nvc0/ir: simplify predicate logic for GK104 atomic operations
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_lowering_nvc0.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "codegen/nv50_ir.h"
24 #include "codegen/nv50_ir_build_util.h"
25
26 #include "codegen/nv50_ir_target_nvc0.h"
27 #include "codegen/nv50_ir_lowering_nvc0.h"
28
29 #include <limits>
30
31 namespace nv50_ir {
32
33 #define QOP_ADD 0
34 #define QOP_SUBR 1
35 #define QOP_SUB 2
36 #define QOP_MOV2 3
37
38 // UL UR LL LR
39 #define QUADOP(q, r, s, t) \
40 ((QOP_##q << 6) | (QOP_##r << 4) | \
41 (QOP_##s << 2) | (QOP_##t << 0))
42
43 void
44 NVC0LegalizeSSA::handleDIV(Instruction *i)
45 {
46 FlowInstruction *call;
47 int builtin;
48 Value *def[2];
49
50 bld.setPosition(i, false);
51 def[0] = bld.mkMovToReg(0, i->getSrc(0))->getDef(0);
52 def[1] = bld.mkMovToReg(1, i->getSrc(1))->getDef(0);
53 switch (i->dType) {
54 case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break;
55 case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break;
56 default:
57 return;
58 }
59 call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
60 bld.mkMov(i->getDef(0), def[(i->op == OP_DIV) ? 0 : 1]);
61 bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2);
62 bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0);
63
64 call->fixed = 1;
65 call->absolute = call->builtin = 1;
66 call->target.builtin = builtin;
67 delete_Instruction(prog, i);
68 }
69
70 void
71 NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
72 {
73 assert(i->dType == TYPE_F64);
74 // There are instructions that will compute the high 32 bits of the 64-bit
75 // float. We will just stick 0 in the bottom 32 bits.
76
77 bld.setPosition(i, false);
78
79 // 1. Take the source and it up.
80 Value *src[2], *dst[2], *def = i->getDef(0);
81 bld.mkSplit(src, 4, i->getSrc(0));
82
83 // 2. We don't care about the low 32 bits of the destination. Stick a 0 in.
84 dst[0] = bld.loadImm(NULL, 0);
85 dst[1] = bld.getSSA();
86
87 // 3. The new version of the instruction takes the high 32 bits of the
88 // source and outputs the high 32 bits of the destination.
89 i->setSrc(0, src[1]);
90 i->setDef(0, dst[1]);
91 i->setType(TYPE_F32);
92 i->subOp = NV50_IR_SUBOP_RCPRSQ_64H;
93
94 // 4. Recombine the two dst pieces back into the original destination.
95 bld.setPosition(i, true);
96 bld.mkOp2(OP_MERGE, TYPE_U64, def, dst[0], dst[1]);
97 }
98
99 void
100 NVC0LegalizeSSA::handleFTZ(Instruction *i)
101 {
102 // Only want to flush float inputs
103 assert(i->sType == TYPE_F32);
104
105 // If we're already flushing denorms (and NaN's) to zero, no need for this.
106 if (i->dnz)
107 return;
108
109 // Only certain classes of operations can flush
110 OpClass cls = prog->getTarget()->getOpClass(i->op);
111 if (cls != OPCLASS_ARITH && cls != OPCLASS_COMPARE &&
112 cls != OPCLASS_CONVERT)
113 return;
114
115 i->ftz = true;
116 }
117
118 bool
119 NVC0LegalizeSSA::visit(Function *fn)
120 {
121 bld.setProgram(fn->getProgram());
122 return true;
123 }
124
125 bool
126 NVC0LegalizeSSA::visit(BasicBlock *bb)
127 {
128 Instruction *next;
129 for (Instruction *i = bb->getEntry(); i; i = next) {
130 next = i->next;
131 if (i->sType == TYPE_F32) {
132 if (prog->getType() != Program::TYPE_COMPUTE)
133 handleFTZ(i);
134 continue;
135 }
136 switch (i->op) {
137 case OP_DIV:
138 case OP_MOD:
139 handleDIV(i);
140 break;
141 case OP_RCP:
142 case OP_RSQ:
143 if (i->dType == TYPE_F64)
144 handleRCPRSQ(i);
145 break;
146 default:
147 break;
148 }
149 }
150 return true;
151 }
152
153 NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog)
154 : rZero(NULL),
155 carry(NULL),
156 pOne(NULL),
157 needTexBar(prog->getTarget()->getChipset() >= 0xe0)
158 {
159 }
160
161 bool
162 NVC0LegalizePostRA::insnDominatedBy(const Instruction *later,
163 const Instruction *early) const
164 {
165 if (early->bb == later->bb)
166 return early->serial < later->serial;
167 return later->bb->dominatedBy(early->bb);
168 }
169
170 void
171 NVC0LegalizePostRA::addTexUse(std::list<TexUse> &uses,
172 Instruction *usei, const Instruction *texi)
173 {
174 bool add = true;
175 bool dominated = insnDominatedBy(usei, texi);
176 // Uses before the tex have to all be included. Just because an earlier
177 // instruction dominates another instruction doesn't mean that there's no
178 // way to get from the tex to the later instruction. For example you could
179 // have nested loops, with the tex in the inner loop, and uses before it in
180 // both loops - even though the outer loop's instruction would dominate the
181 // inner's, we still want a texbar before the inner loop's instruction.
182 //
183 // However we can still use the eliding logic between uses dominated by the
184 // tex instruction, as that is unambiguously correct.
185 if (dominated) {
186 for (std::list<TexUse>::iterator it = uses.begin(); it != uses.end();) {
187 if (it->after) {
188 if (insnDominatedBy(usei, it->insn)) {
189 add = false;
190 break;
191 }
192 if (insnDominatedBy(it->insn, usei)) {
193 it = uses.erase(it);
194 continue;
195 }
196 }
197 ++it;
198 }
199 }
200 if (add)
201 uses.push_back(TexUse(usei, texi, dominated));
202 }
203
204 // While it might be tempting to use the an algorithm that just looks at tex
205 // uses, not all texture results are guaranteed to be used on all paths. In
206 // the case where along some control flow path a texture result is never used,
207 // we might reuse that register for something else, creating a
208 // write-after-write hazard. So we have to manually look through all
209 // instructions looking for ones that reference the registers in question.
210 void
211 NVC0LegalizePostRA::findFirstUses(
212 Instruction *texi, std::list<TexUse> &uses)
213 {
214 int minGPR = texi->def(0).rep()->reg.data.id;
215 int maxGPR = minGPR + texi->def(0).rep()->reg.size / 4 - 1;
216
217 unordered_set<const BasicBlock *> visited;
218 findFirstUsesBB(minGPR, maxGPR, texi->next, texi, uses, visited);
219 }
220
221 void
222 NVC0LegalizePostRA::findFirstUsesBB(
223 int minGPR, int maxGPR, Instruction *start,
224 const Instruction *texi, std::list<TexUse> &uses,
225 unordered_set<const BasicBlock *> &visited)
226 {
227 const BasicBlock *bb = start->bb;
228
229 // We don't process the whole bb the first time around. This is correct,
230 // however we might be in a loop and hit this BB again, and need to process
231 // the full thing. So only mark a bb as visited if we processed it from the
232 // beginning.
233 if (start == bb->getEntry()) {
234 if (visited.find(bb) != visited.end())
235 return;
236 visited.insert(bb);
237 }
238
239 for (Instruction *insn = start; insn != bb->getExit(); insn = insn->next) {
240 if (insn->isNop())
241 continue;
242
243 for (int d = 0; insn->defExists(d); ++d) {
244 const Value *def = insn->def(d).rep();
245 if (insn->def(d).getFile() != FILE_GPR ||
246 def->reg.data.id + def->reg.size / 4 - 1 < minGPR ||
247 def->reg.data.id > maxGPR)
248 continue;
249 addTexUse(uses, insn, texi);
250 return;
251 }
252
253 for (int s = 0; insn->srcExists(s); ++s) {
254 const Value *src = insn->src(s).rep();
255 if (insn->src(s).getFile() != FILE_GPR ||
256 src->reg.data.id + src->reg.size / 4 - 1 < minGPR ||
257 src->reg.data.id > maxGPR)
258 continue;
259 addTexUse(uses, insn, texi);
260 return;
261 }
262 }
263
264 for (Graph::EdgeIterator ei = bb->cfg.outgoing(); !ei.end(); ei.next()) {
265 findFirstUsesBB(minGPR, maxGPR, BasicBlock::get(ei.getNode())->getEntry(),
266 texi, uses, visited);
267 }
268 }
269
270 // Texture barriers:
271 // This pass is a bit long and ugly and can probably be optimized.
272 //
273 // 1. obtain a list of TEXes and their outputs' first use(s)
274 // 2. calculate the barrier level of each first use (minimal number of TEXes,
275 // over all paths, between the TEX and the use in question)
276 // 3. for each barrier, if all paths from the source TEX to that barrier
277 // contain a barrier of lesser level, it can be culled
278 bool
279 NVC0LegalizePostRA::insertTextureBarriers(Function *fn)
280 {
281 std::list<TexUse> *uses;
282 std::vector<Instruction *> texes;
283 std::vector<int> bbFirstTex;
284 std::vector<int> bbFirstUse;
285 std::vector<int> texCounts;
286 std::vector<TexUse> useVec;
287 ArrayList insns;
288
289 fn->orderInstructions(insns);
290
291 texCounts.resize(fn->allBBlocks.getSize(), 0);
292 bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize());
293 bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize());
294
295 // tag BB CFG nodes by their id for later
296 for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) {
297 BasicBlock *bb = reinterpret_cast<BasicBlock *>(i.get());
298 if (bb)
299 bb->cfg.tag = bb->getId();
300 }
301
302 // gather the first uses for each TEX
303 for (int i = 0; i < insns.getSize(); ++i) {
304 Instruction *tex = reinterpret_cast<Instruction *>(insns.get(i));
305 if (isTextureOp(tex->op)) {
306 texes.push_back(tex);
307 if (!texCounts.at(tex->bb->getId()))
308 bbFirstTex[tex->bb->getId()] = texes.size() - 1;
309 texCounts[tex->bb->getId()]++;
310 }
311 }
312 insns.clear();
313 if (texes.empty())
314 return false;
315 uses = new std::list<TexUse>[texes.size()];
316 if (!uses)
317 return false;
318 for (size_t i = 0; i < texes.size(); ++i) {
319 findFirstUses(texes[i], uses[i]);
320 }
321
322 // determine the barrier level at each use
323 for (size_t i = 0; i < texes.size(); ++i) {
324 for (std::list<TexUse>::iterator u = uses[i].begin(); u != uses[i].end();
325 ++u) {
326 BasicBlock *tb = texes[i]->bb;
327 BasicBlock *ub = u->insn->bb;
328 if (tb == ub) {
329 u->level = 0;
330 for (size_t j = i + 1; j < texes.size() &&
331 texes[j]->bb == tb && texes[j]->serial < u->insn->serial;
332 ++j)
333 u->level++;
334 } else {
335 u->level = fn->cfg.findLightestPathWeight(&tb->cfg,
336 &ub->cfg, texCounts);
337 if (u->level < 0) {
338 WARN("Failed to find path TEX -> TEXBAR\n");
339 u->level = 0;
340 continue;
341 }
342 // this counted all TEXes in the origin block, correct that
343 u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */;
344 // and did not count the TEXes in the destination block, add those
345 for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() &&
346 texes[j]->bb == ub && texes[j]->serial < u->insn->serial;
347 ++j)
348 u->level++;
349 }
350 assert(u->level >= 0);
351 useVec.push_back(*u);
352 }
353 }
354 delete[] uses;
355
356 // insert the barriers
357 for (size_t i = 0; i < useVec.size(); ++i) {
358 Instruction *prev = useVec[i].insn->prev;
359 if (useVec[i].level < 0)
360 continue;
361 if (prev && prev->op == OP_TEXBAR) {
362 if (prev->subOp > useVec[i].level)
363 prev->subOp = useVec[i].level;
364 prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0));
365 } else {
366 Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE);
367 bar->fixed = 1;
368 bar->subOp = useVec[i].level;
369 // make use explicit to ease latency calculation
370 bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0));
371 useVec[i].insn->bb->insertBefore(useVec[i].insn, bar);
372 }
373 }
374
375 if (fn->getProgram()->optLevel < 3)
376 return true;
377
378 std::vector<Limits> limitT, limitB, limitS; // entry, exit, single
379
380 limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0));
381 limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0));
382 limitS.resize(fn->allBBlocks.getSize());
383
384 // cull unneeded barriers (should do that earlier, but for simplicity)
385 IteratorRef bi = fn->cfg.iteratorCFG();
386 // first calculate min/max outstanding TEXes for each BB
387 for (bi->reset(); !bi->end(); bi->next()) {
388 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
389 BasicBlock *bb = BasicBlock::get(n);
390 int min = 0;
391 int max = std::numeric_limits<int>::max();
392 for (Instruction *i = bb->getFirst(); i; i = i->next) {
393 if (isTextureOp(i->op)) {
394 min++;
395 if (max < std::numeric_limits<int>::max())
396 max++;
397 } else
398 if (i->op == OP_TEXBAR) {
399 min = MIN2(min, i->subOp);
400 max = MIN2(max, i->subOp);
401 }
402 }
403 // limits when looking at an isolated block
404 limitS[bb->getId()].min = min;
405 limitS[bb->getId()].max = max;
406 }
407 // propagate the min/max values
408 for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) {
409 for (bi->reset(); !bi->end(); bi->next()) {
410 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
411 BasicBlock *bb = BasicBlock::get(n);
412 const int bbId = bb->getId();
413 for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) {
414 BasicBlock *in = BasicBlock::get(ei.getNode());
415 const int inId = in->getId();
416 limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min);
417 limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max);
418 }
419 // I just hope this is correct ...
