gk104/ir: fix tex use generation to be more careful about eliding uses
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_lowering_nvc0.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "codegen/nv50_ir.h"
24 #include "codegen/nv50_ir_build_util.h"
25
26 #include "codegen/nv50_ir_target_nvc0.h"
27 #include "codegen/nv50_ir_lowering_nvc0.h"
28
29 #include <limits>
30
31 namespace nv50_ir {
32
33 #define QOP_ADD 0
34 #define QOP_SUBR 1
35 #define QOP_SUB 2
36 #define QOP_MOV2 3
37
38 // UL UR LL LR
39 #define QUADOP(q, r, s, t) \
40 ((QOP_##q << 6) | (QOP_##r << 4) | \
41 (QOP_##s << 2) | (QOP_##t << 0))
42
43 void
44 NVC0LegalizeSSA::handleDIV(Instruction *i)
45 {
46 FlowInstruction *call;
47 int builtin;
48 Value *def[2];
49
50 bld.setPosition(i, false);
51 def[0] = bld.mkMovToReg(0, i->getSrc(0))->getDef(0);
52 def[1] = bld.mkMovToReg(1, i->getSrc(1))->getDef(0);
53 switch (i->dType) {
54 case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break;
55 case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break;
56 default:
57 return;
58 }
59 call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
60 bld.mkMov(i->getDef(0), def[(i->op == OP_DIV) ? 0 : 1]);
61 bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2);
62 bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0);
63
64 call->fixed = 1;
65 call->absolute = call->builtin = 1;
66 call->target.builtin = builtin;
67 delete_Instruction(prog, i);
68 }
69
70 void
71 NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
72 {
73 assert(i->dType == TYPE_F64);
74 // There are instructions that will compute the high 32 bits of the 64-bit
75 // float. We will just stick 0 in the bottom 32 bits.
76
77 bld.setPosition(i, false);
78
79 // 1. Take the source and it up.
80 Value *src[2], *dst[2], *def = i->getDef(0);
81 bld.mkSplit(src, 4, i->getSrc(0));
82
83 // 2. We don't care about the low 32 bits of the destination. Stick a 0 in.
84 dst[0] = bld.loadImm(NULL, 0);
85 dst[1] = bld.getSSA();
86
87 // 3. The new version of the instruction takes the high 32 bits of the
88 // source and outputs the high 32 bits of the destination.
89 i->setSrc(0, src[1]);
90 i->setDef(0, dst[1]);
91 i->setType(TYPE_F32);
92 i->subOp = NV50_IR_SUBOP_RCPRSQ_64H;
93
94 // 4. Recombine the two dst pieces back into the original destination.
95 bld.setPosition(i, true);
96 bld.mkOp2(OP_MERGE, TYPE_U64, def, dst[0], dst[1]);
97 }
98
99 void
100 NVC0LegalizeSSA::handleFTZ(Instruction *i)
101 {
102 // Only want to flush float inputs
103 assert(i->sType == TYPE_F32);
104
105 // If we're already flushing denorms (and NaN's) to zero, no need for this.
106 if (i->dnz)
107 return;
108
109 // Only certain classes of operations can flush
110 OpClass cls = prog->getTarget()->getOpClass(i->op);
111 if (cls != OPCLASS_ARITH && cls != OPCLASS_COMPARE &&
112 cls != OPCLASS_CONVERT)
113 return;
114
115 i->ftz = true;
116 }
117
118 bool
119 NVC0LegalizeSSA::visit(Function *fn)
120 {
121 bld.setProgram(fn->getProgram());
122 return true;
123 }
124
125 bool
126 NVC0LegalizeSSA::visit(BasicBlock *bb)
127 {
128 Instruction *next;
129 for (Instruction *i = bb->getEntry(); i; i = next) {
130 next = i->next;
131 if (i->sType == TYPE_F32) {
132 if (prog->getType() != Program::TYPE_COMPUTE)
133 handleFTZ(i);
134 continue;
135 }
136 switch (i->op) {
137 case OP_DIV:
138 case OP_MOD:
139 handleDIV(i);
140 break;
141 case OP_RCP:
142 case OP_RSQ:
143 if (i->dType == TYPE_F64)
144 handleRCPRSQ(i);
145 break;
146 default:
147 break;
148 }
149 }
150 return true;
151 }
152
153 NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog)
154 : rZero(NULL),
155 carry(NULL),
156 pOne(NULL),
157 needTexBar(prog->getTarget()->getChipset() >= 0xe0)
158 {
159 }
160
161 bool
162 NVC0LegalizePostRA::insnDominatedBy(const Instruction *later,
163 const Instruction *early) const
164 {
165 if (early->bb == later->bb)
166 return early->serial < later->serial;
167 return later->bb->dominatedBy(early->bb);
168 }
169
170 void
171 NVC0LegalizePostRA::addTexUse(std::list<TexUse> &uses,
172 Instruction *usei, const Instruction *texi)
173 {
174 bool add = true;
175 bool dominated = insnDominatedBy(usei, texi);
176 // Uses before the tex have to all be included. Just because an earlier
177 // instruction dominates another instruction doesn't mean that there's no
178 // way to get from the tex to the later instruction. For example you could
179 // have nested loops, with the tex in the inner loop, and uses before it in
180 // both loops - even though the outer loop's instruction would dominate the
181 // inner's, we still want a texbar before the inner loop's instruction.
182 //
183 // However we can still use the eliding logic between uses dominated by the
184 // tex instruction, as that is unambiguously correct.
185 if (dominated) {
186 for (std::list<TexUse>::iterator it = uses.begin(); it != uses.end();) {
187 if (it->after) {
188 if (insnDominatedBy(usei, it->insn)) {
189 add = false;
190 break;
191 }
192 if (insnDominatedBy(it->insn, usei)) {
193 it = uses.erase(it);
194 continue;
195 }
196 }
197 ++it;
198 }
199 }
200 if (add)
201 uses.push_back(TexUse(usei, texi, dominated));
202 }
203
204 // While it might be tempting to use the an algorithm that just looks at tex
205 // uses, not all texture results are guaranteed to be used on all paths. In
206 // the case where along some control flow path a texture result is never used,
207 // we might reuse that register for something else, creating a
208 // write-after-write hazard. So we have to manually look through all
209 // instructions looking for ones that reference the registers in question.
210 void
211 NVC0LegalizePostRA::findFirstUses(
212 Instruction *texi, std::list<TexUse> &uses)
213 {
214 int minGPR = texi->def(0).rep()->reg.data.id;
215 int maxGPR = minGPR + texi->def(0).rep()->reg.size / 4 - 1;
216
217 unordered_set<const BasicBlock *> visited;
218 findFirstUsesBB(minGPR, maxGPR, texi->next, texi, uses, visited);
219 }
220
221 void
222 NVC0LegalizePostRA::findFirstUsesBB(
223 int minGPR, int maxGPR, Instruction *start,
224 const Instruction *texi, std::list<TexUse> &uses,
225 unordered_set<const BasicBlock *> &visited)
226 {
227 const BasicBlock *bb = start->bb;
228
229 // We don't process the whole bb the first time around. This is correct,
230 // however we might be in a loop and hit this BB again, and need to process
231 // the full thing. So only mark a bb as visited if we processed it from the
232 // beginning.
233 if (start == bb->getEntry()) {
234 if (visited.find(bb) != visited.end())
235 return;
236 visited.insert(bb);
237 }
238
239 for (Instruction *insn = start; insn != bb->getExit(); insn = insn->next) {
240 if (insn->isNop())
241 continue;
242
243 for (int d = 0; insn->defExists(d); ++d) {
244 const Value *def = insn->def(d).rep();
245 if (insn->def(d).getFile() != FILE_GPR ||
246 def->reg.data.id + def->reg.size / 4 - 1 < minGPR ||
247 def->reg.data.id > maxGPR)
248 continue;
249 addTexUse(uses, insn, texi);
250 return;
251 }
252
253 for (int s = 0; insn->srcExists(s); ++s) {
254 const Value *src = insn->src(s).rep();
255 if (insn->src(s).getFile() != FILE_GPR ||
256 src->reg.data.id + src->reg.size / 4 - 1 < minGPR ||
257 src->reg.data.id > maxGPR)
258 continue;
259 addTexUse(uses, insn, texi);
260 return;
261 }
262 }
263
264 for (Graph::EdgeIterator ei = bb->cfg.outgoing(); !ei.end(); ei.next()) {
265 findFirstUsesBB(minGPR, maxGPR, BasicBlock::get(ei.getNode())->getEntry(),
266 texi, uses, visited);
267 }
268 }
269
270 // Texture barriers:
271 // This pass is a bit long and ugly and can probably be optimized.
