEX);
535 NV50_IR_OPCODE_CASE(TXD, TXD);
536 NV50_IR_OPCODE_CASE(TXP, TEX);
537
538 NV50_IR_OPCODE_CASE(BRA, BRA);
539 NV50_IR_OPCODE_CASE(CAL, CALL);
540 NV50_IR_OPCODE_CASE(RET, RET);
541 NV50_IR_OPCODE_CASE(CMP, SLCT);
542
543 NV50_IR_OPCODE_CASE(TXB, TXB);
544
545 NV50_IR_OPCODE_CASE(DIV, DIV);
546
547 NV50_IR_OPCODE_CASE(TXL, TXL);
548
549 NV50_IR_OPCODE_CASE(CEIL, CEIL);
550 NV50_IR_OPCODE_CASE(I2F, CVT);
551 NV50_IR_OPCODE_CASE(NOT, NOT);
552 NV50_IR_OPCODE_CASE(TRUNC, TRUNC);
553 NV50_IR_OPCODE_CASE(SHL, SHL);
554
555 NV50_IR_OPCODE_CASE(AND, AND);
556 NV50_IR_OPCODE_CASE(OR, OR);
557 NV50_IR_OPCODE_CASE(MOD, MOD);
558 NV50_IR_OPCODE_CASE(XOR, XOR);
559 NV50_IR_OPCODE_CASE(SAD, SAD);
560 NV50_IR_OPCODE_CASE(TXF, TXF);
561 NV50_IR_OPCODE_CASE(TXQ, TXQ);
562 NV50_IR_OPCODE_CASE(TG4, TXG);
563 NV50_IR_OPCODE_CASE(LODQ, TXLQ);
564
565 NV50_IR_OPCODE_CASE(EMIT, EMIT);
566 NV50_IR_OPCODE_CASE(ENDPRIM, RESTART);
567
568 NV50_IR_OPCODE_CASE(KILL_IF, DISCARD);
569
570 NV50_IR_OPCODE_CASE(F2I, CVT);
571 NV50_IR_OPCODE_CASE(FSEQ, SET);
572 NV50_IR_OPCODE_CASE(FSGE, SET);
573 NV50_IR_OPCODE_CASE(FSLT, SET);
574 NV50_IR_OPCODE_CASE(FSNE, SET);
575 NV50_IR_OPCODE_CASE(IDIV, DIV);
576 NV50_IR_OPCODE_CASE(IMAX, MAX);
577 NV50_IR_OPCODE_CASE(IMIN, MIN);
578 NV50_IR_OPCODE_CASE(IABS, ABS);
579 NV50_IR_OPCODE_CASE(INEG, NEG);
580 NV50_IR_OPCODE_CASE(ISGE, SET);
581 NV50_IR_OPCODE_CASE(ISHR, SHR);
582 NV50_IR_OPCODE_CASE(ISLT, SET);
583 NV50_IR_OPCODE_CASE(F2U, CVT);
584 NV50_IR_OPCODE_CASE(U2F, CVT);
585 NV50_IR_OPCODE_CASE(UADD, ADD);
586 NV50_IR_OPCODE_CASE(UDIV, DIV);
587 NV50_IR_OPCODE_CASE(UMAD, MAD);
588 NV50_IR_OPCODE_CASE(UMAX, MAX);
589 NV50_IR_OPCODE_CASE(UMIN, MIN);
590 NV50_IR_OPCODE_CASE(UMOD, MOD);
591 NV50_IR_OPCODE_CASE(UMUL, MUL);
592 NV50_IR_OPCODE_CASE(USEQ, SET);
593 NV50_IR_OPCODE_CASE(USGE, SET);
594 NV50_IR_OPCODE_CASE(USHR, SHR);
595 NV50_IR_OPCODE_CASE(USLT, SET);
596 NV50_IR_OPCODE_CASE(USNE, SET);
597
598 NV50_IR_OPCODE_CASE(SAMPLE, TEX);
599 NV50_IR_OPCODE_CASE(SAMPLE_B, TXB);
600 NV50_IR_OPCODE_CASE(SAMPLE_C, TEX);
601 NV50_IR_OPCODE_CASE(SAMPLE_C_LZ, TEX);
602 NV50_IR_OPCODE_CASE(SAMPLE_D, TXD);
603 NV50_IR_OPCODE_CASE(SAMPLE_L, TXL);
604 NV50_IR_OPCODE_CASE(SAMPLE_I, TXF);
605 NV50_IR_OPCODE_CASE(SAMPLE_I_MS, TXF);
606 NV50_IR_OPCODE_CASE(GATHER4, TXG);
607 NV50_IR_OPCODE_CASE(SVIEWINFO, TXQ);
608
609 NV50_IR_OPCODE_CASE(ATOMUADD, ATOM);
610 NV50_IR_OPCODE_CASE(ATOMXCHG, ATOM);
611 NV50_IR_OPCODE_CASE(ATOMCAS, ATOM);
612 NV50_IR_OPCODE_CASE(ATOMAND, ATOM);
613 NV50_IR_OPCODE_CASE(ATOMOR, ATOM);
614 NV50_IR_OPCODE_CASE(ATOMXOR, ATOM);
615 NV50_IR_OPCODE_CASE(ATOMUMIN, ATOM);
616 NV50_IR_OPCODE_CASE(ATOMUMAX, ATOM);
617 NV50_IR_OPCODE_CASE(ATOMIMIN, ATOM);
618 NV50_IR_OPCODE_CASE(ATOMIMAX, ATOM);
619
620 NV50_IR_OPCODE_CASE(TEX2, TEX);
621 NV50_IR_OPCODE_CASE(TXB2, TXB);
622 NV50_IR_OPCODE_CASE(TXL2, TXL);
623
624 NV50_IR_OPCODE_CASE(END, EXIT);
625
626 default:
627 return nv50_ir::OP_NOP;
628 }
629 }
630
631 static uint16_t opcodeToSubOp(uint opcode)
632 {
633 switch (opcode) {
634 case TGSI_OPCODE_LFENCE: return NV50_IR_SUBOP_MEMBAR(L, GL);
635 case TGSI_OPCODE_SFENCE: return NV50_IR_SUBOP_MEMBAR(S, GL);
636 case TGSI_OPCODE_MFENCE: return NV50_IR_SUBOP_MEMBAR(M, GL);
637 case TGSI_OPCODE_ATOMUADD: return NV50_IR_SUBOP_ATOM_ADD;
638 case TGSI_OPCODE_ATOMXCHG: return NV50_IR_SUBOP_ATOM_EXCH;
639 case TGSI_OPCODE_ATOMCAS: return NV50_IR_SUBOP_ATOM_CAS;
640 case TGSI_OPCODE_ATOMAND: return NV50_IR_SUBOP_ATOM_AND;
641 case TGSI_OPCODE_ATOMOR: return NV50_IR_SUBOP_ATOM_OR;
642 case TGSI_OPCODE_ATOMXOR: return NV50_IR_SUBOP_ATOM_XOR;
643 case TGSI_OPCODE_ATOMUMIN: return NV50_IR_SUBOP_ATOM_MIN;
644 case TGSI_OPCODE_ATOMIMIN: return NV50_IR_SUBOP_ATOM_MIN;
645 case TGSI_OPCODE_ATOMUMAX: return NV50_IR_SUBOP_ATOM_MAX;
646 case TGSI_OPCODE_ATOMIMAX: return NV50_IR_SUBOP_ATOM_MAX;
647 default:
648 return 0;
649 }
650 }
651
652 bool Instruction::checkDstSrcAliasing() const
653 {
654 if (insn->Dst[0].Register.Indirect) // no danger if indirect, using memory
655 return false;
656
657 for (int s = 0; s < TGSI_FULL_MAX_SRC_REGISTERS; ++s) {
658 if (insn->Src[s].Register.File == TGSI_FILE_NULL)
659 break;
660 if (insn->Src[s].Register.File == insn->Dst[0].Register.File &&
661 insn->Src[s].Register.Index == insn->Dst[0].Register.Index)
662 return true;
663 }
664 return false;
665 }
666
667 class Source
668 {
669 public:
670 Source(struct nv50_ir_prog_info *);
671 ~Source();
672
673 public:
674 bool scanSource();
675 unsigned fileSize(unsigned file) const { return scan.file_max[file] + 1; }
676
677 public:
678 struct tgsi_shader_info scan;
679 struct tgsi_full_instruction *insns;
680 const struct tgsi_token *tokens;
681 struct nv50_ir_prog_info *info;
682
683 nv50_ir::DynArray tempArrays;
684 nv50_ir::DynArray immdArrays;
685
686 typedef nv50_ir::BuildUtil::Location Location;
687 // these registers are per-subroutine, cannot be used for parameter passing
688 std::set<Location> locals;
689
690 bool mainTempsInLMem;
691
692 int clipVertexOutput;
693
694 struct TextureView {
695 uint8_t target; // TGSI_TEXTURE_*
696 };
697 std::vector<TextureView> textureViews;
698
699 struct Resource {
700 uint8_t target; // TGSI_TEXTURE_*
701 bool raw;
702 uint8_t slot; // $surface index
703 };
704 std::vector<Resource> resources;
705
706 private:
707 int inferSysValDirection(unsigned sn) const;
708 bool scanDeclaration(const struct tgsi_full_declaration *);
709 bool scanInstruction(const struct tgsi_full_instruction *);
710 void scanProperty(const struct tgsi_full_property *);
711 void scanImmediate(const struct tgsi_full_immediate *);
712
713 inline bool isEdgeFlagPassthrough(const Instruction&) const;
714 };
715
716 Source::Source(struct nv50_ir_prog_info *prog) : info(prog)
717 {
718 tokens = (const struct tgsi_token *)info->bin.source;
719
720 if (prog->dbgFlags & NV50_IR_DEBUG_BASIC)
721 tgsi_dump(tokens, 0);
722
723 mainTempsInLMem = FALSE;
724 }
725
726 Source::~Source()
727 {
728 if (insns)
729 FREE(insns);
730
731 if (info->immd.data)
732 FREE(info->immd.data);
733 if (info->immd.type)
734 FREE(info->immd.type);
735 }
736
737 bool Source::scanSource()
738 {
739 unsigned insnCount = 0;
740 struct tgsi_parse_context parse;
741
742 tgsi_scan_shader(tokens, &scan);
743
744 insns = (struct tgsi_full_instruction *)MALLOC(scan.num_instructions *
745 sizeof(insns[0]));
746 if (!insns)
747 return false;
748
749 clipVertexOutput = -1;
750
751 textureViews.resize(scan.file_max[TGSI_FILE_SAMPLER_VIEW] + 1);
752 resources.resize(scan.file_max[TGSI_FILE_RESOURCE] + 1);
753
754 info->immd.bufSize = 0;
755
756 info->numInputs = scan.file_max[TGSI_FILE_INPUT] + 1;
757 info->numOutputs = scan.file_max[TGSI_FILE_OUTPUT] + 1;
758 info->numSysVals = scan.file_max[TGSI_FILE_SYSTEM_VALUE] + 1;
759
760 if (info->type == PIPE_SHADER_FRAGMENT) {
761 info->prop.fp.writesDepth = scan.writes_z;
762 info->prop.fp.usesDiscard = scan.uses_kill;
763 } else
764 if (info->type == PIPE_SHADER_GEOMETRY) {
765 info->prop.gp.instanceCount = 1; // default value
766 }
767
768 info->immd.data = (uint32_t *)MALLOC(scan.immediate_count * 16);
769 info->immd.type = (ubyte *)MALLOC(scan.immediate_count * sizeof(ubyte));
770
771 tgsi_parse_init(&parse, tokens);
772 while (!tgsi_parse_end_of_tokens(&parse)) {
773 tgsi_parse_token(&parse);
774
775 switch (parse.FullToken.Token.Type) {
776 case TGSI_TOKEN_TYPE_IMMEDIATE:
777 scanImmediate(&parse.FullToken.FullImmediate);
778 break;
779 case TGSI_TOKEN_TYPE_DECLARATION:
780 scanDeclaration(&parse.FullToken.FullDeclaration);
781 break;
782 case TGSI_TOKEN_TYPE_INSTRUCTION:
783 insns[insnCount++] = parse.FullToken.FullInstruction;