420 if (limitS[bbId].max == std::numeric_limits<int>::max()) {
421 // no barrier
422 limitB[bbId].min = limitT[bbId].min + limitS[bbId].min;
423 limitB[bbId].max = limitT[bbId].max + limitS[bbId].min;
424 } else {
425 // block contained a barrier
426 limitB[bbId].min = MIN2(limitS[bbId].max,
427 limitT[bbId].min + limitS[bbId].min);
428 limitB[bbId].max = MIN2(limitS[bbId].max,
429 limitT[bbId].max + limitS[bbId].min);
430 }
431 }
432 }
433 // finally delete unnecessary barriers
434 for (bi->reset(); !bi->end(); bi->next()) {
435 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
436 BasicBlock *bb = BasicBlock::get(n);
437 Instruction *prev = NULL;
438 Instruction *next;
439 int max = limitT[bb->getId()].max;
440 for (Instruction *i = bb->getFirst(); i; i = next) {
441 next = i->next;
442 if (i->op == OP_TEXBAR) {
443 if (i->subOp >= max) {
444 delete_Instruction(prog, i);
445 i = NULL;
446 } else {
447 max = i->subOp;
448 if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) {
449 delete_Instruction(prog, prev);
450 prev = NULL;
451 }
452 }
453 } else
454 if (isTextureOp(i->op)) {
455 max++;
456 }
457 if (i && !i->isNop())
458 prev = i;
459 }
460 }
461 return true;
462 }
463
464 bool
465 NVC0LegalizePostRA::visit(Function *fn)
466 {
467 if (needTexBar)
468 insertTextureBarriers(fn);
469
470 rZero = new_LValue(fn, FILE_GPR);
471 pOne = new_LValue(fn, FILE_PREDICATE);
472 carry = new_LValue(fn, FILE_FLAGS);
473
474 rZero->reg.data.id = (prog->getTarget()->getChipset() >= NVISA_GK20A_CHIPSET) ? 255 : 63;
475 carry->reg.data.id = 0;
476 pOne->reg.data.id = 7;
477
478 return true;
479 }
480
481 void
482 NVC0LegalizePostRA::replaceZero(Instruction *i)
483 {
484 for (int s = 0; i->srcExists(s); ++s) {
485 if (s == 2 && i->op == OP_SUCLAMP)
486 continue;
487 ImmediateValue *imm = i->getSrc(s)->asImm();
488 if (imm) {
489 if (i->op == OP_SELP && s == 2) {
490 i->setSrc(s, pOne);
491 if (imm->reg.data.u64 == 0)
492 i->src(s).mod = i->src(s).mod ^ Modifier(NV50_IR_MOD_NOT);
493 } else if (imm->reg.data.u64 == 0) {
494 i->setSrc(s, rZero);
495 }
496 }
497 }
498 }
499
500 // replace CONT with BRA for single unconditional continue
501 bool
502 NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb)
503 {
504 if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT)
505 return false;
506 Graph::EdgeIterator ei = bb->cfg.incident();
507 if (ei.getType() != Graph::Edge::BACK)
508 ei.next();
509 if (ei.getType() != Graph::Edge::BACK)
510 return false;
511 BasicBlock *contBB = BasicBlock::get(ei.getNode());
512
513 if (!contBB->getExit() || contBB->getExit()->op != OP_CONT ||
514 contBB->getExit()->getPredicate())
515 return false;
516 contBB->getExit()->op = OP_BRA;
517 bb->remove(bb->getEntry()); // delete PRECONT
518
519 ei.next();
520 assert(ei.end() || ei.getType() != Graph::Edge::BACK);
521 return true;
522 }
523
524 // replace branches to join blocks with join ops
525 void
526 NVC0LegalizePostRA::propagateJoin(BasicBlock *bb)
527 {
528 if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit)
529 return;
530 for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
531 BasicBlock *in = BasicBlock::get(ei.getNode());
532 Instruction *exit = in->getExit();
533 if (!exit) {
534 in->insertTail(new FlowInstruction(func, OP_JOIN, bb));
535 // there should always be a terminator instruction
536 WARN("inserted missing terminator in BB:%i\n", in->getId());
537 } else
538 if (exit->op == OP_BRA) {
539 exit->op = OP_JOIN;
540 exit->asFlow()->limit = 1; // must-not-propagate marker
541 }
542 }
543 bb->remove(bb->getEntry());
544 }
545
546 bool
547 NVC0LegalizePostRA::visit(BasicBlock *bb)
548 {
549 Instruction *i, *next;
550
551 // remove pseudo operations and non-fixed no-ops, split 64 bit operations
552 for (i = bb->getFirst(); i; i = next) {
553 next = i->next;
554 if (i->op == OP_EMIT || i->op == OP_RESTART) {
555 if (!i->getDef(0)->refCount())
556 i->setDef(0, NULL);
557 if (i->src(0).getFile() == FILE_IMMEDIATE)
558 i->setSrc(0, rZero); // initial value must be 0
559 replaceZero(i);
560 } else
561 if (i->isNop()) {
562 bb->remove(i);
563 } else
564 if (i->op == OP_BAR && i->subOp == NV50_IR_SUBOP_BAR_SYNC &&
565 prog->getType() != Program::TYPE_COMPUTE) {
566 // It seems like barriers are never required for tessellation since
567 // the warp size is 32, and there are always at most 32 tcs threads.
568 bb->remove(i);
569 } else
570 if (i->op == OP_LOAD && i->subOp == NV50_IR_SUBOP_LDC_IS) {
571 int offset = i->src(0).get()->reg.data.offset;
572 if (abs(offset) > 0x10000)
573 i->src(0).get()->reg.fileIndex += offset >> 16;
574 i->src(0).get()->reg.data.offset = (int)(short)offset;
575 } else {
576 // TODO: Move this to before register allocation for operations that
577 // need the $c register !
578 if (typeSizeof(i->dType) == 8) {
579 Instruction *hi;
580 hi = BuildUtil::split64BitOpPostRA(func, i, rZero, carry);
581 if (hi)
582 next = hi;
583 }
584
585 if (i->op != OP_MOV && i->op != OP_PFETCH)
586 replaceZero(i);
587 }
588 }
589 if (!bb->getEntry())
590 return true;
591
592 if (!tryReplaceContWithBra(bb))
593 propagateJoin(bb);
594
595 return true;
596 }
597
598 NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget())
599 {
600 bld.setProgram(prog);
601 }
602
603 bool
604 NVC0LoweringPass::visit(Function *fn)
605 {
606 if (prog->getType() == Program::TYPE_GEOMETRY) {
607 assert(!strncmp(fn->getName(), "MAIN", 4));
608 // TODO: when we generate actual functions pass this value along somehow
609 bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false);
610 gpEmitAddress = bld.loadImm(NULL, 0)->asLValue();
611 if (fn->cfgExit) {
612 bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false);
613 bld.mkMovToReg(0, gpEmitAddress);
614 }
615 }
616 return true;
617 }
618
619 bool
620 NVC0LoweringPass::visit(BasicBlock *bb)
621 {
622 return true;
623 }
624
625 inline Value *
626 NVC0LoweringPass::loadTexHandle(Value *ptr, unsigned int slot)
627 {
628 uint8_t b = prog->driver->io.auxCBSlot;
629 uint32_t off = prog->driver->io.texBindBase + slot * 4;
630
631 if (ptr)
632 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(2));
633
634 return bld.
635 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
636 }
637
638 // move array source to first slot, convert to u16, add indirections
639 bool
640 NVC0LoweringPass::handleTEX(TexInstruction *i)
641 {
642 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
643 const int arg = i->tex.target.getArgCount();
644 const int lyr = arg - (i->tex.target.isMS() ? 2 : 1);
645 const int chipset = prog->getTarget()->getChipset();
646
647 /* Only normalize in the non-explicit derivatives case. For explicit
648 * derivatives, this is handled in handleManualTXD.
649 */
650 if (i->tex.target.isCube() && i->dPdx[0].get() == NULL) {
651 Value *src[3], *val;
652 int c;
653 for (c = 0; c < 3; ++c)
654 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), i->getSrc(c));
655 val = bld.getScratch();
656 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
657 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
658 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
659 for (c = 0; c < 3; ++c) {
660 i->setSrc(c, bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(),
661 i->getSrc(c), val));
662 }
663 }
664
665 // Arguments to the TEX instruction are a little insane. Even though the
666 // encoding is identical between SM20 and SM30, the arguments mean
667 // different things between Fermi and Kepler+. A lot of arguments are
668 // optional based on flags passed to the instruction. This summarizes the
669 // order of things.
670 //
671 // Fermi:
672 // array/indirect
673 // coords
674 // sample
675 // lod bias
676 // depth compare
677 // offsets:
678 // - tg4: 8 bits each, either 2 (1 offset reg) or 8 (2 offset reg)
679 // - other: 4 bits each, single reg
680 //
681 // Kepler+:
682 // indirect handle
683 // array (+ offsets for txd in upper 16 bits)
684 // coords
685 // sample
686 // lod bias
687 // depth compare
688 // offsets (same as fermi, except txd which takes it with array)
689 //
690 // Maxwell (tex):
691 // array
692 // coords
693 // indirect handle
694 // sample
695 // lod bias
696 // depth compare
697 // offsets
698 //
699 // Maxwell (txd):
700 // indirect handle
701 // coords
702 // array + offsets
703 // derivatives
704
705 if (chipset >= NVISA_GK104_CHIPSET) {
706 if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
707 // XXX this ignores tsc, and assumes a 1:1 mapping
708 assert(i->tex.rIndirectSrc >= 0);
709 Value *hnd = loadTexHandle(i->getIndirectR(), i->tex.r);
710 i->tex.r = 0xff;
711 i->tex.s = 0x1f;
712 i->setIndirectR(hnd);
713 i->setIndirectS(NULL);
714 } else if (i->tex.r == i->tex.s || i->op == OP_TXF) {
715 i->tex.r += prog->driver->io.texBindBase / 4;
716 i->tex.s = 0; // only a single cX[] value possible here
717 } else {
718 Value *hnd = bld.getScratch();
719 Value *rHnd = loadTexHandle(NULL, i->tex.r);
720 Value *sHnd = loadTexHandle(NULL, i->tex.s);
721
722 bld.mkOp3(OP_INSBF, TYPE_U32, hnd, rHnd, bld.mkImm(0x1400), sHnd);
723
724 i->tex.r = 0; // not used for indirect tex
725 i->tex.s = 0;
726 i->setIndirectR(hnd);
727 }
728 if (i->tex.target.isArray()) {
729 LValue *layer = new_LValue(func, FILE_GPR);
730 Value *src = i->getSrc(lyr);
731 const int sat = (i->op == OP_TXF) ? 1 : 0;
732 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
733 bld.mkCvt(OP_CVT, TYPE_U16, layer, sTy, src)->saturate = sat;
734 if (i->op != OP_TXD || chipset < NVISA_GM107_CHIPSET) {
735 for (int s = dim; s >= 1; --s)
736 i->setSrc(s, i->getSrc(s - 1));
737 i->setSrc(0, layer);
738 } else {
739 i->setSrc(dim, layer);
740 }
741 }
742 // Move the indirect reference to the first place
743 if (i->tex.rIndirectSrc >= 0 && (
744 i->op == OP_TXD || chipset < NVISA_GM107_CHIPSET)) {
745 Value *hnd = i->getIndirectR();
746
747 i->setIndirectR(NULL);
748 i->moveSources(0, 1);
749 i->setSrc(0, hnd);
750 i->tex.rIndirectSrc = 0;
751 i->tex.sIndirectSrc = -1;
752 }
753 // Move the indirect reference to right after the coords
754 else if (i->tex.rIndirectSrc >= 0 && chipset >= NVISA_GM107_CHIPSET) {
755 Value *hnd = i->getIndirectR();
756
757 i->setIndirectR(NULL);
758 i->moveSources(arg, 1);
759 i->setSrc(arg, hnd);
760 i->tex.rIndirectSrc = 0;
761 i->tex.sIndirectSrc = -1;
762 }
763 } else
764 // (nvc0) generate and move the tsc/tic/array source to the front
765 if (i->tex.target.isArray() || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
766 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
767
768 Value *ticRel = i->getIndirectR();
769 Value *tscRel = i->getIndirectS();
770
771 if (ticRel) {
772 i->setSrc(i->tex.rIndirectSrc, NULL);
773 if (i->tex.r)
774 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
775 ticRel, bld.mkImm(i->tex.r));
776 }
777 if (tscRel) {
778 i->setSrc(i->tex.sIndirectSrc, NULL);
779 if (i->tex.s)
780 tscRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
781 tscRel, bld.mkImm(i->tex.s));
782 }
783
784 Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(lyr) : NULL;
785 if (arrayIndex) {
786 for (int s = dim; s >= 1; --s)
787 i->setSrc(s, i->getSrc(s - 1));
788 i->setSrc(0, arrayIndex);
789 } else {
790 i->moveSources(0, 1);
791 }
792
793 if (arrayIndex) {
794 int sat = (i->op == OP_TXF) ? 1 : 0;
795 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
796 bld.mkCvt(OP_CVT, TYPE_U16, src, sTy, arrayIndex)->saturate = sat;
797 } else {
798 bld.loadImm(src, 0);
799 }
800
801 if (ticRel)
802 bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src);
803 if (tscRel)
804 bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src);
805
806 i->setSrc(0, src);
807 }
808
809 // For nvc0, the sample id has to be in the second operand, as the offset
810 // does. Right now we don't know how to pass both in, and this case can't
811 // happen with OpenGL. On nve0, the sample id is part of the texture
812 // coordinate argument.