272 //
273 // 1. obtain a list of TEXes and their outputs' first use(s)
274 // 2. calculate the barrier level of each first use (minimal number of TEXes,
275 // over all paths, between the TEX and the use in question)
276 // 3. for each barrier, if all paths from the source TEX to that barrier
277 // contain a barrier of lesser level, it can be culled
278 bool
279 NVC0LegalizePostRA::insertTextureBarriers(Function *fn)
280 {
281 std::list<TexUse> *uses;
282 std::vector<Instruction *> texes;
283 std::vector<int> bbFirstTex;
284 std::vector<int> bbFirstUse;
285 std::vector<int> texCounts;
286 std::vector<TexUse> useVec;
287 ArrayList insns;
288
289 fn->orderInstructions(insns);
290
291 texCounts.resize(fn->allBBlocks.getSize(), 0);
292 bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize());
293 bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize());
294
295 // tag BB CFG nodes by their id for later
296 for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) {
297 BasicBlock *bb = reinterpret_cast<BasicBlock *>(i.get());
298 if (bb)
299 bb->cfg.tag = bb->getId();
300 }
301
302 // gather the first uses for each TEX
303 for (int i = 0; i < insns.getSize(); ++i) {
304 Instruction *tex = reinterpret_cast<Instruction *>(insns.get(i));
305 if (isTextureOp(tex->op)) {
306 texes.push_back(tex);
307 if (!texCounts.at(tex->bb->getId()))
308 bbFirstTex[tex->bb->getId()] = texes.size() - 1;
309 texCounts[tex->bb->getId()]++;
310 }
311 }
312 insns.clear();
313 if (texes.empty())
314 return false;
315 uses = new std::list<TexUse>[texes.size()];
316 if (!uses)
317 return false;
318 for (size_t i = 0; i < texes.size(); ++i) {
319 findFirstUses(texes[i], uses[i]);
320 }
321
322 // determine the barrier level at each use
323 for (size_t i = 0; i < texes.size(); ++i) {
324 for (std::list<TexUse>::iterator u = uses[i].begin(); u != uses[i].end();
325 ++u) {
326 BasicBlock *tb = texes[i]->bb;
327 BasicBlock *ub = u->insn->bb;
328 if (tb == ub) {
329 u->level = 0;
330 for (size_t j = i + 1; j < texes.size() &&
331 texes[j]->bb == tb && texes[j]->serial < u->insn->serial;
332 ++j)
333 u->level++;
334 } else {
335 u->level = fn->cfg.findLightestPathWeight(&tb->cfg,
336 &ub->cfg, texCounts);
337 if (u->level < 0) {
338 WARN("Failed to find path TEX -> TEXBAR\n");
339 u->level = 0;
340 continue;
341 }
342 // this counted all TEXes in the origin block, correct that
343 u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */;
344 // and did not count the TEXes in the destination block, add those
345 for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() &&
346 texes[j]->bb == ub && texes[j]->serial < u->insn->serial;
347 ++j)
348 u->level++;
349 }
350 assert(u->level >= 0);
351 useVec.push_back(*u);
352 }
353 }
354 delete[] uses;
355
356 // insert the barriers
357 for (size_t i = 0; i < useVec.size(); ++i) {
358 Instruction *prev = useVec[i].insn->prev;
359 if (useVec[i].level < 0)
360 continue;
361 if (prev && prev->op == OP_TEXBAR) {
362 if (prev->subOp > useVec[i].level)
363 prev->subOp = useVec[i].level;
364 prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0));
365 } else {
366 Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE);
367 bar->fixed = 1;
368 bar->subOp = useVec[i].level;
369 // make use explicit to ease latency calculation
370 bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0));
371 useVec[i].insn->bb->insertBefore(useVec[i].insn, bar);
372 }
373 }
374
375 if (fn->getProgram()->optLevel < 3)
376 return true;
377
378 std::vector<Limits> limitT, limitB, limitS; // entry, exit, single
379
380 limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0));
381 limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0));
382 limitS.resize(fn->allBBlocks.getSize());
383
384 // cull unneeded barriers (should do that earlier, but for simplicity)
385 IteratorRef bi = fn->cfg.iteratorCFG();
386 // first calculate min/max outstanding TEXes for each BB
387 for (bi->reset(); !bi->end(); bi->next()) {
388 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
389 BasicBlock *bb = BasicBlock::get(n);
390 int min = 0;
391 int max = std::numeric_limits<int>::max();
392 for (Instruction *i = bb->getFirst(); i; i = i->next) {
393 if (isTextureOp(i->op)) {
394 min++;
395 if (max < std::numeric_limits<int>::max())
396 max++;
397 } else
398 if (i->op == OP_TEXBAR) {
399 min = MIN2(min, i->subOp);
400 max = MIN2(max, i->subOp);
401 }
402 }
403 // limits when looking at an isolated block
404 limitS[bb->getId()].min = min;
405 limitS[bb->getId()].max = max;
406 }
407 // propagate the min/max values
408 for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) {
409 for (bi->reset(); !bi->end(); bi->next()) {
410 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
411 BasicBlock *bb = BasicBlock::get(n);
412 const int bbId = bb->getId();
413 for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) {
414 BasicBlock *in = BasicBlock::get(ei.getNode());
415 const int inId = in->getId();
416 limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min);
417 limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max);
418 }
419 // I just hope this is correct ...
420 if (limitS[bbId].max == std::numeric_limits<int>::max()) {
421 // no barrier
422 limitB[bbId].min = limitT[bbId].min + limitS[bbId].min;
423 limitB[bbId].max = limitT[bbId].max + limitS[bbId].min;
424 } else {
425 // block contained a barrier
426 limitB[bbId].min = MIN2(limitS[bbId].max,
427 limitT[bbId].min + limitS[bbId].min);
428 limitB[bbId].max = MIN2(limitS[bbId].max,
429 limitT[bbId].max + limitS[bbId].min);
430 }
431 }
432 }
433 // finally delete unnecessary barriers
434 for (bi->reset(); !bi->end(); bi->next()) {
435 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
436 BasicBlock *bb = BasicBlock::get(n);
437 Instruction *prev = NULL;
438 Instruction *next;
439 int max = limitT[bb->getId()].max;
440 for (Instruction *i = bb->getFirst(); i; i = next) {
441 next = i->next;
442 if (i->op == OP_TEXBAR) {
443 if (i->subOp >= max) {
444 delete_Instruction(prog, i);
445 i = NULL;
446 } else {
447 max = i->subOp;
448 if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) {
449 delete_Instruction(prog, prev);
450 prev = NULL;
451 }
452 }
453 } else
454 if (isTextureOp(i->op)) {
455 max++;
456 }
457 if (i && !i->isNop())
458 prev = i;
459 }
460 }
461 return true;
462 }
463
464 bool
465 NVC0LegalizePostRA::visit(Function *fn)
466 {
467 if (needTexBar)
468 insertTextureBarriers(fn);
469
470 rZero = new_LValue(fn, FILE_GPR);
471 pOne = new_LValue(fn, FILE_PREDICATE);
472 carry = new_LValue(fn, FILE_FLAGS);
473
474 rZero->reg.data.id = (prog->getTarget()->getChipset() >= NVISA_GK20A_CHIPSET) ? 255 : 63;
475 carry->reg.data.id = 0;
476 pOne->reg.data.id = 7;
477
478 return true;
479 }
480
481 void
482 NVC0LegalizePostRA::replaceZero(Instruction *i)
483 {
484 for (int s = 0; i->srcExists(s); ++s) {
485 if (s == 2 && i->op == OP_SUCLAMP)
486 continue;
487 ImmediateValue *imm = i->getSrc(s)->asImm();
488 if (imm) {
489 if (i->op == OP_SELP && s == 2) {
490 i->setSrc(s, pOne);
491 if (imm->reg.data.u64 == 0)
492 i->src(s).mod = i->src(s).mod ^ Modifier(NV50_IR_MOD_NOT);
493 } else if (imm->reg.data.u64 == 0) {
494 i->setSrc(s, rZero);
495 }
496 }
497 }
498 }
499
500 // replace CONT with BRA for single unconditional continue
501 bool
502 NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb)
503 {
504 if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT)
505 return false;
506 Graph::EdgeIterator ei = bb->cfg.incident();
507 if (ei.getType() != Graph::Edge::BACK)
508 ei.next();
509 if (ei.getType() != Graph::Edge::BACK)
510 return false;
511 BasicBlock *contBB = BasicBlock::get(ei.getNode());
512
513 if (!contBB->getExit() || contBB->getExit()->op != OP_CONT ||
514 contBB->getExit()->getPredicate())
515 return false;
516 contBB->getExit()->op = OP_BRA;
517 bb->remove(bb->getEntry()); // delete PRECONT
518
519 ei.next();
520 assert(ei.end() || ei.getType() != Graph::Edge::BACK);
521 return true;
522 }
523
524 // replace branches to join blocks with join ops
525 void
526 NVC0LegalizePostRA::propagateJoin(BasicBlock *bb)
527 {
528 if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit)
529 return;
530 for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
531 BasicBlock *in = BasicBlock::get(ei.getNode());
532 Instruction *exit = in->getExit();
533 if (!exit) {
534 in->insertTail(new FlowInstruction(func, OP_JOIN, bb));
535 // there should always be a terminator instruction
536 WARN("inserted missing terminator in BB:%i\n", in->getId());
537 } else
538 if (exit->op == OP_BRA) {
539 exit->op = OP_JOIN;
540 exit->asFlow()->limit = 1; // must-not-propagate marker
541 }
542 }
543 bb->remove(bb->getEntry());
544 }
545
546 bool
547 NVC0LegalizePostRA::visit(BasicBlock *bb)
548 {
549 Instruction *i, *next;
550
551 // remove pseudo operations and non-fixed no-ops, split 64 bit operations
552 for (i = bb->getFirst(); i; i = next) {
553 next = i->next;
554 if (i->op == OP_EMIT || i->op == OP_RESTART) {
555 if (!i->getDef(0)->refCount())
556 i->setDef(0, NULL);
557 if (i->src(0).getFile() == FILE_IMMEDIATE)
558 i->setSrc(0, rZero); // initial value must be 0
559 replaceZero(i);
560 } else
561 if (i->isNop()) {
562 bb->remove(i);
563 } else
564 if (i->op == OP_BAR && i->subOp == NV50_IR_SUBOP_BAR_SYNC &&
565 prog->getType() != Program::TYPE_COMPUTE) {
566 // It seems like barriers are never required for tessellation since
567 // the warp size is 32, and there are always at most 32 tcs threads.