784 scanInstruction(&parse.FullToken.FullInstruction);
785 break;
786 case TGSI_TOKEN_TYPE_PROPERTY:
787 scanProperty(&parse.FullToken.FullProperty);
788 break;
789 default:
790 INFO("unknown TGSI token type: %d\n", parse.FullToken.Token.Type);
791 break;
792 }
793 }
794 tgsi_parse_free(&parse);
795
796 if (mainTempsInLMem)
797 info->bin.tlsSpace += (scan.file_max[TGSI_FILE_TEMPORARY] + 1) * 16;
798
799 if (info->io.genUserClip > 0) {
800 info->io.clipDistanceMask = (1 << info->io.genUserClip) - 1;
801
802 const unsigned int nOut = (info->io.genUserClip + 3) / 4;
803
804 for (unsigned int n = 0; n < nOut; ++n) {
805 unsigned int i = info->numOutputs++;
806 info->out[i].id = i;
807 info->out[i].sn = TGSI_SEMANTIC_CLIPDIST;
808 info->out[i].si = n;
809 info->out[i].mask = info->io.clipDistanceMask >> (n * 4);
810 }
811 }
812
813 return info->assignSlots(info) == 0;
814 }
815
816 void Source::scanProperty(const struct tgsi_full_property *prop)
817 {
818 switch (prop->Property.PropertyName) {
819 case TGSI_PROPERTY_GS_OUTPUT_PRIM:
820 info->prop.gp.outputPrim = prop->u[0].Data;
821 break;
822 case TGSI_PROPERTY_GS_INPUT_PRIM:
823 info->prop.gp.inputPrim = prop->u[0].Data;
824 break;
825 case TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES:
826 info->prop.gp.maxVertices = prop->u[0].Data;
827 break;
828 #if 0
829 case TGSI_PROPERTY_GS_INSTANCE_COUNT:
830 info->prop.gp.instanceCount = prop->u[0].Data;
831 break;
832 #endif
833 case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
834 info->prop.fp.separateFragData = TRUE;
835 break;
836 case TGSI_PROPERTY_FS_COORD_ORIGIN:
837 case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
838 // we don't care
839 break;
840 case TGSI_PROPERTY_VS_PROHIBIT_UCPS:
841 info->io.genUserClip = -1;
842 break;
843 default:
844 INFO("unhandled TGSI property %d\n", prop->Property.PropertyName);
845 break;
846 }
847 }
848
849 void Source::scanImmediate(const struct tgsi_full_immediate *imm)
850 {
851 const unsigned n = info->immd.count++;
852
853 assert(n < scan.immediate_count);
854
855 for (int c = 0; c < 4; ++c)
856 info->immd.data[n * 4 + c] = imm->u[c].Uint;
857
858 info->immd.type[n] = imm->Immediate.DataType;
859 }
860
861 int Source::inferSysValDirection(unsigned sn) const
862 {
863 switch (sn) {
864 case TGSI_SEMANTIC_INSTANCEID:
865 case TGSI_SEMANTIC_VERTEXID:
866 return 1;
867 case TGSI_SEMANTIC_LAYER:
868 #if 0
869 case TGSI_SEMANTIC_VIEWPORTINDEX:
870 return 0;
871 #endif
872 case TGSI_SEMANTIC_PRIMID:
873 return (info->type == PIPE_SHADER_FRAGMENT) ? 1 : 0;
874 default:
875 return 0;
876 }
877 }
878
879 bool Source::scanDeclaration(const struct tgsi_full_declaration *decl)
880 {
881 unsigned i, c;
882 unsigned sn = TGSI_SEMANTIC_GENERIC;
883 unsigned si = 0;
884 const unsigned first = decl->Range.First, last = decl->Range.Last;
885
886 if (decl->Declaration.Semantic) {
887 sn = decl->Semantic.Name;
888 si = decl->Semantic.Index;
889 }
890
891 if (decl->Declaration.Local) {
892 for (i = first; i <= last; ++i) {
893 for (c = 0; c < 4; ++c) {
894 locals.insert(
895 Location(decl->Declaration.File, decl->Dim.Index2D, i, c));
896 }
897 }
898 }
899
900 switch (decl->Declaration.File) {
901 case TGSI_FILE_INPUT:
902 if (info->type == PIPE_SHADER_VERTEX) {
903 // all vertex attributes are equal
904 for (i = first; i <= last; ++i) {
905 info->in[i].sn = TGSI_SEMANTIC_GENERIC;
906 info->in[i].si = i;
907 }
908 } else {
909 for (i = first; i <= last; ++i, ++si) {
910 info->in[i].id = i;
911 info->in[i].sn = sn;
912 info->in[i].si = si;
913 if (info->type == PIPE_SHADER_FRAGMENT) {
914 // translate interpolation mode
915 switch (decl->Interp.Interpolate) {
916 case TGSI_INTERPOLATE_CONSTANT:
917 info->in[i].flat = 1;
918 break;
919 case TGSI_INTERPOLATE_COLOR:
920 info->in[i].sc = 1;
921 break;
922 case TGSI_INTERPOLATE_LINEAR:
923 info->in[i].linear = 1;
924 break;
925 default:
926 break;
927 }
928 if (decl->Interp.Centroid)
929 info->in[i].centroid = 1;
930 }
931 }
932 }
933 break;
934 case TGSI_FILE_OUTPUT:
935 for (i = first; i <= last; ++i, ++si) {
936 switch (sn) {
937 case TGSI_SEMANTIC_POSITION:
938 if (info->type == PIPE_SHADER_FRAGMENT)
939 info->io.fragDepth = i;
940 else
941 if (clipVertexOutput < 0)
942 clipVertexOutput = i;
943 break;
944 case TGSI_SEMANTIC_COLOR:
945 if (info->type == PIPE_SHADER_FRAGMENT)
946 info->prop.fp.numColourResults++;
947 break;
948 case TGSI_SEMANTIC_EDGEFLAG:
949 info->io.edgeFlagOut = i;
950 break;
951 case TGSI_SEMANTIC_CLIPVERTEX:
952 clipVertexOutput = i;
953 break;
954 case TGSI_SEMANTIC_CLIPDIST:
955 info->io.clipDistanceMask |=
956 decl->Declaration.UsageMask << (si * 4);
957 info->io.genUserClip = -1;
958 break;
959 default:
960 break;
961 }
962 info->out[i].id = i;
963 info->out[i].sn = sn;
964 info->out[i].si = si;
965 }
966 break;
967 case TGSI_FILE_SYSTEM_VALUE:
968 switch (sn) {
969 case TGSI_SEMANTIC_INSTANCEID:
970 info->io.instanceId = first;
971 break;
972 case TGSI_SEMANTIC_VERTEXID:
973 info->io.vertexId = first;
974 break;
975 default:
976 break;
977 }
978 for (i = first; i <= last; ++i, ++si) {
979 info->sv[i].sn = sn;
980 info->sv[i].si = si;
981 info->sv[i].input = inferSysValDirection(sn);
982 }
983 break;
984 case TGSI_FILE_RESOURCE:
985 for (i = first; i <= last; ++i) {
986 resources[i].target = decl->Resource.Resource;
987 resources[i].raw = decl->Resource.Raw;
988 resources[i].slot = i;
989 }
990 break;
991 case TGSI_FILE_SAMPLER_VIEW:
992 for (i = first; i <= last; ++i)
993 textureViews[i].target = decl->SamplerView.Resource;
994 break;
995 case TGSI_FILE_NULL:
996 case TGSI_FILE_TEMPORARY:
997 case TGSI_FILE_ADDRESS:
998 case TGSI_FILE_CONSTANT:
999 case TGSI_FILE_IMMEDIATE:
1000 case TGSI_FILE_PREDICATE:
1001 case TGSI_FILE_SAMPLER:
1002 break;
1003 default:
1004 ERROR("unhandled TGSI_FILE %d\n", decl->Declaration.File);
1005 return false;
1006 }
1007 return true;
1008 }
1009
1010 inline bool Source::isEdgeFlagPassthrough(const Instruction& insn) const
1011 {
1012 return insn.getOpcode() == TGSI_OPCODE_MOV &&
1013 insn.getDst(0).getIndex(0) == info->io.edgeFlagOut &&
1014 insn.getSrc(0).getFile() == TGSI_FILE_INPUT;
1015 }
1016
1017 bool Source::scanInstruction(const struct tgsi_full_instruction *inst)
1018 {
1019 Instruction insn(inst);
1020
1021 if (insn.getOpcode() == TGSI_OPCODE_BARRIER)
1022 info->numBarriers = 1;
1023
1024 if (insn.dstCount()) {
1025 if (insn.getDst(0).getFile() == TGSI_FILE_OUTPUT) {
1026 Instruction::DstRegister dst = insn.getDst(0);
1027
1028 if (dst.isIndirect(0))
1029 for (unsigned i = 0; i < info->numOutputs; ++i)
1030 info->out[i].mask = 0xf;
1031 else
1032 info->out[dst.getIndex(0)].mask |= dst.getMask();
1033
1034 if (info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PSIZE ||
1035 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_PRIMID ||
1036 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_LAYER ||
1037 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_VIEWPORT_INDEX ||
1038 info->out[dst.getIndex(0)].sn == TGSI_SEMANTIC_FOG)
1039 info->out[dst.getIndex(0)].mask &= 1;
1040
1041 if (isEdgeFlagPassthrough(insn))
1042 info->io.edgeFlagIn = insn.getSrc(0).getIndex(0);
1043 } else
1044 if (insn.getDst(0).getFile() == TGSI_FILE_TEMPORARY) {
1045 if (insn.getDst(0).isIndirect(0))
1046 mainTempsInLMem = TRUE;
1047 }
1048 }
1049
1050 for (unsigned s = 0; s < insn.srcCount(); ++s) {
1051 Instruction::SrcRegister src = insn.getSrc(s);
1052 if (src.getFile() == TGSI_FILE_TEMPORARY) {
1053 if (src.isIndirect(0))
1054 mainTempsInLMem = TRUE;
1055 } else
1056 if (src.getFile() == TGSI_FILE_RESOURCE) {
1057 if (src.getIndex(0) == TGSI_RESOURCE_GLOBAL)
1058 info->io.globalAccess |= (insn.getOpcode() == TGSI_OPCODE_LOAD) ?