813 assert(chipset >= NVISA_GK104_CHIPSET ||
814 !i->tex.useOffsets || !i->tex.target.isMS());
815
816 // offset is between lod and dc
817 if (i->tex.useOffsets) {
818 int n, c;
819 int s = i->srcCount(0xff, true);
820 if (i->op != OP_TXD || chipset < NVISA_GK104_CHIPSET) {
821 if (i->tex.target.isShadow())
822 s--;
823 if (i->srcExists(s)) // move potential predicate out of the way
824 i->moveSources(s, 1);
825 if (i->tex.useOffsets == 4 && i->srcExists(s + 1))
826 i->moveSources(s + 1, 1);
827 }
828 if (i->op == OP_TXG) {
829 // Either there is 1 offset, which goes into the 2 low bytes of the
830 // first source, or there are 4 offsets, which go into 2 sources (8
831 // values, 1 byte each).
832 Value *offs[2] = {NULL, NULL};
833 for (n = 0; n < i->tex.useOffsets; n++) {
834 for (c = 0; c < 2; ++c) {
835 if ((n % 2) == 0 && c == 0)
836 bld.mkMov(offs[n / 2] = bld.getScratch(), i->offset[n][c].get());
837 else
838 bld.mkOp3(OP_INSBF, TYPE_U32,
839 offs[n / 2],
840 i->offset[n][c].get(),
841 bld.mkImm(0x800 | ((n * 16 + c * 8) % 32)),
842 offs[n / 2]);
843 }
844 }
845 i->setSrc(s, offs[0]);
846 if (offs[1])
847 i->setSrc(s + 1, offs[1]);
848 } else {
849 unsigned imm = 0;
850 assert(i->tex.useOffsets == 1);
851 for (c = 0; c < 3; ++c) {
852 ImmediateValue val;
853 if (!i->offset[0][c].getImmediate(val))
854 assert(!"non-immediate offset passed to non-TXG");
855 imm |= (val.reg.data.u32 & 0xf) << (c * 4);
856 }
857 if (i->op == OP_TXD && chipset >= NVISA_GK104_CHIPSET) {
858 // The offset goes into the upper 16 bits of the array index. So
859 // create it if it's not already there, and INSBF it if it already
860 // is.
861 s = (i->tex.rIndirectSrc >= 0) ? 1 : 0;
862 if (chipset >= NVISA_GM107_CHIPSET)
863 s += dim;
864 if (i->tex.target.isArray()) {
865 bld.mkOp3(OP_INSBF, TYPE_U32, i->getSrc(s),
866 bld.loadImm(NULL, imm), bld.mkImm(0xc10),
867 i->getSrc(s));
868 } else {
869 i->moveSources(s, 1);
870 i->setSrc(s, bld.loadImm(NULL, imm << 16));
871 }
872 } else {
873 i->setSrc(s, bld.loadImm(NULL, imm));
874 }
875 }
876 }
877
878 if (chipset >= NVISA_GK104_CHIPSET) {
879 //
880 // If TEX requires more than 4 sources, the 2nd register tuple must be
881 // aligned to 4, even if it consists of just a single 4-byte register.
882 //
883 // XXX HACK: We insert 0 sources to avoid the 5 or 6 regs case.
884 //
885 int s = i->srcCount(0xff, true);
886 if (s > 4 && s < 7) {
887 if (i->srcExists(s)) // move potential predicate out of the way
888 i->moveSources(s, 7 - s);
889 while (s < 7)
890 i->setSrc(s++, bld.loadImm(NULL, 0));
891 }
892 }
893
894 return true;
895 }
896
897 bool
898 NVC0LoweringPass::handleManualTXD(TexInstruction *i)
899 {
900 static const uint8_t qOps[4][2] =
901 {
902 { QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(MOV2, MOV2, ADD, ADD) }, // l0
903 { QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(MOV2, MOV2, ADD, ADD) }, // l1
904 { QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l2
905 { QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l3
906 };
907 Value *def[4][4];
908 Value *crd[3];
909 Instruction *tex;
910 Value *zero = bld.loadImm(bld.getSSA(), 0);
911 int l, c;
912 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
913
914 // This function is invoked after handleTEX lowering, so we have to expect
915 // the arguments in the order that the hw wants them. For Fermi, array and
916 // indirect are both in the leading arg, while for Kepler, array and
917 // indirect are separate (and both precede the coordinates). Maxwell is
918 // handled in a separate function.
919 unsigned array;
920 if (targ->getChipset() < NVISA_GK104_CHIPSET)
921 array = i->tex.target.isArray() || i->tex.rIndirectSrc >= 0;
922 else
923 array = i->tex.target.isArray() + (i->tex.rIndirectSrc >= 0);
924
925 i->op = OP_TEX; // no need to clone dPdx/dPdy later
926
927 for (c = 0; c < dim; ++c)
928 crd[c] = bld.getScratch();
929
930 bld.mkOp(OP_QUADON, TYPE_NONE, NULL);
931 for (l = 0; l < 4; ++l) {
932 Value *src[3], *val;
933 // mov coordinates from lane l to all lanes
934 for (c = 0; c < dim; ++c)
935 bld.mkQuadop(0x00, crd[c], l, i->getSrc(c + array), zero);
936 // add dPdx from lane l to lanes dx
937 for (c = 0; c < dim; ++c)
938 bld.mkQuadop(qOps[l][0], crd[c], l, i->dPdx[c].get(), crd[c]);
939 // add dPdy from lane l to lanes dy
940 for (c = 0; c < dim; ++c)
941 bld.mkQuadop(qOps[l][1], crd[c], l, i->dPdy[c].get(), crd[c]);
942 // normalize cube coordinates
943 if (i->tex.target.isCube()) {
944 for (c = 0; c < 3; ++c)
945 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), crd[c]);
946 val = bld.getScratch();
947 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
948 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
949 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
950 for (c = 0; c < 3; ++c)
951 src[c] = bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(), crd[c], val);
952 } else {
953 for (c = 0; c < dim; ++c)
954 src[c] = crd[c];
955 }
956 // texture
957 bld.insert(tex = cloneForward(func, i));
958 for (c = 0; c < dim; ++c)
959 tex->setSrc(c + array, src[c]);
960 // save results
961 for (c = 0; i->defExists(c); ++c) {
962 Instruction *mov;
963 def[c][l] = bld.getSSA();
964 mov = bld.mkMov(def[c][l], tex->getDef(c));
965 mov->fixed = 1;
966 mov->lanes = 1 << l;
967 }
968 }
969 bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL);
970
971 for (c = 0; i->defExists(c); ++c) {
972 Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c));
973 for (l = 0; l < 4; ++l)
974 u->setSrc(l, def[c][l]);
975 }
976
977 i->bb->remove(i);
978 return true;
979 }
980
981 bool
982 NVC0LoweringPass::handleTXD(TexInstruction *txd)
983 {
984 int dim = txd->tex.target.getDim() + txd->tex.target.isCube();
985 unsigned arg = txd->tex.target.getArgCount();
986 unsigned expected_args = arg;
987 const int chipset = prog->getTarget()->getChipset();
988
989 if (chipset >= NVISA_GK104_CHIPSET) {
990 if (!txd->tex.target.isArray() && txd->tex.useOffsets)
991 expected_args++;
992 if (txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0)
993 expected_args++;
994 } else {
995 if (txd->tex.useOffsets)
996 expected_args++;
997 if (!txd->tex.target.isArray() && (
998 txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0))
999 expected_args++;
1000 }
1001
1002 if (expected_args > 4 ||
1003 dim > 2 ||
1004 txd->tex.target.isShadow())
1005 txd->op = OP_TEX;
1006
1007 handleTEX(txd);
1008 while (txd->srcExists(arg))
1009 ++arg;
1010
1011 txd->tex.derivAll = true;
1012 if (txd->op == OP_TEX)
1013 return handleManualTXD(txd);
1014
1015 assert(arg == expected_args);
1016 for (int c = 0; c < dim; ++c) {
1017 txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]);
1018 txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]);
1019 txd->dPdx[c].set(NULL);
1020 txd->dPdy[c].set(NULL);
1021 }
1022
1023 // In this case we have fewer than 4 "real" arguments, which means that
1024 // handleTEX didn't apply any padding. However we have to make sure that
1025 // the second "group" of arguments still gets padded up to 4.
1026 if (chipset >= NVISA_GK104_CHIPSET) {
1027 int s = arg + 2 * dim;
1028 if (s >= 4 && s < 7) {
1029 if (txd->srcExists(s)) // move potential predicate out of the way
1030 txd->moveSources(s, 7 - s);
1031 while (s < 7)
1032 txd->setSrc(s++, bld.loadImm(NULL, 0));
1033 }
1034 }
1035
1036 return true;
1037 }
1038
1039 bool
1040 NVC0LoweringPass::handleTXQ(TexInstruction *txq)
1041 {
1042 const int chipset = prog->getTarget()->getChipset();
1043 if (chipset >= NVISA_GK104_CHIPSET && txq->tex.rIndirectSrc < 0)
1044 txq->tex.r += prog->driver->io.texBindBase / 4;
1045
1046 if (txq->tex.rIndirectSrc < 0)
1047 return true;
1048
1049 Value *ticRel = txq->getIndirectR();
1050
1051 txq->setIndirectS(NULL);
1052 txq->tex.sIndirectSrc = -1;
1053
1054 assert(ticRel);
1055
1056 if (chipset < NVISA_GK104_CHIPSET) {
1057 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
1058
1059 txq->setSrc(txq->tex.rIndirectSrc, NULL);
1060 if (txq->tex.r)
1061 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1062 ticRel, bld.mkImm(txq->tex.r));
1063
1064 bld.mkOp2(OP_SHL, TYPE_U32, src, ticRel, bld.mkImm(0x17));
1065
1066 txq->moveSources(0, 1);
1067 txq->setSrc(0, src);
1068 } else {
1069 Value *hnd = loadTexHandle(txq->getIndirectR(), txq->tex.r);
1070 txq->tex.r = 0xff;
1071 txq->tex.s = 0x1f;
1072
1073 txq->setIndirectR(NULL);
1074 txq->moveSources(0, 1);
1075 txq->setSrc(0, hnd);
1076 txq->tex.rIndirectSrc = 0;
1077 }
1078
1079 return true;
1080 }
1081
1082 bool
1083 NVC0LoweringPass::handleTXLQ(TexInstruction *i)
1084 {
1085 /* The outputs are inverted compared to what the TGSI instruction
1086 * expects. Take that into account in the mask.