568 bb->remove(i);
569 } else
570 if (i->op == OP_LOAD && i->subOp == NV50_IR_SUBOP_LDC_IS) {
571 int offset = i->src(0).get()->reg.data.offset;
572 if (abs(offset) > 0x10000)
573 i->src(0).get()->reg.fileIndex += offset >> 16;
574 i->src(0).get()->reg.data.offset = (int)(short)offset;
575 } else {
576 // TODO: Move this to before register allocation for operations that
577 // need the $c register !
578 if (typeSizeof(i->dType) == 8) {
579 Instruction *hi;
580 hi = BuildUtil::split64BitOpPostRA(func, i, rZero, carry);
581 if (hi)
582 next = hi;
583 }
584
585 if (i->op != OP_MOV && i->op != OP_PFETCH)
586 replaceZero(i);
587 }
588 }
589 if (!bb->getEntry())
590 return true;
591
592 if (!tryReplaceContWithBra(bb))
593 propagateJoin(bb);
594
595 return true;
596 }
597
598 NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget())
599 {
600 bld.setProgram(prog);
601 gMemBase = NULL;
602 }
603
604 bool
605 NVC0LoweringPass::visit(Function *fn)
606 {
607 if (prog->getType() == Program::TYPE_GEOMETRY) {
608 assert(!strncmp(fn->getName(), "MAIN", 4));
609 // TODO: when we generate actual functions pass this value along somehow
610 bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false);
611 gpEmitAddress = bld.loadImm(NULL, 0)->asLValue();
612 if (fn->cfgExit) {
613 bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false);
614 bld.mkMovToReg(0, gpEmitAddress);
615 }
616 }
617 return true;
618 }
619
620 bool
621 NVC0LoweringPass::visit(BasicBlock *bb)
622 {
623 return true;
624 }
625
626 inline Value *
627 NVC0LoweringPass::loadTexHandle(Value *ptr, unsigned int slot)
628 {
629 uint8_t b = prog->driver->io.auxCBSlot;
630 uint32_t off = prog->driver->io.texBindBase + slot * 4;
631 return bld.
632 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
633 }
634
635 // move array source to first slot, convert to u16, add indirections
636 bool
637 NVC0LoweringPass::handleTEX(TexInstruction *i)
638 {
639 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
640 const int arg = i->tex.target.getArgCount();
641 const int lyr = arg - (i->tex.target.isMS() ? 2 : 1);
642 const int chipset = prog->getTarget()->getChipset();
643
644 /* Only normalize in the non-explicit derivatives case. For explicit
645 * derivatives, this is handled in handleManualTXD.
646 */
647 if (i->tex.target.isCube() && i->dPdx[0].get() == NULL) {
648 Value *src[3], *val;
649 int c;
650 for (c = 0; c < 3; ++c)
651 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), i->getSrc(c));
652 val = bld.getScratch();
653 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
654 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
655 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
656 for (c = 0; c < 3; ++c) {
657 i->setSrc(c, bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(),
658 i->getSrc(c), val));
659 }
660 }
661
662 // Arguments to the TEX instruction are a little insane. Even though the
663 // encoding is identical between SM20 and SM30, the arguments mean
664 // different things between Fermi and Kepler+. A lot of arguments are
665 // optional based on flags passed to the instruction. This summarizes the
666 // order of things.
667 //
668 // Fermi:
669 // array/indirect
670 // coords
671 // sample
672 // lod bias
673 // depth compare
674 // offsets:
675 // - tg4: 8 bits each, either 2 (1 offset reg) or 8 (2 offset reg)
676 // - other: 4 bits each, single reg
677 //
678 // Kepler+:
679 // indirect handle
680 // array (+ offsets for txd in upper 16 bits)
681 // coords
682 // sample
683 // lod bias
684 // depth compare
685 // offsets (same as fermi, except txd which takes it with array)
686 //
687 // Maxwell (tex):
688 // array
689 // coords
690 // indirect handle
691 // sample
692 // lod bias
693 // depth compare
694 // offsets
695 //
696 // Maxwell (txd):
697 // indirect handle
698 // coords
699 // array + offsets
700 // derivatives
701
702 if (chipset >= NVISA_GK104_CHIPSET) {
703 if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
704 // XXX this ignores tsc, and assumes a 1:1 mapping
705 assert(i->tex.rIndirectSrc >= 0);
706 Value *hnd = loadTexHandle(
707 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
708 i->getIndirectR(), bld.mkImm(2)),
709 i->tex.r);
710 i->tex.r = 0xff;
711 i->tex.s = 0x1f;
712 i->setIndirectR(hnd);
713 i->setIndirectS(NULL);
714 } else if (i->tex.r == i->tex.s || i->op == OP_TXF) {
715 i->tex.r += prog->driver->io.texBindBase / 4;
716 i->tex.s = 0; // only a single cX[] value possible here
717 } else {
718 Value *hnd = bld.getScratch();
719 Value *rHnd = loadTexHandle(NULL, i->tex.r);
720 Value *sHnd = loadTexHandle(NULL, i->tex.s);
721
722 bld.mkOp3(OP_INSBF, TYPE_U32, hnd, rHnd, bld.mkImm(0x1400), sHnd);
723
724 i->tex.r = 0; // not used for indirect tex
725 i->tex.s = 0;
726 i->setIndirectR(hnd);
727 }
728 if (i->tex.target.isArray()) {
729 LValue *layer = new_LValue(func, FILE_GPR);
730 Value *src = i->getSrc(lyr);
731 const int sat = (i->op == OP_TXF) ? 1 : 0;
732 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
733 bld.mkCvt(OP_CVT, TYPE_U16, layer, sTy, src)->saturate = sat;
734 if (i->op != OP_TXD || chipset < NVISA_GM107_CHIPSET) {
735 for (int s = dim; s >= 1; --s)
736 i->setSrc(s, i->getSrc(s - 1));
737 i->setSrc(0, layer);
738 } else {
739 i->setSrc(dim, layer);
740 }
741 }
742 // Move the indirect reference to the first place
743 if (i->tex.rIndirectSrc >= 0 && (
744 i->op == OP_TXD || chipset < NVISA_GM107_CHIPSET)) {
745 Value *hnd = i->getIndirectR();
746
747 i->setIndirectR(NULL);
748 i->moveSources(0, 1);
749 i->setSrc(0, hnd);
750 i->tex.rIndirectSrc = 0;
751 i->tex.sIndirectSrc = -1;
752 }
753 } else
754 // (nvc0) generate and move the tsc/tic/array source to the front
755 if (i->tex.target.isArray() || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
756 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
757
758 Value *ticRel = i->getIndirectR();
759 Value *tscRel = i->getIndirectS();
760
761 if (ticRel) {
762 i->setSrc(i->tex.rIndirectSrc, NULL);
763 if (i->tex.r)
764 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
765 ticRel, bld.mkImm(i->tex.r));
766 }
767 if (tscRel) {
768 i->setSrc(i->tex.sIndirectSrc, NULL);
769 if (i->tex.s)
770 tscRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
771 tscRel, bld.mkImm(i->tex.s));
772 }
773
774 Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(lyr) : NULL;
775 if (arrayIndex) {
776 for (int s = dim; s >= 1; --s)
777 i->setSrc(s, i->getSrc(s - 1));
778 i->setSrc(0, arrayIndex);
779 } else {
780 i->moveSources(0, 1);
781 }
782
783 if (arrayIndex) {
784 int sat = (i->op == OP_TXF) ? 1 : 0;
785 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
786 bld.mkCvt(OP_CVT, TYPE_U16, src, sTy, arrayIndex)->saturate = sat;
787 } else {
788 bld.loadImm(src, 0);
789 }
790
791 if (ticRel)
792 bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src);
793 if (tscRel)
794 bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src);
795
796 i->setSrc(0, src);
797 }
798
799 // For nvc0, the sample id has to be in the second operand, as the offset
800 // does. Right now we don't know how to pass both in, and this case can't
801 // happen with OpenGL. On nve0, the sample id is part of the texture
802 // coordinate argument.