1059 0x1 : 0x2;
1060 }
1061 if (src.getFile() != TGSI_FILE_INPUT)
1062 continue;
1063 unsigned mask = insn.srcMask(s);
1064
1065 if (src.isIndirect(0)) {
1066 for (unsigned i = 0; i < info->numInputs; ++i)
1067 info->in[i].mask = 0xf;
1068 } else {
1069 const int i = src.getIndex(0);
1070 for (unsigned c = 0; c < 4; ++c) {
1071 if (!(mask & (1 << c)))
1072 continue;
1073 int k = src.getSwizzle(c);
1074 if (k <= TGSI_SWIZZLE_W)
1075 info->in[i].mask |= 1 << k;
1076 }
1077 switch (info->in[i].sn) {
1078 case TGSI_SEMANTIC_PSIZE:
1079 case TGSI_SEMANTIC_PRIMID:
1080 case TGSI_SEMANTIC_FOG:
1081 info->in[i].mask &= 0x1;
1082 break;
1083 case TGSI_SEMANTIC_PCOORD:
1084 info->in[i].mask &= 0x3;
1085 break;
1086 default:
1087 break;
1088 }
1089 }
1090 }
1091 return true;
1092 }
1093
1094 nv50_ir::TexInstruction::Target
1095 Instruction::getTexture(const tgsi::Source *code, int s) const
1096 {
1097 // XXX: indirect access
1098 unsigned int r;
1099
1100 switch (getSrc(s).getFile()) {
1101 case TGSI_FILE_RESOURCE:
1102 r = getSrc(s).getIndex(0);
1103 return translateTexture(code->resources.at(r).target);
1104 case TGSI_FILE_SAMPLER_VIEW:
1105 r = getSrc(s).getIndex(0);
1106 return translateTexture(code->textureViews.at(r).target);
1107 default:
1108 return translateTexture(insn->Texture.Texture);
1109 }
1110 }
1111
1112 } // namespace tgsi
1113
1114 namespace {
1115
1116 using namespace nv50_ir;
1117
1118 class Converter : public BuildUtil
1119 {
1120 public:
1121 Converter(Program *, const tgsi::Source *);
1122 ~Converter();
1123
1124 bool run();
1125
1126 private:
1127 struct Subroutine
1128 {
1129 Subroutine(Function *f) : f(f) { }
1130 Function *f;
1131 ValueMap values;
1132 };
1133
1134 Value *shiftAddress(Value *);
1135 Value *getVertexBase(int s);
1136 DataArray *getArrayForFile(unsigned file, int idx);
1137 Value *fetchSrc(int s, int c);
1138 Value *acquireDst(int d, int c);
1139 void storeDst(int d, int c, Value *);
1140
1141 Value *fetchSrc(const tgsi::Instruction::SrcRegister src, int c, Value *ptr);
1142 void storeDst(const tgsi::Instruction::DstRegister dst, int c,
1143 Value *val, Value *ptr);
1144
1145 Value *applySrcMod(Value *, int s, int c);
1146
1147 Symbol *makeSym(uint file, int fileIndex, int idx, int c, uint32_t addr);
1148 Symbol *srcToSym(tgsi::Instruction::SrcRegister, int c);
1149 Symbol *dstToSym(tgsi::Instruction::DstRegister, int c);
1150
1151 bool handleInstruction(const struct tgsi_full_instruction *);
1152 void exportOutputs();
1153 inline Subroutine *getSubroutine(unsigned ip);
1154 inline Subroutine *getSubroutine(Function *);
1155 inline bool isEndOfSubroutine(uint ip);
1156
1157 void loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask);
1158
1159 // R,S,L,C,Dx,Dy encode TGSI sources for respective values (0xSf for auto)
1160 void setTexRS(TexInstruction *, unsigned int& s, int R, int S);
1161 void handleTEX(Value *dst0[4], int R, int S, int L, int C, int Dx, int Dy);
1162 void handleTXF(Value *dst0[4], int R, int L_M);
1163 void handleTXQ(Value *dst0[4], enum TexQuery);
1164 void handleLIT(Value *dst0[4]);
1165 void handleUserClipPlanes();
1166
1167 Symbol *getResourceBase(int r);
1168 void getResourceCoords(std::vector<Value *>&, int r, int s);
1169
1170 void handleLOAD(Value *dst0[4]);
1171 void handleSTORE();
1172 void handleATOM(Value *dst0[4], DataType, uint16_t subOp);
1173
1174 Value *interpolate(tgsi::Instruction::SrcRegister, int c, Value *ptr);
1175
1176 void insertConvergenceOps(BasicBlock *conv, BasicBlock *fork);
1177
1178 Value *buildDot(int dim);
1179
1180 class BindArgumentsPass : public Pass {
1181 public:
1182 BindArgumentsPass(Converter &conv) : conv(conv) { }
1183
1184 private:
1185 Converter &conv;
1186 Subroutine *sub;
1187
1188 inline const Location *getValueLocation(Subroutine *, Value *);
1189
1190 template<typename T> inline void
1191 updateCallArgs(Instruction *i, void (Instruction::*setArg)(int, Value *),
1192 T (Function::*proto));
1193
1194 template<typename T> inline void
1195 updatePrototype(BitSet *set, void (Function::*updateSet)(),
1196 T (Function::*proto));
1197
1198 protected:
1199 bool visit(Function *);
1200 bool visit(BasicBlock *bb) { return false; }
1201 };
1202
1203 private:
1204 const struct tgsi::Source *code;
1205 const struct nv50_ir_prog_info *info;
1206
1207 struct {
1208 std::map<unsigned, Subroutine> map;
1209 Subroutine *cur;
1210 } sub;
1211
1212 uint ip; // instruction pointer
1213
1214 tgsi::Instruction tgsi;
1215
1216 DataType dstTy;
1217 DataType srcTy;
1218
1219 DataArray tData; // TGSI_FILE_TEMPORARY
1220 DataArray aData; // TGSI_FILE_ADDRESS
1221 DataArray pData; // TGSI_FILE_PREDICATE
1222 DataArray oData; // TGSI_FILE_OUTPUT (if outputs in registers)
1223
1224 Value *zero;
1225 Value *fragCoord[4];
1226 Value *clipVtx[4];
1227
1228 Value *vtxBase[5]; // base address of vertex in primitive (for TP/GP)
1229 uint8_t vtxBaseValid;
1230
1231 Stack condBBs; // fork BB, then else clause BB
1232 Stack joinBBs; // fork BB, for inserting join ops on ENDIF
1233 Stack loopBBs; // loop headers
1234 Stack breakBBs; // end of / after loop
1235 };
1236
1237 Symbol *
1238 Converter::srcToSym(tgsi::Instruction::SrcRegister src, int c)
1239 {
1240 const int swz = src.getSwizzle(c);
1241
1242 return makeSym(src.getFile(),
1243 src.is2D() ? src.getIndex(1) : 0,
1244 src.isIndirect(0) ? -1 : src.getIndex(0), swz,
1245 src.getIndex(0) * 16 + swz * 4);
1246 }
1247
1248 Symbol *
1249 Converter::dstToSym(tgsi::Instruction::DstRegister dst, int c)
1250 {
1251 return makeSym(dst.getFile(),
1252 dst.is2D() ? dst.getIndex(1) : 0,
1253 dst.isIndirect(0) ? -1 : dst.getIndex(0), c,
1254 dst.getIndex(0) * 16 + c * 4);
1255 }
1256
1257 Symbol *
1258 Converter::makeSym(uint tgsiFile, int fileIdx, int idx, int c, uint32_t address)
1259 {
1260 Symbol *sym = new_Symbol(prog, tgsi::translateFile(tgsiFile));
1261
1262 sym->reg.fileIndex = fileIdx;
1263
1264 if (idx >= 0) {
1265 if (sym->reg.file == FILE_SHADER_INPUT)
1266 sym->setOffset(info->in[idx].slot[c] * 4);
1267 else
1268 if (sym->reg.file == FILE_SHADER_OUTPUT)
1269 sym->setOffset(info->out[idx].slot[c] * 4);
1270 else
1271 if (sym->reg.file == FILE_SYSTEM_VALUE)
1272 sym->setSV(tgsi::translateSysVal(info->sv[idx].sn), c);
1273 else
1274 sym->setOffset(address);
1275 } else {
1276 sym->setOffset(address);
1277 }
1278 return sym;
1279 }
1280
1281 static inline uint8_t
1282 translateInterpMode(const struct nv50_ir_varying *var, operation& op)
1283 {
1284 uint8_t mode = NV50_IR_INTERP_PERSPECTIVE;
1285
1286 if (var->flat)
1287 mode = NV50_IR_INTERP_FLAT;
1288 else
1289 if (var->linear)
1290 mode = NV50_IR_INTERP_LINEAR;
1291 else
1292 if (var->sc)
1293 mode = NV50_IR_INTERP_SC;
1294
1295 op = (mode == NV50_IR_INTERP_PERSPECTIVE || mode == NV50_IR_INTERP_SC)
1296 ? OP_PINTERP : OP_LINTERP;
1297
1298 if (var->centroid)
1299 mode |= NV50_IR_INTERP_CENTROID;
1300
1301 return mode;
1302 }
1303
1304 Value *
1305 Converter::interpolate(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1306 {
1307 operation op;
1308
1309 // XXX: no way to know interpolation mode if we don't know what's accessed
1310 const uint8_t mode = translateInterpMode(&info->in[ptr ? 0 :
1311 src.getIndex(0)], op);
1312
1313 Instruction *insn = new_Instruction(func, op, TYPE_F32);
1314
1315 insn->setDef(0, getScratch());
1316 insn->setSrc(0, srcToSym(src, c));
1317 if (op == OP_PINTERP)
1318 insn->setSrc(1, fragCoord[3]);
1319 if (ptr)
1320 insn->setIndirect(0, 0, ptr);
1321
1322 insn->setInterpolate(mode);
1323
1324 bb->insertTail(insn);
1325 return insn->getDef(0);
1326 }
1327
1328 Value *
1329 Converter::applySrcMod(Value *val, int s, int c)
1330 {
1331 Modifier m = tgsi.getSrc(s).getMod(c);
1332 DataType ty = tgsi.inferSrcType();
1333
1334 if (m & Modifier(NV50_IR_MOD_ABS))
1335 val = mkOp1v(OP_ABS, ty, getScratch(), val);
1336
1337 if (m & Modifier(NV50_IR_MOD_NEG))
1338 val = mkOp1v(OP_NEG, ty, getScratch(), val);
1339
1340 return val;
1341 }
1342
1343 Value *
1344 Converter::getVertexBase(int s)
1345 {
1346 assert(s < 5);
1347 if (!(vtxBaseValid & (1 << s))) {
1348 const int index = tgsi.getSrc(s).getIndex(1);
1349 Value *rel = NULL;
1350 if (tgsi.getSrc(s).isIndirect(1))
1351 rel = fetchSrc(tgsi.getSrc(s).getIndirect(1), 0, NULL);
1352 vtxBaseValid |= 1 << s;
1353 vtxBase[s] = mkOp2v(OP_PFETCH, TYPE_U32, getSSA(4, FILE_ADDRESS),
1354 mkImm(index), rel);
1355 }
1356 return vtxBase[s];
1357 }
1358
1359 Value *
1360 Converter::fetchSrc(int s, int c)
1361 {
1362 Value *res;
1363 Value *ptr = NULL, *dimRel = NULL;
1364
1365 tgsi::Instruction::SrcRegister src = tgsi.getSrc(s);
1366
1367 if (src.isIndirect(0))
1368 ptr = fetchSrc(src.getIndirect(0), 0, NULL);
1369
1370 if (src.is2D()) {
1371 switch (src.getFile()) {
1372 case TGSI_FILE_INPUT:
1373 dimRel = getVertexBase(s);
1374 break;
1375 case TGSI_FILE_CONSTANT:
1376 // on NVC0, this is valid and c{I+J}[k] == cI[(J << 16) + k]
1377 if (src.isIndirect(1))
1378 dimRel = fetchSrc(src.getIndirect(1), 0, 0);
1379 break;
1380 default:
1381 break;
1382 }
1383 }
1384
1385 res = fetchSrc(src, c, ptr);
1386
1387 if (dimRel)
1388 res->getInsn()->setIndirect(0, 1, dimRel);
1389
1390 return applySrcMod(res, s, c);
1391 }
1392
1393 Converter::DataArray *
1394 Converter::getArrayForFile(unsigned file, int idx)
1395 {
1396 switch (file) {
1397 case TGSI_FILE_TEMPORARY:
1398 return &tData;
1399 case TGSI_FILE_PREDICATE:
1400 return &pData;
1401 case TGSI_FILE_ADDRESS:
1402 return &aData;
1403 case TGSI_FILE_OUTPUT:
1404 assert(prog->getType() == Program::TYPE_FRAGMENT);
1405 return &oData;
1406 default:
1407 assert(!"invalid/unhandled TGSI source file");
1408 return NULL;
1409 }
1410 }
1411
1412 Value *
1413 Converter::shiftAddress(Value *index)
1414 {
1415 if (!index)
1416 return NULL;
1417 return mkOp2v(OP_SHL, TYPE_U32, getSSA(4, FILE_ADDRESS), index, mkImm(4));
1418 }
1419
1420 Value *
1421 Converter::fetchSrc(tgsi::Instruction::SrcRegister src, int c, Value *ptr)
1422 {
1423 const int idx2d = src.is2D() ? src.getIndex(1) : 0;
1424 const int idx = src.getIndex(0);
1425 const int swz = src.getSwizzle(c);
1426
1427 switch (src.getFile()) {
1428 case TGSI_FILE_IMMEDIATE:
1429 assert(!ptr);
1430 return loadImm(NULL, info->immd.data[idx * 4 + swz]);
1431 case TGSI_FILE_CONSTANT:
1432 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1433 case TGSI_FILE_INPUT:
1434 if (prog->getType() == Program::TYPE_FRAGMENT) {
1435 // don't load masked inputs, won't be assigned a slot
1436 if (!ptr && !(info->in[idx].mask & (1 << swz)))
1437 return loadImm(NULL, swz == TGSI_SWIZZLE_W ? 1.0f : 0.0f);
1438 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_FACE)
1439 return mkOp1v(OP_RDSV, TYPE_F32, getSSA(), mkSysVal(SV_FACE, 0));
1440 return interpolate(src, c, shiftAddress(ptr));
1441 } else
1442 if (prog->getType() == Program::TYPE_GEOMETRY) {
1443 if (!ptr && info->in[idx].sn == TGSI_SEMANTIC_PRIMID)
1444 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), mkSysVal(SV_PRIMITIVE_ID, 0));
1445 // XXX: This is going to be a problem with scalar arrays, i.e. when
1446 // we cannot assume that the address is given in units of vec4.
