nvc0/ir: fix second tex argument after levelZero optimization
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_lowering_nvc0.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "codegen/nv50_ir.h"
24 #include "codegen/nv50_ir_build_util.h"
25
26 #include "codegen/nv50_ir_target_nvc0.h"
27 #include "codegen/nv50_ir_lowering_nvc0.h"
28
29 #include <limits>
30
31 namespace nv50_ir {
32
33 #define QOP_ADD 0
34 #define QOP_SUBR 1
35 #define QOP_SUB 2
36 #define QOP_MOV2 3
37
38 // UL UR LL LR
39 #define QUADOP(q, r, s, t) \
40 ((QOP_##q << 6) | (QOP_##r << 4) | \
41 (QOP_##s << 2) | (QOP_##t << 0))
42
43 void
44 NVC0LegalizeSSA::handleDIV(Instruction *i)
45 {
46 FlowInstruction *call;
47 int builtin;
48
49 bld.setPosition(i, false);
50
51 // Generate movs to the input regs for the call we want to generate
52 for (int s = 0; i->srcExists(s); ++s) {
53 Instruction *ld = i->getSrc(s)->getInsn();
54 assert(ld->getSrc(0) != NULL);
55 // check if we are moving an immediate, propagate it in that case
56 if (!ld || ld->fixed || (ld->op != OP_LOAD && ld->op != OP_MOV) ||
57 !(ld->src(0).getFile() == FILE_IMMEDIATE))
58 bld.mkMovToReg(s, i->getSrc(s));
59 else {
60 bld.mkMovToReg(s, ld->getSrc(0));
61 // Clear the src, to make code elimination possible here before we
62 // delete the instruction i later
63 i->setSrc(s, NULL);
64 if (ld->isDead())
65 delete_Instruction(prog, ld);
66 }
67 }
68
69 switch (i->dType) {
70 case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break;
71 case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break;
72 default:
73 return;
74 }
75 call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
76 bld.mkMovFromReg(i->getDef(0), i->op == OP_DIV ? 0 : 1);
77 bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2);
78 bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0);
79
80 call->fixed = 1;
81 call->absolute = call->builtin = 1;
82 call->target.builtin = builtin;
83 delete_Instruction(prog, i);
84 }
85
86 void
87 NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
88 {
89 assert(i->dType == TYPE_F64);
90 // There are instructions that will compute the high 32 bits of the 64-bit
91 // float. We will just stick 0 in the bottom 32 bits.
92
93 bld.setPosition(i, false);
94
95 // 1. Take the source and it up.
96 Value *src[2], *dst[2], *def = i->getDef(0);
97 bld.mkSplit(src, 4, i->getSrc(0));
98
99 // 2. We don't care about the low 32 bits of the destination. Stick a 0 in.
100 dst[0] = bld.loadImm(NULL, 0);
101 dst[1] = bld.getSSA();
102
103 // 3. The new version of the instruction takes the high 32 bits of the
104 // source and outputs the high 32 bits of the destination.
105 i->setSrc(0, src[1]);
106 i->setDef(0, dst[1]);
107 i->setType(TYPE_F32);
108 i->subOp = NV50_IR_SUBOP_RCPRSQ_64H;
109
110 // 4. Recombine the two dst pieces back into the original destination.
111 bld.setPosition(i, true);
112 bld.mkOp2(OP_MERGE, TYPE_U64, def, dst[0], dst[1]);
113 }
114
115 void
116 NVC0LegalizeSSA::handleFTZ(Instruction *i)
117 {
118 // Only want to flush float inputs
119 assert(i->sType == TYPE_F32);
120
121 // If we're already flushing denorms (and NaN's) to zero, no need for this.
122 if (i->dnz)
123 return;
124
125 // Only certain classes of operations can flush
126 OpClass cls = prog->getTarget()->getOpClass(i->op);
127 if (cls != OPCLASS_ARITH && cls != OPCLASS_COMPARE &&
128 cls != OPCLASS_CONVERT)
129 return;
130
131 i->ftz = true;
132 }
133
134 void
135 NVC0LegalizeSSA::handleTEXLOD(TexInstruction *i)
136 {
137 if (i->tex.levelZero)
138 return;
139
140 ImmediateValue lod;
141
142 // The LOD argument comes right after the coordinates (before depth bias,
143 // offsets, etc).
144 int arg = i->tex.target.getArgCount();
145
146 // SM30+ stores the indirect handle as a separate arg, which comes before
147 // the LOD.
148 if (prog->getTarget()->getChipset() >= NVISA_GK104_CHIPSET &&
149 i->tex.rIndirectSrc >= 0)
150 arg++;
151 // SM20 stores indirect handle combined with array coordinate
152 if (prog->getTarget()->getChipset() < NVISA_GK104_CHIPSET &&
153 !i->tex.target.isArray() &&
154 i->tex.rIndirectSrc >= 0)
155 arg++;
156
157 if (!i->src(arg).getImmediate(lod) || !lod.isInteger(0))
158 return;
159
160 if (i->op == OP_TXL)
161 i->op = OP_TEX;
162 i->tex.levelZero = true;
163 i->moveSources(arg + 1, -1);
164 }
165
166 void
167 NVC0LegalizeSSA::handleShift(Instruction *lo)
168 {
169 Value *shift = lo->getSrc(1);
170 Value *dst64 = lo->getDef(0);
171 Value *src[2], *dst[2];
172 operation op = lo->op;
173
174 bld.setPosition(lo, false);
175
176 bld.mkSplit(src, 4, lo->getSrc(0));
177
178 // SM30 and prior don't have the fancy new SHF.L/R ops. So the logic has to
179 // be completely emulated. For SM35+, we can use the more directed SHF
180 // operations.
181 if (prog->getTarget()->getChipset() < NVISA_GK20A_CHIPSET) {
182 // The strategy here is to handle shifts >= 32 and less than 32 as
183 // separate parts.
184 //
185 // For SHL:
186 // If the shift is <= 32, then
187 // (HI,LO) << x = (HI << x | (LO >> (32 - x)), LO << x)
188 // If the shift is > 32, then
189 // (HI,LO) << x = (LO << (x - 32), 0)
190 //
191 // For SHR:
192 // If the shift is <= 32, then
193 // (HI,LO) >> x = (HI >> x, (HI << (32 - x)) | LO >> x)
194 // If the shift is > 32, then
195 // (HI,LO) >> x = (0, HI >> (x - 32))
196 //
197 // Note that on NVIDIA hardware, a shift > 32 yields a 0 value, which we
198 // can use to our advantage. Also note the structural similarities
199 // between the right/left cases. The main difference is swapping hi/lo
200 // on input and output.
201
202 Value *x32_minus_shift, *pred, *hi1, *hi2;
203 DataType type = isSignedIntType(lo->dType) ? TYPE_S32 : TYPE_U32;
204 operation antiop = op == OP_SHR ? OP_SHL : OP_SHR;
205 if (op == OP_SHR)
206 std::swap(src[0], src[1]);
207 bld.mkOp2(OP_ADD, TYPE_U32, (x32_minus_shift = bld.getSSA()), shift, bld.mkImm(0x20))
208 ->src(0).mod = Modifier(NV50_IR_MOD_NEG);
209 bld.mkCmp(OP_SET, CC_LE, TYPE_U8, (pred = bld.getSSA(1, FILE_PREDICATE)),
210 TYPE_U32, shift, bld.mkImm(32));
211 // Compute HI (shift <= 32)
212 bld.mkOp2(OP_OR, TYPE_U32, (hi1 = bld.getSSA()),
213 bld.mkOp2v(op, TYPE_U32, bld.getSSA(), src[1], shift),
214 bld.mkOp2v(antiop, TYPE_U32, bld.getSSA(), src[0], x32_minus_shift))
215 ->setPredicate(CC_P, pred);
216 // Compute LO (all shift values)
217 bld.mkOp2(op, type, (dst[0] = bld.getSSA()), src[0], shift);
218 // Compute HI (shift > 32)
219 bld.mkOp2(op, type, (hi2 = bld.getSSA()), src[0],
220 bld.mkOp1v(OP_NEG, TYPE_S32, bld.getSSA(), x32_minus_shift))
221 ->setPredicate(CC_NOT_P, pred);
222 bld.mkOp2(OP_UNION, TYPE_U32, (dst[1] = bld.getSSA()), hi1, hi2);
223 if (op == OP_SHR)
224 std::swap(dst[0], dst[1]);
225 bld.mkOp2(OP_MERGE, TYPE_U64, dst64, dst[0], dst[1]);
226 delete_Instruction(prog, lo);
227 return;
228 }
229
230 Instruction *hi = new_Instruction(func, op, TYPE_U32);
231 lo->bb->insertAfter(lo, hi);
232
233 hi->sType = lo->sType;
234 lo->dType = TYPE_U32;
235
236 hi->setDef(0, (dst[1] = bld.getSSA()));
237 if (lo->op == OP_SHR)
238 hi->subOp |= NV50_IR_SUBOP_SHIFT_HIGH;
239 lo->setDef(0, (dst[0] = bld.getSSA()));
240
241 bld.setPosition(hi, true);
242
243 if (lo->op == OP_SHL)
244 std::swap(hi, lo);
245
246 hi->setSrc(0, new_ImmediateValue(prog, 0u));
247 hi->setSrc(1, shift);
248 hi->setSrc(2, lo->op == OP_SHL ? src[0] : src[1]);
249
250 lo->setSrc(0, src[0]);
251 lo->setSrc(1, shift);
252 lo->setSrc(2, src[1]);
253
254 bld.mkOp2(OP_MERGE, TYPE_U64, dst64, dst[0], dst[1]);
255 }
256
257 void
258 NVC0LegalizeSSA::handleSET(CmpInstruction *cmp)
259 {
260 DataType hTy = cmp->sType == TYPE_S64 ? TYPE_S32 : TYPE_U32;
261 Value *carry;
262 Value *src0[2], *src1[2];
263 bld.setPosition(cmp, false);
264
265 bld.mkSplit(src0, 4, cmp->getSrc(0));
266 bld.mkSplit(src1, 4, cmp->getSrc(1));
267 bld.mkOp2(OP_SUB, hTy, NULL, src0[0], src1[0])
268 ->setFlagsDef(0, (carry = bld.getSSA(1, FILE_FLAGS)));
269 cmp->setFlagsSrc(cmp->srcCount(), carry);
270 cmp->setSrc(0, src0[1]);
271 cmp->setSrc(1, src1[1]);
272 cmp->sType = hTy;
273 }
274
275 bool
276 NVC0LegalizeSSA::visit(Function *fn)
277 {
278 bld.setProgram(fn->getProgram());
279 return true;
280 }
281
282 bool
283 NVC0LegalizeSSA::visit(BasicBlock *bb)
284 {
285 Instruction *next;
286 for (Instruction *i = bb->getEntry(); i; i = next) {
287 next = i->next;
288
289 if (i->sType == TYPE_F32 && prog->getType() != Program::TYPE_COMPUTE)
290 handleFTZ(i);
291
292 switch (i->op) {
293 case OP_DIV:
294 case OP_MOD:
295 if (i->sType != TYPE_F32)
296 handleDIV(i);
297 break;
298 case OP_RCP:
299 case OP_RSQ:
300 if (i->dType == TYPE_F64)
301 handleRCPRSQ(i);
302 break;
303 case OP_TXL:
304 case OP_TXF:
305 handleTEXLOD(i->asTex());
306 break;
307 case OP_SHR:
308 case OP_SHL:
309 if (typeSizeof(i->sType) == 8)
310 handleShift(i);
311 break;
312 case OP_SET:
313 case OP_SET_AND:
314 case OP_SET_OR:
315 case OP_SET_XOR:
316 if (typeSizeof(i->sType) == 8 && i->sType != TYPE_F64)
317 handleSET(i->asCmp());
318 break;
319 default:
320 break;
321 }
322 }
323 return true;
324 }
325
326 NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog)
327 : rZero(NULL),
328 carry(NULL),
329 pOne(NULL),
330 needTexBar(prog->getTarget()->getChipset() >= 0xe0 &&
331 prog->getTarget()->getChipset() < 0x110)
332 {
333 }
334
335 bool
336 NVC0LegalizePostRA::insnDominatedBy(const Instruction *later,
337 const Instruction *early) const
338 {
339 if (early->bb == later->bb)
340 return early->serial < later->serial;
341 return later->bb->dominatedBy(early->bb);
342 }
343
344 void
345 NVC0LegalizePostRA::addTexUse(std::list<TexUse> &uses,
346 Instruction *usei, const Instruction *texi)
347 {
348 bool add = true;
349 bool dominated = insnDominatedBy(usei, texi);
350 // Uses before the tex have to all be included. Just because an earlier
351 // instruction dominates another instruction doesn't mean that there's no
352 // way to get from the tex to the later instruction. For example you could
353 // have nested loops, with the tex in the inner loop, and uses before it in
354 // both loops - even though the outer loop's instruction would dominate the
355 // inner's, we still want a texbar before the inner loop's instruction.
356 //
357 // However we can still use the eliding logic between uses dominated by the
358 // tex instruction, as that is unambiguously correct.
359 if (dominated) {
360 for (std::list<TexUse>::iterator it = uses.begin(); it != uses.end();) {
361 if (it->after) {
362 if (insnDominatedBy(usei, it->insn)) {
363 add = false;
364 break;
365 }
366 if (insnDominatedBy(it->insn, usei)) {
367 it = uses.erase(it);
368 continue;
369 }
370 }
371 ++it;
372 }
373 }
374 if (add)
375 uses.push_back(TexUse(usei, texi, dominated));
376 }
377
378 // While it might be tempting to use the an algorithm that just looks at tex
379 // uses, not all texture results are guaranteed to be used on all paths. In
380 // the case where along some control flow path a texture result is never used,
381 // we might reuse that register for something else, creating a
382 // write-after-write hazard. So we have to manually look through all
383 // instructions looking for ones that reference the registers in question.
384 void
385 NVC0LegalizePostRA::findFirstUses(
386 Instruction *texi, std::list<TexUse> &uses)
387 {
388 int minGPR = texi->def(0).rep()->reg.data.id;
389 int maxGPR = minGPR + texi->def(0).rep()->reg.size / 4 - 1;
390
391 unordered_set<const BasicBlock *> visited;
392 findFirstUsesBB(minGPR, maxGPR, texi->next, texi, uses, visited);
393 }
394
395 void
396 NVC0LegalizePostRA::findFirstUsesBB(
397 int minGPR, int maxGPR, Instruction *start,
398 const Instruction *texi, std::list<TexUse> &uses,
399 unordered_set<const BasicBlock *> &visited)
400 {
401 const BasicBlock *bb = start->bb;
402
403 // We don't process the whole bb the first time around. This is correct,
404 // however we might be in a loop and hit this BB again, and need to process
405 // the full thing. So only mark a bb as visited if we processed it from the
406 // beginning.