803 assert(chipset >= NVISA_GK104_CHIPSET ||
804 !i->tex.useOffsets || !i->tex.target.isMS());
805
806 // offset is between lod and dc
807 if (i->tex.useOffsets) {
808 int n, c;
809 int s = i->srcCount(0xff, true);
810 if (i->op != OP_TXD || chipset < NVISA_GK104_CHIPSET) {
811 if (i->tex.target.isShadow())
812 s--;
813 if (i->srcExists(s)) // move potential predicate out of the way
814 i->moveSources(s, 1);
815 if (i->tex.useOffsets == 4 && i->srcExists(s + 1))
816 i->moveSources(s + 1, 1);
817 }
818 if (i->op == OP_TXG) {
819 // Either there is 1 offset, which goes into the 2 low bytes of the
820 // first source, or there are 4 offsets, which go into 2 sources (8
821 // values, 1 byte each).
822 Value *offs[2] = {NULL, NULL};
823 for (n = 0; n < i->tex.useOffsets; n++) {
824 for (c = 0; c < 2; ++c) {
825 if ((n % 2) == 0 && c == 0)
826 offs[n / 2] = i->offset[n][c].get();
827 else
828 bld.mkOp3(OP_INSBF, TYPE_U32,
829 offs[n / 2],
830 i->offset[n][c].get(),
831 bld.mkImm(0x800 | ((n * 16 + c * 8) % 32)),
832 offs[n / 2]);
833 }
834 }
835 i->setSrc(s, offs[0]);
836 if (offs[1])
837 i->setSrc(s + 1, offs[1]);
838 } else {
839 unsigned imm = 0;
840 assert(i->tex.useOffsets == 1);
841 for (c = 0; c < 3; ++c) {
842 ImmediateValue val;
843 if (!i->offset[0][c].getImmediate(val))
844 assert(!"non-immediate offset passed to non-TXG");
845 imm |= (val.reg.data.u32 & 0xf) << (c * 4);
846 }
847 if (i->op == OP_TXD && chipset >= NVISA_GK104_CHIPSET) {
848 // The offset goes into the upper 16 bits of the array index. So
849 // create it if it's not already there, and INSBF it if it already
850 // is.
851 s = (i->tex.rIndirectSrc >= 0) ? 1 : 0;
852 if (chipset >= NVISA_GM107_CHIPSET)
853 s += dim;
854 if (i->tex.target.isArray()) {
855 bld.mkOp3(OP_INSBF, TYPE_U32, i->getSrc(s),
856 bld.loadImm(NULL, imm), bld.mkImm(0xc10),
857 i->getSrc(s));
858 } else {
859 i->moveSources(s, 1);
860 i->setSrc(s, bld.loadImm(NULL, imm << 16));
861 }
862 } else {
863 i->setSrc(s, bld.loadImm(NULL, imm));
864 }
865 }
866 }
867
868 if (chipset >= NVISA_GK104_CHIPSET) {
869 //
870 // If TEX requires more than 4 sources, the 2nd register tuple must be
871 // aligned to 4, even if it consists of just a single 4-byte register.
872 //
873 // XXX HACK: We insert 0 sources to avoid the 5 or 6 regs case.
874 //
875 int s = i->srcCount(0xff, true);
876 if (s > 4 && s < 7) {
877 if (i->srcExists(s)) // move potential predicate out of the way
878 i->moveSources(s, 7 - s);
879 while (s < 7)
880 i->setSrc(s++, bld.loadImm(NULL, 0));
881 }
882 }
883
884 return true;
885 }
886
887 bool
888 NVC0LoweringPass::handleManualTXD(TexInstruction *i)
889 {
890 static const uint8_t qOps[4][2] =
891 {
892 { QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(MOV2, MOV2, ADD, ADD) }, // l0
893 { QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(MOV2, MOV2, ADD, ADD) }, // l1
894 { QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l2
895 { QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l3
896 };
897 Value *def[4][4];
898 Value *crd[3];
899 Instruction *tex;
900 Value *zero = bld.loadImm(bld.getSSA(), 0);
901 int l, c;
902 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
903
904 // This function is invoked after handleTEX lowering, so we have to expect
905 // the arguments in the order that the hw wants them. For Fermi, array and
906 // indirect are both in the leading arg, while for Kepler, array and
907 // indirect are separate (and both precede the coordinates). Maxwell is
908 // handled in a separate function.
909 unsigned array;
910 if (targ->getChipset() < NVISA_GK104_CHIPSET)
911 array = i->tex.target.isArray() || i->tex.rIndirectSrc >= 0;
912 else
913 array = i->tex.target.isArray() + (i->tex.rIndirectSrc >= 0);
914
915 i->op = OP_TEX; // no need to clone dPdx/dPdy later
916
917 for (c = 0; c < dim; ++c)
918 crd[c] = bld.getScratch();
919
920 bld.mkOp(OP_QUADON, TYPE_NONE, NULL);
921 for (l = 0; l < 4; ++l) {
922 Value *src[3], *val;
923 // mov coordinates from lane l to all lanes
924 for (c = 0; c < dim; ++c)
925 bld.mkQuadop(0x00, crd[c], l, i->getSrc(c + array), zero);
926 // add dPdx from lane l to lanes dx
927 for (c = 0; c < dim; ++c)
928 bld.mkQuadop(qOps[l][0], crd[c], l, i->dPdx[c].get(), crd[c]);
929 // add dPdy from lane l to lanes dy
930 for (c = 0; c < dim; ++c)
931 bld.mkQuadop(qOps[l][1], crd[c], l, i->dPdy[c].get(), crd[c]);
932 // normalize cube coordinates
933 if (i->tex.target.isCube()) {
934 for (c = 0; c < 3; ++c)
935 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), crd[c]);
936 val = bld.getScratch();
937 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
938 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
939 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
940 for (c = 0; c < 3; ++c)
941 src[c] = bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(), crd[c], val);
942 } else {
943 for (c = 0; c < dim; ++c)
944 src[c] = crd[c];
945 }
946 // texture
947 bld.insert(tex = cloneForward(func, i));
948 for (c = 0; c < dim; ++c)
949 tex->setSrc(c + array, src[c]);
950 // save results
951 for (c = 0; i->defExists(c); ++c) {
952 Instruction *mov;
953 def[c][l] = bld.getSSA();
954 mov = bld.mkMov(def[c][l], tex->getDef(c));
955 mov->fixed = 1;
956 mov->lanes = 1 << l;
957 }
958 }
959 bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL);
960
961 for (c = 0; i->defExists(c); ++c) {
962 Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c));
963 for (l = 0; l < 4; ++l)
964 u->setSrc(l, def[c][l]);
965 }
966
967 i->bb->remove(i);
968 return true;
969 }
970
971 bool
972 NVC0LoweringPass::handleTXD(TexInstruction *txd)
973 {
974 int dim = txd->tex.target.getDim() + txd->tex.target.isCube();
975 unsigned arg = txd->tex.target.getArgCount();
976 unsigned expected_args = arg;
977 const int chipset = prog->getTarget()->getChipset();
978
979 if (chipset >= NVISA_GK104_CHIPSET) {
980 if (!txd->tex.target.isArray() && txd->tex.useOffsets)
981 expected_args++;
982 if (txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0)
983 expected_args++;
984 } else {
985 if (txd->tex.useOffsets)
986 expected_args++;
987 if (!txd->tex.target.isArray() && (
988 txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0))
989 expected_args++;
990 }
991
992 if (expected_args > 4 ||
993 dim > 2 ||
994 txd->tex.target.isShadow())
995 txd->op = OP_TEX;
996
997 handleTEX(txd);
998 while (txd->srcExists(arg))
999 ++arg;
1000
1001 txd->tex.derivAll = true;
1002 if (txd->op == OP_TEX)
1003 return handleManualTXD(txd);
1004
1005 assert(arg == expected_args);
1006 for (int c = 0; c < dim; ++c) {
1007 txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]);
1008 txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]);
1009 txd->dPdx[c].set(NULL);
1010 txd->dPdy[c].set(NULL);
1011 }
1012
1013 // In this case we have fewer than 4 "real" arguments, which means that
1014 // handleTEX didn't apply any padding. However we have to make sure that
1015 // the second "group" of arguments still gets padded up to 4.