1087 */
1088 assert((i->tex.mask & ~3) == 0);
1089 if (i->tex.mask == 1)
1090 i->tex.mask = 2;
1091 else if (i->tex.mask == 2)
1092 i->tex.mask = 1;
1093 handleTEX(i);
1094 bld.setPosition(i, true);
1095
1096 /* The returned values are not quite what we want:
1097 * (a) convert from s16/u16 to f32
1098 * (b) multiply by 1/256
1099 */
1100 for (int def = 0; def < 2; ++def) {
1101 if (!i->defExists(def))
1102 continue;
1103 enum DataType type = TYPE_S16;
1104 if (i->tex.mask == 2 || def > 0)
1105 type = TYPE_U16;
1106 bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(def), type, i->getDef(def));
1107 bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(def),
1108 i->getDef(def), bld.loadImm(NULL, 1.0f / 256));
1109 }
1110 if (i->tex.mask == 3) {
1111 LValue *t = new_LValue(func, FILE_GPR);
1112 bld.mkMov(t, i->getDef(0));
1113 bld.mkMov(i->getDef(0), i->getDef(1));
1114 bld.mkMov(i->getDef(1), t);
1115 }
1116 return true;
1117 }
1118
1119 bool
1120 NVC0LoweringPass::handleBUFQ(Instruction *bufq)
1121 {
1122 bufq->op = OP_MOV;
1123 bufq->setSrc(0, loadBufLength32(bufq->getIndirect(0, 1),
1124 bufq->getSrc(0)->reg.fileIndex * 16));
1125 bufq->setIndirect(0, 0, NULL);
1126 bufq->setIndirect(0, 1, NULL);
1127 return true;
1128 }
1129
1130 void
1131 NVC0LoweringPass::handleSharedATOMNVE4(Instruction *atom)
1132 {
1133 assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1134
1135 BasicBlock *currBB = atom->bb;
1136 BasicBlock *tryLockBB = atom->bb->splitBefore(atom, false);
1137 BasicBlock *joinBB = atom->bb->splitAfter(atom);
1138 BasicBlock *setAndUnlockBB = new BasicBlock(func);
1139 BasicBlock *failLockBB = new BasicBlock(func);
1140
1141 bld.setPosition(currBB, true);
1142 assert(!currBB->joinAt);
1143 currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1144
1145 CmpInstruction *pred =
1146 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1147 TYPE_U32, bld.mkImm(0), bld.mkImm(1));
1148
1149 bld.mkFlow(OP_BRA, tryLockBB, CC_ALWAYS, NULL);
1150 currBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::TREE);
1151
1152 bld.setPosition(tryLockBB, true);
1153
1154 Instruction *ld =
1155 bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1156 atom->getIndirect(0, 0));
1157 ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1158 ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1159
1160 bld.mkFlow(OP_BRA, setAndUnlockBB, CC_P, ld->getDef(1));
1161 bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1162 tryLockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::CROSS);
1163 tryLockBB->cfg.attach(&setAndUnlockBB->cfg, Graph::Edge::TREE);
1164
1165 tryLockBB->cfg.detach(&joinBB->cfg);
1166 bld.remove(atom);
1167
1168 bld.setPosition(setAndUnlockBB, true);
1169 Value *stVal;
1170 if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1171 // Read the old value, and write the new one.
1172 stVal = atom->getSrc(1);
1173 } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1174 CmpInstruction *set =
1175 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(),
1176 TYPE_U32, ld->getDef(0), atom->getSrc(1));
1177
1178 bld.mkCmp(OP_SLCT, CC_NE, TYPE_U32, (stVal = bld.getSSA()),
1179 TYPE_U32, atom->getSrc(2), ld->getDef(0), set->getDef(0));
1180 } else {
1181 operation op;
1182
1183 switch (atom->subOp) {
1184 case NV50_IR_SUBOP_ATOM_ADD:
1185 op = OP_ADD;
1186 break;
1187 case NV50_IR_SUBOP_ATOM_AND:
1188 op = OP_AND;
1189 break;
1190 case NV50_IR_SUBOP_ATOM_OR:
1191 op = OP_OR;
1192 break;
1193 case NV50_IR_SUBOP_ATOM_XOR:
1194 op = OP_XOR;
1195 break;
1196 case NV50_IR_SUBOP_ATOM_MIN:
1197 op = OP_MIN;
1198 break;
1199 case NV50_IR_SUBOP_ATOM_MAX:
1200 op = OP_MAX;
1201 break;
1202 default:
1203 assert(0);
1204 return;
1205 }
1206
1207 stVal = bld.mkOp2v(op, atom->dType, bld.getSSA(), ld->getDef(0),
1208 atom->getSrc(1));
1209 }
1210
1211 Instruction *st =
1212 bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1213 atom->getIndirect(0, 0), stVal);
1214 st->setDef(0, pred->getDef(0));
1215 st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1216
1217 bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1218 setAndUnlockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::TREE);
1219
1220 // Lock until the store has not been performed.
1221 bld.setPosition(failLockBB, true);
1222 bld.mkFlow(OP_BRA, tryLockBB, CC_NOT_P, pred->getDef(0));
1223 bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1224 failLockBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::BACK);
1225 failLockBB->cfg.attach(&joinBB->cfg, Graph::Edge::TREE);
1226
1227 bld.setPosition(joinBB, false);
1228 bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1229 }
1230
1231 void
1232 NVC0LoweringPass::handleSharedATOM(Instruction *atom)
1233 {
1234 assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1235
1236 BasicBlock *currBB = atom->bb;
1237 BasicBlock *tryLockAndSetBB = atom->bb->splitBefore(atom, false);
1238 BasicBlock *joinBB = atom->bb->splitAfter(atom);
1239
1240 bld.setPosition(currBB, true);
1241 assert(!currBB->joinAt);
1242 currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1243
1244 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_ALWAYS, NULL);
1245 currBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::TREE);
1246
1247 bld.setPosition(tryLockAndSetBB, true);
1248
1249 Instruction *ld =
1250 bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1251 atom->getIndirect(0, 0));
1252 ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1253 ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1254
1255 Value *stVal;
1256 if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1257 // Read the old value, and write the new one.
1258 stVal = atom->getSrc(1);
1259 } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1260 CmpInstruction *set =
1261 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1262 TYPE_U32, ld->getDef(0), atom->getSrc(1));
1263 set->setPredicate(CC_P, ld->getDef(1));
1264
1265 Instruction *selp =
1266 bld.mkOp3(OP_SELP, TYPE_U32, bld.getSSA(), ld->getDef(0),
1267 atom->getSrc(2), set->getDef(0));
1268 selp->src(2).mod = Modifier(NV50_IR_MOD_NOT);
1269 selp->setPredicate(CC_P, ld->getDef(1));
1270
1271 stVal = selp->getDef(0);
1272 } else {
1273 operation op;
1274
1275 switch (atom->subOp) {
1276 case NV50_IR_SUBOP_ATOM_ADD:
1277 op = OP_ADD;
1278 break;
1279 case NV50_IR_SUBOP_ATOM_AND:
1280 op = OP_AND;
1281 break;
1282 case NV50_IR_SUBOP_ATOM_OR:
1283 op = OP_OR;
1284 break;
1285 case NV50_IR_SUBOP_ATOM_XOR:
1286 op = OP_XOR;
1287 break;
1288 case NV50_IR_SUBOP_ATOM_MIN:
1289 op = OP_MIN;
1290 break;
1291 case NV50_IR_SUBOP_ATOM_MAX:
1292 op = OP_MAX;
1293 break;
1294 default:
1295 assert(0);
1296 return;
1297 }
1298
1299 Instruction *i =
1300 bld.mkOp2(op, atom->dType, bld.getSSA(), ld->getDef(0),
1301 atom->getSrc(1));
1302 i->setPredicate(CC_P, ld->getDef(1));
1303
1304 stVal = i->getDef(0);
1305 }
1306
1307 Instruction *st =
1308 bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1309 atom->getIndirect(0, 0), stVal);
1310 st->setPredicate(CC_P, ld->getDef(1));
1311 st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1312
1313 // Loop until the lock is acquired.
1314 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_NOT_P, ld->getDef(1));
1315 tryLockAndSetBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::BACK);
1316 tryLockAndSetBB->cfg.attach(&joinBB->cfg, Graph::Edge::CROSS);
1317 bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1318
1319 bld.remove(atom);
1320
1321 bld.setPosition(joinBB, false);
1322 bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1323 }
1324
1325 bool
1326 NVC0LoweringPass::handleATOM(Instruction *atom)
1327 {
1328 SVSemantic sv;
1329 Value *ptr = atom->getIndirect(0, 0), *ind = atom->getIndirect(0, 1), *base;
1330
1331 switch (atom->src(0).getFile()) {
1332 case FILE_MEMORY_LOCAL:
1333 sv = SV_LBASE;
1334 break;
1335 case FILE_MEMORY_SHARED:
1336 // For Fermi/Kepler, we have to use ld lock/st unlock to perform atomic
1337 // operations on shared memory. For Maxwell, ATOMS is enough.
1338 if (targ->getChipset() < NVISA_GK104_CHIPSET)
1339 handleSharedATOM(atom);
1340 else if (targ->getChipset() < NVISA_GM107_CHIPSET)
1341 handleSharedATOMNVE4(atom);
1342 return true;
1343 default:
1344 assert(atom->src(0).getFile() == FILE_MEMORY_BUFFER);
1345 base = loadBufInfo64(ind, atom->getSrc(0)->reg.fileIndex * 16);
1346 assert(base->reg.size == 8);
1347 if (ptr)
1348 base = bld.mkOp2v(OP_ADD, TYPE_U64, base, base, ptr);
1349 assert(base->reg.size == 8);
1350 atom->setIndirect(0, 0, base);
1351 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1352
1353 // Harden against out-of-bounds accesses
1354 Value *offset = bld.loadImm(NULL, atom->getSrc(0)->reg.data.offset + typeSizeof(atom->sType));
1355 Value *length = loadBufLength32(ind, atom->getSrc(0)->reg.fileIndex * 16);
1356 Value *pred = new_LValue(func, FILE_PREDICATE);
1357 if (ptr)
1358 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, ptr);
1359 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
1360 atom->setPredicate(CC_NOT_P, pred);
1361 if (atom->defExists(0)) {
1362 Value *zero, *dst = atom->getDef(0);
1363 atom->setDef(0, bld.getSSA());
1364
1365 bld.setPosition(atom, true);
1366 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
1367 ->setPredicate(CC_P, pred);
1368 bld.mkOp2(OP_UNION, TYPE_U32, dst, atom->getDef(0), zero);
1369 }
1370
1371 return true;
1372 }
1373 base =
1374 bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(), bld.mkSysVal(sv, 0));
1375
1376 atom->setSrc(0, cloneShallow(func, atom->getSrc(0)));
1377 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1378 if (ptr)
1379 base = bld.mkOp2v(OP_ADD, TYPE_U32, base, base, ptr);
1380 atom->setIndirect(0, 1, NULL);
1381 atom->setIndirect(0, 0, base);
1382
1383 return true;
1384 }
1385
1386 bool
1387 NVC0LoweringPass::handleCasExch(Instruction *cas, bool needCctl)
1388 {
1389 if (targ->getChipset() < NVISA_GM107_CHIPSET) {
1390 if (cas->src(0).getFile() == FILE_MEMORY_SHARED) {
1391 // ATOM_CAS and ATOM_EXCH are handled in handleSharedATOM().
1392 return false;
1393 }
1394 }
1395
1396 if (cas->subOp != NV50_IR_SUBOP_ATOM_CAS &&
1397 cas->subOp != NV50_IR_SUBOP_ATOM_EXCH)
1398 return false;
1399 bld.setPosition(cas, true);
1400
1401 if (needCctl) {
1402 Instruction *cctl = bld.mkOp1(OP_CCTL, TYPE_NONE, NULL, cas->getSrc(0));
1403 cctl->setIndirect(0, 0, cas->getIndirect(0, 0));
1404 cctl->fixed = 1;
1405 cctl->subOp = NV50_IR_SUBOP_CCTL_IV;
1406 if (cas->isPredicated())
1407 cctl->setPredicate(cas->cc, cas->getPredicate());
1408 }
1409
1410 if (cas->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1411 // CAS is crazy. It's 2nd source is a double reg, and the 3rd source
1412 // should be set to the high part of the double reg or bad things will
1413 // happen elsewhere in the universe.
1414 // Also, it sometimes returns the new value instead of the old one
1415 // under mysterious circumstances.
1416 Value *dreg = bld.getSSA(8);
1417 bld.setPosition(cas, false);
1418 bld.mkOp2(OP_MERGE, TYPE_U64, dreg, cas->getSrc(1), cas->getSrc(2));
1419 cas->setSrc(1, dreg);
1420 cas->setSrc(2, dreg);
1421 }
1422
1423 return true;
1424 }
1425
1426 inline Value *
1427 NVC0LoweringPass::loadResInfo32(Value *ptr, uint32_t off, uint16_t base)
1428 {
1429 uint8_t b = prog->driver->io.auxCBSlot;
1430 off += base;
1431
1432 return bld.
1433 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1434 }
1435
1436 inline Value *
1437 NVC0LoweringPass::loadResInfo64(Value *ptr, uint32_t off, uint16_t base)
1438 {
1439 uint8_t b = prog->driver->io.auxCBSlot;
1440 off += base;
1441
1442 if (ptr)
1443 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1444
1445 return bld.