1447 //
1448 // nv50 and nvc0 need different things here, so let the lowering
1449 // passes decide what to do with the address
1450 if (ptr)
1451 return mkLoadv(TYPE_U32, srcToSym(src, c), ptr);
1452 }
1453 return mkLoadv(TYPE_U32, srcToSym(src, c), shiftAddress(ptr));
1454 case TGSI_FILE_OUTPUT:
1455 assert(!"load from output file");
1456 return NULL;
1457 case TGSI_FILE_SYSTEM_VALUE:
1458 assert(!ptr);
1459 return mkOp1v(OP_RDSV, TYPE_U32, getSSA(), srcToSym(src, c));
1460 default:
1461 return getArrayForFile(src.getFile(), idx2d)->load(
1462 sub.cur->values, idx, swz, shiftAddress(ptr));
1463 }
1464 }
1465
1466 Value *
1467 Converter::acquireDst(int d, int c)
1468 {
1469 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1470 const unsigned f = dst.getFile();
1471 const int idx = dst.getIndex(0);
1472 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1473
1474 if (dst.isMasked(c) || f == TGSI_FILE_RESOURCE)
1475 return NULL;
1476
1477 if (dst.isIndirect(0) ||
1478 f == TGSI_FILE_SYSTEM_VALUE ||
1479 (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT))
1480 return getScratch();
1481
1482 return getArrayForFile(f, idx2d)-> acquire(sub.cur->values, idx, c);
1483 }
1484
1485 void
1486 Converter::storeDst(int d, int c, Value *val)
1487 {
1488 const tgsi::Instruction::DstRegister dst = tgsi.getDst(d);
1489
1490 switch (tgsi.getSaturate()) {
1491 case TGSI_SAT_NONE:
1492 break;
1493 case TGSI_SAT_ZERO_ONE:
1494 mkOp1(OP_SAT, dstTy, val, val);
1495 break;
1496 case TGSI_SAT_MINUS_PLUS_ONE:
1497 mkOp2(OP_MAX, dstTy, val, val, mkImm(-1.0f));
1498 mkOp2(OP_MIN, dstTy, val, val, mkImm(+1.0f));
1499 break;
1500 default:
1501 assert(!"invalid saturation mode");
1502 break;
1503 }
1504
1505 Value *ptr = NULL;
1506 if (dst.isIndirect(0))
1507 ptr = shiftAddress(fetchSrc(dst.getIndirect(0), 0, NULL));
1508
1509 if (info->io.genUserClip > 0 &&
1510 dst.getFile() == TGSI_FILE_OUTPUT &&
1511 !dst.isIndirect(0) && dst.getIndex(0) == code->clipVertexOutput) {
1512 mkMov(clipVtx[c], val);
1513 val = clipVtx[c];
1514 }
1515
1516 storeDst(dst, c, val, ptr);
1517 }
1518
1519 void
1520 Converter::storeDst(const tgsi::Instruction::DstRegister dst, int c,
1521 Value *val, Value *ptr)
1522 {
1523 const unsigned f = dst.getFile();
1524 const int idx = dst.getIndex(0);
1525 const int idx2d = dst.is2D() ? dst.getIndex(1) : 0;
1526
1527 if (f == TGSI_FILE_SYSTEM_VALUE) {
1528 assert(!ptr);
1529 mkOp2(OP_WRSV, TYPE_U32, NULL, dstToSym(dst, c), val);
1530 } else
1531 if (f == TGSI_FILE_OUTPUT && prog->getType() != Program::TYPE_FRAGMENT) {
1532 if (ptr || (info->out[idx].mask & (1 << c)))
1533 mkStore(OP_EXPORT, TYPE_U32, dstToSym(dst, c), ptr, val);
1534 } else
1535 if (f == TGSI_FILE_TEMPORARY ||
1536 f == TGSI_FILE_PREDICATE ||
1537 f == TGSI_FILE_ADDRESS ||
1538 f == TGSI_FILE_OUTPUT) {
1539 getArrayForFile(f, idx2d)->store(sub.cur->values, idx, c, ptr, val);
1540 } else {
1541 assert(!"invalid dst file");
1542 }
1543 }
1544
1545 #define FOR_EACH_DST_ENABLED_CHANNEL(d, chan, inst) \
1546 for (chan = 0; chan < 4; ++chan) \
1547 if (!inst.getDst(d).isMasked(chan))
1548
1549 Value *
1550 Converter::buildDot(int dim)
1551 {
1552 assert(dim > 0);
1553
1554 Value *src0 = fetchSrc(0, 0), *src1 = fetchSrc(1, 0);
1555 Value *dotp = getScratch();
1556
1557 mkOp2(OP_MUL, TYPE_F32, dotp, src0, src1);
1558
1559 for (int c = 1; c < dim; ++c) {
1560 src0 = fetchSrc(0, c);
1561 src1 = fetchSrc(1, c);
1562 mkOp3(OP_MAD, TYPE_F32, dotp, src0, src1, dotp);
1563 }
1564 return dotp;
1565 }
1566
1567 void
1568 Converter::insertConvergenceOps(BasicBlock *conv, BasicBlock *fork)
1569 {
1570 FlowInstruction *join = new_FlowInstruction(func, OP_JOIN, NULL);
1571 join->fixed = 1;
1572 conv->insertHead(join);
1573
1574 fork->joinAt = new_FlowInstruction(func, OP_JOINAT, conv);
1575 fork->insertBefore(fork->getExit(), fork->joinAt);
1576 }
1577
1578 void
1579 Converter::setTexRS(TexInstruction *tex, unsigned int& s, int R, int S)
1580 {
1581 unsigned rIdx = 0, sIdx = 0;
1582
1583 if (R >= 0)
1584 rIdx = tgsi.getSrc(R).getIndex(0);
1585 if (S >= 0)
1586 sIdx = tgsi.getSrc(S).getIndex(0);
1587
1588 tex->setTexture(tgsi.getTexture(code, R), rIdx, sIdx);
1589
1590 if (tgsi.getSrc(R).isIndirect(0)) {
1591 tex->tex.rIndirectSrc = s;
1592 tex->setSrc(s++, fetchSrc(tgsi.getSrc(R).getIndirect(0), 0, NULL));
1593 }
1594 if (S >= 0 && tgsi.getSrc(S).isIndirect(0)) {
1595 tex->tex.sIndirectSrc = s;
1596 tex->setSrc(s++, fetchSrc(tgsi.getSrc(S).getIndirect(0), 0, NULL));
1597 }
1598 }
1599
1600 void
1601 Converter::handleTXQ(Value *dst0[4], enum TexQuery query)
1602 {
1603 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1604 tex->tex.query = query;
1605 unsigned int c, d;
1606
1607 for (d = 0, c = 0; c < 4; ++c) {
1608 if (!dst0[c])
1609 continue;
1610 tex->tex.mask |= 1 << c;
1611 tex->setDef(d++, dst0[c]);
1612 }
1613 tex->setSrc((c = 0), fetchSrc(0, 0)); // mip level
1614
1615 setTexRS(tex, c, 1, -1);
1616
1617 bb->insertTail(tex);
1618 }
1619
1620 void
1621 Converter::loadProjTexCoords(Value *dst[4], Value *src[4], unsigned int mask)
1622 {
1623 Value *proj = fetchSrc(0, 3);
1624 Instruction *insn = proj->getUniqueInsn();
1625 int c;
1626
1627 if (insn->op == OP_PINTERP) {
1628 bb->insertTail(insn = cloneForward(func, insn));
1629 insn->op = OP_LINTERP;
1630 insn->setInterpolate(NV50_IR_INTERP_LINEAR | insn->getSampleMode());
1631 insn->setSrc(1, NULL);
1632 proj = insn->getDef(0);
1633 }
1634 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), proj);
1635
1636 for (c = 0; c < 4; ++c) {
1637 if (!(mask & (1 << c)))
1638 continue;
1639 if ((insn = src[c]->getUniqueInsn())->op != OP_PINTERP)
1640 continue;
1641 mask &= ~(1 << c);
1642
1643 bb->insertTail(insn = cloneForward(func, insn));
1644 insn->setInterpolate(NV50_IR_INTERP_PERSPECTIVE | insn->getSampleMode());
1645 insn->setSrc(1, proj);
1646 dst[c] = insn->getDef(0);
1647 }
1648 if (!mask)
1649 return;
1650
1651 proj = mkOp1v(OP_RCP, TYPE_F32, getSSA(), fetchSrc(0, 3));
1652
1653 for (c = 0; c < 4; ++c)
1654 if (mask & (1 << c))
1655 dst[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), src[c], proj);
1656 }
1657
1658 // order of nv50 ir sources: x y z layer lod/bias shadow
1659 // order of TGSI TEX sources: x y z layer shadow lod/bias
1660 // lowering will finally set the hw specific order (like array first on nvc0)
1661 void
1662 Converter::handleTEX(Value *dst[4], int R, int S, int L, int C, int Dx, int Dy)
1663 {
1664 Value *val;
1665 Value *arg[4], *src[8];
1666 Value *lod = NULL, *shd = NULL;
1667 unsigned int s, c, d;
1668 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1669
1670 TexInstruction::Target tgt = tgsi.getTexture(code, R);
1671
1672 for (s = 0; s < tgt.getArgCount(); ++s)
1673 arg[s] = src[s] = fetchSrc(0, s);
1674
1675 if (texi->op == OP_TXL || texi->op == OP_TXB)
1676 lod = fetchSrc(L >> 4, L & 3);
1677
1678 if (C == 0x0f)
1679 C = 0x00 | MAX2(tgt.getArgCount(), 2); // guess DC src
1680
1681 if (tgt.isShadow())
1682 shd = fetchSrc(C >> 4, C & 3);
1683
1684 if (texi->op == OP_TXD) {
1685 for (c = 0; c < tgt.getDim(); ++c) {
1686 texi->dPdx[c].set(fetchSrc(Dx >> 4, (Dx & 3) + c));
1687 texi->dPdy[c].set(fetchSrc(Dy >> 4, (Dy & 3) + c));
1688 }
1689 }
1690
1691 // cube textures don't care about projection value, it's divided out
1692 if (tgsi.getOpcode() == TGSI_OPCODE_TXP && !tgt.isCube() && !tgt.isArray()) {
1693 unsigned int n = tgt.getDim();
1694 if (shd) {
1695 arg[n] = shd;
1696 ++n;
1697 assert(tgt.getDim() == tgt.getArgCount());
1698 }
1699 loadProjTexCoords(src, arg, (1 << n) - 1);
1700 if (shd)
1701 shd = src[n - 1];
1702 }
1703
1704 if (tgt.isCube()) {
1705 for (c = 0; c < 3; ++c)
1706 src[c] = mkOp1v(OP_ABS, TYPE_F32, getSSA(), arg[c]);
1707 val = getScratch();
1708 mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1709 mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1710 mkOp1(OP_RCP, TYPE_F32, val, val);
1711 for (c = 0; c < 3; ++c)
1712 src[c] = mkOp2v(OP_MUL, TYPE_F32, getSSA(), arg[c], val);
1713 }
1714
1715 for (c = 0, d = 0; c < 4; ++c) {
1716 if (dst[c]) {
1717 texi->setDef(d++, dst[c]);
1718 texi->tex.mask |= 1 << c;
1719 } else {
1720 // NOTE: maybe hook up def too, for CSE
1721 }
1722 }
1723 for (s = 0; s < tgt.getArgCount(); ++s)
1724 texi->setSrc(s, src[s]);
1725 if (lod)
1726 texi->setSrc(s++, lod);
1727 if (shd)
1728 texi->setSrc(s++, shd);
1729
1730 setTexRS(texi, s, R, S);
1731
1732 if (tgsi.getOpcode() == TGSI_OPCODE_SAMPLE_C_LZ)
1733 texi->tex.levelZero = true;
1734
1735 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1736 for (c = 0; c < 3; ++c) {
1737 texi->tex.offset[s][c] = tgsi.getTexOffset(s).getValueU32(c, info);
1738 if (texi->tex.offset[s][c])
1739 texi->tex.useOffsets = s + 1;
1740 }
1741 }
1742
1743 bb->insertTail(texi);
1744 }
1745
1746 // 1st source: xyz = coordinates, w = lod/sample
1747 // 2nd source: offset
1748 void