1016 if (chipset >= NVISA_GK104_CHIPSET) {
1017 int s = arg + 2 * dim;
1018 if (s >= 4 && s < 7) {
1019 if (txd->srcExists(s)) // move potential predicate out of the way
1020 txd->moveSources(s, 7 - s);
1021 while (s < 7)
1022 txd->setSrc(s++, bld.loadImm(NULL, 0));
1023 }
1024 }
1025
1026 return true;
1027 }
1028
1029 bool
1030 NVC0LoweringPass::handleTXQ(TexInstruction *txq)
1031 {
1032 const int chipset = prog->getTarget()->getChipset();
1033 if (chipset >= NVISA_GK104_CHIPSET && txq->tex.rIndirectSrc < 0)
1034 txq->tex.r += prog->driver->io.texBindBase / 4;
1035
1036 if (txq->tex.rIndirectSrc < 0)
1037 return true;
1038
1039 Value *ticRel = txq->getIndirectR();
1040
1041 txq->setIndirectS(NULL);
1042 txq->tex.sIndirectSrc = -1;
1043
1044 assert(ticRel);
1045
1046 if (chipset < NVISA_GK104_CHIPSET) {
1047 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
1048
1049 txq->setSrc(txq->tex.rIndirectSrc, NULL);
1050 if (txq->tex.r)
1051 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1052 ticRel, bld.mkImm(txq->tex.r));
1053
1054 bld.mkOp2(OP_SHL, TYPE_U32, src, ticRel, bld.mkImm(0x17));
1055
1056 txq->moveSources(0, 1);
1057 txq->setSrc(0, src);
1058 } else {
1059 Value *hnd = loadTexHandle(
1060 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
1061 txq->getIndirectR(), bld.mkImm(2)),
1062 txq->tex.r);
1063 txq->tex.r = 0xff;
1064 txq->tex.s = 0x1f;
1065
1066 txq->setIndirectR(NULL);
1067 txq->moveSources(0, 1);
1068 txq->setSrc(0, hnd);
1069 txq->tex.rIndirectSrc = 0;
1070 }
1071
1072 return true;
1073 }
1074
1075 bool
1076 NVC0LoweringPass::handleTXLQ(TexInstruction *i)
1077 {
1078 /* The outputs are inverted compared to what the TGSI instruction
1079 * expects. Take that into account in the mask.
1080 */
1081 assert((i->tex.mask & ~3) == 0);
1082 if (i->tex.mask == 1)
1083 i->tex.mask = 2;
1084 else if (i->tex.mask == 2)
1085 i->tex.mask = 1;
1086 handleTEX(i);
1087 bld.setPosition(i, true);
1088
1089 /* The returned values are not quite what we want:
1090 * (a) convert from s16/u16 to f32
1091 * (b) multiply by 1/256
1092 */
1093 for (int def = 0; def < 2; ++def) {
1094 if (!i->defExists(def))
1095 continue;
1096 enum DataType type = TYPE_S16;
1097 if (i->tex.mask == 2 || def > 0)
1098 type = TYPE_U16;
1099 bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(def), type, i->getDef(def));
1100 bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(def),
1101 i->getDef(def), bld.loadImm(NULL, 1.0f / 256));
1102 }
1103 if (i->tex.mask == 3) {
1104 LValue *t = new_LValue(func, FILE_GPR);
1105 bld.mkMov(t, i->getDef(0));
1106 bld.mkMov(i->getDef(0), i->getDef(1));
1107 bld.mkMov(i->getDef(1), t);
1108 }
1109 return true;
1110 }
1111
1112 bool
1113 NVC0LoweringPass::handleBUFQ(Instruction *bufq)
1114 {
1115 bufq->op = OP_MOV;
1116 bufq->setSrc(0, loadBufLength32(bufq->getIndirect(0, 1),
1117 bufq->getSrc(0)->reg.fileIndex * 16));
1118 bufq->setIndirect(0, 0, NULL);
1119 bufq->setIndirect(0, 1, NULL);
1120 return true;
1121 }
1122
1123 void
1124 NVC0LoweringPass::handleSharedATOMNVE4(Instruction *atom)
1125 {
1126 assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1127
1128 BasicBlock *currBB = atom->bb;
1129 BasicBlock *tryLockBB = atom->bb->splitBefore(atom, false);
1130 BasicBlock *joinBB = atom->bb->splitAfter(atom);
1131 BasicBlock *setAndUnlockBB = new BasicBlock(func);
1132 BasicBlock *failLockBB = new BasicBlock(func);
1133
1134 bld.setPosition(currBB, true);
1135 assert(!currBB->joinAt);
1136 currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1137
1138 CmpInstruction *pred =
1139 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1140 TYPE_U32, bld.mkImm(0), bld.mkImm(1));
1141
1142 bld.mkFlow(OP_BRA, tryLockBB, CC_ALWAYS, NULL);
1143 currBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::TREE);
1144
1145 bld.setPosition(tryLockBB, true);
1146
1147 Instruction *ld =
1148 bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1149 atom->getIndirect(0, 0));
1150 ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1151 ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1152
1153 bld.mkFlow(OP_BRA, setAndUnlockBB, CC_P, ld->getDef(1));
1154 bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1155 tryLockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::CROSS);
1156 tryLockBB->cfg.attach(&setAndUnlockBB->cfg, Graph::Edge::TREE);
1157
1158 tryLockBB->cfg.detach(&joinBB->cfg);
1159 bld.remove(atom);
1160
1161 bld.setPosition(setAndUnlockBB, true);
1162 Value *stVal;
1163 if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1164 // Read the old value, and write the new one.
1165 stVal = atom->getSrc(1);
1166 } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1167 CmpInstruction *set =
1168 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(),
1169 TYPE_U32, ld->getDef(0), atom->getSrc(1));
1170
1171 bld.mkCmp(OP_SLCT, CC_NE, TYPE_U32, (stVal = bld.getSSA()),
1172 TYPE_U32, atom->getSrc(2), ld->getDef(0), set->getDef(0));
1173 } else {
1174 operation op;
1175
1176 switch (atom->subOp) {
1177 case NV50_IR_SUBOP_ATOM_ADD:
1178 op = OP_ADD;
1179 break;
1180 case NV50_IR_SUBOP_ATOM_AND:
1181 op = OP_AND;
1182 break;
1183 case NV50_IR_SUBOP_ATOM_OR:
1184 op = OP_OR;
1185 break;
1186 case NV50_IR_SUBOP_ATOM_XOR:
1187 op = OP_XOR;
1188 break;
1189 case NV50_IR_SUBOP_ATOM_MIN:
1190 op = OP_MIN;
1191 break;
1192 case NV50_IR_SUBOP_ATOM_MAX:
1193 op = OP_MAX;
1194 break;
1195 default:
1196 assert(0);
1197 return;
1198 }
1199
1200 stVal = bld.mkOp2v(op, atom->dType, bld.getSSA(), ld->getDef(0),
1201 atom->getSrc(1));
1202 }
1203
1204 Instruction *st =
1205 bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1206 atom->getIndirect(0, 0), stVal);
1207 st->setDef(0, pred->getDef(0));
1208 st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1209
1210 bld.mkFlow(OP_BRA, failLockBB, CC_ALWAYS, NULL);
1211 setAndUnlockBB->cfg.attach(&failLockBB->cfg, Graph::Edge::TREE);
1212
1213 // Lock until the store has not been performed.