1446 mkLoadv(TYPE_U64, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off), ptr);
1447 }
1448
1449 inline Value *
1450 NVC0LoweringPass::loadResLength32(Value *ptr, uint32_t off, uint16_t base)
1451 {
1452 uint8_t b = prog->driver->io.auxCBSlot;
1453 off += base;
1454
1455 if (ptr)
1456 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1457
1458 return bld.
1459 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off + 8), ptr);
1460 }
1461
1462 inline Value *
1463 NVC0LoweringPass::loadBufInfo64(Value *ptr, uint32_t off)
1464 {
1465 return loadResInfo64(ptr, off, prog->driver->io.bufInfoBase);
1466 }
1467
1468 inline Value *
1469 NVC0LoweringPass::loadBufLength32(Value *ptr, uint32_t off)
1470 {
1471 return loadResLength32(ptr, off, prog->driver->io.bufInfoBase);
1472 }
1473
1474 inline Value *
1475 NVC0LoweringPass::loadUboInfo64(Value *ptr, uint32_t off)
1476 {
1477 return loadResInfo64(ptr, off, prog->driver->io.uboInfoBase);
1478 }
1479
1480 inline Value *
1481 NVC0LoweringPass::loadUboLength32(Value *ptr, uint32_t off)
1482 {
1483 return loadResLength32(ptr, off, prog->driver->io.uboInfoBase);
1484 }
1485
1486 inline Value *
1487 NVC0LoweringPass::loadMsInfo32(Value *ptr, uint32_t off)
1488 {
1489 uint8_t b = prog->driver->io.msInfoCBSlot;
1490 off += prog->driver->io.msInfoBase;
1491 return bld.
1492 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1493 }
1494
1495 /* On nvc0, surface info is obtained via the surface binding points passed
1496 * to the SULD/SUST instructions.
1497 * On nve4, surface info is stored in c[] and is used by various special
1498 * instructions, e.g. for clamping coordinates or generating an address.
1499 * They couldn't just have added an equivalent to TIC now, couldn't they ?
1500 */
1501 #define NVC0_SU_INFO_ADDR 0x00
1502 #define NVC0_SU_INFO_FMT 0x04
1503 #define NVC0_SU_INFO_DIM_X 0x08
1504 #define NVC0_SU_INFO_PITCH 0x0c
1505 #define NVC0_SU_INFO_DIM_Y 0x10
1506 #define NVC0_SU_INFO_ARRAY 0x14
1507 #define NVC0_SU_INFO_DIM_Z 0x18
1508 #define NVC0_SU_INFO_UNK1C 0x1c
1509 #define NVC0_SU_INFO_WIDTH 0x20
1510 #define NVC0_SU_INFO_HEIGHT 0x24
1511 #define NVC0_SU_INFO_DEPTH 0x28
1512 #define NVC0_SU_INFO_TARGET 0x2c
1513 #define NVC0_SU_INFO_BSIZE 0x30
1514 #define NVC0_SU_INFO_RAW_X 0x34
1515 #define NVC0_SU_INFO_MS_X 0x38
1516 #define NVC0_SU_INFO_MS_Y 0x3c
1517
1518 #define NVC0_SU_INFO__STRIDE 0x40
1519
1520 #define NVC0_SU_INFO_DIM(i) (0x08 + (i) * 8)
1521 #define NVC0_SU_INFO_SIZE(i) (0x20 + (i) * 4)
1522 #define NVC0_SU_INFO_MS(i) (0x38 + (i) * 4)
1523
1524 inline Value *
1525 NVC0LoweringPass::loadSuInfo32(Value *ptr, int slot, uint32_t off)
1526 {
1527 uint32_t base = slot * NVC0_SU_INFO__STRIDE;
1528
1529 if (ptr) {
1530 ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(slot));
1531 ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
1532 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(6));
1533 base = 0;
1534 }
1535 off += base;
1536
1537 return loadResInfo32(ptr, off, prog->driver->io.suInfoBase);
1538 }
1539
1540 static inline uint16_t getSuClampSubOp(const TexInstruction *su, int c)
1541 {
1542 switch (su->tex.target.getEnum()) {
1543 case TEX_TARGET_BUFFER: return NV50_IR_SUBOP_SUCLAMP_PL(0, 1);
1544 case TEX_TARGET_RECT: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1545 case TEX_TARGET_1D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1546 case TEX_TARGET_1D_ARRAY: return (c == 1) ?
1547 NV50_IR_SUBOP_SUCLAMP_PL(0, 2) :
1548 NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1549 case TEX_TARGET_2D: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1550 case TEX_TARGET_2D_MS: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1551 case TEX_TARGET_2D_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1552 case TEX_TARGET_2D_MS_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1553 case TEX_TARGET_3D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1554 case TEX_TARGET_CUBE: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1555 case TEX_TARGET_CUBE_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1556 default:
1557 assert(0);
1558 return 0;
1559 }
1560 }
1561
1562 bool
1563 NVC0LoweringPass::handleSUQ(TexInstruction *suq)
1564 {
1565 int mask = suq->tex.mask;
1566 int dim = suq->tex.target.getDim();
1567 int arg = dim + (suq->tex.target.isArray() || suq->tex.target.isCube());
1568 Value *ind = suq->getIndirectR();
1569 int slot = suq->tex.r;
1570 int c, d;
1571
1572 for (c = 0, d = 0; c < 3; ++c, mask >>= 1) {
1573 if (c >= arg || !(mask & 1))
1574 continue;
1575
1576 int offset;
1577
1578 if (c == 1 && suq->tex.target == TEX_TARGET_1D_ARRAY) {
1579 offset = NVC0_SU_INFO_SIZE(2);
1580 } else {
1581 offset = NVC0_SU_INFO_SIZE(c);
1582 }
1583 bld.mkMov(suq->getDef(d++), loadSuInfo32(ind, slot, offset));
1584 if (c == 2 && suq->tex.target.isCube())
1585 bld.mkOp2(OP_DIV, TYPE_U32, suq->getDef(d - 1), suq->getDef(d - 1),
1586 bld.loadImm(NULL, 6));
1587 }
1588
1589 if (mask & 1) {
1590 if (suq->tex.target.isMS()) {
1591 Value *ms_x = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(0));
1592 Value *ms_y = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(1));
1593 Value *ms = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(), ms_x, ms_y);
1594 bld.mkOp2(OP_SHL, TYPE_U32, suq->getDef(d++), bld.loadImm(NULL, 1), ms);
1595 } else {
1596 bld.mkMov(suq->getDef(d++), bld.loadImm(NULL, 1));
1597 }
1598 }
1599
1600 bld.remove(suq);
1601 return true;
1602 }
1603
1604 void
1605 NVC0LoweringPass::adjustCoordinatesMS(TexInstruction *tex)
1606 {
1607 const int arg = tex->tex.target.getArgCount();
1608 int slot = tex->tex.r;
1609
1610 if (tex->tex.target == TEX_TARGET_2D_MS)
1611 tex->tex.target = TEX_TARGET_2D;
1612 else
1613 if (tex->tex.target == TEX_TARGET_2D_MS_ARRAY)
1614 tex->tex.target = TEX_TARGET_2D_ARRAY;
1615 else
1616 return;
1617
1618 Value *x = tex->getSrc(0);
1619 Value *y = tex->getSrc(1);
1620 Value *s = tex->getSrc(arg - 1);
1621
1622 Value *tx = bld.getSSA(), *ty = bld.getSSA(), *ts = bld.getSSA();
1623 Value *ind = tex->getIndirectR();
1624
1625 Value *ms_x = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(0));
1626 Value *ms_y = loadSuInfo32(ind, slot, NVC0_SU_INFO_MS(1));
1627
1628 bld.mkOp2(OP_SHL, TYPE_U32, tx, x, ms_x);
1629 bld.mkOp2(OP_SHL, TYPE_U32, ty, y, ms_y);
1630
1631 s = bld.mkOp2v(OP_AND, TYPE_U32, ts, s, bld.loadImm(NULL, 0x7));
1632 s = bld.mkOp2v(OP_SHL, TYPE_U32, ts, ts, bld.mkImm(3));
1633
1634 Value *dx = loadMsInfo32(ts, 0x0);
1635 Value *dy = loadMsInfo32(ts, 0x4);
1636
1637 bld.mkOp2(OP_ADD, TYPE_U32, tx, tx, dx);
1638 bld.mkOp2(OP_ADD, TYPE_U32, ty, ty, dy);
1639
1640 tex->setSrc(0, tx);
1641 tex->setSrc(1, ty);
1642 tex->moveSources(arg, -1);
1643 }
1644
1645 // Sets 64-bit "generic address", predicate and format sources for SULD/SUST.
1646 // They're computed from the coordinates using the surface info in c[] space.
1647 void
1648 NVC0LoweringPass::processSurfaceCoordsNVE4(TexInstruction *su)
1649 {
1650 Instruction *insn;
1651 const bool atom = su->op == OP_SUREDB || su->op == OP_SUREDP;
1652 const bool raw =
1653 su->op == OP_SULDB || su->op == OP_SUSTB || su->op == OP_SUREDB;
1654 const int slot = su->tex.r;
1655 const int dim = su->tex.target.getDim();
1656 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
1657 int c;
1658 Value *zero = bld.mkImm(0);
1659 Value *p1 = NULL;
1660 Value *v;
1661 Value *src[3];
1662 Value *bf, *eau, *off;
1663 Value *addr, *pred;
1664 Value *ind = su->getIndirectR();
1665
1666 off = bld.getScratch(4);
1667 bf = bld.getScratch(4);
1668 addr = bld.getSSA(8);
1669 pred = bld.getScratch(1, FILE_PREDICATE);
1670
1671 bld.setPosition(su, false);
1672
1673 adjustCoordinatesMS(su);
1674
1675 // calculate clamped coordinates
1676 for (c = 0; c < arg; ++c) {
1677 int dimc = c;
1678
1679 if (c == 1 && su->tex.target == TEX_TARGET_1D_ARRAY) {
1680 // The array index is stored in the Z component for 1D arrays.
1681 dimc = 2;
1682 }
1683
1684 src[c] = bld.getScratch();
1685 if (c == 0 && raw)
1686 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_RAW_X);
1687 else
1688 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_DIM(dimc));
1689 bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[c], su->getSrc(c), v, zero)
1690 ->subOp = getSuClampSubOp(su, dimc);
1691 }
1692 for (; c < 3; ++c)
1693 src[c] = zero;
1694
1695 // set predicate output
1696 if (su->tex.target == TEX_TARGET_BUFFER) {
1697 src[0]->getInsn()->setFlagsDef(1, pred);
1698 } else
1699 if (su->tex.target.isArray() || su->tex.target.isCube()) {
1700 p1 = bld.getSSA(1, FILE_PREDICATE);
1701 src[dim]->getInsn()->setFlagsDef(1, p1);
1702 }
1703
1704 // calculate pixel offset
1705 if (dim == 1) {
1706 if (su->tex.target != TEX_TARGET_BUFFER)
1707 bld.mkOp2(OP_AND, TYPE_U32, off, src[0], bld.loadImm(NULL, 0xffff));
1708 } else
1709 if (dim == 3) {
1710 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C);
1711 bld.mkOp3(OP_MADSP, TYPE_U32, off, src[2], v, src[1])
1712 ->subOp = NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
1713
1714 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_PITCH);
1715 bld.mkOp3(OP_MADSP, TYPE_U32, off, off, v, src[0])
1716 ->subOp = NV50_IR_SUBOP_MADSP(0,2,8); // u32 u16l u16l
1717 } else {
1718 assert(dim == 2);
1719 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_PITCH);
1720 bld.mkOp3(OP_MADSP, TYPE_U32, off, src[1], v, src[0])
1721 ->subOp = (su->tex.target.isArray() || su->tex.target.isCube()) ?