407 if (start == bb->getEntry()) {
408 if (visited.find(bb) != visited.end())
409 return;
410 visited.insert(bb);
411 }
412
413 for (Instruction *insn = start; insn != bb->getExit(); insn = insn->next) {
414 if (insn->isNop())
415 continue;
416
417 for (int d = 0; insn->defExists(d); ++d) {
418 const Value *def = insn->def(d).rep();
419 if (insn->def(d).getFile() != FILE_GPR ||
420 def->reg.data.id + def->reg.size / 4 - 1 < minGPR ||
421 def->reg.data.id > maxGPR)
422 continue;
423 addTexUse(uses, insn, texi);
424 return;
425 }
426
427 for (int s = 0; insn->srcExists(s); ++s) {
428 const Value *src = insn->src(s).rep();
429 if (insn->src(s).getFile() != FILE_GPR ||
430 src->reg.data.id + src->reg.size / 4 - 1 < minGPR ||
431 src->reg.data.id > maxGPR)
432 continue;
433 addTexUse(uses, insn, texi);
434 return;
435 }
436 }
437
438 for (Graph::EdgeIterator ei = bb->cfg.outgoing(); !ei.end(); ei.next()) {
439 findFirstUsesBB(minGPR, maxGPR, BasicBlock::get(ei.getNode())->getEntry(),
440 texi, uses, visited);
441 }
442 }
443
444 // Texture barriers:
445 // This pass is a bit long and ugly and can probably be optimized.
446 //
447 // 1. obtain a list of TEXes and their outputs' first use(s)
448 // 2. calculate the barrier level of each first use (minimal number of TEXes,
449 // over all paths, between the TEX and the use in question)
450 // 3. for each barrier, if all paths from the source TEX to that barrier
451 // contain a barrier of lesser level, it can be culled
452 bool
453 NVC0LegalizePostRA::insertTextureBarriers(Function *fn)
454 {
455 std::list<TexUse> *uses;
456 std::vector<Instruction *> texes;
457 std::vector<int> bbFirstTex;
458 std::vector<int> bbFirstUse;
459 std::vector<int> texCounts;
460 std::vector<TexUse> useVec;
461 ArrayList insns;
462
463 fn->orderInstructions(insns);
464
465 texCounts.resize(fn->allBBlocks.getSize(), 0);
466 bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize());
467 bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize());
468
469 // tag BB CFG nodes by their id for later
470 for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) {
471 BasicBlock *bb = reinterpret_cast<BasicBlock *>(i.get());
472 if (bb)
473 bb->cfg.tag = bb->getId();
474 }
475
476 // gather the first uses for each TEX
477 for (int i = 0; i < insns.getSize(); ++i) {
478 Instruction *tex = reinterpret_cast<Instruction *>(insns.get(i));
479 if (isTextureOp(tex->op)) {
480 texes.push_back(tex);
481 if (!texCounts.at(tex->bb->getId()))
482 bbFirstTex[tex->bb->getId()] = texes.size() - 1;
483 texCounts[tex->bb->getId()]++;
484 }
485 }
486 insns.clear();
487 if (texes.empty())
488 return false;
489 uses = new std::list<TexUse>[texes.size()];
490 if (!uses)
491 return false;
492 for (size_t i = 0; i < texes.size(); ++i) {
493 findFirstUses(texes[i], uses[i]);
494 }
495
496 // determine the barrier level at each use
497 for (size_t i = 0; i < texes.size(); ++i) {
498 for (std::list<TexUse>::iterator u = uses[i].begin(); u != uses[i].end();
499 ++u) {
500 BasicBlock *tb = texes[i]->bb;
501 BasicBlock *ub = u->insn->bb;
502 if (tb == ub) {
503 u->level = 0;
504 for (size_t j = i + 1; j < texes.size() &&
505 texes[j]->bb == tb && texes[j]->serial < u->insn->serial;
506 ++j)
507 u->level++;
508 } else {
509 u->level = fn->cfg.findLightestPathWeight(&tb->cfg,
510 &ub->cfg, texCounts);
511 if (u->level < 0) {
512 WARN("Failed to find path TEX -> TEXBAR\n");
513 u->level = 0;
514 continue;
515 }
516 // this counted all TEXes in the origin block, correct that
517 u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */;
518 // and did not count the TEXes in the destination block, add those
519 for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() &&
520 texes[j]->bb == ub && texes[j]->serial < u->insn->serial;
521 ++j)
522 u->level++;
523 }
524 assert(u->level >= 0);
525 useVec.push_back(*u);
526 }
527 }
528 delete[] uses;
529
530 // insert the barriers
531 for (size_t i = 0; i < useVec.size(); ++i) {
532 Instruction *prev = useVec[i].insn->prev;
533 if (useVec[i].level < 0)
534 continue;
535 if (prev && prev->op == OP_TEXBAR) {
536 if (prev->subOp > useVec[i].level)
537 prev->subOp = useVec[i].level;
538 prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0));
539 } else {
540 Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE);
541 bar->fixed = 1;
542 bar->subOp = useVec[i].level;
543 // make use explicit to ease latency calculation
544 bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0));
545 useVec[i].insn->bb->insertBefore(useVec[i].insn, bar);
546 }
547 }
548
549 if (fn->getProgram()->optLevel < 3)
550 return true;
551
552 std::vector<Limits> limitT, limitB, limitS; // entry, exit, single
553
554 limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0));
555 limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0));
556 limitS.resize(fn->allBBlocks.getSize());
557
558 // cull unneeded barriers (should do that earlier, but for simplicity)
559 IteratorRef bi = fn->cfg.iteratorCFG();
560 // first calculate min/max outstanding TEXes for each BB
561 for (bi->reset(); !bi->end(); bi->next()) {
562 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
563 BasicBlock *bb = BasicBlock::get(n);
564 int min = 0;
565 int max = std::numeric_limits<int>::max();
566 for (Instruction *i = bb->getFirst(); i; i = i->next) {
567 if (isTextureOp(i->op)) {
568 min++;
569 if (max < std::numeric_limits<int>::max())
570 max++;
571 } else
572 if (i->op == OP_TEXBAR) {
573 min = MIN2(min, i->subOp);
574 max = MIN2(max, i->subOp);
575 }
576 }
577 // limits when looking at an isolated block
578 limitS[bb->getId()].min = min;
579 limitS[bb->getId()].max = max;
580 }
581 // propagate the min/max values
582 for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) {
583 for (bi->reset(); !bi->end(); bi->next()) {
584 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
585 BasicBlock *bb = BasicBlock::get(n);
586 const int bbId = bb->getId();
587 for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) {
588 BasicBlock *in = BasicBlock::get(ei.getNode());
589 const int inId = in->getId();
590 limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min);
591 limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max);
592 }
593 // I just hope this is correct ...
594 if (limitS[bbId].max == std::numeric_limits<int>::max()) {
595 // no barrier
596 limitB[bbId].min = limitT[bbId].min + limitS[bbId].min;
597 limitB[bbId].max = limitT[bbId].max + limitS[bbId].min;
598 } else {
599 // block contained a barrier
600 limitB[bbId].min = MIN2(limitS[bbId].max,
601 limitT[bbId].min + limitS[bbId].min);
602 limitB[bbId].max = MIN2(limitS[bbId].max,
603 limitT[bbId].max + limitS[bbId].min);
604 }
605 }
606 }
607 // finally delete unnecessary barriers
608 for (bi->reset(); !bi->end(); bi->next()) {
609 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
610 BasicBlock *bb = BasicBlock::get(n);
611 Instruction *prev = NULL;
612 Instruction *next;
613 int max = limitT[bb->getId()].max;
614 for (Instruction *i = bb->getFirst(); i; i = next) {
615 next = i->next;
616 if (i->op == OP_TEXBAR) {
617 if (i->subOp >= max) {
618 delete_Instruction(prog, i);
619 i = NULL;
620 } else {
621 max = i->subOp;
622 if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) {
623 delete_Instruction(prog, prev);
624 prev = NULL;
625 }
626 }
627 } else
628 if (isTextureOp(i->op)) {
629 max++;
630 }
631 if (i && !i->isNop())
632 prev = i;
633 }
634 }
635 return true;
636 }
637
638 bool
639 NVC0LegalizePostRA::visit(Function *fn)
640 {
641 if (needTexBar)
642 insertTextureBarriers(fn);
643
644 rZero = new_LValue(fn, FILE_GPR);
645 pOne = new_LValue(fn, FILE_PREDICATE);
646 carry = new_LValue(fn, FILE_FLAGS);
647
648 rZero->reg.data.id = (prog->getTarget()->getChipset() >= NVISA_GK20A_CHIPSET) ? 255 : 63;
649 carry->reg.data.id = 0;
650 pOne->reg.data.id = 7;
651
652 return true;
653 }
654
655 void
656 NVC0LegalizePostRA::replaceZero(Instruction *i)
657 {
658 for (int s = 0; i->srcExists(s); ++s) {
659 if (s == 2 && i->op == OP_SUCLAMP)
660 continue;
661 if (s == 1 && i->op == OP_SHLADD)
662 continue;
663 ImmediateValue *imm = i->getSrc(s)->asImm();
664 if (imm) {
665 if (i->op == OP_SELP && s == 2) {
666 i->setSrc(s, pOne);
667 if (imm->reg.data.u64 == 0)
668 i->src(s).mod = i->src(s).mod ^ Modifier(NV50_IR_MOD_NOT);
669 } else if (imm->reg.data.u64 == 0) {
670 i->setSrc(s, rZero);
671 }
672 }
673 }
674 }
675
676 // replace CONT with BRA for single unconditional continue
677 bool
678 NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb)
679 {
680 if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT)
681 return false;
682 Graph::EdgeIterator ei = bb->cfg.incident();
683 if (ei.getType() != Graph::Edge::BACK)
684 ei.next();
685 if (ei.getType() != Graph::Edge::BACK)
686 return false;
687 BasicBlock *contBB = BasicBlock::get(ei.getNode());
688
689 if (!contBB->getExit() || contBB->getExit()->op != OP_CONT ||
690 contBB->getExit()->getPredicate())
691 return false;
692 contBB->getExit()->op = OP_BRA;
693 bb->remove(bb->getEntry()); // delete PRECONT
694
695 ei.next();
696 assert(ei.end() || ei.getType() != Graph::Edge::BACK);
697 return true;
698 }
699
700 // replace branches to join blocks with join ops
701 void
702 NVC0LegalizePostRA::propagateJoin(BasicBlock *bb)
703 {
704 if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit)
705 return;
706 for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
707 BasicBlock *in = BasicBlock::get(ei.getNode());
708 Instruction *exit = in->getExit();
709 if (!exit) {
710 in->insertTail(new FlowInstruction(func, OP_JOIN, bb));
711 // there should always be a terminator instruction
712 WARN("inserted missing terminator in BB:%i\n", in->getId());
713 } else
714 if (exit->op == OP_BRA) {
715 exit->op = OP_JOIN;
716 exit->asFlow()->limit = 1; // must-not-propagate marker
717 }
718 }
719 bb->remove(bb->getEntry());
720 }
721
722 // replaces instructions which would end up as f2f or i2i with faster
723 // alternatives:
724 // - fabs(a) -> fadd(0, abs a)
725 // - fneg(a) -> fadd(neg 0, neg a)
726 // - ineg(a) -> iadd(0, neg a)
727 // - fneg(abs a) -> fadd(neg 0, neg abs a)
728 // - sat(a) -> sat add(0, a)
729 void
730 NVC0LegalizePostRA::replaceCvt(Instruction *cvt)
731 {
732 if (!isFloatType(cvt->sType) && typeSizeof(cvt->sType) != 4)
733 return;
734 if (cvt->sType != cvt->dType)
735 return;
736 // we could make it work, but in this case we have optimizations disabled
737 // and we don't really care either way.
738 if (cvt->src(0).getFile() != FILE_GPR &&
739 cvt->src(0).getFile() != FILE_MEMORY_CONST)
740 return;
741
742 Modifier mod0, mod1;
743
744 switch (cvt->op) {
745 case OP_ABS:
746 if (cvt->src(0).mod)
747 return;
748 if (!isFloatType(cvt->sType))
749 return;
750 mod0 = 0;
751 mod1 = NV50_IR_MOD_ABS;
752 break;
753 case OP_NEG:
754 if (!isFloatType(cvt->sType) && cvt->src(0).mod)
755 return;
756 if (isFloatType(cvt->sType) &&
757 (cvt->src(0).mod && cvt->src(0).mod != Modifier(NV50_IR_MOD_ABS)))
758 return;
759
760 mod0 = isFloatType(cvt->sType) ? NV50_IR_MOD_NEG : 0;
761 mod1 = cvt->src(0).mod == Modifier(NV50_IR_MOD_ABS) ?
762 NV50_IR_MOD_NEG_ABS : NV50_IR_MOD_NEG;
763 break;
764 case OP_SAT:
765 if (!isFloatType(cvt->sType) && cvt->src(0).mod.abs())
766 return;
767 mod0 = 0;
768 mod1 = cvt->src(0).mod;
769 cvt->saturate = true;
770 break;
771 default:
772 return;
773 }
774
775 cvt->op = OP_ADD;
776 cvt->moveSources(0, 1);
777 cvt->setSrc(0, rZero);
778 cvt->src(0).mod = mod0;
779 cvt->src(1).mod = mod1;
780 }
781
782 bool
783 NVC0LegalizePostRA::visit(BasicBlock *bb)
784 {
785 Instruction *i, *next;
786
787 // remove pseudo operations and non-fixed no-ops, split 64 bit operations
788 for (i = bb->getFirst(); i; i = next) {
789 next = i->next;
790 if (i->op == OP_EMIT || i->op == OP_RESTART) {
791 if (!i->getDef(0)->refCount())
792 i->setDef(0, NULL);
793 if (i->src(0).getFile() == FILE_IMMEDIATE)
794 i->setSrc(0, rZero); // initial value must be 0
795 replaceZero(i);
796 } else
797 if (i->isNop()) {
798 bb->remove(i);
799 } else
800 if (i->op == OP_BAR && i->subOp == NV50_IR_SUBOP_BAR_SYNC &&
801 prog->getType() != Program::TYPE_COMPUTE) {
802 // It seems like barriers are never required for tessellation since
803 // the warp size is 32, and there are always at most 32 tcs threads.
804 bb->remove(i);
805 } else
806 if (i->op == OP_LOAD && i->subOp == NV50_IR_SUBOP_LDC_IS) {
807 int offset = i->src(0).get()->reg.data.offset;
808 if (abs(offset) >= 0x10000)
809 i->src(0).get()->reg.fileIndex += offset >> 16;
810 i->src(0).get()->reg.data.offset = (int)(short)offset;
811 } else {
812 // TODO: Move this to before register allocation for operations that
813 // need the $c register !