1214 bld.setPosition(failLockBB, true);
1215 bld.mkFlow(OP_BRA, tryLockBB, CC_NOT_P, pred->getDef(0));
1216 bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1217 failLockBB->cfg.attach(&tryLockBB->cfg, Graph::Edge::BACK);
1218 failLockBB->cfg.attach(&joinBB->cfg, Graph::Edge::TREE);
1219
1220 bld.setPosition(joinBB, false);
1221 bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1222 }
1223
1224 void
1225 NVC0LoweringPass::handleSharedATOM(Instruction *atom)
1226 {
1227 assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1228
1229 BasicBlock *currBB = atom->bb;
1230 BasicBlock *tryLockAndSetBB = atom->bb->splitBefore(atom, false);
1231 BasicBlock *joinBB = atom->bb->splitAfter(atom);
1232
1233 bld.setPosition(currBB, true);
1234 assert(!currBB->joinAt);
1235 currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1236
1237 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_ALWAYS, NULL);
1238 currBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::TREE);
1239
1240 bld.setPosition(tryLockAndSetBB, true);
1241
1242 Instruction *ld =
1243 bld.mkLoad(TYPE_U32, atom->getDef(0), atom->getSrc(0)->asSym(),
1244 atom->getIndirect(0, 0));
1245 ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1246 ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1247
1248 Value *stVal;
1249 if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1250 // Read the old value, and write the new one.
1251 stVal = atom->getSrc(1);
1252 } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1253 CmpInstruction *set =
1254 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1255 TYPE_U32, ld->getDef(0), atom->getSrc(1));
1256 set->setPredicate(CC_P, ld->getDef(1));
1257
1258 Instruction *selp =
1259 bld.mkOp3(OP_SELP, TYPE_U32, bld.getSSA(), ld->getDef(0),
1260 atom->getSrc(2), set->getDef(0));
1261 selp->src(2).mod = Modifier(NV50_IR_MOD_NOT);
1262 selp->setPredicate(CC_P, ld->getDef(1));
1263
1264 stVal = selp->getDef(0);
1265 } else {
1266 operation op;
1267
1268 switch (atom->subOp) {
1269 case NV50_IR_SUBOP_ATOM_ADD:
1270 op = OP_ADD;
1271 break;
1272 case NV50_IR_SUBOP_ATOM_AND:
1273 op = OP_AND;
1274 break;
1275 case NV50_IR_SUBOP_ATOM_OR:
1276 op = OP_OR;
1277 break;
1278 case NV50_IR_SUBOP_ATOM_XOR:
1279 op = OP_XOR;
1280 break;
1281 case NV50_IR_SUBOP_ATOM_MIN:
1282 op = OP_MIN;
1283 break;
1284 case NV50_IR_SUBOP_ATOM_MAX:
1285 op = OP_MAX;
1286 break;
1287 default:
1288 assert(0);
1289 return;
1290 }
1291
1292 Instruction *i =
1293 bld.mkOp2(op, atom->dType, bld.getSSA(), ld->getDef(0),
1294 atom->getSrc(1));
1295 i->setPredicate(CC_P, ld->getDef(1));
1296
1297 stVal = i->getDef(0);
1298 }
1299
1300 Instruction *st =
1301 bld.mkStore(OP_STORE, TYPE_U32, atom->getSrc(0)->asSym(),
1302 atom->getIndirect(0, 0), stVal);
1303 st->setPredicate(CC_P, ld->getDef(1));
1304 st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1305
1306 // Loop until the lock is acquired.
1307 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_NOT_P, ld->getDef(1));
1308 tryLockAndSetBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::BACK);
1309 tryLockAndSetBB->cfg.attach(&joinBB->cfg, Graph::Edge::CROSS);
1310 bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1311
1312 bld.remove(atom);
1313
1314 bld.setPosition(joinBB, false);
1315 bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1316 }
1317
1318 bool
1319 NVC0LoweringPass::handleATOM(Instruction *atom)
1320 {
1321 SVSemantic sv;
1322 Value *ptr = atom->getIndirect(0, 0), *ind = atom->getIndirect(0, 1), *base;
1323
1324 switch (atom->src(0).getFile()) {
1325 case FILE_MEMORY_LOCAL:
1326 sv = SV_LBASE;
1327 break;
1328 case FILE_MEMORY_SHARED:
1329 // For Fermi/Kepler, we have to use ld lock/st unlock to perform atomic
1330 // operations on shared memory. For Maxwell, ATOMS is enough.
1331 if (targ->getChipset() < NVISA_GK104_CHIPSET)
1332 handleSharedATOM(atom);
1333 else if (targ->getChipset() < NVISA_GM107_CHIPSET)
1334 handleSharedATOMNVE4(atom);
1335 return true;
1336 default:
1337 assert(atom->src(0).getFile() == FILE_MEMORY_BUFFER);
1338 base = loadBufInfo64(ind, atom->getSrc(0)->reg.fileIndex * 16);
1339 assert(base->reg.size == 8);
1340 if (ptr)
1341 base = bld.mkOp2v(OP_ADD, TYPE_U64, base, base, ptr);
1342 assert(base->reg.size == 8);
1343 atom->setIndirect(0, 0, base);
1344 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1345
1346 // Harden against out-of-bounds accesses
1347 Value *offset = bld.loadImm(NULL, atom->getSrc(0)->reg.data.offset + typeSizeof(atom->sType));
1348 Value *length = loadBufLength32(ind, atom->getSrc(0)->reg.fileIndex * 16);
1349 Value *pred = new_LValue(func, FILE_PREDICATE);
1350 if (ptr)
1351 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, ptr);
1352 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
1353 atom->setPredicate(CC_NOT_P, pred);
1354 if (atom->defExists(0)) {
1355 Value *zero, *dst = atom->getDef(0);
1356 atom->setDef(0, bld.getSSA());
1357
1358 bld.setPosition(atom, true);
1359 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
1360 ->setPredicate(CC_P, pred);
1361 bld.mkOp2(OP_UNION, TYPE_U32, dst, atom->getDef(0), zero);
1362 }
1363
1364 return true;
1365 }
1366 base =
1367 bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(), bld.mkSysVal(sv, 0));
1368
1369 atom->setSrc(0, cloneShallow(func, atom->getSrc(0)));
1370 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1371 if (ptr)
1372 base = bld.mkOp2v(OP_ADD, TYPE_U32, base, base, ptr);
1373 atom->setIndirect(0, 1, NULL);
1374 atom->setIndirect(0, 0, base);
1375
1376 return true;
1377 }
1378
1379 bool
1380 NVC0LoweringPass::handleCasExch(Instruction *cas, bool needCctl)
1381 {
1382 if (targ->getChipset() < NVISA_GM107_CHIPSET) {
1383 if (cas->src(0).getFile() == FILE_MEMORY_SHARED) {
1384 // ATOM_CAS and ATOM_EXCH are handled in handleSharedATOM().
1385 return false;
1386 }
1387 }
1388
1389 if (cas->subOp != NV50_IR_SUBOP_ATOM_CAS &&
1390 cas->subOp != NV50_IR_SUBOP_ATOM_EXCH)
1391 return false;
1392 bld.setPosition(cas, true);
1393
1394 if (needCctl) {
1395 Instruction *cctl = bld.mkOp1(OP_CCTL, TYPE_NONE, NULL, cas->getSrc(0));
1396 cctl->setIndirect(0, 0, cas->getIndirect(0, 0));
1397 cctl->fixed = 1;
1398 cctl->subOp = NV50_IR_SUBOP_CCTL_IV;
1399 if (cas->isPredicated())
1400 cctl->setPredicate(cas->cc, cas->getPredicate());
1401 }
1402
1403 if (cas->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1404 // CAS is crazy. It's 2nd source is a double reg, and the 3rd source
1405 // should be set to the high part of the double reg or bad things will
1406 // happen elsewhere in the universe.
1407 // Also, it sometimes returns the new value instead of the old one
1408 // under mysterious circumstances.
1409 Value *dreg = bld.getSSA(8);
1410 bld.setPosition(cas, false);
1411 bld.mkOp2(OP_MERGE, TYPE_U64, dreg, cas->getSrc(1), cas->getSrc(2));
1412 cas->setSrc(1, dreg);
1413 cas->setSrc(2, dreg);
1414 }
1415
1416 return true;
1417 }
1418
1419 inline Value *
1420 NVC0LoweringPass::loadResInfo32(Value *ptr, uint32_t off, uint16_t base)
1421 {
1422 uint8_t b = prog->driver->io.auxCBSlot;
1423 off += base;
1424
1425 return bld.
1426 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1427 }
1428
1429 inline Value *
1430 NVC0LoweringPass::loadResInfo64(Value *ptr, uint32_t off, uint16_t base)
1431 {
1432 uint8_t b = prog->driver->io.auxCBSlot;
1433 off += base;
1434
1435 if (ptr)
1436 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1437
1438 return bld.
1439 mkLoadv(TYPE_U64, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off), ptr);
1440 }
1441
1442 inline Value *
1443 NVC0LoweringPass::loadResLength32(Value *ptr, uint32_t off, uint16_t base)
1444 {
1445 uint8_t b = prog->driver->io.auxCBSlot;
1446 off += base;
1447
1448 if (ptr)
1449 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1450
1451 return bld.