1749 Converter::handleTXF(Value *dst[4], int R, int L_M)
1750 {
1751 TexInstruction *texi = new_TexInstruction(func, tgsi.getOP());
1752 int ms;
1753 unsigned int c, d, s;
1754
1755 texi->tex.target = tgsi.getTexture(code, R);
1756
1757 ms = texi->tex.target.isMS() ? 1 : 0;
1758 texi->tex.levelZero = ms; /* MS textures don't have mip-maps */
1759
1760 for (c = 0, d = 0; c < 4; ++c) {
1761 if (dst[c]) {
1762 texi->setDef(d++, dst[c]);
1763 texi->tex.mask |= 1 << c;
1764 }
1765 }
1766 for (c = 0; c < (texi->tex.target.getArgCount() - ms); ++c)
1767 texi->setSrc(c, fetchSrc(0, c));
1768 texi->setSrc(c++, fetchSrc(L_M >> 4, L_M & 3)); // lod or ms
1769
1770 setTexRS(texi, c, R, -1);
1771
1772 for (s = 0; s < tgsi.getNumTexOffsets(); ++s) {
1773 for (c = 0; c < 3; ++c) {
1774 texi->tex.offset[s][c] = tgsi.getTexOffset(s).getValueU32(c, info);
1775 if (texi->tex.offset[s][c])
1776 texi->tex.useOffsets = s + 1;
1777 }
1778 }
1779
1780 bb->insertTail(texi);
1781 }
1782
1783 void
1784 Converter::handleLIT(Value *dst0[4])
1785 {
1786 Value *val0 = NULL;
1787 unsigned int mask = tgsi.getDst(0).getMask();
1788
1789 if (mask & (1 << 0))
1790 loadImm(dst0[0], 1.0f);
1791
1792 if (mask & (1 << 3))
1793 loadImm(dst0[3], 1.0f);
1794
1795 if (mask & (3 << 1)) {
1796 val0 = getScratch();
1797 mkOp2(OP_MAX, TYPE_F32, val0, fetchSrc(0, 0), zero);
1798 if (mask & (1 << 1))
1799 mkMov(dst0[1], val0);
1800 }
1801
1802 if (mask & (1 << 2)) {
1803 Value *src1 = fetchSrc(0, 1), *src3 = fetchSrc(0, 3);
1804 Value *val1 = getScratch(), *val3 = getScratch();
1805
1806 Value *pos128 = loadImm(NULL, +127.999999f);
1807 Value *neg128 = loadImm(NULL, -127.999999f);
1808
1809 mkOp2(OP_MAX, TYPE_F32, val1, src1, zero);
1810 mkOp2(OP_MAX, TYPE_F32, val3, src3, neg128);
1811 mkOp2(OP_MIN, TYPE_F32, val3, val3, pos128);
1812 mkOp2(OP_POW, TYPE_F32, val3, val1, val3);
1813
1814 mkCmp(OP_SLCT, CC_GT, TYPE_F32, dst0[2], TYPE_F32, val3, zero, val0);
1815 }
1816 }
1817
1818 static inline bool
1819 isResourceSpecial(const int r)
1820 {
1821 return (r == TGSI_RESOURCE_GLOBAL ||
1822 r == TGSI_RESOURCE_LOCAL ||
1823 r == TGSI_RESOURCE_PRIVATE ||
1824 r == TGSI_RESOURCE_INPUT);
1825 }
1826
1827 static inline bool
1828 isResourceRaw(const struct tgsi::Source *code, const int r)
1829 {
1830 return isResourceSpecial(r) || code->resources[r].raw;
1831 }
1832
1833 static inline nv50_ir::TexTarget
1834 getResourceTarget(const struct tgsi::Source *code, int r)
1835 {
1836 if (isResourceSpecial(r))
1837 return nv50_ir::TEX_TARGET_BUFFER;
1838 return tgsi::translateTexture(code->resources.at(r).target);
1839 }
1840
1841 Symbol *
1842 Converter::getResourceBase(const int r)
1843 {
1844 Symbol *sym = NULL;
1845
1846 switch (r) {
1847 case TGSI_RESOURCE_GLOBAL:
1848 sym = new_Symbol(prog, nv50_ir::FILE_MEMORY_GLOBAL, 15);
1849 break;
1850 case TGSI_RESOURCE_LOCAL:
1851 assert(prog->getType() == Program::TYPE_COMPUTE);
1852 sym = mkSymbol(nv50_ir::FILE_MEMORY_SHARED, 0, TYPE_U32,
1853 info->prop.cp.sharedOffset);
1854 break;
1855 case TGSI_RESOURCE_PRIVATE:
1856 sym = mkSymbol(nv50_ir::FILE_MEMORY_LOCAL, 0, TYPE_U32,
1857 info->bin.tlsSpace);
1858 break;
1859 case TGSI_RESOURCE_INPUT:
1860 assert(prog->getType() == Program::TYPE_COMPUTE);
1861 sym = mkSymbol(nv50_ir::FILE_SHADER_INPUT, 0, TYPE_U32,
1862 info->prop.cp.inputOffset);
1863 break;
1864 default:
1865 sym = new_Symbol(prog,
1866 nv50_ir::FILE_MEMORY_GLOBAL, code->resources.at(r).slot);
1867 break;
1868 }
1869 return sym;
1870 }
1871
1872 void
1873 Converter::getResourceCoords(std::vector<Value *> &coords, int r, int s)
1874 {
1875 const int arg =
1876 TexInstruction::Target(getResourceTarget(code, r)).getArgCount();
1877
1878 for (int c = 0; c < arg; ++c)
1879 coords.push_back(fetchSrc(s, c));
1880
1881 // NOTE: TGSI_RESOURCE_GLOBAL needs FILE_GPR; this is an nv50 quirk
1882 if (r == TGSI_RESOURCE_LOCAL ||
1883 r == TGSI_RESOURCE_PRIVATE ||
1884 r == TGSI_RESOURCE_INPUT)
1885 coords[0] = mkOp1v(OP_MOV, TYPE_U32, getScratch(4, FILE_ADDRESS),
1886 coords[0]);
1887 }
1888
1889 static inline int
1890 partitionLoadStore(uint8_t comp[2], uint8_t size[2], uint8_t mask)
1891 {
1892 int n = 0;
1893
1894 while (mask) {
1895 if (mask & 1) {
1896 size[n]++;
1897 } else {
1898 if (size[n])
1899 comp[n = 1] = size[0] + 1;
1900 else
1901 comp[n]++;
1902 }
1903 mask >>= 1;
1904 }
1905 if (size[0] == 3) {
1906 n = 1;
1907 size[0] = (comp[0] == 1) ? 1 : 2;
1908 size[1] = 3 - size[0];
1909 comp[1] = comp[0] + size[0];
1910 }
1911 return n + 1;
1912 }
1913
1914 // For raw loads, granularity is 4 byte.
1915 // Usage of the texture read mask on OP_SULDP is not allowed.
1916 void
1917 Converter::handleLOAD(Value *dst0[4])
1918 {
1919 const int r = tgsi.getSrc(0).getIndex(0);
1920 int c;
1921 std::vector<Value *> off, src, ldv, def;
1922
1923 getResourceCoords(off, r, 1);
1924
1925 if (isResourceRaw(code, r)) {
1926 uint8_t mask = 0;
1927 uint8_t comp[2] = { 0, 0 };
1928 uint8_t size[2] = { 0, 0 };
1929
1930 Symbol *base = getResourceBase(r);
1931
1932 // determine the base and size of the at most 2 load ops
1933 for (c = 0; c < 4; ++c)
1934 if (!tgsi.getDst(0).isMasked(c))
1935 mask |= 1 << (tgsi.getSrc(0).getSwizzle(c) - TGSI_SWIZZLE_X);
1936
1937 int n = partitionLoadStore(comp, size, mask);
1938
1939 src = off;
1940
1941 def.resize(4); // index by component, the ones we need will be non-NULL
1942 for (c = 0; c < 4; ++c) {
1943 if (dst0[c] && tgsi.getSrc(0).getSwizzle(c) == (TGSI_SWIZZLE_X + c))
1944 def[c] = dst0[c];
1945 else
1946 if (mask & (1 << c))
1947 def[c] = getScratch();
1948 }
1949
1950 const bool useLd = isResourceSpecial(r) ||
1951 (info->io.nv50styleSurfaces &&
1952 code->resources[r].target == TGSI_TEXTURE_BUFFER);
1953
1954 for (int i = 0; i < n; ++i) {
1955 ldv.assign(def.begin() + comp[i], def.begin() + comp[i] + size[i]);
1956
1957 if (comp[i]) // adjust x component of source address if necessary
1958 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
1959 off[0], mkImm(comp[i] * 4));
1960 else
1961 src[0] = off[0];
1962
1963 if (useLd) {
1964 Instruction *ld =
1965 mkLoad(typeOfSize(size[i] * 4), ldv[0], base, src[0]);
1966 for (size_t c = 1; c < ldv.size(); ++c)
1967 ld->setDef(c, ldv[c]);
1968 } else {
1969 mkTex(OP_SULDB, getResourceTarget(code, r), code->resources[r].slot,
1970 0, ldv, src)->dType = typeOfSize(size[i] * 4);
1971 }
1972 }
1973 } else {
1974 def.resize(4);
1975 for (c = 0; c < 4; ++c) {
1976 if (!dst0[c] || tgsi.getSrc(0).getSwizzle(c) != (TGSI_SWIZZLE_X + c))
1977 def[c] = getScratch();
1978 else
1979 def[c] = dst0[c];
1980 }
1981
1982 mkTex(OP_SULDP, getResourceTarget(code, r), code->resources[r].slot, 0,
1983 def, off);
1984 }
1985 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
1986 if (dst0[c] != def[c])
1987 mkMov(dst0[c], def[tgsi.getSrc(0).getSwizzle(c)]);
1988 }
1989
1990 // For formatted stores, the write mask on OP_SUSTP can be used.
1991 // Raw stores have to be split.
1992 void
1993 Converter::handleSTORE()
1994 {
1995 const int r = tgsi.getDst(0).getIndex(0);
1996 int c;
1997 std::vector<Value *> off, src, dummy;
1998
1999 getResourceCoords(off, r, 0);
2000 src = off;
2001 const int s = src.size();
2002
2003 if (isResourceRaw(code, r)) {
2004 uint8_t comp[2] = { 0, 0 };
2005 uint8_t size[2] = { 0, 0 };
2006
2007 int n = partitionLoadStore(comp, size, tgsi.getDst(0).getMask());
2008
2009 Symbol *base = getResourceBase(r);
2010
2011 const bool useSt = isResourceSpecial(r) ||
2012 (info->io.nv50styleSurfaces &&
2013 code->resources[r].target == TGSI_TEXTURE_BUFFER);
2014
2015 for (int i = 0; i < n; ++i) {
2016 if (comp[i]) // adjust x component of source address if necessary
2017 src[0] = mkOp2v(OP_ADD, TYPE_U32, getSSA(4, off[0]->reg.file),
2018 off[0], mkImm(comp[i] * 4));
2019 else
2020 src[0] = off[0];
2021
2022 const DataType stTy = typeOfSize(size[i] * 4);
2023
2024 if (useSt) {
2025 Instruction *st =
2026 mkStore(OP_STORE, stTy, base, NULL, fetchSrc(1, comp[i]));
2027 for (c = 1; c < size[i]; ++c)
2028 st->setSrc(1 + c, fetchSrc(1, comp[i] + c));
2029 st->setIndirect(0, 0, src[0]);
2030 } else {
2031 // attach values to be stored
2032 src.resize(s + size[i]);
2033 for (c = 0; c < size[i]; ++c)
2034 src[s + c] = fetchSrc(1, comp[i] + c);
2035 mkTex(OP_SUSTB, getResourceTarget(code, r), code->resources[r].slot,
2036 0, dummy, src)->setType(stTy);
2037 }
2038 }
2039 } else {
2040 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2041 src.push_back(fetchSrc(1, c));
2042
2043 mkTex(OP_SUSTP, getResourceTarget(code, r), code->resources[r].slot, 0,
2044 dummy, src)->tex.mask = tgsi.getDst(0).getMask();
2045 }
2046 }
2047
2048 // XXX: These only work on resources with the single-component u32/s32 formats.
2049 // Therefore the result is replicated. This might not be intended by TGSI, but
2050 // operating on more than 1 component would produce undefined results because
2051 // they do not exist.