814 if (typeSizeof(i->sType) == 8 || typeSizeof(i->dType) == 8) {
815 Instruction *hi;
816 hi = BuildUtil::split64BitOpPostRA(func, i, rZero, carry);
817 if (hi)
818 next = hi;
819 }
820
821 if (i->op == OP_SAT || i->op == OP_NEG || i->op == OP_ABS)
822 replaceCvt(i);
823
824 if (i->op != OP_MOV && i->op != OP_PFETCH)
825 replaceZero(i);
826 }
827 }
828 if (!bb->getEntry())
829 return true;
830
831 if (!tryReplaceContWithBra(bb))
832 propagateJoin(bb);
833
834 return true;
835 }
836
837 NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget())
838 {
839 bld.setProgram(prog);
840 }
841
842 bool
843 NVC0LoweringPass::visit(Function *fn)
844 {
845 if (prog->getType() == Program::TYPE_GEOMETRY) {
846 assert(!strncmp(fn->getName(), "MAIN", 4));
847 // TODO: when we generate actual functions pass this value along somehow
848 bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false);
849 gpEmitAddress = bld.loadImm(NULL, 0)->asLValue();
850 if (fn->cfgExit) {
851 bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false);
852 bld.mkMovToReg(0, gpEmitAddress);
853 }
854 }
855 return true;
856 }
857
858 bool
859 NVC0LoweringPass::visit(BasicBlock *bb)
860 {
861 return true;
862 }
863
864 inline Value *
865 NVC0LoweringPass::loadTexHandle(Value *ptr, unsigned int slot)
866 {
867 uint8_t b = prog->driver->io.auxCBSlot;
868 uint32_t off = prog->driver->io.texBindBase + slot * 4;
869
870 if (ptr)
871 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(2));
872
873 return bld.
874 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
875 }
876
877 // move array source to first slot, convert to u16, add indirections
878 bool
879 NVC0LoweringPass::handleTEX(TexInstruction *i)
880 {
881 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
882 const int arg = i->tex.target.getArgCount();
883 const int lyr = arg - (i->tex.target.isMS() ? 2 : 1);
884 const int chipset = prog->getTarget()->getChipset();
885
886 /* Only normalize in the non-explicit derivatives case. For explicit
887 * derivatives, this is handled in handleManualTXD.
888 */
889 if (i->tex.target.isCube() && i->dPdx[0].get() == NULL) {
890 Value *src[3], *val;
891 int c;
892 for (c = 0; c < 3; ++c)
893 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), i->getSrc(c));
894 val = bld.getScratch();
895 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
896 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
897 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
898 for (c = 0; c < 3; ++c) {
899 i->setSrc(c, bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(),
900 i->getSrc(c), val));
901 }
902 }
903
904 // Arguments to the TEX instruction are a little insane. Even though the
905 // encoding is identical between SM20 and SM30, the arguments mean
906 // different things between Fermi and Kepler+. A lot of arguments are
907 // optional based on flags passed to the instruction. This summarizes the
908 // order of things.
909 //
910 // Fermi:
911 // array/indirect
912 // coords
913 // sample
914 // lod bias
915 // depth compare
916 // offsets:
917 // - tg4: 8 bits each, either 2 (1 offset reg) or 8 (2 offset reg)
918 // - other: 4 bits each, single reg
919 //
920 // Kepler+:
921 // indirect handle
922 // array (+ offsets for txd in upper 16 bits)
923 // coords
924 // sample
925 // lod bias
926 // depth compare
927 // offsets (same as fermi, except txd which takes it with array)
928 //
929 // Maxwell (tex):
930 // array
931 // coords
932 // indirect handle
933 // sample
934 // lod bias
935 // depth compare
936 // offsets
937 //
938 // Maxwell (txd):
939 // indirect handle
940 // coords
941 // array + offsets
942 // derivatives
943
944 if (chipset >= NVISA_GK104_CHIPSET) {
945 if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
946 // XXX this ignores tsc, and assumes a 1:1 mapping
947 assert(i->tex.rIndirectSrc >= 0);
948 if (!i->tex.bindless) {
949 Value *hnd = loadTexHandle(i->getIndirectR(), i->tex.r);
950 i->tex.r = 0xff;
951 i->tex.s = 0x1f;
952 i->setIndirectR(hnd);
953 }
954 i->setIndirectS(NULL);
955 } else if (i->tex.r == i->tex.s || i->op == OP_TXF) {
956 if (i->tex.r == 0xffff)
957 i->tex.r = prog->driver->io.fbtexBindBase / 4;
958 else
959 i->tex.r += prog->driver->io.texBindBase / 4;
960 i->tex.s = 0; // only a single cX[] value possible here
961 } else {
962 Value *hnd = bld.getScratch();
963 Value *rHnd = loadTexHandle(NULL, i->tex.r);
964 Value *sHnd = loadTexHandle(NULL, i->tex.s);
965
966 bld.mkOp3(OP_INSBF, TYPE_U32, hnd, rHnd, bld.mkImm(0x1400), sHnd);
967
968 i->tex.r = 0; // not used for indirect tex
969 i->tex.s = 0;
970 i->setIndirectR(hnd);
971 }
972 if (i->tex.target.isArray()) {
973 LValue *layer = new_LValue(func, FILE_GPR);
974 Value *src = i->getSrc(lyr);
975 const int sat = (i->op == OP_TXF) ? 1 : 0;
976 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
977 bld.mkCvt(OP_CVT, TYPE_U16, layer, sTy, src)->saturate = sat;
978 if (i->op != OP_TXD || chipset < NVISA_GM107_CHIPSET) {
979 for (int s = dim; s >= 1; --s)
980 i->setSrc(s, i->getSrc(s - 1));
981 i->setSrc(0, layer);
982 } else {
983 i->setSrc(dim, layer);
984 }
985 }
986 // Move the indirect reference to the first place
987 if (i->tex.rIndirectSrc >= 0 && (
988 i->op == OP_TXD || chipset < NVISA_GM107_CHIPSET)) {
989 Value *hnd = i->getIndirectR();
990
991 i->setIndirectR(NULL);
992 i->moveSources(0, 1);
993 i->setSrc(0, hnd);
994 i->tex.rIndirectSrc = 0;
995 i->tex.sIndirectSrc = -1;
996 }
997 // Move the indirect reference to right after the coords
998 else if (i->tex.rIndirectSrc >= 0 && chipset >= NVISA_GM107_CHIPSET) {
999 Value *hnd = i->getIndirectR();
1000
1001 i->setIndirectR(NULL);
1002 i->moveSources(arg, 1);
1003 i->setSrc(arg, hnd);
1004 i->tex.rIndirectSrc = 0;
1005 i->tex.sIndirectSrc = -1;
1006 }
1007 } else
1008 // (nvc0) generate and move the tsc/tic/array source to the front
1009 if (i->tex.target.isArray() || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
1010 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
1011
1012 Value *ticRel = i->getIndirectR();
1013 Value *tscRel = i->getIndirectS();
1014
1015 if (i->tex.r == 0xffff) {
1016 i->tex.r = 0x20;
1017 i->tex.s = 0x10;
1018 }
1019
1020 if (ticRel) {
1021 i->setSrc(i->tex.rIndirectSrc, NULL);
1022 if (i->tex.r)
1023 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1024 ticRel, bld.mkImm(i->tex.r));
1025 }
1026 if (tscRel) {
1027 i->setSrc(i->tex.sIndirectSrc, NULL);
1028 if (i->tex.s)
1029 tscRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1030 tscRel, bld.mkImm(i->tex.s));
1031 }
1032
1033 Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(lyr) : NULL;
1034 if (arrayIndex) {
1035 for (int s = dim; s >= 1; --s)
1036 i->setSrc(s, i->getSrc(s - 1));
1037 i->setSrc(0, arrayIndex);
1038 } else {
1039 i->moveSources(0, 1);
1040 }
1041
1042 if (arrayIndex) {
1043 int sat = (i->op == OP_TXF) ? 1 : 0;
1044 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
1045 bld.mkCvt(OP_CVT, TYPE_U16, src, sTy, arrayIndex)->saturate = sat;
1046 } else {
1047 bld.loadImm(src, 0);
1048 }
1049
1050 if (ticRel)
1051 bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src);
1052 if (tscRel)
1053 bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src);
1054
1055 i->setSrc(0, src);
1056 }
1057
1058 // For nvc0, the sample id has to be in the second operand, as the offset
1059 // does. Right now we don't know how to pass both in, and this case can't
1060 // happen with OpenGL. On nve0, the sample id is part of the texture
1061 // coordinate argument.
1062 assert(chipset >= NVISA_GK104_CHIPSET ||
1063 !i->tex.useOffsets || !i->tex.target.isMS());
1064
1065 // offset is between lod and dc
1066 if (i->tex.useOffsets) {
1067 int n, c;
1068 int s = i->srcCount(0xff, true);
1069 if (i->op != OP_TXD || chipset < NVISA_GK104_CHIPSET) {
1070 if (i->tex.target.isShadow())
1071 s--;
1072 if (i->srcExists(s)) // move potential predicate out of the way
1073 i->moveSources(s, 1);
1074 if (i->tex.useOffsets == 4 && i->srcExists(s + 1))
1075 i->moveSources(s + 1, 1);
1076 }
1077 if (i->op == OP_TXG) {
1078 // Either there is 1 offset, which goes into the 2 low bytes of the
1079 // first source, or there are 4 offsets, which go into 2 sources (8
1080 // values, 1 byte each).
1081 Value *offs[2] = {NULL, NULL};
1082 for (n = 0; n < i->tex.useOffsets; n++) {
1083 for (c = 0; c < 2; ++c) {
1084 if ((n % 2) == 0 && c == 0)
1085 bld.mkMov(offs[n / 2] = bld.getScratch(), i->offset[n][c].get());
1086 else
1087 bld.mkOp3(OP_INSBF, TYPE_U32,
1088 offs[n / 2],
1089 i->offset[n][c].get(),
1090 bld.mkImm(0x800 | ((n * 16 + c * 8) % 32)),
1091 offs[n / 2]);
1092 }
1093 }
1094 i->setSrc(s, offs[0]);
1095 if (offs[1])
1096 i->setSrc(s + 1, offs[1]);
1097 } else {
1098 unsigned imm = 0;
1099 assert(i->tex.useOffsets == 1);
1100 for (c = 0; c < 3; ++c) {
1101 ImmediateValue val;
1102 if (!i->offset[0][c].getImmediate(val))
1103 assert(!"non-immediate offset passed to non-TXG");
1104 imm |= (val.reg.data.u32 & 0xf) << (c * 4);
1105 }
1106 if (i->op == OP_TXD && chipset >= NVISA_GK104_CHIPSET) {
1107 // The offset goes into the upper 16 bits of the array index. So
1108 // create it if it's not already there, and INSBF it if it already
1109 // is.
1110 s = (i->tex.rIndirectSrc >= 0) ? 1 : 0;
1111 if (chipset >= NVISA_GM107_CHIPSET)
1112 s += dim;
1113 if (i->tex.target.isArray()) {
1114 Value *offset = bld.getScratch();
1115 bld.mkOp3(OP_INSBF, TYPE_U32, offset,
1116 bld.loadImm(NULL, imm), bld.mkImm(0xc10),
1117 i->getSrc(s));
1118 i->setSrc(s, offset);
1119 } else {
1120 i->moveSources(s, 1);
1121 i->setSrc(s, bld.loadImm(NULL, imm << 16));
1122 }
1123 } else {
1124 i->setSrc(s, bld.loadImm(NULL, imm));
1125 }
1126 }
1127 }
1128
1129 return true;
1130 }
1131
1132 bool
1133 NVC0LoweringPass::handleManualTXD(TexInstruction *i)
1134 {
1135 // Always done from the l0 perspective. This is the way that NVIDIA's
1136 // driver does it, and doing it from the "current" lane's perpsective
1137 // doesn't seem to always work for reasons that aren't altogether clear,
1138 // even in frag shaders.
1139 //
1140 // Note that we must move not only the coordinates into lane0, but also all
1141 // ancillary arguments, like array indices and depth compare as they may
1142 // differ between lanes. Offsets for TXD are supposed to be uniform, so we
1143 // leave them alone.
1144 static const uint8_t qOps[2] =
1145 { QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(MOV2, MOV2, ADD, ADD) };
1146
1147 Value *def[4][4];
1148 Value *crd[3], *arr[2], *shadow;
1149 Instruction *tex;
1150 Value *zero = bld.loadImm(bld.getSSA(), 0);
1151 int l, c;
1152 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
1153
1154 // This function is invoked after handleTEX lowering, so we have to expect
1155 // the arguments in the order that the hw wants them. For Fermi, array and
1156 // indirect are both in the leading arg, while for Kepler, array and
1157 // indirect are separate (and both precede the coordinates). Maxwell is
1158 // handled in a separate function.
1159 int array;
1160 if (targ->getChipset() < NVISA_GK104_CHIPSET)
1161 array = i->tex.target.isArray() || i->tex.rIndirectSrc >= 0;
1162 else
1163 array = i->tex.target.isArray() + (i->tex.rIndirectSrc >= 0);
1164
1165 i->op = OP_TEX; // no need to clone dPdx/dPdy later
1166
1167 for (c = 0; c < dim; ++c)
1168 crd[c] = bld.getScratch();
1169 for (c = 0; c < array; ++c)
1170 arr[c] = bld.getScratch();
1171 shadow = bld.getScratch();
1172
1173 for (l = 0; l < 4; ++l) {
1174 Value *src[3], *val;
1175
1176 bld.mkOp(OP_QUADON, TYPE_NONE, NULL);
1177 // we're using the texture result from lane 0 in all cases, so make sure
1178 // that lane 0 is pointing at the proper array index, indirect value,
1179 // and depth compare.
1180 if (l != 0) {
1181 for (c = 0; c < array; ++c)
1182 bld.mkQuadop(0x00, arr[c], l, i->getSrc(c), zero);
1183 if (i->tex.target.isShadow()) {
1184 // The next argument after coords is the depth compare
1185 bld.mkQuadop(0x00, shadow, l, i->getSrc(array + dim), zero);
1186 }
1187 }
1188 // mov position coordinates from lane l to all lanes
1189 for (c = 0; c < dim; ++c)
1190 bld.mkQuadop(0x00, crd[c], l, i->getSrc(c + array), zero);
1191 // add dPdx from lane l to lanes dx
1192 for (c = 0; c < dim; ++c)
1193 bld.mkQuadop(qOps[0], crd[c], l, i->dPdx[c].get(), crd[c]);
1194 // add dPdy from lane l to lanes dy
1195 for (c = 0; c < dim; ++c)
1196 bld.mkQuadop(qOps[1], crd[c], l, i->dPdy[c].get(), crd[c]);
1197 // normalize cube coordinates
1198 if (i->tex.target.isCube()) {
1199 for (c = 0; c < 3; ++c)
1200 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), crd[c]);
1201 val = bld.getScratch();
1202 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
1203 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
1204 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
1205 for (c = 0; c < 3; ++c)
1206 src[c] = bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(), crd[c], val);
1207 } else {
1208 for (c = 0; c < dim; ++c)
1209 src[c] = crd[c];
1210 }
1211 // texture
1212 bld.insert(tex = cloneForward(func, i));
1213 if (l != 0) {
1214 for (c = 0; c < array; ++c)
1215 tex->setSrc(c, arr[c]);
1216 if (i->tex.target.isShadow())
1217 tex->setSrc(array + dim, shadow);
1218 }
1219 for (c = 0; c < dim; ++c)
1220 tex->setSrc(c + array, src[c]);
1221 // broadcast results from lane 0 to all lanes so that the moves *into*
1222 // the target lane pick up the proper value.