1452 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off + 8), ptr);
1453 }
1454
1455 inline Value *
1456 NVC0LoweringPass::loadSuInfo32(Value *ptr, uint32_t off)
1457 {
1458 return loadResInfo32(ptr, off, prog->driver->io.suInfoBase);
1459 }
1460
1461 inline Value *
1462 NVC0LoweringPass::loadSuInfo64(Value *ptr, uint32_t off)
1463 {
1464 return loadResInfo64(ptr, off, prog->driver->io.suInfoBase);
1465 }
1466
1467 inline Value *
1468 NVC0LoweringPass::loadSuLength32(Value *ptr, uint32_t off)
1469 {
1470 return loadResLength32(ptr, off, prog->driver->io.suInfoBase);
1471 }
1472
1473 inline Value *
1474 NVC0LoweringPass::loadBufInfo32(Value *ptr, uint32_t off)
1475 {
1476 return loadResInfo32(ptr, off, prog->driver->io.bufInfoBase);
1477 }
1478
1479 inline Value *
1480 NVC0LoweringPass::loadBufInfo64(Value *ptr, uint32_t off)
1481 {
1482 return loadResInfo64(ptr, off, prog->driver->io.bufInfoBase);
1483 }
1484
1485 inline Value *
1486 NVC0LoweringPass::loadBufLength32(Value *ptr, uint32_t off)
1487 {
1488 return loadResLength32(ptr, off, prog->driver->io.bufInfoBase);
1489 }
1490
1491 inline Value *
1492 NVC0LoweringPass::loadUboInfo32(Value *ptr, uint32_t off)
1493 {
1494 return loadResInfo32(ptr, off, prog->driver->io.uboInfoBase);
1495 }
1496
1497 inline Value *
1498 NVC0LoweringPass::loadUboInfo64(Value *ptr, uint32_t off)
1499 {
1500 return loadResInfo64(ptr, off, prog->driver->io.uboInfoBase);
1501 }
1502
1503 inline Value *
1504 NVC0LoweringPass::loadUboLength32(Value *ptr, uint32_t off)
1505 {
1506 return loadResLength32(ptr, off, prog->driver->io.uboInfoBase);
1507 }
1508
1509 inline Value *
1510 NVC0LoweringPass::loadMsInfo32(Value *ptr, uint32_t off)
1511 {
1512 uint8_t b = prog->driver->io.msInfoCBSlot;
1513 off += prog->driver->io.msInfoBase;
1514 return bld.
1515 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1516 }
1517
1518 /* On nvc0, surface info is obtained via the surface binding points passed
1519 * to the SULD/SUST instructions.
1520 * On nve4, surface info is stored in c[] and is used by various special
1521 * instructions, e.g. for clamping coordiantes or generating an address.
1522 * They couldn't just have added an equivalent to TIC now, couldn't they ?
1523 */
1524 #define NVE4_SU_INFO_ADDR 0x00
1525 #define NVE4_SU_INFO_FMT 0x04
1526 #define NVE4_SU_INFO_DIM_X 0x08
1527 #define NVE4_SU_INFO_PITCH 0x0c
1528 #define NVE4_SU_INFO_DIM_Y 0x10
1529 #define NVE4_SU_INFO_ARRAY 0x14
1530 #define NVE4_SU_INFO_DIM_Z 0x18
1531 #define NVE4_SU_INFO_UNK1C 0x1c
1532 #define NVE4_SU_INFO_WIDTH 0x20
1533 #define NVE4_SU_INFO_HEIGHT 0x24
1534 #define NVE4_SU_INFO_DEPTH 0x28
1535 #define NVE4_SU_INFO_TARGET 0x2c
1536 #define NVE4_SU_INFO_BSIZE 0x30
1537 #define NVE4_SU_INFO_RAW_X 0x34
1538 #define NVE4_SU_INFO_MS_X 0x38
1539 #define NVE4_SU_INFO_MS_Y 0x3c
1540
1541 #define NVE4_SU_INFO__STRIDE 0x40
1542
1543 #define NVE4_SU_INFO_DIM(i) (0x08 + (i) * 8)
1544 #define NVE4_SU_INFO_SIZE(i) (0x20 + (i) * 4)
1545 #define NVE4_SU_INFO_MS(i) (0x38 + (i) * 4)
1546
1547 static inline uint16_t getSuClampSubOp(const TexInstruction *su, int c)
1548 {
1549 switch (su->tex.target.getEnum()) {
1550 case TEX_TARGET_BUFFER: return NV50_IR_SUBOP_SUCLAMP_PL(0, 1);
1551 case TEX_TARGET_RECT: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1552 case TEX_TARGET_1D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1553 case TEX_TARGET_1D_ARRAY: return (c == 1) ?
1554 NV50_IR_SUBOP_SUCLAMP_PL(0, 2) :
1555 NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1556 case TEX_TARGET_2D: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1557 case TEX_TARGET_2D_MS: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1558 case TEX_TARGET_2D_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1559 case TEX_TARGET_2D_MS_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1560 case TEX_TARGET_3D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1561 case TEX_TARGET_CUBE: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1562 case TEX_TARGET_CUBE_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1563 default:
1564 assert(0);
1565 return 0;
1566 }
1567 }
1568
1569 bool
1570 NVC0LoweringPass::handleSUQ(TexInstruction *suq)
1571 {
1572 int dim = suq->tex.target.getDim();
1573 int arg = dim + (suq->tex.target.isArray() || suq->tex.target.isCube());
1574 uint8_t s = prog->driver->io.auxCBSlot;
1575 Value *ind = suq->getIndirectR();
1576 uint32_t base;
1577 int c;
1578
1579 base = prog->driver->io.suInfoBase + suq->tex.r * NVE4_SU_INFO__STRIDE;
1580
1581 if (ind)
1582 ind = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(),
1583 ind, bld.mkImm(6));
1584
1585 for (c = 0; c < arg; ++c) {
1586 if (suq->defExists(c)) {
1587 int offset;
1588
1589 if (c == 1 && suq->tex.target == TEX_TARGET_1D_ARRAY) {
1590 offset = base + NVE4_SU_INFO_SIZE(2);
1591 } else {
1592 offset = base + NVE4_SU_INFO_SIZE(c);
1593 }
1594 bld.mkLoad(TYPE_U32, suq->getDef(c),
1595 bld.mkSymbol(FILE_MEMORY_CONST, s, TYPE_U32, offset), ind);
1596 }
1597 }
1598
1599 if (suq->tex.target.isCube()) {
1600 if (suq->defExists(2)) {
1601 bld.mkOp2(OP_DIV, TYPE_U32, suq->getDef(2), suq->getDef(2),
1602 bld.loadImm(NULL, 6));
1603 }
1604 }
1605
1606 if (suq->defExists(3)) {
1607 // .w contains the number of samples for multi-sampled images but we
1608 // don't support them for now.
1609 bld.mkMov(suq->getDef(3), bld.loadImm(NULL, 1));
1610 }
1611
1612 bld.remove(suq);
1613 return true;
1614 }
1615
1616 void
1617 NVC0LoweringPass::adjustCoordinatesMS(TexInstruction *tex)
1618 {
1619 const uint16_t base = tex->tex.r * NVE4_SU_INFO__STRIDE;
1620 const int arg = tex->tex.target.getArgCount();
1621
1622 if (tex->tex.target == TEX_TARGET_2D_MS)
1623 tex->tex.target = TEX_TARGET_2D;
1624 else
1625 if (tex->tex.target == TEX_TARGET_2D_MS_ARRAY)
1626 tex->tex.target = TEX_TARGET_2D_ARRAY;
1627 else
1628 return;
1629
1630 Value *x = tex->getSrc(0);
1631 Value *y = tex->getSrc(1);
1632 Value *s = tex->getSrc(arg - 1);
1633
1634 Value *tx = bld.getSSA(), *ty = bld.getSSA(), *ts = bld.getSSA();
1635 Value *ind = NULL;
1636
1637 if (tex->tex.rIndirectSrc >= 0) {
1638 assert(tex->tex.r == 0);
1639 // FIXME: out of bounds
1640 ind = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
1641 tex->getIndirectR(), bld.mkImm(6));
1642 }
1643
1644 Value *ms_x = loadSuInfo32(ind, base + NVE4_SU_INFO_MS(0));
1645 Value *ms_y = loadSuInfo32(ind, base + NVE4_SU_INFO_MS(1));
1646
1647 bld.mkOp2(OP_SHL, TYPE_U32, tx, x, ms_x);
1648 bld.mkOp2(OP_SHL, TYPE_U32, ty, y, ms_y);
1649
1650 s = bld.mkOp2v(OP_AND, TYPE_U32, ts, s, bld.loadImm(NULL, 0x7));
1651 s = bld.mkOp2v(OP_SHL, TYPE_U32, ts, ts, bld.mkImm(3));
1652
1653 Value *dx = loadMsInfo32(ts, 0x0);
1654 Value *dy = loadMsInfo32(ts, 0x4);
1655
1656 bld.mkOp2(OP_ADD, TYPE_U32, tx, tx, dx);
1657 bld.mkOp2(OP_ADD, TYPE_U32, ty, ty, dy);
1658
1659 tex->setSrc(0, tx);
1660 tex->setSrc(1, ty);
1661 tex->moveSources(arg, -1);
1662 }
1663
1664 // Sets 64-bit "generic address", predicate and format sources for SULD/SUST.