1722 NV50_IR_SUBOP_MADSP_SD : NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
1723 }
1724
1725 // calculate effective address part 1
1726 if (su->tex.target == TEX_TARGET_BUFFER) {
1727 if (raw) {
1728 bf = src[0];
1729 } else {
1730 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT);
1731 bld.mkOp3(OP_VSHL, TYPE_U32, bf, src[0], v, zero)
1732 ->subOp = NV50_IR_SUBOP_V1(7,6,8|2);
1733 }
1734 } else {
1735 Value *y = src[1];
1736 Value *z = src[2];
1737 uint16_t subOp = 0;
1738
1739 switch (dim) {
1740 case 1:
1741 y = zero;
1742 z = zero;
1743 break;
1744 case 2:
1745 z = off;
1746 if (!su->tex.target.isArray() && !su->tex.target.isCube()) {
1747 z = loadSuInfo32(ind, slot, NVC0_SU_INFO_UNK1C);
1748 subOp = NV50_IR_SUBOP_SUBFM_3D;
1749 }
1750 break;
1751 default:
1752 subOp = NV50_IR_SUBOP_SUBFM_3D;
1753 assert(dim == 3);
1754 break;
1755 }
1756 insn = bld.mkOp3(OP_SUBFM, TYPE_U32, bf, src[0], y, z);
1757 insn->subOp = subOp;
1758 insn->setFlagsDef(1, pred);
1759 }
1760
1761 // part 2
1762 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR);
1763
1764 if (su->tex.target == TEX_TARGET_BUFFER) {
1765 eau = v;
1766 } else {
1767 eau = bld.mkOp3v(OP_SUEAU, TYPE_U32, bld.getScratch(4), off, bf, v);
1768 }
1769 // add array layer offset
1770 if (su->tex.target.isArray() || su->tex.target.isCube()) {
1771 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY);
1772 if (dim == 1)
1773 bld.mkOp3(OP_MADSP, TYPE_U32, eau, src[1], v, eau)
1774 ->subOp = NV50_IR_SUBOP_MADSP(4,0,0); // u16 u24 u32
1775 else
1776 bld.mkOp3(OP_MADSP, TYPE_U32, eau, v, src[2], eau)
1777 ->subOp = NV50_IR_SUBOP_MADSP(0,0,0); // u32 u24 u32
1778 // combine predicates
1779 assert(p1);
1780 bld.mkOp2(OP_OR, TYPE_U8, pred, pred, p1);
1781 }
1782
1783 if (atom) {
1784 Value *lo = bf;
1785 if (su->tex.target == TEX_TARGET_BUFFER) {
1786 lo = zero;
1787 bld.mkMov(off, bf);
1788 }
1789 // bf == g[] address & 0xff
1790 // eau == g[] address >> 8
1791 bld.mkOp3(OP_PERMT, TYPE_U32, bf, lo, bld.loadImm(NULL, 0x6540), eau);
1792 bld.mkOp3(OP_PERMT, TYPE_U32, eau, zero, bld.loadImm(NULL, 0x0007), eau);
1793 } else
1794 if (su->op == OP_SULDP && su->tex.target == TEX_TARGET_BUFFER) {
1795 // Convert from u32 to u8 address format, which is what the library code
1796 // doing SULDP currently uses.
1797 // XXX: can SUEAU do this ?
1798 // XXX: does it matter that we don't mask high bytes in bf ?
1799 // Grrr.
1800 bld.mkOp2(OP_SHR, TYPE_U32, off, bf, bld.mkImm(8));
1801 bld.mkOp2(OP_ADD, TYPE_U32, eau, eau, off);
1802 }
1803
1804 bld.mkOp2(OP_MERGE, TYPE_U64, addr, bf, eau);
1805
1806 if (atom && su->tex.target == TEX_TARGET_BUFFER)
1807 bld.mkOp2(OP_ADD, TYPE_U64, addr, addr, off);
1808
1809 // let's just set it 0 for raw access and hope it works
1810 v = raw ?
1811 bld.mkImm(0) : loadSuInfo32(ind, slot, NVC0_SU_INFO_FMT);
1812
1813 // get rid of old coordinate sources, make space for fmt info and predicate
1814 su->moveSources(arg, 3 - arg);
1815 // set 64 bit address and 32-bit format sources
1816 su->setSrc(0, addr);
1817 su->setSrc(1, v);
1818 su->setSrc(2, pred);
1819
1820 // prevent read fault when the image is not actually bound
1821 CmpInstruction *pred1 =
1822 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1823 TYPE_U32, bld.mkImm(0),
1824 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR));
1825
1826 if (su->op != OP_SUSTP && su->tex.format) {
1827 const TexInstruction::ImgFormatDesc *format = su->tex.format;
1828 int blockwidth = format->bits[0] + format->bits[1] +
1829 format->bits[2] + format->bits[3];
1830
1831 // make sure that the format doesn't mismatch
1832 assert(format->components != 0);
1833 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred1->getDef(0),
1834 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
1835 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE),
1836 pred1->getDef(0));
1837 }
1838 su->setPredicate(CC_NOT_P, pred1->getDef(0));
1839
1840 // TODO: initialize def values to 0 when the surface operation is not
1841 // performed (not needed for stores). Also, fix the "address bounds test"
1842 // subtests from arb_shader_image_load_store-invalid for buffers, because it
1843 // seems like that the predicate is not correctly set by suclamp.
1844 }
1845
1846 static DataType
1847 getSrcType(const TexInstruction::ImgFormatDesc *t, int c)
1848 {
1849 switch (t->type) {
1850 case FLOAT: return t->bits[c] == 16 ? TYPE_F16 : TYPE_F32;
1851 case UNORM: return t->bits[c] == 8 ? TYPE_U8 : TYPE_U16;
1852 case SNORM: return t->bits[c] == 8 ? TYPE_S8 : TYPE_S16;
1853 case UINT:
1854 return (t->bits[c] == 8 ? TYPE_U8 :
1855 (t->bits[c] == 16 ? TYPE_U16 : TYPE_U32));
1856 case SINT:
1857 return (t->bits[c] == 8 ? TYPE_S8 :
1858 (t->bits[c] == 16 ? TYPE_S16 : TYPE_S32));
1859 }
1860 return TYPE_NONE;
1861 }
1862
1863 static DataType
1864 getDestType(const ImgType type) {
1865 switch (type) {
1866 case FLOAT:
1867 case UNORM:
1868 case SNORM:
1869 return TYPE_F32;
1870 case UINT:
1871 return TYPE_U32;
1872 case SINT:
1873 return TYPE_S32;
1874 default:
1875 assert(!"Impossible type");
1876 return TYPE_NONE;
1877 }
1878 }
1879
1880 void
1881 NVC0LoweringPass::convertSurfaceFormat(TexInstruction *su)
1882 {
1883 const TexInstruction::ImgFormatDesc *format = su->tex.format;
1884 int width = format->bits[0] + format->bits[1] +
1885 format->bits[2] + format->bits[3];
1886 Value *untypedDst[4] = {};
1887 Value *typedDst[4] = {};
1888
1889 // We must convert this to a generic load.
1890 su->op = OP_SULDB;
1891
1892 su->dType = typeOfSize(width / 8);
1893 su->sType = TYPE_U8;
1894
1895 for (int i = 0; i < width / 32; i++)
1896 untypedDst[i] = bld.getSSA();
1897 if (width < 32)
1898 untypedDst[0] = bld.getSSA();
1899
1900 for (int i = 0; i < 4; i++) {
1901 typedDst[i] = su->getDef(i);
1902 }
1903
1904 // Set the untyped dsts as the su's destinations
1905 for (int i = 0; i < 4; i++)
1906 su->setDef(i, untypedDst[i]);
1907
1908 bld.setPosition(su, true);
1909
1910 // Unpack each component into the typed dsts
1911 int bits = 0;
1912 for (int i = 0; i < 4; bits += format->bits[i], i++) {
1913 if (!typedDst[i])
1914 continue;
1915 if (i >= format->components) {
1916 if (format->type == FLOAT ||
1917 format->type == UNORM ||
1918 format->type == SNORM)
1919 bld.loadImm(typedDst[i], i == 3 ? 1.0f : 0.0f);
1920 else
1921 bld.loadImm(typedDst[i], i == 3 ? 1 : 0);
1922 continue;
1923 }
1924
1925 // Get just that component's data into the relevant place
1926 if (format->bits[i] == 32)
1927 bld.mkMov(typedDst[i], untypedDst[i]);
1928 else if (format->bits[i] == 16)
1929 bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
1930 getSrcType(format, i), untypedDst[i / 2])
1931 ->subOp = (i & 1) << (format->type == FLOAT ? 0 : 1);
1932 else if (format->bits[i] == 8)
1933 bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
1934 getSrcType(format, i), untypedDst[0])->subOp = i;
1935 else {
1936 bld.mkOp2(OP_EXTBF, TYPE_U32, typedDst[i], untypedDst[bits / 32],
1937 bld.mkImm((bits % 32) | (format->bits[i] << 8)));
1938 if (format->type == UNORM || format->type == SNORM)
1939 bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], getSrcType(format, i), typedDst[i]);
1940 }
1941
1942 // Normalize / convert as necessary
1943 if (format->type == UNORM)
1944 bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << format->bits[i]) - 1)));
1945 else if (format->type == SNORM)
1946 bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << (format->bits[i] - 1)) - 1)));
1947 else if (format->type == FLOAT && format->bits[i] < 16) {
1948 bld.mkOp2(OP_SHL, TYPE_U32, typedDst[i], typedDst[i], bld.loadImm(NULL, 15 - format->bits[i]));
1949 bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], TYPE_F16, typedDst[i]);
1950 }
1951 }
1952
1953 if (format->bgra) {
1954 std::swap(typedDst[0], typedDst[2]);
1955 }
1956 }
1957
1958 void
1959 NVC0LoweringPass::handleSurfaceOpNVE4(TexInstruction *su)
1960 {
1961 processSurfaceCoordsNVE4(su);
1962
1963 if (su->op == OP_SULDP)
1964 convertSurfaceFormat(su);
1965
1966 if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
1967 assert(su->getPredicate());
1968 Value *pred =
1969 bld.mkOp2v(OP_OR, TYPE_U8, bld.getScratch(1, FILE_PREDICATE),
1970 su->getPredicate(), su->getSrc(2));
1971
1972 Instruction *red = bld.mkOp(OP_ATOM, su->dType, bld.getSSA());
1973 red->subOp = su->subOp;
1974 red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, 0));
1975 red->setSrc(1, su->getSrc(3));
1976 if (su->subOp == NV50_IR_SUBOP_ATOM_CAS)
1977 red->setSrc(2, su->getSrc(4));
1978 red->setIndirect(0, 0, su->getSrc(0));
1979
1980 // make sure to initialize dst value when the atomic operation is not
1981 // performed
1982 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
1983
1984 assert(su->cc == CC_NOT_P);
1985 red->setPredicate(su->cc, pred);
1986 mov->setPredicate(CC_P, pred);
1987
1988 bld.mkOp2(OP_UNION, TYPE_U32, su->getDef(0),
1989 red->getDef(0), mov->getDef(0));
1990
1991 delete_Instruction(bld.getProgram(), su);
1992 handleCasExch(red, true);
1993 }
1994
1995 if (su->op == OP_SUSTB || su->op == OP_SUSTP)
1996 su->sType = (su->tex.target == TEX_TARGET_BUFFER) ? TYPE_U32 : TYPE_U8;
1997 }
1998
1999 void
2000 NVC0LoweringPass::processSurfaceCoordsNVC0(TexInstruction *su)
2001 {
2002 const int slot = su->tex.r;
2003 const int dim = su->tex.target.getDim();
2004 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2005 int c;
2006 Value *zero = bld.mkImm(0);
2007 Value *src[3];
2008 Value *v;
2009 Value *ind = su->getIndirectR();
2010
2011 bld.setPosition(su, false);
2012
2013 adjustCoordinatesMS(su);
2014
2015 if (ind) {
2016 Value *ptr;
2017 ptr = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ind, bld.mkImm(su->tex.r));
2018 ptr = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ptr, bld.mkImm(7));
2019 su->setIndirectR(ptr);
2020 }
2021
2022 // get surface coordinates
2023 for (c = 0; c < arg; ++c)
2024 src[c] = su->getSrc(c);
2025 for (; c < 3; ++c)
2026 src[c] = zero;
2027
2028 // calculate pixel offset
2029 if (su->op == OP_SULDP || su->op == OP_SUREDP) {
2030 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE);
2031 su->setSrc(0, bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(), src[0], v));
2032 }
2033
2034 // add array layer offset
2035 if (su->tex.target.isArray() || su->tex.target.isCube()) {
2036 v = loadSuInfo32(ind, slot, NVC0_SU_INFO_ARRAY);
2037 assert(dim > 1);
2038 su->setSrc(2, bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(), src[2], v));
2039 }
2040
2041 // prevent read fault when the image is not actually bound
2042 CmpInstruction *pred =
2043 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2044 TYPE_U32, bld.mkImm(0),
2045 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR));
2046 if (su->op != OP_SUSTP && su->tex.format) {
2047 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2048 int blockwidth = format->bits[0] + format->bits[1] +
2049 format->bits[2] + format->bits[3];
2050
2051 assert(format->components != 0);
2052 // make sure that the format doesn't mismatch when it's not FMT_NONE
2053 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
2054 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2055 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE),
2056 pred->getDef(0));
2057 }
2058 su->setPredicate(CC_NOT_P, pred->getDef(0));
2059 }
2060
2061 void
2062 NVC0LoweringPass::handleSurfaceOpNVC0(TexInstruction *su)
2063 {
2064 if (su->tex.target == TEX_TARGET_1D_ARRAY) {
2065 /* As 1d arrays also need 3 coordinates, switching to TEX_TARGET_2D_ARRAY
2066 * will simplify the lowering pass and the texture constraints. */
2067 su->moveSources(1, 1);
2068 su->setSrc(1, bld.loadImm(NULL, 0));