1223 if (l != 0)
1224 for (c = 0; i->defExists(c); ++c)
1225 bld.mkQuadop(0x00, tex->getDef(c), 0, tex->getDef(c), zero);
1226 bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL);
1227
1228 // save results
1229 for (c = 0; i->defExists(c); ++c) {
1230 Instruction *mov;
1231 def[c][l] = bld.getSSA();
1232 mov = bld.mkMov(def[c][l], tex->getDef(c));
1233 mov->fixed = 1;
1234 mov->lanes = 1 << l;
1235 }
1236 }
1237
1238 for (c = 0; i->defExists(c); ++c) {
1239 Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c));
1240 for (l = 0; l < 4; ++l)
1241 u->setSrc(l, def[c][l]);
1242 }
1243
1244 i->bb->remove(i);
1245 return true;
1246 }
1247
1248 bool
1249 NVC0LoweringPass::handleTXD(TexInstruction *txd)
1250 {
1251 int dim = txd->tex.target.getDim() + txd->tex.target.isCube();
1252 unsigned arg = txd->tex.target.getArgCount();
1253 unsigned expected_args = arg;
1254 const int chipset = prog->getTarget()->getChipset();
1255
1256 if (chipset >= NVISA_GK104_CHIPSET) {
1257 if (!txd->tex.target.isArray() && txd->tex.useOffsets)
1258 expected_args++;
1259 if (txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0)
1260 expected_args++;
1261 } else {
1262 if (txd->tex.useOffsets)
1263 expected_args++;
1264 if (!txd->tex.target.isArray() && (
1265 txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0))
1266 expected_args++;
1267 }
1268
1269 if (expected_args > 4 ||
1270 dim > 2 ||
1271 txd->tex.target.isShadow())
1272 txd->op = OP_TEX;
1273
1274 handleTEX(txd);
1275 while (txd->srcExists(arg))
1276 ++arg;
1277
1278 txd->tex.derivAll = true;
1279 if (txd->op == OP_TEX)
1280 return handleManualTXD(txd);
1281
1282 assert(arg == expected_args);
1283 for (int c = 0; c < dim; ++c) {
1284 txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]);
1285 txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]);
1286 txd->dPdx[c].set(NULL);
1287 txd->dPdy[c].set(NULL);
1288 }
1289
1290 // In this case we have fewer than 4 "real" arguments, which means that
1291 // handleTEX didn't apply any padding. However we have to make sure that
1292 // the second "group" of arguments still gets padded up to 4.
1293 if (chipset >= NVISA_GK104_CHIPSET) {
1294 int s = arg + 2 * dim;
1295 if (s >= 4 && s < 7) {
1296 if (txd->srcExists(s)) // move potential predicate out of the way
1297 txd->moveSources(s, 7 - s);
1298 while (s < 7)
1299 txd->setSrc(s++, bld.loadImm(NULL, 0));
1300 }
1301 }
1302
1303 return true;
1304 }
1305
1306 bool
1307 NVC0LoweringPass::handleTXQ(TexInstruction *txq)
1308 {
1309 const int chipset = prog->getTarget()->getChipset();
1310 if (chipset >= NVISA_GK104_CHIPSET && txq->tex.rIndirectSrc < 0)
1311 txq->tex.r += prog->driver->io.texBindBase / 4;
1312
1313 if (txq->tex.rIndirectSrc < 0)
1314 return true;
1315
1316 Value *ticRel = txq->getIndirectR();
1317
1318 txq->setIndirectS(NULL);
1319 txq->tex.sIndirectSrc = -1;
1320
1321 assert(ticRel);
1322
1323 if (chipset < NVISA_GK104_CHIPSET) {
1324 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
1325
1326 txq->setSrc(txq->tex.rIndirectSrc, NULL);
1327 if (txq->tex.r)
1328 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1329 ticRel, bld.mkImm(txq->tex.r));
1330
1331 bld.mkOp2(OP_SHL, TYPE_U32, src, ticRel, bld.mkImm(0x17));
1332
1333 txq->moveSources(0, 1);
1334 txq->setSrc(0, src);
1335 } else {
1336 Value *hnd = loadTexHandle(txq->getIndirectR(), txq->tex.r);
1337 txq->tex.r = 0xff;
1338 txq->tex.s = 0x1f;
1339
1340 txq->setIndirectR(NULL);
1341 txq->moveSources(0, 1);
1342 txq->setSrc(0, hnd);
1343 txq->tex.rIndirectSrc = 0;
1344 }
1345
1346 return true;
1347 }
1348
1349 bool
1350 NVC0LoweringPass::handleTXLQ(TexInstruction *i)
1351 {
1352 /* The outputs are inverted compared to what the TGSI instruction
1353 * expects. Take that into account in the mask.
1354 */
1355 assert((i->tex.mask & ~3) == 0);
1356 if (i->tex.mask == 1)
1357 i->tex.mask = 2;
1358 else if (i->tex.mask == 2)
1359 i->tex.mask = 1;
1360 handleTEX(i);
1361 bld.setPosition(i, true);
1362
1363 /* The returned values are not quite what we want:
1364 * (a) convert from s16/u16 to f32
1365 * (b) multiply by 1/256
1366 */
1367 for (int def = 0; def < 2; ++def) {
1368 if (!i->defExists(def))
1369 continue;
1370 enum DataType type = TYPE_S16;
1371 if (i->tex.mask == 2 || def > 0)
1372 type = TYPE_U16;
1373 bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(def), type, i->getDef(def));
1374 bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(def),
1375 i->getDef(def), bld.loadImm(NULL, 1.0f / 256));
1376 }
1377 if (i->tex.mask == 3) {
1378 LValue *t = new_LValue(func, FILE_GPR);
1379 bld.mkMov(t, i->getDef(0));
1380 bld.mkMov(i->getDef(0), i->getDef(1));
1381 bld.mkMov(i->getDef(1), t);
1382 }
1383 return true;
1384 }
1385
1386 bool
1387 NVC0LoweringPass::handleBUFQ(Instruction *bufq)
1388 {
1389 bufq->op = OP_MOV;
1390 bufq->setSrc(0, loadBufLength32(bufq->getIndirect(0, 1),
1391 bufq->getSrc(0)->reg.fileIndex * 16));
1392 bufq->setIndirect(0, 0, NULL);
1393 bufq->setIndirect(0, 1, NULL);
1394 return true;
1395 }
1396
1397 void
1398 NVC0LoweringPass::handleSharedATOMNVE4(Instruction *atom)
1399 {
1400 assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1401
1402 BasicBlock *currBB = atom->bb;
1403 BasicBlock *tryLockBB = atom->bb->splitBefore(atom, false);
1404 BasicBlock *joinBB = atom->bb->splitAfter(atom);
1405 BasicBlock *setAndUnlockBB = new BasicBlock(func);
1406 BasicBlock *failLockBB = new BasicBlock(func);
1407
1408 bld.setPosition(currBB, true);
1409 assert(!currBB->joinAt);
1410 currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1411
1412 CmpInstruction *pred =
1413 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1414 TYPE_U32, bld.mkImm(0), bld.mkImm(1));
1415
1416 bld.mkFlow(OP_BRA, tryLockBB, CC_ALWAYS, NULL);
1417 currBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::TREE);
1418
1419 bld.setPosition(tryLockBB, true);
1420
1421 Instruction *ld =
1422 bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1423 atom->getIndirect(0, 0));
1424 ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1425 ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1426
1427 bld.mkFlow(OP_BRA, setAndUnlockBB, CC_P, ld->getDef(1));
1428 bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1429 tryLockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::CROSS);
1430 tryLockBB->cfg.attach(&setAndUnlockBB->cfg, Graph::Edge::TREE);
1431
1432 tryLockBB->cfg.detach(&joinBB->cfg);
1433 bld.remove(atom);
1434
1435 bld.setPosition(setAndUnlockBB, true);
1436 Value *stVal;
1437 if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1438 // Read the old value, and write the new one.
1439 stVal = atom->getSrc(1);
1440 } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1441 CmpInstruction *set =
1442 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(),
1443 TYPE_U32, ld->getDef(0), atom->getSrc(1));
1444
1445 bld.mkCmp(OP_SLCT, CC_NE, TYPE_U32, (stVal = bld.getSSA()),
1446 TYPE_U32, atom->getSrc(2), ld->getDef(0), set->getDef(0));
1447 } else {
1448 operation op;
1449
1450 switch (atom->subOp) {
1451 case NV50_IR_SUBOP_ATOM_ADD:
1452 op = OP_ADD;
1453 break;
1454 case NV50_IR_SUBOP_ATOM_AND:
1455 op = OP_AND;
1456 break;
1457 case NV50_IR_SUBOP_ATOM_OR:
1458 op = OP_OR;
1459 break;
1460 case NV50_IR_SUBOP_ATOM_XOR:
1461 op = OP_XOR;
1462 break;
1463 case NV50_IR_SUBOP_ATOM_MIN:
1464 op = OP_MIN;
1465 break;
1466 case NV50_IR_SUBOP_ATOM_MAX:
1467 op = OP_MAX;
1468 break;
1469 default:
1470 assert(0);
1471 return;
1472 }
1473
1474 stVal = bld.mkOp2v(op, atom->dType, bld.getSSA(), ld->getDef(0),
1475 atom->getSrc(1));
1476 }
1477
1478 Instruction *st =
1479 bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1480 atom->getIndirect(0, 0), stVal);
1481 st->setDef(0, pred->getDef(0));
1482 st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1483
1484 bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1485 setAndUnlockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::TREE);
1486
1487 // Lock until the store has not been performed.
1488 bld.setPosition(failLockBB, true);
1489 bld.mkFlow(OP_BRA, tryLockBB, CC_NOT_P, pred->getDef(0));
1490 bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1491 failLockBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::BACK);
1492 failLockBB->cfg.attach(&joinBB->cfg, Graph::Edge::TREE);
1493
1494 bld.setPosition(joinBB, false);
1495 bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1496 }
1497
1498 void
1499 NVC0LoweringPass::handleSharedATOM(Instruction *atom)
1500 {
1501 assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1502
1503 BasicBlock *currBB = atom->bb;
1504 BasicBlock *tryLockAndSetBB = atom->bb->splitBefore(atom, false);
1505 BasicBlock *joinBB = atom->bb->splitAfter(atom);
1506
1507 bld.setPosition(currBB, true);
1508 assert(!currBB->joinAt);
1509 currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1510
1511 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_ALWAYS, NULL);
1512 currBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::TREE);
1513
1514 bld.setPosition(tryLockAndSetBB, true);
1515
1516 Instruction *ld =
1517 bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1518 atom->getIndirect(0, 0));
1519 ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1520 ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1521
1522 Value *stVal;
1523 if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1524 // Read the old value, and write the new one.
1525 stVal = atom->getSrc(1);
1526 } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1527 CmpInstruction *set =
1528 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1529 TYPE_U32, ld->getDef(0), atom->getSrc(1));
1530 set->setPredicate(CC_P, ld->getDef(1));
1531
1532 Instruction *selp =
1533 bld.mkOp3(OP_SELP, TYPE_U32, bld.getSSA(), ld->getDef(0),
1534 atom->getSrc(2), set->getDef(0));
1535 selp->src(2).mod = Modifier(NV50_IR_MOD_NOT);
1536 selp->setPredicate(CC_P, ld->getDef(1));
1537
1538 stVal = selp->getDef(0);
1539 } else {
1540 operation op;
1541
1542 switch (atom->subOp) {
1543 case NV50_IR_SUBOP_ATOM_ADD:
1544 op = OP_ADD;
1545 break;
1546 case NV50_IR_SUBOP_ATOM_AND:
1547 op = OP_AND;
1548 break;
1549 case NV50_IR_SUBOP_ATOM_OR:
1550 op = OP_OR;
1551 break;
1552 case NV50_IR_SUBOP_ATOM_XOR:
1553 op = OP_XOR;
1554 break;
1555 case NV50_IR_SUBOP_ATOM_MIN:
1556 op = OP_MIN;
1557 break;
1558 case NV50_IR_SUBOP_ATOM_MAX:
1559 op = OP_MAX;
1560 break;
1561 default:
1562 assert(0);
1563 return;
1564 }
1565
1566 Instruction *i =
1567 bld.mkOp2(op, atom->dType, bld.getSSA(), ld->getDef(0),
1568 atom->getSrc(1));
1569 i->setPredicate(CC_P, ld->getDef(1));
1570
1571 stVal = i->getDef(0);
1572 }
1573
1574 Instruction *st =
1575 bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1576 atom->getIndirect(0, 0), stVal);
1577 st->setPredicate(CC_P, ld->getDef(1));
1578 st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1579
1580 // Loop until the lock is acquired.
1581 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_NOT_P, ld->getDef(1));
1582 tryLockAndSetBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::BACK);
1583 tryLockAndSetBB->cfg.attach(&joinBB->cfg, Graph::Edge::CROSS);
1584 bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1585
1586 bld.remove(atom);
1587
1588 bld.setPosition(joinBB, false);
1589 bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1590 }
1591
1592 bool
1593 NVC0LoweringPass::handleATOM(Instruction *atom)
1594 {
1595 SVSemantic sv;
1596 Value *ptr = atom->getIndirect(0, 0), *ind = atom->getIndirect(0, 1), *base;
1597
1598 switch (atom->src(0).getFile()) {
1599 case FILE_MEMORY_LOCAL:
1600 sv = SV_LBASE;
1601 break;
1602 case FILE_MEMORY_SHARED:
1603 // For Fermi/Kepler, we have to use ld lock/st unlock to perform atomic
1604 // operations on shared memory. For Maxwell, ATOMS is enough.
1605 if (targ->getChipset() < NVISA_GK104_CHIPSET)
1606 handleSharedATOM(atom);
1607 else if (targ->getChipset() < NVISA_GM107_CHIPSET)
1608 handleSharedATOMNVE4(atom);
1609 return true;
1610 default:
1611 assert(atom->src(0).getFile() == FILE_MEMORY_BUFFER);
1612 base = loadBufInfo64(ind, atom->getSrc(0)->reg.fileIndex * 16);
1613 assert(base->reg.size == 8);
1614 if (ptr)
1615 base = bld.mkOp2v(OP_ADD, TYPE_U64, base, base, ptr);
1616 assert(base->reg.size == 8);
1617 atom->setIndirect(0, 0, base);
1618 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1619
1620 // Harden against out-of-bounds accesses
1621 Value *offset = bld.loadImm(NULL, atom->getSrc(0)->reg.data.offset + typeSizeof(atom->sType));
1622 Value *length = loadBufLength32(ind, atom->getSrc(0)->reg.fileIndex * 16);
1623 Value *pred = new_LValue(func, FILE_PREDICATE);
1624 if (ptr)
1625 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, ptr);
1626 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
1627 atom->setPredicate(CC_NOT_P, pred);
1628 if (atom->defExists(0)) {
1629 Value *zero, *dst = atom->getDef(0);
1630 atom->setDef(0, bld.getSSA());
1631
1632 bld.setPosition(atom, true);
1633 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
1634 ->setPredicate(CC_P, pred);
1635 bld.mkOp2(OP_UNION, TYPE_U32, dst, atom->getDef(0), zero);
1636 }
1637
1638 return true;
1639 }
1640 base =
1641 bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(), bld.mkSysVal(sv, 0));
1642
1643 atom->setSrc(0, cloneShallow(func, atom->getSrc(0)));
1644 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1645 if (ptr)
1646 base = bld.mkOp2v(OP_ADD, TYPE_U32, base, base, ptr);
1647 atom->setIndirect(0, 1, NULL);
1648 atom->setIndirect(0, 0, base);
1649
1650 return true;
1651 }
1652
1653 bool
1654 NVC0LoweringPass::handleCasExch(Instruction *cas, bool needCctl)
1655 {
1656 if (targ->getChipset() < NVISA_GM107_CHIPSET) {
1657 if (cas->src(0).getFile() == FILE_MEMORY_SHARED) {
1658 // ATOM_CAS and ATOM_EXCH are handled in handleSharedATOM().