2052 void
2053 Converter::handleATOM(Value *dst0[4], DataType ty, uint16_t subOp)
2054 {
2055 const int r = tgsi.getSrc(0).getIndex(0);
2056 std::vector<Value *> srcv;
2057 std::vector<Value *> defv;
2058 LValue *dst = getScratch();
2059
2060 getResourceCoords(srcv, r, 1);
2061
2062 if (isResourceSpecial(r)) {
2063 assert(r != TGSI_RESOURCE_INPUT);
2064 Instruction *insn;
2065 insn = mkOp2(OP_ATOM, ty, dst, getResourceBase(r), fetchSrc(2, 0));
2066 insn->subOp = subOp;
2067 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2068 insn->setSrc(2, fetchSrc(3, 0));
2069 insn->setIndirect(0, 0, srcv.at(0));
2070 } else {
2071 operation op = isResourceRaw(code, r) ? OP_SUREDB : OP_SUREDP;
2072 TexTarget targ = getResourceTarget(code, r);
2073 int idx = code->resources[r].slot;
2074 defv.push_back(dst);
2075 srcv.push_back(fetchSrc(2, 0));
2076 if (subOp == NV50_IR_SUBOP_ATOM_CAS)
2077 srcv.push_back(fetchSrc(3, 0));
2078 TexInstruction *tex = mkTex(op, targ, idx, 0, defv, srcv);
2079 tex->subOp = subOp;
2080 tex->tex.mask = 1;
2081 tex->setType(ty);
2082 }
2083
2084 for (int c = 0; c < 4; ++c)
2085 if (dst0[c])
2086 dst0[c] = dst; // not equal to rDst so handleInstruction will do mkMov
2087 }
2088
2089 Converter::Subroutine *
2090 Converter::getSubroutine(unsigned ip)
2091 {
2092 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2093
2094 if (it == sub.map.end())
2095 it = sub.map.insert(std::make_pair(
2096 ip, Subroutine(new Function(prog, "SUB", ip)))).first;
2097
2098 return &it->second;
2099 }
2100
2101 Converter::Subroutine *
2102 Converter::getSubroutine(Function *f)
2103 {
2104 unsigned ip = f->getLabel();
2105 std::map<unsigned, Subroutine>::iterator it = sub.map.find(ip);
2106
2107 if (it == sub.map.end())
2108 it = sub.map.insert(std::make_pair(ip, Subroutine(f))).first;
2109
2110 return &it->second;
2111 }
2112
2113 bool
2114 Converter::isEndOfSubroutine(uint ip)
2115 {
2116 assert(ip < code->scan.num_instructions);
2117 tgsi::Instruction insn(&code->insns[ip]);
2118 return (insn.getOpcode() == TGSI_OPCODE_END ||
2119 insn.getOpcode() == TGSI_OPCODE_ENDSUB ||
2120 // does END occur at end of main or the very end ?
2121 insn.getOpcode() == TGSI_OPCODE_BGNSUB);
2122 }
2123
2124 bool
2125 Converter::handleInstruction(const struct tgsi_full_instruction *insn)
2126 {
2127 Instruction *geni;
2128
2129 Value *dst0[4], *rDst0[4];
2130 Value *src0, *src1, *src2;
2131 Value *val0, *val1;
2132 int c;
2133
2134 tgsi = tgsi::Instruction(insn);
2135
2136 bool useScratchDst = tgsi.checkDstSrcAliasing();
2137
2138 operation op = tgsi.getOP();
2139 dstTy = tgsi.inferDstType();
2140 srcTy = tgsi.inferSrcType();
2141
2142 unsigned int mask = tgsi.dstCount() ? tgsi.getDst(0).getMask() : 0;
2143
2144 if (tgsi.dstCount()) {
2145 for (c = 0; c < 4; ++c) {
2146 rDst0[c] = acquireDst(0, c);
2147 dst0[c] = (useScratchDst && rDst0[c]) ? getScratch() : rDst0[c];
2148 }
2149 }
2150
2151 switch (tgsi.getOpcode()) {
2152 case TGSI_OPCODE_ADD:
2153 case TGSI_OPCODE_UADD:
2154 case TGSI_OPCODE_AND:
2155 case TGSI_OPCODE_DIV:
2156 case TGSI_OPCODE_IDIV:
2157 case TGSI_OPCODE_UDIV:
2158 case TGSI_OPCODE_MAX:
2159 case TGSI_OPCODE_MIN:
2160 case TGSI_OPCODE_IMAX:
2161 case TGSI_OPCODE_IMIN:
2162 case TGSI_OPCODE_UMAX:
2163 case TGSI_OPCODE_UMIN:
2164 case TGSI_OPCODE_MOD:
2165 case TGSI_OPCODE_UMOD:
2166 case TGSI_OPCODE_MUL:
2167 case TGSI_OPCODE_UMUL:
2168 case TGSI_OPCODE_OR:
2169 case TGSI_OPCODE_POW:
2170 case TGSI_OPCODE_SHL:
2171 case TGSI_OPCODE_ISHR:
2172 case TGSI_OPCODE_USHR:
2173 case TGSI_OPCODE_SUB:
2174 case TGSI_OPCODE_XOR:
2175 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2176 src0 = fetchSrc(0, c);
2177 src1 = fetchSrc(1, c);
2178 mkOp2(op, dstTy, dst0[c], src0, src1);
2179 }
2180 break;
2181 case TGSI_OPCODE_MAD:
2182 case TGSI_OPCODE_UMAD:
2183 case TGSI_OPCODE_SAD:
2184 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2185 src0 = fetchSrc(0, c);
2186 src1 = fetchSrc(1, c);
2187 src2 = fetchSrc(2, c);
2188 mkOp3(op, dstTy, dst0[c], src0, src1, src2);
2189 }
2190 break;
2191 case TGSI_OPCODE_MOV:
2192 case TGSI_OPCODE_ABS:
2193 case TGSI_OPCODE_CEIL:
2194 case TGSI_OPCODE_FLR:
2195 case TGSI_OPCODE_TRUNC:
2196 case TGSI_OPCODE_RCP:
2197 case TGSI_OPCODE_IABS:
2198 case TGSI_OPCODE_INEG:
2199 case TGSI_OPCODE_NOT:
2200 case TGSI_OPCODE_DDX:
2201 case TGSI_OPCODE_DDY:
2202 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2203 mkOp1(op, dstTy, dst0[c], fetchSrc(0, c));
2204 break;
2205 case TGSI_OPCODE_RSQ:
2206 src0 = fetchSrc(0, 0);
2207 val0 = getScratch();
2208 mkOp1(OP_ABS, TYPE_F32, val0, src0);
2209 mkOp1(OP_RSQ, TYPE_F32, val0, val0);
2210 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2211 mkMov(dst0[c], val0);
2212 break;
2213 case TGSI_OPCODE_ARL:
2214 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2215 src0 = fetchSrc(0, c);
2216 mkCvt(OP_CVT, TYPE_S32, dst0[c], TYPE_F32, src0)->rnd = ROUND_M;
2217 }
2218 break;
2219 case TGSI_OPCODE_UARL:
2220 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2221 mkOp1(OP_MOV, TYPE_U32, dst0[c], fetchSrc(0, c));
2222 break;
2223 case TGSI_OPCODE_EX2:
2224 case TGSI_OPCODE_LG2:
2225 val0 = mkOp1(op, TYPE_F32, getScratch(), fetchSrc(0, 0))->getDef(0);
2226 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2227 mkOp1(OP_MOV, TYPE_F32, dst0[c], val0);
2228 break;
2229 case TGSI_OPCODE_COS:
2230 case TGSI_OPCODE_SIN:
2231 val0 = getScratch();
2232 if (mask & 7) {
2233 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 0));
2234 mkOp1(op, TYPE_F32, val0, val0);
2235 for (c = 0; c < 3; ++c)
2236 if (dst0[c])
2237 mkMov(dst0[c], val0);
2238 }
2239 if (dst0[3]) {
2240 mkOp1(OP_PRESIN, TYPE_F32, val0, fetchSrc(0, 3));
2241 mkOp1(op, TYPE_F32, dst0[3], val0);
2242 }
2243 break;
2244 case TGSI_OPCODE_SCS:
2245 if (mask & 3) {
2246 val0 = mkOp1v(OP_PRESIN, TYPE_F32, getSSA(), fetchSrc(0, 0));
2247 if (dst0[0])
2248 mkOp1(OP_COS, TYPE_F32, dst0[0], val0);
2249 if (dst0[1])
2250 mkOp1(OP_SIN, TYPE_F32, dst0[1], val0);
2251 }
2252 if (dst0[2])
2253 loadImm(dst0[2], 0.0f);
2254 if (dst0[3])
2255 loadImm(dst0[3], 1.0f);
2256 break;
2257 case TGSI_OPCODE_EXP:
2258 src0 = fetchSrc(0, 0);
2259 val0 = mkOp1v(OP_FLOOR, TYPE_F32, getSSA(), src0);
2260 if (dst0[1])
2261 mkOp2(OP_SUB, TYPE_F32, dst0[1], src0, val0);
2262 if (dst0[0])
2263 mkOp1(OP_EX2, TYPE_F32, dst0[0], val0);
2264 if (dst0[2])
2265 mkOp1(OP_EX2, TYPE_F32, dst0[2], src0);
2266 if (dst0[3])
2267 loadImm(dst0[3], 1.0f);
2268 break;
2269 case TGSI_OPCODE_LOG:
2270 src0 = mkOp1v(OP_ABS, TYPE_F32, getSSA(), fetchSrc(0, 0));
2271 val0 = mkOp1v(OP_LG2, TYPE_F32, dst0[2] ? dst0[2] : getSSA(), src0);
2272 if (dst0[0] || dst0[1])
2273 val1 = mkOp1v(OP_FLOOR, TYPE_F32, dst0[0] ? dst0[0] : getSSA(), val0);
2274 if (dst0[1]) {
2275 mkOp1(OP_EX2, TYPE_F32, dst0[1], val1);
2276 mkOp1(OP_RCP, TYPE_F32, dst0[1], dst0[1]);
2277 mkOp2(OP_MUL, TYPE_F32, dst0[1], dst0[1], src0);
2278 }
2279 if (dst0[3])
2280 loadImm(dst0[3], 1.0f);
2281 break;
2282 case TGSI_OPCODE_DP2:
2283 val0 = buildDot(2);
2284 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2285 mkMov(dst0[c], val0);
2286 break;
2287 case TGSI_OPCODE_DP3:
2288 val0 = buildDot(3);
2289 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2290 mkMov(dst0[c], val0);
2291 break;
2292 case TGSI_OPCODE_DP4:
2293 val0 = buildDot(4);
2294 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2295 mkMov(dst0[c], val0);
2296 break;
2297 case TGSI_OPCODE_DPH:
2298 val0 = buildDot(3);
2299 src1 = fetchSrc(1, 3);
2300 mkOp2(OP_ADD, TYPE_F32, val0, val0, src1);
2301 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2302 mkMov(dst0[c], val0);
2303 break;
2304 case TGSI_OPCODE_DST:
2305 if (dst0[0])
2306 loadImm(dst0[0], 1.0f);
2307 if (dst0[1]) {
2308 src0 = fetchSrc(0, 1);
2309 src1 = fetchSrc(1, 1);
2310 mkOp2(OP_MUL, TYPE_F32, dst0[1], src0, src1);
2311 }
2312 if (dst0[2])
2313 mkMov(dst0[2], fetchSrc(0, 2));
2314 if (dst0[3])
2315 mkMov(dst0[3], fetchSrc(1, 3));
2316 break;
2317 case TGSI_OPCODE_LRP:
2318 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2319 src0 = fetchSrc(0, c);
2320 src1 = fetchSrc(1, c);
2321 src2 = fetchSrc(2, c);
2322 mkOp3(OP_MAD, TYPE_F32, dst0[c],
2323 mkOp2v(OP_SUB, TYPE_F32, getSSA(), src1, src2), src0, src2);
2324 }
2325 break;
2326 case TGSI_OPCODE_LIT:
2327 handleLIT(dst0);
2328 break;
2329 case TGSI_OPCODE_XPD:
2330 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2331 if (c < 3) {
2332 val0 = getSSA();
2333 src0 = fetchSrc(1, (c + 1) % 3);