2069 su->tex.target = TEX_TARGET_2D_ARRAY;
2070 }
2071
2072 processSurfaceCoordsNVC0(su);
2073
2074 if (su->op == OP_SULDP)
2075 convertSurfaceFormat(su);
2076
2077 if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
2078 const int dim = su->tex.target.getDim();
2079 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2080 LValue *addr = bld.getSSA(8);
2081 Value *def = su->getDef(0);
2082
2083 su->op = OP_SULEA;
2084
2085 // Set the destination to the address
2086 su->dType = TYPE_U64;
2087 su->setDef(0, addr);
2088 su->setDef(1, su->getPredicate());
2089
2090 bld.setPosition(su, true);
2091
2092 // Perform the atomic op
2093 Instruction *red = bld.mkOp(OP_ATOM, su->sType, bld.getSSA());
2094 red->subOp = su->subOp;
2095 red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, su->sType, 0));
2096 red->setSrc(1, su->getSrc(arg));
2097 if (red->subOp == NV50_IR_SUBOP_ATOM_CAS)
2098 red->setSrc(2, su->getSrc(arg + 1));
2099 red->setIndirect(0, 0, addr);
2100
2101 // make sure to initialize dst value when the atomic operation is not
2102 // performed
2103 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2104
2105 assert(su->cc == CC_NOT_P);
2106 red->setPredicate(su->cc, su->getPredicate());
2107 mov->setPredicate(CC_P, su->getPredicate());
2108
2109 bld.mkOp2(OP_UNION, TYPE_U32, def, red->getDef(0), mov->getDef(0));
2110
2111 handleCasExch(red, false);
2112 }
2113 }
2114
2115 void
2116 NVC0LoweringPass::processSurfaceCoordsGM107(TexInstruction *su)
2117 {
2118 const int slot = su->tex.r;
2119 const int dim = su->tex.target.getDim();
2120 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2121 Value *ind = su->getIndirectR();
2122 int pos = 0;
2123
2124 bld.setPosition(su, false);
2125
2126 // add texture handle
2127 switch (su->op) {
2128 case OP_SUSTP:
2129 pos = 4;
2130 break;
2131 case OP_SUREDP:
2132 pos = (su->subOp == NV50_IR_SUBOP_ATOM_CAS) ? 2 : 1;
2133 break;
2134 default:
2135 assert(pos == 0);
2136 break;
2137 }
2138 su->setSrc(arg + pos, loadTexHandle(ind, slot + 32));
2139
2140 // prevent read fault when the image is not actually bound
2141 CmpInstruction *pred =
2142 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2143 TYPE_U32, bld.mkImm(0),
2144 loadSuInfo32(ind, slot, NVC0_SU_INFO_ADDR));
2145 if (su->op != OP_SUSTP && su->tex.format) {
2146 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2147 int blockwidth = format->bits[0] + format->bits[1] +
2148 format->bits[2] + format->bits[3];
2149
2150 assert(format->components != 0);
2151 // make sure that the format doesn't mismatch when it's not FMT_NONE
2152 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
2153 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2154 loadSuInfo32(ind, slot, NVC0_SU_INFO_BSIZE),
2155 pred->getDef(0));
2156 }
2157 su->setPredicate(CC_NOT_P, pred->getDef(0));
2158 }
2159
2160 void
2161 NVC0LoweringPass::handleSurfaceOpGM107(TexInstruction *su)
2162 {
2163 processSurfaceCoordsGM107(su);
2164
2165 if (su->op == OP_SULDP)
2166 convertSurfaceFormat(su);
2167
2168 if (su->op == OP_SUREDP) {
2169 Value *def = su->getDef(0);
2170
2171 su->op = OP_SUREDB;
2172 su->setDef(0, bld.getSSA());
2173
2174 bld.setPosition(su, true);
2175
2176 // make sure to initialize dst value when the atomic operation is not
2177 // performed
2178 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2179
2180 assert(su->cc == CC_NOT_P);
2181 mov->setPredicate(CC_P, su->getPredicate());
2182
2183 bld.mkOp2(OP_UNION, TYPE_U32, def, su->getDef(0), mov->getDef(0));
2184 }
2185 }
2186
2187 bool
2188 NVC0LoweringPass::handleWRSV(Instruction *i)
2189 {
2190 Instruction *st;
2191 Symbol *sym;
2192 uint32_t addr;
2193
2194 // must replace, $sreg are not writeable
2195 addr = targ->getSVAddress(FILE_SHADER_OUTPUT, i->getSrc(0)->asSym());
2196 if (addr >= 0x400)
2197 return false;
2198 sym = bld.mkSymbol(FILE_SHADER_OUTPUT, 0, i->sType, addr);
2199
2200 st = bld.mkStore(OP_EXPORT, i->dType, sym, i->getIndirect(0, 0),
2201 i->getSrc(1));
2202 st->perPatch = i->perPatch;
2203
2204 bld.getBB()->remove(i);
2205 return true;
2206 }
2207
2208 void
2209 NVC0LoweringPass::handleLDST(Instruction *i)
2210 {
2211 if (i->src(0).getFile() == FILE_SHADER_INPUT) {
2212 if (prog->getType() == Program::TYPE_COMPUTE) {
2213 i->getSrc(0)->reg.file = FILE_MEMORY_CONST;
2214 i->getSrc(0)->reg.fileIndex = 0;
2215 } else
2216 if (prog->getType() == Program::TYPE_GEOMETRY &&
2217 i->src(0).isIndirect(0)) {
2218 // XXX: this assumes vec4 units
2219 Value *ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2220 i->getIndirect(0, 0), bld.mkImm(4));
2221 i->setIndirect(0, 0, ptr);
2222 i->op = OP_VFETCH;
2223 } else {
2224 i->op = OP_VFETCH;
2225 assert(prog->getType() != Program::TYPE_FRAGMENT); // INTERP
2226 }
2227 } else if (i->src(0).getFile() == FILE_MEMORY_CONST) {
2228 if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
2229 prog->getType() == Program::TYPE_COMPUTE) {
2230 // The launch descriptor only allows to set up 8 CBs, but OpenGL
2231 // requires at least 12 UBOs. To bypass this limitation, we store the
2232 // addrs into the driver constbuf and we directly load from the global
2233 // memory.
2234 int8_t fileIndex = i->getSrc(0)->reg.fileIndex - 1;
2235 Value *ind = i->getIndirect(0, 1);
2236
2237 if (ind) {
2238 // Clamp the UBO index when an indirect access is used to avoid
2239 // loading information from the wrong place in the driver cb.
2240 ind = bld.mkOp2v(OP_MIN, TYPE_U32, ind,
2241 bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2242 ind, bld.loadImm(NULL, fileIndex)),
2243 bld.loadImm(NULL, 12));
2244 }
2245
2246 if (i->src(0).isIndirect(1)) {
2247 Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2248 Value *ptr = loadUboInfo64(ind, fileIndex * 16);
2249 Value *length = loadUboLength32(ind, fileIndex * 16);
2250 Value *pred = new_LValue(func, FILE_PREDICATE);
2251 if (i->src(0).isIndirect(0)) {
2252 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2253 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2254 }
2255 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2256 i->setIndirect(0, 1, NULL);
2257 i->setIndirect(0, 0, ptr);
2258 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2259 i->setPredicate(CC_NOT_P, pred);
2260 if (i->defExists(0)) {
2261 bld.mkMov(i->getDef(0), bld.mkImm(0));
2262 }
2263 } else if (fileIndex >= 0) {
2264 Value *ptr = loadUboInfo64(ind, fileIndex * 16);
2265 if (i->src(0).isIndirect(0)) {
2266 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2267 }
2268 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2269 i->setIndirect(0, 1, NULL);
2270 i->setIndirect(0, 0, ptr);
2271 }
2272 } else if (i->src(0).isIndirect(1)) {
2273 Value *ptr;
2274 if (i->src(0).isIndirect(0))
2275 ptr = bld.mkOp3v(OP_INSBF, TYPE_U32, bld.getSSA(),
2276 i->getIndirect(0, 1), bld.mkImm(0x1010),
2277 i->getIndirect(0, 0));
2278 else
2279 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2280 i->getIndirect(0, 1), bld.mkImm(16));
2281 i->setIndirect(0, 1, NULL);
2282 i->setIndirect(0, 0, ptr);
2283 i->subOp = NV50_IR_SUBOP_LDC_IS;
2284 }
2285 } else if (i->src(0).getFile() == FILE_SHADER_OUTPUT) {
2286 assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
2287 i->op = OP_VFETCH;
2288 } else if (i->src(0).getFile() == FILE_MEMORY_BUFFER) {
2289 Value *ind = i->getIndirect(0, 1);
2290 Value *ptr = loadBufInfo64(ind, i->getSrc(0)->reg.fileIndex * 16);
2291 // XXX come up with a way not to do this for EVERY little access but
2292 // rather to batch these up somehow. Unfortunately we've lost the
2293 // information about the field width by the time we get here.
2294 Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2295 Value *length = loadBufLength32(ind, i->getSrc(0)->reg.fileIndex * 16);
2296 Value *pred = new_LValue(func, FILE_PREDICATE);
2297 if (i->src(0).isIndirect(0)) {
2298 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2299 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2300 }
2301 i->setIndirect(0, 1, NULL);
2302 i->setIndirect(0, 0, ptr);
2303 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2304 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2305 i->setPredicate(CC_NOT_P, pred);
2306 if (i->defExists(0)) {
2307 Value *zero, *dst = i->getDef(0);
2308 i->setDef(0, bld.getSSA());
2309
2310 bld.setPosition(i, true);
2311 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
2312 ->setPredicate(CC_P, pred);
2313 bld.mkOp2(OP_UNION, TYPE_U32, dst, i->getDef(0), zero);
2314 }
2315 }
2316 }
2317
2318 void
2319 NVC0LoweringPass::readTessCoord(LValue *dst, int c)
2320 {
2321 Value *laneid = bld.getSSA();
2322 Value *x, *y;
2323
2324 bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0));
2325
2326 if (c == 0) {
2327 x = dst;
2328 y = NULL;
2329 } else
2330 if (c == 1) {
2331 x = NULL;
2332 y = dst;
2333 } else {
2334 assert(c == 2);
2335 if (prog->driver->prop.tp.domain != PIPE_PRIM_TRIANGLES) {
2336 bld.mkMov(dst, bld.loadImm(NULL, 0));
2337 return;
2338 }
2339 x = bld.getSSA();
2340 y = bld.getSSA();
2341 }
2342 if (x)
2343 bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid);
2344 if (y)
2345 bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid);
2346
2347 if (c == 2) {
2348 bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y);
2349 bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst);
2350 }
2351 }
2352
2353 bool
2354 NVC0LoweringPass::handleRDSV(Instruction *i)
2355 {
2356 Symbol *sym = i->getSrc(0)->asSym();
2357 const SVSemantic sv = sym->reg.data.sv.sv;
2358 Value *vtx = NULL;
2359 Instruction *ld;
2360 uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym);
2361
2362 if (addr >= 0x400) {
2363 // mov $sreg
2364 if (sym->reg.data.sv.index == 3) {
2365 // TGSI backend may use 4th component of TID,NTID,CTAID,NCTAID
2366 i->op = OP_MOV;
2367 i->setSrc(0, bld.mkImm((sv == SV_NTID || sv == SV_NCTAID) ? 1 : 0));
2368 }
2369 if (sv == SV_VERTEX_COUNT) {
2370 bld.setPosition(i, true);
2371 bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0), bld.mkImm(0x808));
2372 }
2373 return true;
2374 }
2375
2376 switch (sv) {
2377 case SV_POSITION:
2378 assert(prog->getType() == Program::TYPE_FRAGMENT);
2379 if (i->srcExists(1)) {
2380 // Pass offset through to the interpolation logic
2381 ld = bld.mkInterp(NV50_IR_INTERP_LINEAR | NV50_IR_INTERP_OFFSET,
2382 i->getDef(0), addr, NULL);
2383 ld->setSrc(1, i->getSrc(1));
2384 } else {
2385 bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL);
2386 }
2387 break;
2388 case SV_FACE:
2389 {
2390 Value *face = i->getDef(0);
2391 bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL);
2392 if (i->dType == TYPE_F32) {
2393 bld.mkOp2(OP_OR, TYPE_U32, face, face, bld.mkImm(0x00000001));
2394 bld.mkOp1(OP_NEG, TYPE_S32, face, face);
2395 bld.mkCvt(OP_CVT, TYPE_F32, face, TYPE_S32, face);
2396 }
2397 }
2398 break;
2399 case SV_TESS_COORD:
2400 assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL);
2401 readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index);
2402 break;
2403 case SV_NTID:
2404 case SV_NCTAID:
2405 case SV_GRIDID:
2406 assert(targ->getChipset() >= NVISA_GK104_CHIPSET); // mov $sreg otherwise
2407 if (sym->reg.data.sv.index == 3) {
2408 i->op = OP_MOV;
2409 i->setSrc(0, bld.mkImm(sv == SV_GRIDID ? 0 : 1));
2410 return true;
2411 }
2412 // Fallthrough
2413 case SV_WORK_DIM:
2414 addr += prog->driver->prop.cp.gridInfoBase;
2415 bld.mkLoad(TYPE_U32, i->getDef(0),
2416 bld.mkSymbol(FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
2417 TYPE_U32, addr), NULL);
2418 break;
2419 case SV_SAMPLE_INDEX:
2420 // TODO: Properly pass source as an address in the PIX address space
2421 // (which can be of the form [r0+offset]). But this is currently
2422 // unnecessary.