1659 return false;
1660 }
1661 }
1662
1663 if (cas->subOp != NV50_IR_SUBOP_ATOM_CAS &&
1664 cas->subOp != NV50_IR_SUBOP_ATOM_EXCH)
1665 return false;
1666 bld.setPosition(cas, true);
1667
1668 if (needCctl) {
1669 Instruction *cctl = bld.mkOp1(OP_CCTL, TYPE_NONE, NULL, cas->getSrc(0));
1670 cctl->setIndirect(0, 0, cas->getIndirect(0, 0));
1671 cctl->fixed = 1;
1672 cctl->subOp = NV50_IR_SUBOP_CCTL_IV;
1673 if (cas->isPredicated())
1674 cctl->setPredicate(cas->cc, cas->getPredicate());
1675 }
1676
1677 if (cas->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1678 // CAS is crazy. It's 2nd source is a double reg, and the 3rd source
1679 // should be set to the high part of the double reg or bad things will
1680 // happen elsewhere in the universe.
1681 // Also, it sometimes returns the new value instead of the old one
1682 // under mysterious circumstances.
1683 Value *dreg = bld.getSSA(8);
1684 bld.setPosition(cas, false);
1685 bld.mkOp2(OP_MERGE, TYPE_U64, dreg, cas->getSrc(1), cas->getSrc(2));
1686 cas->setSrc(1, dreg);
1687 cas->setSrc(2, dreg);
1688 }
1689
1690 return true;
1691 }
1692
1693 inline Value *
1694 NVC0LoweringPass::loadResInfo32(Value *ptr, uint32_t off, uint16_t base)
1695 {
1696 uint8_t b = prog->driver->io.auxCBSlot;
1697 off += base;
1698
1699 return bld.
1700 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1701 }
1702
1703 inline Value *
1704 NVC0LoweringPass::loadResInfo64(Value *ptr, uint32_t off, uint16_t base)
1705 {
1706 uint8_t b = prog->driver->io.auxCBSlot;
1707 off += base;
1708
1709 if (ptr)
1710 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1711
1712 return bld.
1713 mkLoadv(TYPE_U64, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off), ptr);
1714 }
1715
1716 inline Value *
1717 NVC0LoweringPass::loadResLength32(Value *ptr, uint32_t off, uint16_t base)
1718 {
1719 uint8_t b = prog->driver->io.auxCBSlot;
1720 off += base;
1721
1722 if (ptr)
1723 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1724
1725 return bld.
1726 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off + 8), ptr);
1727 }
1728
1729 inline Value *
1730 NVC0LoweringPass::loadBufInfo64(Value *ptr, uint32_t off)
1731 {
1732 return loadResInfo64(ptr, off, prog->driver->io.bufInfoBase);
1733 }
1734
1735 inline Value *
1736 NVC0LoweringPass::loadBufLength32(Value *ptr, uint32_t off)
1737 {
1738 return loadResLength32(ptr, off, prog->driver->io.bufInfoBase);
1739 }
1740
1741 inline Value *
1742 NVC0LoweringPass::loadUboInfo64(Value *ptr, uint32_t off)
1743 {
1744 return loadResInfo64(ptr, off, prog->driver->io.uboInfoBase);
1745 }
1746
1747 inline Value *
1748 NVC0LoweringPass::loadUboLength32(Value *ptr, uint32_t off)
1749 {
1750 return loadResLength32(ptr, off, prog->driver->io.uboInfoBase);
1751 }
1752
1753 inline Value *
1754 NVC0LoweringPass::loadMsInfo32(Value *ptr, uint32_t off)
1755 {
1756 uint8_t b = prog->driver->io.msInfoCBSlot;
1757 off += prog->driver->io.msInfoBase;
1758 return bld.
1759 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1760 }
1761
1762 inline Value *
1763 NVC0LoweringPass::loadSuInfo32(Value *ptr, int slot, uint32_t off, bool bindless)
1764 {
1765 uint32_t base = slot * NVC0_SU_INFO__STRIDE;
1766
1767 if (ptr) {
1768 ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(slot));
1769 if (bindless)
1770 ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(511));
1771 else
1772 ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
1773 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(6));
1774 base = 0;
1775 }
1776 off += base;
1777
1778 return loadResInfo32(ptr, off, bindless ? prog->driver->io.bindlessBase :
1779 prog->driver->io.suInfoBase);
1780 }
1781
1782 Value *
1783 NVC0LoweringPass::loadMsAdjInfo32(TexInstruction::Target target, uint32_t index, int slot, Value *ind, bool bindless)
1784 {
1785 if (!bindless || targ->getChipset() < NVISA_GM107_CHIPSET)
1786 return loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(index), bindless);
1787
1788 assert(bindless);
1789
1790 Value *samples = bld.getSSA();
1791 // this shouldn't be lowered because it's being inserted before the current instruction
1792 TexInstruction *tex = new_TexInstruction(func, OP_TXQ);
1793 tex->tex.target = target;
1794 tex->tex.query = TXQ_TYPE;
1795 tex->tex.mask = 0x4;
1796 tex->tex.r = 0xff;
1797 tex->tex.s = 0x1f;
1798 tex->tex.rIndirectSrc = 0;
1799 tex->setDef(0, samples);
1800 tex->setSrc(0, ind);
1801 tex->setSrc(1, bld.loadImm(NULL, 0));
1802 bld.insert(tex);
1803
1804 // doesn't work with sample counts other than 1/2/4/8 but they aren't supported
1805 switch (index) {
1806 case 0: {
1807 Value *tmp = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), samples, bld.mkImm(2));
1808 return bld.mkOp2v(OP_SHR, TYPE_U32, bld.getSSA(), tmp, bld.mkImm(2));
1809 }
1810 case 1: {
1811 Value *tmp = bld.mkCmp(OP_SET, CC_GT, TYPE_U32, bld.getSSA(), TYPE_U32, samples, bld.mkImm(2))->getDef(0);
1812 return bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), tmp, bld.mkImm(1));
1813 }
1814 default: {
1815 assert(false);
1816 return NULL;
1817 }
1818 }
1819 }
1820
1821 static inline uint16_t getSuClampSubOp(const TexInstruction *su, int c)
1822 {
1823 switch (su->tex.target.getEnum()) {
1824 case TEX_TARGET_BUFFER: return NV50_IR_SUBOP_SUCLAMP_PL(0, 1);
1825 case TEX_TARGET_RECT: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1826 case TEX_TARGET_1D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1827 case TEX_TARGET_1D_ARRAY: return (c == 1) ?
1828 NV50_IR_SUBOP_SUCLAMP_PL(0, 2) :
1829 NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1830 case TEX_TARGET_2D: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1831 case TEX_TARGET_2D_MS: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1832 case TEX_TARGET_2D_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1833 case TEX_TARGET_2D_MS_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1834 case TEX_TARGET_3D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1835 case TEX_TARGET_CUBE: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1836 case TEX_TARGET_CUBE_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1837 default:
1838 assert(0);
1839 return 0;
1840 }
1841 }
1842
1843 bool
1844 NVC0LoweringPass::handleSUQ(TexInstruction *suq)
1845 {
1846 int mask = suq->tex.mask;
1847 int dim = suq->tex.target.getDim();
1848 int arg = dim + (suq->tex.target.isArray() || suq->tex.target.isCube());
1849 Value *ind = suq->getIndirectR();
1850 int slot = suq->tex.r;
1851 int c, d;
1852
1853 for (c = 0, d = 0; c < 3; ++c, mask >>= 1) {
1854 if (c >= arg || !(mask & 1))
1855 continue;
1856
1857 int offset;
1858
1859 if (c == 1 && suq->tex.target == TEX_TARGET_1D_ARRAY) {
1860 offset = NVC0_SU_INFO_SIZE(2);
1861 } else {
1862 offset = NVC0_SU_INFO_SIZE(c);
1863 }
1864 bld.mkMov(suq->getDef(d++), loadSuInfo32(ind, slot, offset, suq->tex.bindless));
1865 if (c == 2 && suq->tex.target.isCube())
1866 bld.mkOp2(OP_DIV, TYPE_U32, suq->getDef(d - 1), suq->getDef(d - 1),
1867 bld.loadImm(NULL, 6));
1868 }
1869
1870 if (mask & 1) {
1871 if (suq->tex.target.isMS()) {
1872 Value *ms_x = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(0), suq->tex.bindless);
1873 Value *ms_y = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(1), suq->tex.bindless);
1874 Value *ms = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(), ms_x, ms_y);
1875 bld.mkOp2(OP_SHL, TYPE_U32, suq->getDef(d++), bld.loadImm(NULL, 1), ms);
1876 } else {
1877 bld.mkMov(suq->getDef(d++), bld.loadImm(NULL, 1));
1878 }
1879 }
1880
1881 bld.remove(suq);
1882 return true;
1883 }
1884
1885 void
1886 NVC0LoweringPass::adjustCoordinatesMS(TexInstruction *tex)
1887 {
1888 const int arg = tex->tex.target.getArgCount();
1889 int slot = tex->tex.r;
1890
1891 if (tex->tex.target == TEX_TARGET_2D_MS)
1892 tex->tex.target = TEX_TARGET_2D;
1893 else
1894 if (tex->tex.target == TEX_TARGET_2D_MS_ARRAY)
1895 tex->tex.target = TEX_TARGET_2D_ARRAY;
1896 else
1897 return;
1898
1899 Value *x = tex->getSrc(0);
1900 Value *y = tex->getSrc(1);
1901 Value *s = tex->getSrc(arg - 1);
1902
1903 Value *tx = bld.getSSA(), *ty = bld.getSSA(), *ts = bld.getSSA();
1904 Value *ind = tex->getIndirectR();
1905
1906 Value *ms_x = loadMsAdjInfo32(tex->tex.target, 0, slot, ind, tex->tex.bindless);
1907 Value *ms_y = loadMsAdjInfo32(tex->tex.target, 1, slot, ind, tex->tex.bindless);
1908
1909 bld.mkOp2(OP_SHL, TYPE_U32, tx, x, ms_x);
1910 bld.mkOp2(OP_SHL, TYPE_U32, ty, y, ms_y);
1911
1912 s = bld.mkOp2v(OP_AND, TYPE_U32, ts, s, bld.loadImm(NULL, 0x7));
1913 s = bld.mkOp2v(OP_SHL, TYPE_U32, ts, ts, bld.mkImm(3));
1914
1915 Value *dx = loadMsInfo32(ts, 0x0);
1916 Value *dy = loadMsInfo32(ts, 0x4);
1917
1918 bld.mkOp2(OP_ADD, TYPE_U32, tx, tx, dx);
1919 bld.mkOp2(OP_ADD, TYPE_U32, ty, ty, dy);
1920
1921 tex->setSrc(0, tx);
1922 tex->setSrc(1, ty);
1923 tex->moveSources(arg, -1);
1924 }
1925
1926 // Sets 64-bit "generic address", predicate and format sources for SULD/SUST.
1927 // They're computed from the coordinates using the surface info in c[] space.
1928 void
1929 NVC0LoweringPass::processSurfaceCoordsNVE4(TexInstruction *su)
1930 {
1931 Instruction *insn;
1932 const bool atom = su->op == OP_SUREDB || su->op == OP_SUREDP;
1933 const bool raw =
1934 su->op == OP_SULDB || su->op == OP_SUSTB || su->op == OP_SUREDB;
1935 const int slot = su->tex.r;
1936 const int dim = su->tex.target.getDim();
1937 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
1938 int c;
1939 Value *zero = bld.mkImm(0);
1940 Value *p1 = NULL;
1941 Value *v;
1942 Value *src[3];
1943 Value *bf, *eau, *off;
1944 Value *addr, *pred;
1945 Value *ind = su->getIndirectR();
1946
1947 off = bld.getScratch(4);
1948 bf = bld.getScratch(4);
1949 addr = bld.getSSA(8);
1950 pred = bld.getScratch(1, FILE_PREDICATE);
1951
1952 bld.setPosition(su, false);
1953
1954 adjustCoordinatesMS(su);
1955
1956 // calculate clamped coordinates
1957 for (c = 0; c < arg; ++c) {
1958 int dimc = c;
1959
1960 if (c == 1 && su->tex.target == TEX_TARGET_1D_ARRAY) {
1961 // The array index is stored in the Z component for 1D arrays.
1962 dimc = 2;
1963 }
1964
1965 src[c] = bld.getScratch();
1966 if (c == 0 && raw)
1967 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_RAW_X, su->tex.bindless);
1968 else
1969 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(dimc), su->tex.bindless);
1970 bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[c], su->getSrc(c), v, zero)
1971 ->subOp = getSuClampSubOp(su, dimc);
1972 }
1973 for (; c < 3; ++c)
1974 src[c] = zero;
1975
1976 // set predicate output
1977 if (su->tex.target == TEX_TARGET_BUFFER) {
1978 src[0]->getInsn()->setFlagsDef(1, pred);
1979 } else
1980 if (su->tex.target.isArray() || su->tex.target.isCube()) {
1981 p1 = bld.getSSA(1, FILE_PREDICATE);
1982 src[dim]->getInsn()->setFlagsDef(1, p1);
1983 }
1984
1985 // calculate pixel offset
1986 if (dim == 1) {
1987 if (su->tex.target != TEX_TARGET_BUFFER)
1988 bld.mkOp2(OP_AND, TYPE_U32, off, src[0], bld.loadImm(NULL, 0xffff));
1989 } else
1990 if (dim == 3) {
1991 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
1992 bld.mkOp3(OP_MADSP, TYPE_U32, off, src[2], v, src[1])
1993 ->subOp = NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
1994
1995 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_PITCH, su->tex.bindless);
1996 bld.mkOp3(OP_MADSP, TYPE_U32, off, off, v, src[0])
1997 ->subOp = NV50_IR_SUBOP_MADSP(0,2,8); // u32 u16l u16l
1998 } else {
1999 assert(dim == 2);
2000 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_PITCH, su->tex.bindless);
2001 bld.mkOp3(OP_MADSP, TYPE_U32, off, src[1], v, src[0])
2002 ->subOp = (su->tex.target.isArray() || su->tex.target.isCube()) ?