2334 src1 = fetchSrc(0, (c + 2) % 3);
2335 mkOp2(OP_MUL, TYPE_F32, val0, src0, src1);
2336 mkOp1(OP_NEG, TYPE_F32, val0, val0);
2337
2338 src0 = fetchSrc(0, (c + 1) % 3);
2339 src1 = fetchSrc(1, (c + 2) % 3);
2340 mkOp3(OP_MAD, TYPE_F32, dst0[c], src0, src1, val0);
2341 } else {
2342 loadImm(dst0[c], 1.0f);
2343 }
2344 }
2345 break;
2346 case TGSI_OPCODE_ISSG:
2347 case TGSI_OPCODE_SSG:
2348 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2349 src0 = fetchSrc(0, c);
2350 val0 = getScratch();
2351 val1 = getScratch();
2352 mkCmp(OP_SET, CC_GT, srcTy, val0, srcTy, src0, zero);
2353 mkCmp(OP_SET, CC_LT, srcTy, val1, srcTy, src0, zero);
2354 if (srcTy == TYPE_F32)
2355 mkOp2(OP_SUB, TYPE_F32, dst0[c], val0, val1);
2356 else
2357 mkOp2(OP_SUB, TYPE_S32, dst0[c], val1, val0);
2358 }
2359 break;
2360 case TGSI_OPCODE_UCMP:
2361 case TGSI_OPCODE_CMP:
2362 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2363 src0 = fetchSrc(0, c);
2364 src1 = fetchSrc(1, c);
2365 src2 = fetchSrc(2, c);
2366 if (src1 == src2)
2367 mkMov(dst0[c], src1);
2368 else
2369 mkCmp(OP_SLCT, (srcTy == TYPE_F32) ? CC_LT : CC_NE,
2370 srcTy, dst0[c], srcTy, src1, src2, src0);
2371 }
2372 break;
2373 case TGSI_OPCODE_FRC:
2374 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2375 src0 = fetchSrc(0, c);
2376 val0 = getScratch();
2377 mkOp1(OP_FLOOR, TYPE_F32, val0, src0);
2378 mkOp2(OP_SUB, TYPE_F32, dst0[c], src0, val0);
2379 }
2380 break;
2381 case TGSI_OPCODE_ROUND:
2382 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2383 mkCvt(OP_CVT, TYPE_F32, dst0[c], TYPE_F32, fetchSrc(0, c))
2384 ->rnd = ROUND_NI;
2385 break;
2386 case TGSI_OPCODE_CLAMP:
2387 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2388 src0 = fetchSrc(0, c);
2389 src1 = fetchSrc(1, c);
2390 src2 = fetchSrc(2, c);
2391 val0 = getScratch();
2392 mkOp2(OP_MIN, TYPE_F32, val0, src0, src1);
2393 mkOp2(OP_MAX, TYPE_F32, dst0[c], val0, src2);
2394 }
2395 break;
2396 case TGSI_OPCODE_SLT:
2397 case TGSI_OPCODE_SGE:
2398 case TGSI_OPCODE_SEQ:
2399 case TGSI_OPCODE_SFL:
2400 case TGSI_OPCODE_SGT:
2401 case TGSI_OPCODE_SLE:
2402 case TGSI_OPCODE_SNE:
2403 case TGSI_OPCODE_STR:
2404 case TGSI_OPCODE_FSEQ:
2405 case TGSI_OPCODE_FSGE:
2406 case TGSI_OPCODE_FSLT:
2407 case TGSI_OPCODE_FSNE:
2408 case TGSI_OPCODE_ISGE:
2409 case TGSI_OPCODE_ISLT:
2410 case TGSI_OPCODE_USEQ:
2411 case TGSI_OPCODE_USGE:
2412 case TGSI_OPCODE_USLT:
2413 case TGSI_OPCODE_USNE:
2414 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi) {
2415 src0 = fetchSrc(0, c);
2416 src1 = fetchSrc(1, c);
2417 mkCmp(op, tgsi.getSetCond(), dstTy, dst0[c], srcTy, src0, src1);
2418 }
2419 break;
2420 case TGSI_OPCODE_KILL_IF:
2421 val0 = new_LValue(func, FILE_PREDICATE);
2422 for (c = 0; c < 4; ++c) {
2423 mkCmp(OP_SET, CC_LT, TYPE_F32, val0, TYPE_F32, fetchSrc(0, c), zero);
2424 mkOp(OP_DISCARD, TYPE_NONE, NULL)->setPredicate(CC_P, val0);
2425 }
2426 break;
2427 case TGSI_OPCODE_KILL:
2428 mkOp(OP_DISCARD, TYPE_NONE, NULL);
2429 break;
2430 case TGSI_OPCODE_TEX:
2431 case TGSI_OPCODE_TXB:
2432 case TGSI_OPCODE_TXL:
2433 case TGSI_OPCODE_TXP:
2434 case TGSI_OPCODE_LODQ:
2435 // R S L C Dx Dy
2436 handleTEX(dst0, 1, 1, 0x03, 0x0f, 0x00, 0x00);
2437 break;
2438 case TGSI_OPCODE_TXD:
2439 handleTEX(dst0, 3, 3, 0x03, 0x0f, 0x10, 0x20);
2440 break;
2441 case TGSI_OPCODE_TG4:
2442 handleTEX(dst0, 2, 2, 0x03, 0x0f, 0x00, 0x00);
2443 break;
2444 case TGSI_OPCODE_TEX2:
2445 handleTEX(dst0, 2, 2, 0x03, 0x10, 0x00, 0x00);
2446 break;
2447 case TGSI_OPCODE_TXB2:
2448 case TGSI_OPCODE_TXL2:
2449 handleTEX(dst0, 2, 2, 0x10, 0x11, 0x00, 0x00);
2450 break;
2451 case TGSI_OPCODE_SAMPLE:
2452 case TGSI_OPCODE_SAMPLE_B:
2453 case TGSI_OPCODE_SAMPLE_D:
2454 case TGSI_OPCODE_SAMPLE_L:
2455 case TGSI_OPCODE_SAMPLE_C:
2456 case TGSI_OPCODE_SAMPLE_C_LZ:
2457 handleTEX(dst0, 1, 2, 0x30, 0x30, 0x30, 0x40);
2458 break;
2459 case TGSI_OPCODE_TXF:
2460 handleTXF(dst0, 1, 0x03);
2461 break;
2462 case TGSI_OPCODE_SAMPLE_I:
2463 handleTXF(dst0, 1, 0x03);
2464 break;
2465 case TGSI_OPCODE_SAMPLE_I_MS:
2466 handleTXF(dst0, 1, 0x20);
2467 break;
2468 case TGSI_OPCODE_TXQ:
2469 case TGSI_OPCODE_SVIEWINFO:
2470 handleTXQ(dst0, TXQ_DIMS);
2471 break;
2472 case TGSI_OPCODE_F2I:
2473 case TGSI_OPCODE_F2U:
2474 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2475 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c))->rnd = ROUND_Z;
2476 break;
2477 case TGSI_OPCODE_I2F:
2478 case TGSI_OPCODE_U2F:
2479 FOR_EACH_DST_ENABLED_CHANNEL(0, c, tgsi)
2480 mkCvt(OP_CVT, dstTy, dst0[c], srcTy, fetchSrc(0, c));
2481 break;
2482 case TGSI_OPCODE_EMIT:
2483 case TGSI_OPCODE_ENDPRIM:
2484 // get vertex stream if specified (must be immediate)
2485 src0 = tgsi.srcCount() ?
2486 mkImm(tgsi.getSrc(0).getValueU32(0, info)) : zero;
2487 mkOp1(op, TYPE_U32, NULL, src0)->fixed = 1;
2488 break;
2489 case TGSI_OPCODE_IF:
2490 case TGSI_OPCODE_UIF:
2491 {
2492 BasicBlock *ifBB = new BasicBlock(func);
2493
2494 bb->cfg.attach(&ifBB->cfg, Graph::Edge::TREE);
2495 condBBs.push(bb);
2496 joinBBs.push(bb);
2497
2498 mkFlow(OP_BRA, NULL, CC_NOT_P, fetchSrc(0, 0))->setType(srcTy);
2499
2500 setPosition(ifBB, true);
2501 }
2502 break;
2503 case TGSI_OPCODE_ELSE:
2504 {
2505 BasicBlock *elseBB = new BasicBlock(func);
2506 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2507
2508 forkBB->cfg.attach(&elseBB->cfg, Graph::Edge::TREE);
2509 condBBs.push(bb);
2510
2511 forkBB->getExit()->asFlow()->target.bb = elseBB;
2512 if (!bb->isTerminated())
2513 mkFlow(OP_BRA, NULL, CC_ALWAYS, NULL);
2514
2515 setPosition(elseBB, true);
2516 }
2517 break;
2518 case TGSI_OPCODE_ENDIF:
2519 {
2520 BasicBlock *convBB = new BasicBlock(func);
2521 BasicBlock *prevBB = reinterpret_cast<BasicBlock *>(condBBs.pop().u.p);
2522 BasicBlock *forkBB = reinterpret_cast<BasicBlock *>(joinBBs.pop().u.p);
2523
2524 if (!bb->isTerminated()) {
2525 // we only want join if none of the clauses ended with CONT/BREAK/RET
2526 if (prevBB->getExit()->op == OP_BRA && joinBBs.getSize() < 6)
2527 insertConvergenceOps(convBB, forkBB);
2528 mkFlow(OP_BRA, convBB, CC_ALWAYS, NULL);
2529 bb->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2530 }
2531
2532 if (prevBB->getExit()->op == OP_BRA) {
2533 prevBB->cfg.attach(&convBB->cfg, Graph::Edge::FORWARD);
2534 prevBB->getExit()->asFlow()->target.bb = convBB;
2535 }
2536 setPosition(convBB, true);
2537 }
2538 break;
2539 case TGSI_OPCODE_BGNLOOP:
2540 {
2541 BasicBlock *lbgnBB = new BasicBlock(func);
2542 BasicBlock *lbrkBB = new BasicBlock(func);
2543
2544 loopBBs.push(lbgnBB);
2545 breakBBs.push(lbrkBB);
2546 if (loopBBs.getSize() > func->loopNestingBound)
2547 func->loopNestingBound++;
2548
2549 mkFlow(OP_PREBREAK, lbrkBB, CC_ALWAYS, NULL);
2550
2551 bb->cfg.attach(&lbgnBB->cfg, Graph::Edge::TREE);
2552 setPosition(lbgnBB, true);
2553 mkFlow(OP_PRECONT, lbgnBB, CC_ALWAYS, NULL);
2554 }
2555 break;
2556 case TGSI_OPCODE_ENDLOOP:
2557 {
2558 BasicBlock *loopBB = reinterpret_cast<BasicBlock *>(loopBBs.pop().u.p);
2559
2560 if (!bb->isTerminated()) {
2561 mkFlow(OP_CONT, loopBB, CC_ALWAYS, NULL);
2562 bb->cfg.attach(&loopBB->cfg, Graph::Edge::BACK);
2563 }
2564 setPosition(reinterpret_cast<BasicBlock *>(breakBBs.pop().u.p), true);
2565 }
2566 break;
2567 case TGSI_OPCODE_BRK:
2568 {
2569 if (bb->isTerminated())
2570 break;
2571 BasicBlock *brkBB = reinterpret_cast<BasicBlock *>(breakBBs.peek().u.p);
2572 mkFlow(OP_BREAK, brkBB, CC_ALWAYS, NULL);
2573 bb->cfg.attach(&brkBB->cfg, Graph::Edge::CROSS);
2574 }
2575 break;
2576 case TGSI_OPCODE_CONT:
2577 {
2578 if (bb->isTerminated())
2579 break;
2580 BasicBlock *contBB = reinterpret_cast<BasicBlock *>(loopBBs.peek().u.p);
2581 mkFlow(OP_CONT, contBB, CC_ALWAYS, NULL);
2582 contBB->explicitCont = true;
2583 bb->cfg.attach(&contBB->cfg, Graph::Edge::BACK);
2584 }
2585 break;
2586 case TGSI_OPCODE_BGNSUB:
2587 {
2588 Subroutine *s = getSubroutine(ip);
2589 BasicBlock *entry = new BasicBlock(s->f);
2590 BasicBlock *leave = new BasicBlock(s->f);
2591
2592 // multiple entrypoints possible, keep the graph connected
2593 if (prog->getType() == Program::TYPE_COMPUTE)
2594 prog->main->call.attach(&s->f->call, Graph::Edge::TREE);
2595
2596 sub.cur = s;
2597 s->f->setEntry(entry);
2598 s->f->setExit(leave);
2599 setPosition(entry, true);
2600 return true;
2601 }
2602 case TGSI_OPCODE_ENDSUB:
2603 {
2604 sub.cur = getSubroutine(prog->main);
2605 setPosition(BasicBlock::get(sub.cur->f->cfg.getRoot()), true);
2606 return true;
2607 }