2423 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
2424 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2425 break;
2426 case SV_SAMPLE_POS: {
2427 Value *off = new_LValue(func, FILE_GPR);
2428 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
2429 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2430 bld.mkOp2(OP_SHL, TYPE_U32, off, i->getDef(0), bld.mkImm(3));
2431 bld.mkLoad(TYPE_F32,
2432 i->getDef(0),
2433 bld.mkSymbol(
2434 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
2435 TYPE_U32, prog->driver->io.sampleInfoBase +
2436 4 * sym->reg.data.sv.index),
2437 off);
2438 break;
2439 }
2440 case SV_SAMPLE_MASK: {
2441 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
2442 ld->subOp = NV50_IR_SUBOP_PIXLD_COVMASK;
2443 Instruction *sampleid =
2444 bld.mkOp1(OP_PIXLD, TYPE_U32, bld.getSSA(), bld.mkImm(0));
2445 sampleid->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2446 Value *masked =
2447 bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ld->getDef(0),
2448 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2449 bld.loadImm(NULL, 1), sampleid->getDef(0)));
2450 if (prog->driver->prop.fp.persampleInvocation) {
2451 bld.mkMov(i->getDef(0), masked);
2452 } else {
2453 bld.mkOp3(OP_SELP, TYPE_U32, i->getDef(0), ld->getDef(0), masked,
2454 bld.mkImm(0))
2455 ->subOp = 1;
2456 }
2457 break;
2458 }
2459 case SV_BASEVERTEX:
2460 case SV_BASEINSTANCE:
2461 case SV_DRAWID:
2462 ld = bld.mkLoad(TYPE_U32, i->getDef(0),
2463 bld.mkSymbol(FILE_MEMORY_CONST,
2464 prog->driver->io.auxCBSlot,
2465 TYPE_U32,
2466 prog->driver->io.drawInfoBase +
2467 4 * (sv - SV_BASEVERTEX)),
2468 NULL);
2469 break;
2470 default:
2471 if (prog->getType() == Program::TYPE_TESSELLATION_EVAL && !i->perPatch)
2472 vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0));
2473 ld = bld.mkFetch(i->getDef(0), i->dType,
2474 FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx);
2475 ld->perPatch = i->perPatch;
2476 break;
2477 }
2478 bld.getBB()->remove(i);
2479 return true;
2480 }
2481
2482 bool
2483 NVC0LoweringPass::handleDIV(Instruction *i)
2484 {
2485 if (!isFloatType(i->dType))
2486 return true;
2487 bld.setPosition(i, false);
2488 Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(typeSizeof(i->dType)), i->getSrc(1));
2489 i->op = OP_MUL;
2490 i->setSrc(1, rcp->getDef(0));
2491 return true;
2492 }
2493
2494 bool
2495 NVC0LoweringPass::handleMOD(Instruction *i)
2496 {
2497 if (!isFloatType(i->dType))
2498 return true;
2499 LValue *value = bld.getScratch(typeSizeof(i->dType));
2500 bld.mkOp1(OP_RCP, i->dType, value, i->getSrc(1));
2501 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(0), value);
2502 bld.mkOp1(OP_TRUNC, i->dType, value, value);
2503 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(1), value);
2504 i->op = OP_SUB;
2505 i->setSrc(1, value);
2506 return true;
2507 }
2508
2509 bool
2510 NVC0LoweringPass::handleSQRT(Instruction *i)
2511 {
2512 if (i->dType == TYPE_F64) {
2513 Value *pred = bld.getSSA(1, FILE_PREDICATE);
2514 Value *zero = bld.loadImm(NULL, 0.0);
2515 Value *dst = bld.getSSA(8);
2516 bld.mkOp1(OP_RSQ, i->dType, dst, i->getSrc(0));
2517 bld.mkCmp(OP_SET, CC_LE, i->dType, pred, i->dType, i->getSrc(0), zero);
2518 bld.mkOp3(OP_SELP, TYPE_U64, dst, zero, dst, pred);
2519 i->op = OP_MUL;
2520 i->setSrc(1, dst);
2521 // TODO: Handle this properly with a library function
2522 } else {
2523 bld.setPosition(i, true);
2524 i->op = OP_RSQ;
2525 bld.mkOp1(OP_RCP, i->dType, i->getDef(0), i->getDef(0));
2526 }
2527
2528 return true;
2529 }
2530
2531 bool
2532 NVC0LoweringPass::handlePOW(Instruction *i)
2533 {
2534 LValue *val = bld.getScratch();
2535
2536 bld.mkOp1(OP_LG2, TYPE_F32, val, i->getSrc(0));
2537 bld.mkOp2(OP_MUL, TYPE_F32, val, i->getSrc(1), val)->dnz = 1;
2538 bld.mkOp1(OP_PREEX2, TYPE_F32, val, val);
2539
2540 i->op = OP_EX2;
2541 i->setSrc(0, val);
2542 i->setSrc(1, NULL);
2543
2544 return true;
2545 }
2546
2547 bool
2548 NVC0LoweringPass::handleEXPORT(Instruction *i)
2549 {
2550 if (prog->getType() == Program::TYPE_FRAGMENT) {
2551 int id = i->getSrc(0)->reg.data.offset / 4;
2552
2553 if (i->src(0).isIndirect(0)) // TODO, ugly
2554 return false;
2555 i->op = OP_MOV;
2556 i->subOp = NV50_IR_SUBOP_MOV_FINAL;
2557 i->src(0).set(i->src(1));
2558 i->setSrc(1, NULL);
2559 i->setDef(0, new_LValue(func, FILE_GPR));
2560 i->getDef(0)->reg.data.id = id;
2561
2562 prog->maxGPR = MAX2(prog->maxGPR, id);
2563 } else
2564 if (prog->getType() == Program::TYPE_GEOMETRY) {
2565 i->setIndirect(0, 1, gpEmitAddress);
2566 }
2567 return true;
2568 }
2569
2570 bool
2571 NVC0LoweringPass::handleOUT(Instruction *i)
2572 {
2573 Instruction *prev = i->prev;
2574 ImmediateValue stream, prevStream;
2575
2576 // Only merge if the stream ids match. Also, note that the previous
2577 // instruction would have already been lowered, so we take arg1 from it.
2578 if (i->op == OP_RESTART && prev && prev->op == OP_EMIT &&
2579 i->src(0).getImmediate(stream) &&
2580 prev->src(1).getImmediate(prevStream) &&
2581 stream.reg.data.u32 == prevStream.reg.data.u32) {
2582 i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART;
2583 delete_Instruction(prog, i);
2584 } else {
2585 assert(gpEmitAddress);
2586 i->setDef(0, gpEmitAddress);
2587 i->setSrc(1, i->getSrc(0));
2588 i->setSrc(0, gpEmitAddress);
2589 }
2590 return true;
2591 }
2592
2593 // Generate a binary predicate if an instruction is predicated by
2594 // e.g. an f32 value.
2595 void
2596 NVC0LoweringPass::checkPredicate(Instruction *insn)
2597 {
2598 Value *pred = insn->getPredicate();
2599 Value *pdst;
2600
2601 if (!pred || pred->reg.file == FILE_PREDICATE)
2602 return;
2603 pdst = new_LValue(func, FILE_PREDICATE);
2604
2605 // CAUTION: don't use pdst->getInsn, the definition might not be unique,
2606 // delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass
2607
2608 bld.mkCmp(OP_SET, CC_NEU, insn->dType, pdst, insn->dType, bld.mkImm(0), pred);
2609
2610 insn->setPredicate(insn->cc, pdst);
2611 }
2612
2613 //
2614 // - add quadop dance for texturing
2615 // - put FP outputs in GPRs
2616 // - convert instruction sequences
2617 //
2618 bool
2619 NVC0LoweringPass::visit(Instruction *i)
2620 {
2621 bool ret = true;
2622 bld.setPosition(i, false);
2623
2624 if (i->cc != CC_ALWAYS)
2625 checkPredicate(i);
2626
2627 switch (i->op) {
2628 case OP_TEX:
2629 case OP_TXB:
2630 case OP_TXL:
2631 case OP_TXF:
2632 case OP_TXG:
2633 return handleTEX(i->asTex());
2634 case OP_TXD:
2635 return handleTXD(i->asTex());
2636 case OP_TXLQ:
2637 return handleTXLQ(i->asTex());
2638 case OP_TXQ:
2639 return handleTXQ(i->asTex());
2640 case OP_EX2:
2641 bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0));
2642 i->setSrc(0, i->getDef(0));
2643 break;
2644 case OP_POW:
2645 return handlePOW(i);
2646 case OP_DIV:
2647 return handleDIV(i);
2648 case OP_MOD:
2649 return handleMOD(i);
2650 case OP_SQRT:
2651 return handleSQRT(i);
2652 case OP_EXPORT:
2653 ret = handleEXPORT(i);
2654 break;
2655 case OP_EMIT:
2656 case OP_RESTART:
2657 return handleOUT(i);
2658 case OP_RDSV:
2659 return handleRDSV(i);
2660 case OP_WRSV:
2661 return handleWRSV(i);
2662 case OP_STORE:
2663 case OP_LOAD:
2664 handleLDST(i);
2665 break;
2666 case OP_ATOM:
2667 {
2668 const bool cctl = i->src(0).getFile() == FILE_MEMORY_BUFFER;
2669 handleATOM(i);
2670 handleCasExch(i, cctl);
2671 }
2672 break;
2673 case OP_SULDB:
2674 case OP_SULDP:
2675 case OP_SUSTB:
2676 case OP_SUSTP:
2677 case OP_SUREDB:
2678 case OP_SUREDP:
2679 if (targ->getChipset() >= NVISA_GM107_CHIPSET)
2680 handleSurfaceOpGM107(i->asTex());
2681 else if (targ->getChipset() >= NVISA_GK104_CHIPSET)
2682 handleSurfaceOpNVE4(i->asTex());
2683 else
2684 handleSurfaceOpNVC0(i->asTex());
2685 break;
2686 case OP_SUQ:
2687 handleSUQ(i->asTex());
2688 break;
2689 case OP_BUFQ:
2690 handleBUFQ(i);
2691 break;
2692 default:
2693 break;
2694 }
2695
2696 /* Kepler+ has a special opcode to compute a new base address to be used
2697 * for indirect loads.
2698 *
2699 * Maxwell+ has an additional similar requirement for indirect
2700 * interpolation ops in frag shaders.
2701 */
2702 bool doAfetch = false;
2703 if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
2704 !i->perPatch &&
2705 (i->op == OP_VFETCH || i->op == OP_EXPORT) &&
2706 i->src(0).isIndirect(0)) {
2707 doAfetch = true;
2708 }
2709 if (targ->getChipset() >= NVISA_GM107_CHIPSET &&
2710 (i->op == OP_LINTERP || i->op == OP_PINTERP) &&
2711 i->src(0).isIndirect(0)) {
2712 doAfetch = true;
2713 }
2714
2715 if (doAfetch) {
2716 Value *addr = cloneShallow(func, i->getSrc(0));
2717 Instruction *afetch = bld.mkOp1(OP_AFETCH, TYPE_U32, bld.getSSA(),
2718 i->getSrc(0));
2719 afetch->setIndirect(0, 0, i->getIndirect(0, 0));
2720 addr->reg.data.offset = 0;
2721 i->setSrc(0, addr);
2722 i->setIndirect(0, 0, afetch->getDef(0));
2723 }
2724
2725 return ret;
2726 }
2727
2728 bool
2729 TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const
2730 {
2731 if (stage == CG_STAGE_PRE_SSA) {
2732 NVC0LoweringPass pass(prog);
2733 return pass.run(prog, false, true);
2734 } else
2735 if (stage == CG_STAGE_POST_RA) {
2736 NVC0LegalizePostRA pass(prog);
2737 return pass.run(prog, false, true);
2738 } else
2739 if (stage == CG_STAGE_SSA) {
2740 NVC0LegalizeSSA pass;
2741 return pass.run(prog, false, true);
2742 }
2743 return false;
2744 }
2745
2746 } // namespace nv50_ir