2003 NV50_IR_SUBOP_MADSP_SD : NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
2004 }
2005
2006 // calculate effective address part 1
2007 if (su->tex.target == TEX_TARGET_BUFFER) {
2008 if (raw) {
2009 bf = src[0];
2010 } else {
2011 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT, su->tex.bindless);
2012 bld.mkOp3(OP_VSHL, TYPE_U32, bf, src[0], v, zero)
2013 ->subOp = NV50_IR_SUBOP_V1(7,6,8|2);
2014 }
2015 } else {
2016 Value *y = src[1];
2017 Value *z = src[2];
2018 uint16_t subOp = 0;
2019
2020 switch (dim) {
2021 case 1:
2022 y = zero;
2023 z = zero;
2024 break;
2025 case 2:
2026 z = off;
2027 if (!su->tex.target.isArray() && !su->tex.target.isCube()) {
2028 z = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C, su->tex.bindless);
2029 subOp = NV50_IR_SUBOP_SUBFM_3D;
2030 }
2031 break;
2032 default:
2033 subOp = NV50_IR_SUBOP_SUBFM_3D;
2034 assert(dim == 3);
2035 break;
2036 }
2037 insn = bld.mkOp3(OP_SUBFM, TYPE_U32, bf, src[0], y, z);
2038 insn->subOp = subOp;
2039 insn->setFlagsDef(1, pred);
2040 }
2041
2042 // part 2
2043 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless);
2044
2045 if (su->tex.target == TEX_TARGET_BUFFER) {
2046 eau = v;
2047 } else {
2048 eau = bld.mkOp3v(OP_SUEAU, TYPE_U32, bld.getScratch(4), off, bf, v);
2049 }
2050 // add array layer offset
2051 if (su->tex.target.isArray() || su->tex.target.isCube()) {
2052 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY, su->tex.bindless);
2053 if (dim == 1)
2054 bld.mkOp3(OP_MADSP, TYPE_U32, eau, src[1], v, eau)
2055 ->subOp = NV50_IR_SUBOP_MADSP(4,0,0); // u16 u24 u32
2056 else
2057 bld.mkOp3(OP_MADSP, TYPE_U32, eau, v, src[2], eau)
2058 ->subOp = NV50_IR_SUBOP_MADSP(0,0,0); // u32 u24 u32
2059 // combine predicates
2060 assert(p1);
2061 bld.mkOp2(OP_OR, TYPE_U8, pred, pred, p1);
2062 }
2063
2064 if (atom) {
2065 Value *lo = bf;
2066 if (su->tex.target == TEX_TARGET_BUFFER) {
2067 lo = zero;
2068 bld.mkMov(off, bf);
2069 }
2070 // bf == g[] address & 0xff
2071 // eau == g[] address >> 8
2072 bld.mkOp3(OP_PERMT, TYPE_U32, bf, lo, bld.loadImm(NULL, 0x6540), eau);
2073 bld.mkOp3(OP_PERMT, TYPE_U32, eau, zero, bld.loadImm(NULL, 0x0007), eau);
2074 } else
2075 if (su->op == OP_SULDP && su->tex.target == TEX_TARGET_BUFFER) {
2076 // Convert from u32 to u8 address format, which is what the library code
2077 // doing SULDP currently uses.
2078 // XXX: can SUEAU do this ?
2079 // XXX: does it matter that we don't mask high bytes in bf ?
2080 // Grrr.
2081 bld.mkOp2(OP_SHR, TYPE_U32, off, bf, bld.mkImm(8));
2082 bld.mkOp2(OP_ADD, TYPE_U32, eau, eau, off);
2083 }
2084
2085 bld.mkOp2(OP_MERGE, TYPE_U64, addr, bf, eau);
2086
2087 if (atom && su->tex.target == TEX_TARGET_BUFFER)
2088 bld.mkOp2(OP_ADD, TYPE_U64, addr, addr, off);
2089
2090 // let's just set it 0 for raw access and hope it works
2091 v = raw ?
2092 bld.mkImm(0) : loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT, su->tex.bindless);
2093
2094 // get rid of old coordinate sources, make space for fmt info and predicate
2095 su->moveSources(arg, 3 - arg);
2096 // set 64 bit address and 32-bit format sources
2097 su->setSrc(0, addr);
2098 su->setSrc(1, v);
2099 su->setSrc(2, pred);
2100 su->setIndirectR(NULL);
2101
2102 // prevent read fault when the image is not actually bound
2103 CmpInstruction *pred1 =
2104 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2105 TYPE_U32, bld.mkImm(0),
2106 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2107
2108 if (su->op != OP_SUSTP && su->tex.format) {
2109 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2110 int blockwidth = format->bits[0] + format->bits[1] +
2111 format->bits[2] + format->bits[3];
2112
2113 // make sure that the format doesn't mismatch
2114 assert(format->components != 0);
2115 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred1->getDef(0),
2116 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2117 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2118 pred1->getDef(0));
2119 }
2120 su->setPredicate(CC_NOT_P, pred1->getDef(0));
2121
2122 // TODO: initialize def values to 0 when the surface operation is not
2123 // performed (not needed for stores). Also, fix the "address bounds test"
2124 // subtests from arb_shader_image_load_store-invalid for buffers, because it
2125 // seems like that the predicate is not correctly set by suclamp.
2126 }
2127
2128 static DataType
2129 getSrcType(const TexInstruction::ImgFormatDesc *t, int c)
2130 {
2131 switch (t->type) {
2132 case FLOAT: return t->bits[c] == 16 ? TYPE_F16 : TYPE_F32;
2133 case UNORM: return t->bits[c] == 8 ? TYPE_U8 : TYPE_U16;
2134 case SNORM: return t->bits[c] == 8 ? TYPE_S8 : TYPE_S16;
2135 case UINT:
2136 return (t->bits[c] == 8 ? TYPE_U8 :
2137 (t->bits[c] == 16 ? TYPE_U16 : TYPE_U32));
2138 case SINT:
2139 return (t->bits[c] == 8 ? TYPE_S8 :
2140 (t->bits[c] == 16 ? TYPE_S16 : TYPE_S32));
2141 }
2142 return TYPE_NONE;
2143 }
2144
2145 static DataType
2146 getDestType(const ImgType type) {
2147 switch (type) {
2148 case FLOAT:
2149 case UNORM:
2150 case SNORM:
2151 return TYPE_F32;
2152 case UINT:
2153 return TYPE_U32;
2154 case SINT:
2155 return TYPE_S32;
2156 default:
2157 assert(!"Impossible type");
2158 return TYPE_NONE;
2159 }
2160 }
2161
2162 void
2163 NVC0LoweringPass::convertSurfaceFormat(TexInstruction *su)
2164 {
2165 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2166 int width = format->bits[0] + format->bits[1] +
2167 format->bits[2] + format->bits[3];
2168 Value *untypedDst[4] = {};
2169 Value *typedDst[4] = {};
2170
2171 // We must convert this to a generic load.
2172 su->op = OP_SULDB;
2173
2174 su->dType = typeOfSize(width / 8);
2175 su->sType = TYPE_U8;
2176
2177 for (int i = 0; i < width / 32; i++)
2178 untypedDst[i] = bld.getSSA();
2179 if (width < 32)
2180 untypedDst[0] = bld.getSSA();
2181
2182 for (int i = 0; i < 4; i++) {
2183 typedDst[i] = su->getDef(i);
2184 }
2185
2186 // Set the untyped dsts as the su's destinations
2187 for (int i = 0; i < 4; i++)
2188 su->setDef(i, untypedDst[i]);
2189
2190 bld.setPosition(su, true);
2191
2192 // Unpack each component into the typed dsts
2193 int bits = 0;
2194 for (int i = 0; i < 4; bits += format->bits[i], i++) {
2195 if (!typedDst[i])
2196 continue;
2197 if (i >= format->components) {
2198 if (format->type == FLOAT ||
2199 format->type == UNORM ||
2200 format->type == SNORM)
2201 bld.loadImm(typedDst[i], i == 3 ? 1.0f : 0.0f);
2202 else
2203 bld.loadImm(typedDst[i], i == 3 ? 1 : 0);
2204 continue;
2205 }
2206
2207 // Get just that component's data into the relevant place
2208 if (format->bits[i] == 32)
2209 bld.mkMov(typedDst[i], untypedDst[i]);
2210 else if (format->bits[i] == 16)
2211 bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
2212 getSrcType(format, i), untypedDst[i / 2])
2213 ->subOp = (i & 1) << (format->type == FLOAT ? 0 : 1);
2214 else if (format->bits[i] == 8)
2215 bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
2216 getSrcType(format, i), untypedDst[0])->subOp = i;
2217 else {
2218 bld.mkOp2(OP_EXTBF, TYPE_U32, typedDst[i], untypedDst[bits / 32],
2219 bld.mkImm((bits % 32) | (format->bits[i] << 8)));
2220 if (format->type == UNORM || format->type == SNORM)
2221 bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], getSrcType(format, i), typedDst[i]);
2222 }
2223
2224 // Normalize / convert as necessary
2225 if (format->type == UNORM)
2226 bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << format->bits[i]) - 1)));
2227 else if (format->type == SNORM)
2228 bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << (format->bits[i] - 1)) - 1)));
2229 else if (format->type == FLOAT && format->bits[i] < 16) {
2230 bld.mkOp2(OP_SHL, TYPE_U32, typedDst[i], typedDst[i], bld.loadImm(NULL, 15 - format->bits[i]));
2231 bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], TYPE_F16, typedDst[i]);
2232 }
2233 }
2234
2235 if (format->bgra) {
2236 std::swap(typedDst[0], typedDst[2]);
2237 }
2238 }
2239
2240 void
2241 NVC0LoweringPass::insertOOBSurfaceOpResult(TexInstruction *su)
2242 {
2243 if (!su->getPredicate())
2244 return;
2245
2246 bld.setPosition(su, true);
2247
2248 for (unsigned i = 0; su->defExists(i); ++i) {
2249 ValueDef &def = su->def(i);
2250
2251 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2252 assert(su->cc == CC_NOT_P);
2253 mov->setPredicate(CC_P, su->getPredicate());
2254 Instruction *uni = bld.mkOp2(OP_UNION, TYPE_U32, bld.getSSA(), NULL, mov->getDef(0));
2255
2256 def.replace(uni->getDef(0), false);
2257 uni->setSrc(0, def.get());
2258 }
2259 }
2260
2261 void
2262 NVC0LoweringPass::handleSurfaceOpNVE4(TexInstruction *su)
2263 {
2264 processSurfaceCoordsNVE4(su);
2265
2266 if (su->op == OP_SULDP) {
2267 convertSurfaceFormat(su);
2268 insertOOBSurfaceOpResult(su);
2269 }
2270
2271 if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
2272 assert(su->getPredicate());
2273 Value *pred =
2274 bld.mkOp2v(OP_OR, TYPE_U8, bld.getScratch(1, FILE_PREDICATE),
2275 su->getPredicate(), su->getSrc(2));
2276
2277 Instruction *red = bld.mkOp(OP_ATOM, su->dType, bld.getSSA());
2278 red->subOp = su->subOp;
2279 red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, 0));
2280 red->setSrc(1, su->getSrc(3));
2281 if (su->subOp == NV50_IR_SUBOP_ATOM_CAS)
2282 red->setSrc(2, su->getSrc(4));
2283 red->setIndirect(0, 0, su->getSrc(0));
2284
2285 // make sure to initialize dst value when the atomic operation is not
2286 // performed
2287 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2288
2289 assert(su->cc == CC_NOT_P);
2290 red->setPredicate(su->cc, pred);
2291 mov->setPredicate(CC_P, pred);
2292
2293 bld.mkOp2(OP_UNION, TYPE_U32, su->getDef(0),
2294 red->getDef(0), mov->getDef(0));
2295
2296 delete_Instruction(bld.getProgram(), su);
2297 handleCasExch(red, true);
2298 }
2299
2300 if (su->op == OP_SUSTB || su->op == OP_SUSTP)
2301 su->sType = (su->tex.target == TEX_TARGET_BUFFER) ? TYPE_U32 : TYPE_U8;
2302 }
2303
2304 void
2305 NVC0LoweringPass::processSurfaceCoordsNVC0(TexInstruction *su)
2306 {
2307 const int slot = su->tex.r;
2308 const int dim = su->tex.target.getDim();
2309 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2310 int c;
2311 Value *zero = bld.mkImm(0);
2312 Value *src[3];
2313 Value *v;
2314 Value *ind = su->getIndirectR();
2315
2316 bld.setPosition(su, false);
2317
2318 adjustCoordinatesMS(su);
2319
2320 if (ind) {
2321 Value *ptr;
2322 ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ind, bld.mkImm(su->tex.r));
2323 ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
2324 su->setIndirectR(ptr);
2325 }
2326
2327 // get surface coordinates
2328 for (c = 0; c < arg; ++c)
2329 src[c] = su->getSrc(c);
2330 for (; c < 3; ++c)
2331 src[c] = zero;
2332
2333 // calculate pixel offset
2334 if (su->op == OP_SULDP || su->op == OP_SUREDP) {
2335 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless);
2336 su->setSrc(0, bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(), src[0], v));
2337 }
2338
2339 // add array layer offset
2340 if (su->tex.target.isArray() || su->tex.target.isCube()) {
2341 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY, su->tex.bindless);
2342 assert(dim > 1);
2343 su->setSrc(2, bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(), src[2], v));
2344 }
2345
2346 // prevent read fault when the image is not actually bound
2347 CmpInstruction *pred =
2348 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2349 TYPE_U32, bld.mkImm(0),
2350 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2351 if (su->op != OP_SUSTP && su->tex.format) {
2352 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2353 int blockwidth = format->bits[0] + format->bits[1] +
2354 format->bits[2] + format->bits[3];
2355
2356 assert(format->components != 0);
2357 // make sure that the format doesn't mismatch when it's not FMT_NONE
2358 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
2359 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2360 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2361 pred->getDef(0));
2362 }
2363 su->setPredicate(CC_NOT_P, pred->getDef(0));
2364 }
2365
2366 void
2367 NVC0LoweringPass::handleSurfaceOpNVC0(TexInstruction *su)
2368 {
2369 if (su->tex.target == TEX_TARGET_1D_ARRAY) {
2370 /* As 1d arrays also need 3 coordinates, switching to TEX_TARGET_2D_ARRAY
2371 * will simplify the lowering pass and the texture constraints. */
2372 su->moveSources(1, 1);
2373 su->setSrc(1, bld.loadImm(NULL, 0));
2374 su->tex.target = TEX_TARGET_2D_ARRAY;
2375 }
2376
2377 processSurfaceCoordsNVC0(su);
2378
2379 if (su->op == OP_SULDP) {
2380 convertSurfaceFormat(su);
2381 insertOOBSurfaceOpResult(su);
2382 }
2383
2384 if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
2385 const int dim = su->tex.target.getDim();
2386 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2387 LValue *addr = bld.getSSA(8);
2388 Value *def = su->getDef(0);
2389
2390 su->op = OP_SULEA;
2391
2392 // Set the destination to the address
2393 su->dType = TYPE_U64;
2394 su->setDef(0, addr);
2395 su->setDef(1, su->getPredicate());
2396
2397 bld.setPosition(su, true);
2398
2399 // Perform the atomic op
2400 Instruction *red = bld.mkOp(OP_ATOM, su->sType, bld.getSSA());
2401 red->subOp = su->subOp;
2402 red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, su->sType, 0));
2403 red->setSrc(1, su->getSrc(arg));
2404 if (red->subOp == NV50_IR_SUBOP_ATOM_CAS)
2405 red->setSrc(2, su->getSrc(arg + 1));
2406 red->setIndirect(0, 0, addr);
2407
2408 // make sure to initialize dst value when the atomic operation is not
2409 // performed
2410 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2411
2412 assert(su->cc == CC_NOT_P);
2413 red->setPredicate(su->cc, su->getPredicate());
2414 mov->setPredicate(CC_P, su->getPredicate());
2415
2416 bld.mkOp2(OP_UNION, TYPE_U32, def, red->getDef(0), mov->getDef(0));
2417
2418 handleCasExch(red, false);
2419 }
2420 }
2421
2422 void
2423 NVC0LoweringPass::processSurfaceCoordsGM107(TexInstruction *su)
2424 {
2425 const int slot = su->tex.r;
2426 const int dim = su->tex.target.getDim();
2427 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2428 Value *ind = su->getIndirectR();
2429 Value *handle;
2430 int pos = 0;
2431
2432 bld.setPosition(su, false);
2433
2434 adjustCoordinatesMS(su);
2435
2436 // add texture handle
2437 switch (su->op) {
2438 case OP_SUSTP:
2439 pos = 4;
2440 break;
2441 case OP_SUREDP:
2442 pos = (su->subOp == NV50_IR_SUBOP_ATOM_CAS) ? 2 : 1;
2443 break;
2444 default:
2445 assert(pos == 0);
2446 break;
2447 }
2448 if (su->tex.bindless)
2449 handle = ind;
2450 else
2451 handle = loadTexHandle(ind, slot + 32);
2452 su->setSrc(arg + pos, handle);
2453
2454 // The address check doesn't make sense here. The format check could make
2455 // sense but it's a bit of a pain.