2608 case TGSI_OPCODE_CAL:
2609 {
2610 Subroutine *s = getSubroutine(tgsi.getLabel());
2611 mkFlow(OP_CALL, s->f, CC_ALWAYS, NULL);
2612 func->call.attach(&s->f->call, Graph::Edge::TREE);
2613 return true;
2614 }
2615 case TGSI_OPCODE_RET:
2616 {
2617 if (bb->isTerminated())
2618 return true;
2619 BasicBlock *leave = BasicBlock::get(func->cfgExit);
2620
2621 if (!isEndOfSubroutine(ip + 1)) {
2622 // insert a PRERET at the entry if this is an early return
2623 // (only needed for sharing code in the epilogue)
2624 BasicBlock *pos = getBB();
2625 setPosition(BasicBlock::get(func->cfg.getRoot()), false);
2626 mkFlow(OP_PRERET, leave, CC_ALWAYS, NULL)->fixed = 1;
2627 setPosition(pos, true);
2628 }
2629 mkFlow(OP_RET, NULL, CC_ALWAYS, NULL)->fixed = 1;
2630 bb->cfg.attach(&leave->cfg, Graph::Edge::CROSS);
2631 }
2632 break;
2633 case TGSI_OPCODE_END:
2634 {
2635 // attach and generate epilogue code
2636 BasicBlock *epilogue = BasicBlock::get(func->cfgExit);
2637 bb->cfg.attach(&epilogue->cfg, Graph::Edge::TREE);
2638 setPosition(epilogue, true);
2639 if (prog->getType() == Program::TYPE_FRAGMENT)
2640 exportOutputs();
2641 if (info->io.genUserClip > 0)
2642 handleUserClipPlanes();
2643 mkOp(OP_EXIT, TYPE_NONE, NULL)->terminator = 1;
2644 }
2645 break;
2646 case TGSI_OPCODE_SWITCH:
2647 case TGSI_OPCODE_CASE:
2648 ERROR("switch/case opcode encountered, should have been lowered\n");
2649 abort();
2650 break;
2651 case TGSI_OPCODE_LOAD:
2652 handleLOAD(dst0);
2653 break;
2654 case TGSI_OPCODE_STORE:
2655 handleSTORE();
2656 break;
2657 case TGSI_OPCODE_BARRIER:
2658 geni = mkOp2(OP_BAR, TYPE_U32, NULL, mkImm(0), mkImm(0));
2659 geni->fixed = 1;
2660 geni->subOp = NV50_IR_SUBOP_BAR_SYNC;
2661 break;
2662 case TGSI_OPCODE_MFENCE:
2663 case TGSI_OPCODE_LFENCE:
2664 case TGSI_OPCODE_SFENCE:
2665 geni = mkOp(OP_MEMBAR, TYPE_NONE, NULL);
2666 geni->fixed = 1;
2667 geni->subOp = tgsi::opcodeToSubOp(tgsi.getOpcode());
2668 break;
2669 case TGSI_OPCODE_ATOMUADD:
2670 case TGSI_OPCODE_ATOMXCHG:
2671 case TGSI_OPCODE_ATOMCAS:
2672 case TGSI_OPCODE_ATOMAND:
2673 case TGSI_OPCODE_ATOMOR:
2674 case TGSI_OPCODE_ATOMXOR:
2675 case TGSI_OPCODE_ATOMUMIN:
2676 case TGSI_OPCODE_ATOMIMIN:
2677 case TGSI_OPCODE_ATOMUMAX:
2678 case TGSI_OPCODE_ATOMIMAX:
2679 handleATOM(dst0, dstTy, tgsi::opcodeToSubOp(tgsi.getOpcode()));
2680 break;
2681 default:
2682 ERROR("unhandled TGSI opcode: %u\n", tgsi.getOpcode());
2683 assert(0);
2684 break;
2685 }
2686
2687 if (tgsi.dstCount()) {
2688 for (c = 0; c < 4; ++c) {
2689 if (!dst0[c])
2690 continue;
2691 if (dst0[c] != rDst0[c])
2692 mkMov(rDst0[c], dst0[c]);
2693 storeDst(0, c, rDst0[c]);
2694 }
2695 }
2696 vtxBaseValid = 0;
2697
2698 return true;
2699 }
2700
2701 void
2702 Converter::handleUserClipPlanes()
2703 {
2704 Value *res[8];
2705 int n, i, c;
2706
2707 for (c = 0; c < 4; ++c) {
2708 for (i = 0; i < info->io.genUserClip; ++i) {
2709 Symbol *sym = mkSymbol(FILE_MEMORY_CONST, info->io.ucpCBSlot,
2710 TYPE_F32, info->io.ucpBase + i * 16 + c * 4);
2711 Value *ucp = mkLoadv(TYPE_F32, sym, NULL);
2712 if (c == 0)
2713 res[i] = mkOp2v(OP_MUL, TYPE_F32, getScratch(), clipVtx[c], ucp);
2714 else
2715 mkOp3(OP_MAD, TYPE_F32, res[i], clipVtx[c], ucp, res[i]);
2716 }
2717 }
2718
2719 const int first = info->numOutputs - (info->io.genUserClip + 3) / 4;
2720
2721 for (i = 0; i < info->io.genUserClip; ++i) {
2722 n = i / 4 + first;
2723 c = i % 4;
2724 Symbol *sym =
2725 mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32, info->out[n].slot[c] * 4);
2726 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, res[i]);
2727 }
2728 }
2729
2730 void
2731 Converter::exportOutputs()
2732 {
2733 for (unsigned int i = 0; i < info->numOutputs; ++i) {
2734 for (unsigned int c = 0; c < 4; ++c) {
2735 if (!oData.exists(sub.cur->values, i, c))
2736 continue;
2737 Symbol *sym = mkSymbol(FILE_SHADER_OUTPUT, 0, TYPE_F32,
2738 info->out[i].slot[c] * 4);
2739 Value *val = oData.load(sub.cur->values, i, c, NULL);
2740 if (val)
2741 mkStore(OP_EXPORT, TYPE_F32, sym, NULL, val);
2742 }
2743 }
2744 }
2745
2746 Converter::Converter(Program *ir, const tgsi::Source *code) : BuildUtil(ir),
2747 code(code),
2748 tgsi(NULL),
2749 tData(this), aData(this), pData(this), oData(this)
2750 {
2751 info = code->info;
2752
2753 const DataFile tFile = code->mainTempsInLMem ? FILE_MEMORY_LOCAL : FILE_GPR;
2754
2755 const unsigned tSize = code->fileSize(TGSI_FILE_TEMPORARY);
2756 const unsigned pSize = code->fileSize(TGSI_FILE_PREDICATE);
2757 const unsigned aSize = code->fileSize(TGSI_FILE_ADDRESS);
2758 const unsigned oSize = code->fileSize(TGSI_FILE_OUTPUT);
2759
2760 tData.setup(TGSI_FILE_TEMPORARY, 0, 0, tSize, 4, 4, tFile, 0);
2761 pData.setup(TGSI_FILE_PREDICATE, 0, 0, pSize, 4, 4, FILE_PREDICATE, 0);
2762 aData.setup(TGSI_FILE_ADDRESS, 0, 0, aSize, 4, 4, FILE_GPR, 0);
2763 oData.setup(TGSI_FILE_OUTPUT, 0, 0, oSize, 4, 4, FILE_GPR, 0);
2764
2765 zero = mkImm((uint32_t)0);
2766
2767 vtxBaseValid = 0;
2768 }
2769
2770 Converter::~Converter()
2771 {
2772 }
2773
2774 inline const Converter::Location *
2775 Converter::BindArgumentsPass::getValueLocation(Subroutine *s, Value *v)
2776 {
2777 ValueMap::l_iterator it = s->values.l.find(v);
2778 return it == s->values.l.end() ? NULL : &it->second;
2779 }
2780
2781 template<typename T> inline void
2782 Converter::BindArgumentsPass::updateCallArgs(
2783 Instruction *i, void (Instruction::*setArg)(int, Value *),
2784 T (Function::*proto))
2785 {
2786 Function *g = i->asFlow()->target.fn;
2787 Subroutine *subg = conv.getSubroutine(g);
2788
2789 for (unsigned a = 0; a < (g->*proto).size(); ++a) {
2790 Value *v = (g->*proto)[a].get();
2791 const Converter::Location &l = *getValueLocation(subg, v);
2792 Converter::DataArray *array = conv.getArrayForFile(l.array, l.arrayIdx);
2793
2794 (i->*setArg)(a, array->acquire(sub->values, l.i, l.c));
2795 }
2796 }
2797
2798 template<typename T> inline void
2799 Converter::BindArgumentsPass::updatePrototype(
2800 BitSet *set, void (Function::*updateSet)(), T (Function::*proto))
2801 {
2802 (func->*updateSet)();
2803
2804 for (unsigned i = 0; i < set->getSize(); ++i) {
2805 Value *v = func->getLValue(i);
2806 const Converter::Location *l = getValueLocation(sub, v);
2807
2808 // only include values with a matching TGSI register
2809 if (set->test(i) && l && !conv.code->locals.count(*l))
2810 (func->*proto).push_back(v);
2811 }
2812 }
2813
2814 bool
2815 Converter::BindArgumentsPass::visit(Function *f)
2816 {
2817 sub = conv.getSubroutine(f);
2818
2819 for (ArrayList::Iterator bi = f->allBBlocks.iterator();
2820 !bi.end(); bi.next()) {
2821 for (Instruction *i = BasicBlock::get(bi)->getFirst();
2822 i; i = i->next) {
2823 if (i->op == OP_CALL && !i->asFlow()->builtin) {
2824 updateCallArgs(i, &Instruction::setSrc, &Function::ins);
2825 updateCallArgs(i, &Instruction::setDef, &Function::outs);
2826 }
2827 }
2828 }
2829
2830 if (func == prog->main && prog->getType() != Program::TYPE_COMPUTE)
2831 return true;
2832 updatePrototype(&BasicBlock::get(f->cfg.getRoot())->liveSet,
2833 &Function::buildLiveSets, &Function::ins);
2834 updatePrototype(&BasicBlock::get(f->cfgExit)->defSet,
2835 &Function::buildDefSets, &Function::outs);
2836
2837 return true;
2838 }
2839
2840 bool
2841 Converter::run()
2842 {
2843 BasicBlock *entry = new BasicBlock(prog->main);
2844 BasicBlock *leave = new BasicBlock(prog->main);
2845
2846 prog->main->setEntry(entry);
2847 prog->main->setExit(leave);
2848
2849 setPosition(entry, true);
2850 sub.cur = getSubroutine(prog->main);
2851
2852 if (info->io.genUserClip > 0) {
2853 for (int c = 0; c < 4; ++c)
2854 clipVtx[c] = getScratch();
2855 }
2856
2857 if (prog->getType() == Program::TYPE_FRAGMENT) {
2858 Symbol *sv = mkSysVal(SV_POSITION, 3);
2859 fragCoord[3] = mkOp1v(OP_RDSV, TYPE_F32, getSSA(), sv);
2860 mkOp1(OP_RCP, TYPE_F32, fragCoord[3], fragCoord[3]);
2861 }
2862
2863 for (ip = 0; ip < code->scan.num_instructions; ++ip) {
2864 if (!handleInstruction(&code->insns[ip]))
2865 return false;
2866 }
2867
2868 if (!BindArgumentsPass(*this).run(prog))
2869 return false;
2870
2871 return true;
2872 }
2873
2874 } // unnamed namespace
2875
2876 namespace nv50_ir {
2877
2878 bool
2879 Program::makeFromTGSI(struct nv50_ir_prog_info *info)
2880 {
2881 tgsi::Source src(info);
2882 if (!src.scanSource())
2883 return false;
2884 tlsSize = info->bin.tlsSpace;
2885
2886 Converter builder(this, &src);
2887 return builder.run();
2888 }
2889
2890 } // namespace nv50_ir