2456 if (su->tex.bindless)
2457 return;
2458
2459 // prevent read fault when the image is not actually bound
2460 CmpInstruction *pred =
2461 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2462 TYPE_U32, bld.mkImm(0),
2463 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR, su->tex.bindless));
2464 if (su->op != OP_SUSTP && su->tex.format) {
2465 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2466 int blockwidth = format->bits[0] + format->bits[1] +
2467 format->bits[2] + format->bits[3];
2468
2469 assert(format->components != 0);
2470 // make sure that the format doesn't mismatch when it's not FMT_NONE
2471 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
2472 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2473 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE, su->tex.bindless),
2474 pred->getDef(0));
2475 }
2476 su->setPredicate(CC_NOT_P, pred->getDef(0));
2477 }
2478
2479 void
2480 NVC0LoweringPass::handleSurfaceOpGM107(TexInstruction *su)
2481 {
2482 processSurfaceCoordsGM107(su);
2483
2484 if (su->op == OP_SULDP) {
2485 convertSurfaceFormat(su);
2486 insertOOBSurfaceOpResult(su);
2487 }
2488
2489 if (su->op == OP_SUREDP) {
2490 Value *def = su->getDef(0);
2491
2492 su->op = OP_SUREDB;
2493
2494 // There may not be a predicate in the bindless case.
2495 if (su->getPredicate()) {
2496 su->setDef(0, bld.getSSA());
2497
2498 bld.setPosition(su, true);
2499
2500 // make sure to initialize dst value when the atomic operation is not
2501 // performed
2502 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2503
2504 assert(su->cc == CC_NOT_P);
2505 mov->setPredicate(CC_P, su->getPredicate());
2506
2507 bld.mkOp2(OP_UNION, TYPE_U32, def, su->getDef(0), mov->getDef(0));
2508 }
2509 }
2510 }
2511
2512 bool
2513 NVC0LoweringPass::handleWRSV(Instruction *i)
2514 {
2515 Instruction *st;
2516 Symbol *sym;
2517 uint32_t addr;
2518
2519 // must replace, $sreg are not writeable
2520 addr = targ->getSVAddress(FILE_SHADER_OUTPUT, i->getSrc(0)->asSym());
2521 if (addr >= 0x400)
2522 return false;
2523 sym = bld.mkSymbol(FILE_SHADER_OUTPUT, 0, i->sType, addr);
2524
2525 st = bld.mkStore(OP_EXPORT, i->dType, sym, i->getIndirect(0, 0),
2526 i->getSrc(1));
2527 st->perPatch = i->perPatch;
2528
2529 bld.getBB()->remove(i);
2530 return true;
2531 }
2532
2533 void
2534 NVC0LoweringPass::handleLDST(Instruction *i)
2535 {
2536 if (i->src(0).getFile() == FILE_SHADER_INPUT) {
2537 if (prog->getType() == Program::TYPE_COMPUTE) {
2538 i->getSrc(0)->reg.file = FILE_MEMORY_CONST;
2539 i->getSrc(0)->reg.fileIndex = 0;
2540 } else
2541 if (prog->getType() == Program::TYPE_GEOMETRY &&
2542 i->src(0).isIndirect(0)) {
2543 // XXX: this assumes vec4 units
2544 Value *ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2545 i->getIndirect(0, 0), bld.mkImm(4));
2546 i->setIndirect(0, 0, ptr);
2547 i->op = OP_VFETCH;
2548 } else {
2549 i->op = OP_VFETCH;
2550 assert(prog->getType() != Program::TYPE_FRAGMENT); // INTERP
2551 }
2552 } else if (i->src(0).getFile() == FILE_MEMORY_CONST) {
2553 int8_t fileIndex = i->getSrc(0)->reg.fileIndex - 1;
2554 Value *ind = i->getIndirect(0, 1);
2555
2556 if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
2557 prog->getType() == Program::TYPE_COMPUTE &&
2558 (fileIndex >= 6 || ind)) {
2559 // The launch descriptor only allows to set up 8 CBs, but OpenGL
2560 // requires at least 12 UBOs. To bypass this limitation, for constant
2561 // buffers 7+, we store the addrs into the driver constbuf and we
2562 // directly load from the global memory.
2563 if (ind) {
2564 // Clamp the UBO index when an indirect access is used to avoid
2565 // loading information from the wrong place in the driver cb.
2566 // TODO - synchronize the max with the driver.
2567 ind = bld.mkOp2v(OP_MIN, TYPE_U32, bld.getSSA(),
2568 bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2569 ind, bld.loadImm(NULL, fileIndex)),
2570 bld.loadImm(NULL, 13));
2571 fileIndex = 0;
2572 }
2573
2574 Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2575 Value *ptr = loadUboInfo64(ind, fileIndex * 16);
2576 Value *length = loadUboLength32(ind, fileIndex * 16);
2577 Value *pred = new_LValue(func, FILE_PREDICATE);
2578 if (i->src(0).isIndirect(0)) {
2579 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2580 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2581 }
2582 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2583 i->setIndirect(0, 1, NULL);
2584 i->setIndirect(0, 0, ptr);
2585 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2586 i->setPredicate(CC_NOT_P, pred);
2587 Value *zero, *dst = i->getDef(0);
2588 i->setDef(0, bld.getSSA());
2589
2590 bld.setPosition(i, true);
2591 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
2592 ->setPredicate(CC_P, pred);
2593 bld.mkOp2(OP_UNION, TYPE_U32, dst, i->getDef(0), zero);
2594 } else if (i->src(0).isIndirect(1)) {
2595 Value *ptr;
2596 if (i->src(0).isIndirect(0))
2597 ptr = bld.mkOp3v(OP_INSBF, TYPE_U32, bld.getSSA(),
2598 i->getIndirect(0, 1), bld.mkImm(0x1010),
2599 i->getIndirect(0, 0));
2600 else
2601 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2602 i->getIndirect(0, 1), bld.mkImm(16));
2603 i->setIndirect(0, 1, NULL);
2604 i->setIndirect(0, 0, ptr);
2605 i->subOp = NV50_IR_SUBOP_LDC_IS;
2606 }
2607 } else if (i->src(0).getFile() == FILE_SHADER_OUTPUT) {
2608 assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
2609 i->op = OP_VFETCH;
2610 } else if (i->src(0).getFile() == FILE_MEMORY_BUFFER) {
2611 Value *ind = i->getIndirect(0, 1);
2612 Value *ptr = loadBufInfo64(ind, i->getSrc(0)->reg.fileIndex * 16);
2613 // XXX come up with a way not to do this for EVERY little access but
2614 // rather to batch these up somehow. Unfortunately we've lost the
2615 // information about the field width by the time we get here.
2616 Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2617 Value *length = loadBufLength32(ind, i->getSrc(0)->reg.fileIndex * 16);
2618 Value *pred = new_LValue(func, FILE_PREDICATE);
2619 if (i->src(0).isIndirect(0)) {
2620 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2621 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2622 }
2623 i->setIndirect(0, 1, NULL);
2624 i->setIndirect(0, 0, ptr);
2625 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2626 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2627 i->setPredicate(CC_NOT_P, pred);
2628 if (i->defExists(0)) {
2629 Value *zero, *dst = i->getDef(0);
2630 i->setDef(0, bld.getSSA());
2631
2632 bld.setPosition(i, true);
2633 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
2634 ->setPredicate(CC_P, pred);
2635 bld.mkOp2(OP_UNION, TYPE_U32, dst, i->getDef(0), zero);
2636 }
2637 }
2638 }
2639
2640 void
2641 NVC0LoweringPass::readTessCoord(LValue *dst, int c)
2642 {
2643 Value *laneid = bld.getSSA();
2644 Value *x, *y;
2645
2646 bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0));
2647
2648 if (c == 0) {
2649 x = dst;
2650 y = NULL;
2651 } else
2652 if (c == 1) {
2653 x = NULL;
2654 y = dst;
2655 } else {
2656 assert(c == 2);
2657 if (prog->driver->prop.tp.domain != PIPE_PRIM_TRIANGLES) {
2658 bld.mkMov(dst, bld.loadImm(NULL, 0));
2659 return;
2660 }
2661 x = bld.getSSA();
2662 y = bld.getSSA();
2663 }
2664 if (x)
2665 bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid);
2666 if (y)
2667 bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid);
2668
2669 if (c == 2) {
2670 bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y);
2671 bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst);
2672 }
2673 }
2674
2675 bool
2676 NVC0LoweringPass::handleRDSV(Instruction *i)
2677 {
2678 Symbol *sym = i->getSrc(0)->asSym();
2679 const SVSemantic sv = sym->reg.data.sv.sv;
2680 Value *vtx = NULL;
2681 Instruction *ld;
2682 uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym);
2683
2684 if (addr >= 0x400) {
2685 // mov $sreg
2686 if (sym->reg.data.sv.index == 3) {
2687 // TGSI backend may use 4th component of TID,NTID,CTAID,NCTAID
2688 i->op = OP_MOV;
2689 i->setSrc(0, bld.mkImm((sv == SV_NTID || sv == SV_NCTAID) ? 1 : 0));
2690 } else
2691 if (sv == SV_TID) {
2692 // Help CSE combine TID fetches
2693 Value *tid = bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(),
2694 bld.mkSysVal(SV_COMBINED_TID, 0));
2695 i->op = OP_EXTBF;
2696 i->setSrc(0, tid);
2697 switch (sym->reg.data.sv.index) {
2698 case 0: i->setSrc(1, bld.mkImm(0x1000)); break;
2699 case 1: i->setSrc(1, bld.mkImm(0x0a10)); break;
2700 case 2: i->setSrc(1, bld.mkImm(0x061a)); break;
2701 }
2702 }
2703 if (sv == SV_VERTEX_COUNT) {
2704 bld.setPosition(i, true);
2705 bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0), bld.mkImm(0x808));
2706 }
2707 return true;
2708 }
2709
2710 switch (sv) {
2711 case SV_POSITION:
2712 assert(prog->getType() == Program::TYPE_FRAGMENT);
2713 if (i->srcExists(1)) {
2714 // Pass offset through to the interpolation logic
2715 ld = bld.mkInterp(NV50_IR_INTERP_LINEAR | NV50_IR_INTERP_OFFSET,
2716 i->getDef(0), addr, NULL);
2717 ld->setSrc(1, i->getSrc(1));
2718 } else {
2719 bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL);
2720 }
2721 break;
2722 case SV_FACE:
2723 {
2724 Value *face = i->getDef(0);
2725 bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL);
2726 if (i->dType == TYPE_F32) {
2727 bld.mkOp2(OP_OR, TYPE_U32, face, face, bld.mkImm(0x00000001));
2728 bld.mkOp1(OP_NEG, TYPE_S32, face, face);
2729 bld.mkCvt(OP_CVT, TYPE_F32, face, TYPE_S32, face);
2730 }
2731 }
2732 break;
2733 case SV_TESS_COORD:
2734 assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL);
2735 readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index);
2736 break;
2737 case SV_NTID:
2738 case SV_NCTAID:
2739 case SV_GRIDID:
2740 assert(targ->getChipset() >= NVISA_GK104_CHIPSET); // mov $sreg otherwise
2741 if (sym->reg.data.sv.index == 3) {
2742 i->op = OP_MOV;
2743 i->setSrc(0, bld.mkImm(sv == SV_GRIDID ? 0 : 1));
2744 return true;
2745 }
2746 // Fallthrough
2747 case SV_WORK_DIM:
2748 addr += prog->driver->prop.cp.gridInfoBase;
2749 bld.mkLoad(TYPE_U32, i->getDef(0),
2750 bld.mkSymbol(FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
2751 TYPE_U32, addr), NULL);
2752 break;
2753 case SV_SAMPLE_INDEX:
2754 // TODO: Properly pass source as an address in the PIX address space
2755 // (which can be of the form [r0+offset]). But this is currently
2756 // unnecessary.
2757 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
2758 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2759 break;
2760 case SV_SAMPLE_POS: {
2761 Value *sampleID = bld.getScratch();
2762 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, sampleID, bld.mkImm(0));
2763 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2764 Value *offset = calculateSampleOffset(sampleID);
2765
2766 assert(prog->driver->prop.fp.readsSampleLocations);
2767
2768 if (targ->getChipset() >= NVISA_GM200_CHIPSET) {
2769 bld.mkLoad(TYPE_F32,
2770 i->getDef(0),
2771 bld.mkSymbol(
2772 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
2773 TYPE_U32, prog->driver->io.sampleInfoBase),
2774 offset);
2775 bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0),
2776 bld.mkImm(0x040c + sym->reg.data.sv.index * 16));
2777 bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(0), TYPE_U32, i->getDef(0));
2778 bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(0), i->getDef(0), bld.mkImm(1.0f / 16.0f));
2779 } else {
2780 bld.mkLoad(TYPE_F32,
2781 i->getDef(0),
2782 bld.mkSymbol(
2783 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
2784 TYPE_U32, prog->driver->io.sampleInfoBase +
2785 4 * sym->reg.data.sv.index),
2786 offset);
2787 }
2788 break;
2789 }
2790 case SV_SAMPLE_MASK: {
2791 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
2792 ld->subOp = NV50_IR_SUBOP_PIXLD_COVMASK;
2793 Instruction *sampleid =
2794 bld.mkOp1(OP_PIXLD, TYPE_U32, bld.getSSA(), bld.mkImm(0));
2795 sampleid->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2796 Value *masked =
2797 bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ld->getDef(0),
2798 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2799 bld.loadImm(NULL, 1), sampleid->getDef(0)));
2800 if (prog->driver->prop.fp.persampleInvocation) {
2801 bld.mkMov(i->getDef(0), masked);
2802 } else {
2803 bld.mkOp3(OP_SELP, TYPE_U32, i->getDef(0), ld->getDef(0), masked,
2804 bld.mkImm(0))
2805 ->subOp = 1;
2806 }
2807 break;
2808 }
2809 case SV_BASEVERTEX:
2810 case SV_BASEINSTANCE:
2811 case SV_DRAWID:
2812 ld = bld.mkLoad(TYPE_U32, i->getDef(0),
2813 bld.mkSymbol(FILE_MEMORY_CONST,
2814 prog->driver->io.auxCBSlot,
2815 TYPE_U32,
2816 prog->driver->io.drawInfoBase +
2817 4 * (sv - SV_BASEVERTEX)),
2818 NULL);
2819 break;
2820 default:
2821 if (prog->getType() == Program::TYPE_TESSELLATION_EVAL && !i->perPatch)
2822 vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0));
2823 if (prog->getType() == Program::TYPE_FRAGMENT) {
2824 bld.mkInterp(NV50_IR_INTERP_FLAT, i->getDef(0), addr, NULL);
2825 } else {
2826 ld = bld.mkFetch(i->getDef(0), i->dType,
2827 FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx);
2828 ld->perPatch = i->perPatch;
2829 }
2830 break;
2831 }
2832 bld.getBB()->remove(i);
2833 return true;
2834 }
2835
2836 bool
2837 NVC0LoweringPass::handleDIV(Instruction *i)
2838 {
2839 if (!isFloatType(i->dType))
2840 return true;
2841 bld.setPosition(i, false);
2842 Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(typeSizeof(i->dType)), i->getSrc(1));
2843 i->op = OP_MUL;
2844 i->setSrc(1, rcp->getDef(0));
2845 return true;
2846 }
2847
2848 bool
2849 NVC0LoweringPass::handleMOD(Instruction *i)
2850 {
2851 if (!isFloatType(i->dType))
2852 return true;
2853 LValue *value = bld.getScratch(typeSizeof(i->dType));
2854 bld.mkOp1(OP_RCP, i->dType, value, i->getSrc(1));
2855 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(0), value);
2856 bld.mkOp1(OP_TRUNC, i->dType, value, value);
2857 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(1), value);
2858 i->op = OP_SUB;
2859 i->setSrc(1, value);
2860 return true;
2861 }
2862
2863 bool
2864 NVC0LoweringPass::handleSQRT(Instruction *i)
2865 {
2866 if (targ->isOpSupported(OP_SQRT, i->dType))
2867 return true;
2868
2869 if (i->dType == TYPE_F64) {
2870 Value *pred = bld.getSSA(1, FILE_PREDICATE);
2871 Value *zero = bld.loadImm(NULL, 0.0);
2872 Value *dst = bld.getSSA(8);
2873 bld.mkOp1(OP_RSQ, i->dType, dst, i->getSrc(0));
2874 bld.mkCmp(OP_SET, CC_LE, i->dType, pred, i->dType, i->getSrc(0), zero);
2875 bld.mkOp3(OP_SELP, TYPE_U64, dst, zero, dst, pred);
2876 i->op = OP_MUL;
2877 i->setSrc(1, dst);
2878 // TODO: Handle this properly with a library function
2879 } else {
2880 bld.setPosition(i, true);
2881 i->op = OP_RSQ;
2882 bld.mkOp1(OP_RCP, i->dType, i->getDef(0), i->getDef(0));
2883 }
2884
2885 return true;
2886 }
2887
2888 bool
2889 NVC0LoweringPass::handlePOW(Instruction *i)
2890 {
2891 LValue *val = bld.getScratch();
2892
2893 bld.mkOp1(OP_LG2, TYPE_F32, val, i->getSrc(0));
2894 bld.mkOp2(OP_MUL, TYPE_F32, val, i->getSrc(1), val)->dnz = 1;
2895 bld.mkOp1(OP_PREEX2, TYPE_F32, val, val);
2896
2897 i->op = OP_EX2;
2898 i->setSrc(0, val);
2899 i->setSrc(1, NULL);
2900
2901 return true;
2902 }
2903
2904 bool
2905 NVC0LoweringPass::handleEXPORT(Instruction *i)
2906 {
2907 if (prog->getType() == Program::TYPE_FRAGMENT) {
2908 int id = i->getSrc(0)->reg.data.offset / 4;
2909
2910 if (i->src(0).isIndirect(0)) // TODO, ugly
2911 return false;
2912 i->op = OP_MOV;
2913 i->subOp = NV50_IR_SUBOP_MOV_FINAL;
2914 i->src(0).set(i->src(1));
2915 i->setSrc(1, NULL);
2916 i->setDef(0, new_LValue(func, FILE_GPR));
2917 i->getDef(0)->reg.data.id = id;
2918
2919 prog->maxGPR = MAX2(prog->maxGPR, id);
2920 } else
2921 if (prog->getType() == Program::TYPE_GEOMETRY) {
2922 i->setIndirect(0, 1, gpEmitAddress);
2923 }
2924 return true;
2925 }
2926
2927 bool
2928 NVC0LoweringPass::handleOUT(Instruction *i)
2929 {
2930 Instruction *prev = i->prev;
2931 ImmediateValue stream, prevStream;
2932
2933 // Only merge if the stream ids match. Also, note that the previous
2934 // instruction would have already been lowered, so we take arg1 from it.
2935 if (i->op == OP_RESTART && prev && prev->op == OP_EMIT &&
2936 i->src(0).getImmediate(stream) &&
2937 prev->src(1).getImmediate(prevStream) &&
2938 stream.reg.data.u32 == prevStream.reg.data.u32) {
2939 i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART;
2940 delete_Instruction(prog, i);
2941 } else {
2942 assert(gpEmitAddress);
2943 i->setDef(0, gpEmitAddress);
2944 i->setSrc(1, i->getSrc(0));
2945 i->setSrc(0, gpEmitAddress);
2946 }
2947 return true;
2948 }
2949
2950 Value *
2951 NVC0LoweringPass::calculateSampleOffset(Value *sampleID)
2952 {
2953 Value *offset = bld.getScratch();
2954 if (targ->getChipset() >= NVISA_GM200_CHIPSET) {
2955 // Sample location offsets (in bytes) are calculated like so:
2956 // offset = (SV_POSITION.y % 4 * 2) + (SV_POSITION.x % 2)
2957 // offset = offset * 32 + sampleID % 8 * 4;
2958 // which is equivalent to:
2959 // offset = (SV_POSITION.y & 0x3) << 6 + (SV_POSITION.x & 0x1) << 5;
2960 // offset += sampleID << 2
2961
2962 // The second operand (src1) of the INSBF instructions are like so:
2963 // 0xssll where ss is the size and ll is the offset.
2964 // so: dest = src2 | (src0 & (1 << ss - 1)) << ll
2965
2966 // Add sample ID (offset = (sampleID & 0x7) << 2)
2967 bld.mkOp3(OP_INSBF, TYPE_U32, offset, sampleID, bld.mkImm(0x0302), bld.mkImm(0x0));
2968
2969 Symbol *xSym = bld.mkSysVal(SV_POSITION, 0);
2970 Symbol *ySym = bld.mkSysVal(SV_POSITION, 1);
2971 Value *coord = bld.getScratch();
2972
2973 // Add X coordinate (offset |= (SV_POSITION.x & 0x1) << 5)
2974 bld.mkInterp(NV50_IR_INTERP_LINEAR, coord,
2975 targ->getSVAddress(FILE_SHADER_INPUT, xSym), NULL);
2976 bld.mkCvt(OP_CVT, TYPE_U32, coord, TYPE_F32, coord)
2977 ->rnd = ROUND_ZI;
2978 bld.mkOp3(OP_INSBF, TYPE_U32, offset, coord, bld.mkImm(0x0105), offset);
2979
2980 // Add Y coordinate (offset |= (SV_POSITION.y & 0x3) << 6)
2981 bld.mkInterp(NV50_IR_INTERP_LINEAR, coord,
2982 targ->getSVAddress(FILE_SHADER_INPUT, ySym), NULL);
2983 bld.mkCvt(OP_CVT, TYPE_U32, coord, TYPE_F32, coord)
2984 ->rnd = ROUND_ZI;
2985 bld.mkOp3(OP_INSBF, TYPE_U32, offset, coord, bld.mkImm(0x0206), offset);
2986 } else {
2987 bld.mkOp2(OP_SHL, TYPE_U32, offset, sampleID, bld.mkImm(3));
2988 }
2989 return offset;
2990 }
2991
2992 // Handle programmable sample locations for GM20x+
2993 void
2994 NVC0LoweringPass::handlePIXLD(Instruction *i)
2995 {
2996 if (i->subOp != NV50_IR_SUBOP_PIXLD_OFFSET)
2997 return;
2998 if (targ->getChipset() < NVISA_GM200_CHIPSET)
2999 return;
3000
3001 assert(prog->driver->prop.fp.readsSampleLocations);
3002
3003 bld.mkLoad(TYPE_F32,
3004 i->getDef(0),
3005 bld.mkSymbol(
3006 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
3007 TYPE_U32, prog->driver->io.sampleInfoBase),
3008 calculateSampleOffset(i->getSrc(0)));
3009
3010 bld.getBB()->remove(i);
3011 }
3012
3013 // Generate a binary predicate if an instruction is predicated by
3014 // e.g. an f32 value.
3015 void
3016 NVC0LoweringPass::checkPredicate(Instruction *insn)
3017 {
3018 Value *pred = insn->getPredicate();
3019 Value *pdst;
3020
3021 if (!pred || pred->reg.file == FILE_PREDICATE)
3022 return;
3023 pdst = new_LValue(func, FILE_PREDICATE);
3024
3025 // CAUTION: don't use pdst->getInsn, the definition might not be unique,
3026 // delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass
3027
3028 bld.mkCmp(OP_SET, CC_NEU, insn->dType, pdst, insn->dType, bld.mkImm(0), pred);
3029
3030 insn->setPredicate(insn->cc, pdst);
3031 }
3032
3033 //
3034 // - add quadop dance for texturing
3035 // - put FP outputs in GPRs
3036 // - convert instruction sequences
3037 //
3038 bool
3039 NVC0LoweringPass::visit(Instruction *i)
3040 {
3041 bool ret = true;
3042 bld.setPosition(i, false);
3043
3044 if (i->cc != CC_ALWAYS)
3045 checkPredicate(i);
3046
3047 switch (i->op) {
3048 case OP_TEX:
3049 case OP_TXB:
3050 case OP_TXL:
3051 case OP_TXF:
3052 case OP_TXG:
3053 return handleTEX(i->asTex());
3054 case OP_TXD:
3055 return handleTXD(i->asTex());
3056 case OP_TXLQ:
3057 return handleTXLQ(i->asTex());
3058 case OP_TXQ:
3059 return handleTXQ(i->asTex());
3060 case OP_EX2:
3061 bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0));
3062 i->setSrc(0, i->getDef(0));
3063 break;
3064 case OP_POW:
3065 return handlePOW(i);
3066 case OP_DIV:
3067 return handleDIV(i);
3068 case OP_MOD:
3069 return handleMOD(i);
3070 case OP_SQRT:
3071 return handleSQRT(i);
3072 case OP_EXPORT:
3073 ret = handleEXPORT(i);
3074 break;
3075 case OP_EMIT:
3076 case OP_RESTART:
3077 return handleOUT(i);
3078 case OP_RDSV:
3079 return handleRDSV(i);
3080 case OP_WRSV:
3081 return handleWRSV(i);
3082 case OP_STORE:
3083 case OP_LOAD:
3084 handleLDST(i);
3085 break;
3086 case OP_ATOM:
3087 {
3088 const bool cctl = i->src(0).getFile() == FILE_MEMORY_BUFFER;
3089 handleATOM(i);
3090 handleCasExch(i, cctl);
3091 }
3092 break;
3093 case OP_SULDB:
3094 case OP_SULDP:
3095 case OP_SUSTB:
3096 case OP_SUSTP:
3097 case OP_SUREDB:
3098 case OP_SUREDP:
3099 if (targ->getChipset() >= NVISA_GM107_CHIPSET)
3100 handleSurfaceOpGM107(i->asTex());
3101 else if (targ->getChipset() >= NVISA_GK104_CHIPSET)
3102 handleSurfaceOpNVE4(i->asTex());
3103 else
3104 handleSurfaceOpNVC0(i->asTex());
3105 break;
3106 case OP_SUQ:
3107 handleSUQ(i->asTex());
3108 break;
3109 case OP_BUFQ:
3110 handleBUFQ(i);
3111 break;
3112 case OP_PIXLD:
3113 handlePIXLD(i);
3114 break;
3115 default:
3116 break;
3117 }
3118
3119 /* Kepler+ has a special opcode to compute a new base address to be used
3120 * for indirect loads.
3121 *
3122 * Maxwell+ has an additional similar requirement for indirect
3123 * interpolation ops in frag shaders.
3124 */
3125 bool doAfetch = false;
3126 if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
3127 !i->perPatch &&
3128 (i->op == OP_VFETCH || i->op == OP_EXPORT) &&
3129 i->src(0).isIndirect(0)) {
3130 doAfetch = true;
3131 }
3132 if (targ->getChipset() >= NVISA_GM107_CHIPSET &&
3133 (i->op == OP_LINTERP || i->op == OP_PINTERP) &&
3134 i->src(0).isIndirect(0)) {
3135 doAfetch = true;
3136 }
3137
3138 if (doAfetch) {
3139 Value *addr = cloneShallow(func, i->getSrc(0));
3140 Instruction *afetch = bld.mkOp1(OP_AFETCH, TYPE_U32, bld.getSSA(),
3141 i->getSrc(0));
3142 afetch->setIndirect(0, 0, i->getIndirect(0, 0));
3143 addr->reg.data.offset = 0;
3144 i->setSrc(0, addr);
3145 i->setIndirect(0, 0, afetch->getDef(0));
3146 }
3147
3148 return ret;
3149 }
3150
3151 bool
3152 TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const
3153 {
3154 if (stage == CG_STAGE_PRE_SSA) {
3155 NVC0LoweringPass pass(prog);
3156 return pass.run(prog, false, true);
3157 } else
3158 if (stage == CG_STAGE_POST_RA) {
3159 NVC0LegalizePostRA pass(prog);
3160 return pass.run(prog, false, true);
3161 } else
3162 if (stage == CG_STAGE_SSA) {
3163 NVC0LegalizeSSA pass;
3164 return pass.run(prog, false, true);
3165 }
3166 return false;
3167 }
3168
3169 } // namespace nv50_ir