1665 // They're computed from the coordinates using the surface info in c[] space.
1666 void
1667 NVC0LoweringPass::processSurfaceCoordsNVE4(TexInstruction *su)
1668 {
1669 Instruction *insn;
1670 const bool atom = su->op == OP_SUREDB || su->op == OP_SUREDP;
1671 const bool raw =
1672 su->op == OP_SULDB || su->op == OP_SUSTB || su->op == OP_SUREDB;
1673 const int idx = su->tex.r;
1674 const int dim = su->tex.target.getDim();
1675 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
1676 const uint16_t base = idx * NVE4_SU_INFO__STRIDE;
1677 int c;
1678 Value *zero = bld.mkImm(0);
1679 Value *p1 = NULL;
1680 Value *v;
1681 Value *src[3];
1682 Value *bf, *eau, *off;
1683 Value *addr, *pred;
1684 Value *ind = NULL;
1685
1686 off = bld.getScratch(4);
1687 bf = bld.getScratch(4);
1688 addr = bld.getSSA(8);
1689 pred = bld.getScratch(1, FILE_PREDICATE);
1690
1691 bld.setPosition(su, false);
1692
1693 adjustCoordinatesMS(su);
1694
1695 if (su->tex.rIndirectSrc >= 0) {
1696 ind = su->getIndirectR();
1697 if (su->tex.r > 0) {
1698 ind = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ind,
1699 bld.loadImm(NULL, su->tex.r));
1700 }
1701 ind = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ind, bld.mkImm(7));
1702 ind = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ind, bld.mkImm(6));
1703 }
1704
1705 // calculate clamped coordinates
1706 for (c = 0; c < arg; ++c) {
1707 int dimc = c;
1708
1709 if (c == 1 && su->tex.target == TEX_TARGET_1D_ARRAY) {
1710 // The array index is stored in the Z component for 1D arrays.
1711 dimc = 2;
1712 }
1713
1714 src[c] = bld.getScratch();
1715 if (c == 0 && raw)
1716 v = loadSuInfo32(ind, base + NVE4_SU_INFO_RAW_X);
1717 else
1718 v = loadSuInfo32(ind, base + NVE4_SU_INFO_DIM(dimc));
1719 bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[c], su->getSrc(c), v, zero)
1720 ->subOp = getSuClampSubOp(su, dimc);
1721 }
1722 for (; c < 3; ++c)
1723 src[c] = zero;
1724
1725 // set predicate output
1726 if (su->tex.target == TEX_TARGET_BUFFER) {
1727 src[0]->getInsn()->setFlagsDef(1, pred);
1728 } else
1729 if (su->tex.target.isArray() || su->tex.target.isCube()) {
1730 p1 = bld.getSSA(1, FILE_PREDICATE);
1731 src[dim]->getInsn()->setFlagsDef(1, p1);
1732 }
1733
1734 // calculate pixel offset
1735 if (dim == 1) {
1736 if (su->tex.target != TEX_TARGET_BUFFER)
1737 bld.mkOp2(OP_AND, TYPE_U32, off, src[0], bld.loadImm(NULL, 0xffff));
1738 } else
1739 if (dim == 3) {
1740 v = loadSuInfo32(ind, base + NVE4_SU_INFO_UNK1C);
1741 bld.mkOp3(OP_MADSP, TYPE_U32, off, src[2], v, src[1])
1742 ->subOp = NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
1743
1744 v = loadSuInfo32(ind, base + NVE4_SU_INFO_PITCH);
1745 bld.mkOp3(OP_MADSP, TYPE_U32, off, off, v, src[0])
1746 ->subOp = NV50_IR_SUBOP_MADSP(0,2,8); // u32 u16l u16l
1747 } else {
1748 assert(dim == 2);
1749 v = loadSuInfo32(ind, base + NVE4_SU_INFO_PITCH);
1750 bld.mkOp3(OP_MADSP, TYPE_U32, off, src[1], v, src[0])
1751 ->subOp = (su->tex.target.isArray() || su->tex.target.isCube()) ?
1752 NV50_IR_SUBOP_MADSP_SD : NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
1753 }
1754
1755 // calculate effective address part 1
1756 if (su->tex.target == TEX_TARGET_BUFFER) {
1757 if (raw) {
1758 bf = src[0];
1759 } else {
1760 v = loadSuInfo32(ind, base + NVE4_SU_INFO_FMT);
1761 bld.mkOp3(OP_VSHL, TYPE_U32, bf, src[0], v, zero)
1762 ->subOp = NV50_IR_SUBOP_V1(7,6,8|2);
1763 }
1764 } else {
1765 Value *y = src[1];
1766 Value *z = src[2];
1767 uint16_t subOp = 0;
1768
1769 switch (dim) {
1770 case 1:
1771 y = zero;
1772 z = zero;
1773 break;
1774 case 2:
1775 z = off;
1776 if (!su->tex.target.isArray() && !su->tex.target.isCube()) {
1777 z = loadSuInfo32(ind, base + NVE4_SU_INFO_UNK1C);
1778 subOp = NV50_IR_SUBOP_SUBFM_3D;
1779 }
1780 break;
1781 default:
1782 subOp = NV50_IR_SUBOP_SUBFM_3D;
1783 assert(dim == 3);
1784 break;
1785 }
1786 insn = bld.mkOp3(OP_SUBFM, TYPE_U32, bf, src[0], y, z);
1787 insn->subOp = subOp;
1788 insn->setFlagsDef(1, pred);
1789 }
1790
1791 // part 2
1792 v = loadSuInfo32(ind, base + NVE4_SU_INFO_ADDR);
1793
1794 if (su->tex.target == TEX_TARGET_BUFFER) {
1795 eau = v;
1796 } else {
1797 eau = bld.mkOp3v(OP_SUEAU, TYPE_U32, bld.getScratch(4), off, bf, v);
1798 }
1799 // add array layer offset
1800 if (su->tex.target.isArray() || su->tex.target.isCube()) {
1801 v = loadSuInfo32(ind, base + NVE4_SU_INFO_ARRAY);
1802 if (dim == 1)
1803 bld.mkOp3(OP_MADSP, TYPE_U32, eau, src[1], v, eau)
1804 ->subOp = NV50_IR_SUBOP_MADSP(4,0,0); // u16 u24 u32
1805 else
1806 bld.mkOp3(OP_MADSP, TYPE_U32, eau, v, src[2], eau)
1807 ->subOp = NV50_IR_SUBOP_MADSP(0,0,0); // u32 u24 u32
1808 // combine predicates
1809 assert(p1);
1810 bld.mkOp2(OP_OR, TYPE_U8, pred, pred, p1);
1811 }
1812
1813 if (atom) {
1814 Value *lo = bf;
1815 if (su->tex.target == TEX_TARGET_BUFFER) {
1816 lo = zero;
1817 bld.mkMov(off, bf);
1818 }
1819 // bf == g[] address & 0xff
1820 // eau == g[] address >> 8
1821 bld.mkOp3(OP_PERMT, TYPE_U32, bf, lo, bld.loadImm(NULL, 0x6540), eau);
1822 bld.mkOp3(OP_PERMT, TYPE_U32, eau, zero, bld.loadImm(NULL, 0x0007), eau);
1823 } else
1824 if (su->op == OP_SULDP && su->tex.target == TEX_TARGET_BUFFER) {
1825 // Convert from u32 to u8 address format, which is what the library code
1826 // doing SULDP currently uses.
1827 // XXX: can SUEAU do this ?
1828 // XXX: does it matter that we don't mask high bytes in bf ?
1829 // Grrr.
1830 bld.mkOp2(OP_SHR, TYPE_U32, off, bf, bld.mkImm(8));
1831 bld.mkOp2(OP_ADD, TYPE_U32, eau, eau, off);
1832 }
1833
1834 bld.mkOp2(OP_MERGE, TYPE_U64, addr, bf, eau);
1835
1836 if (atom && su->tex.target == TEX_TARGET_BUFFER)
1837 bld.mkOp2(OP_ADD, TYPE_U64, addr, addr, off);
1838
1839 // let's just set it 0 for raw access and hope it works
1840 v = raw ?
1841 bld.mkImm(0) : loadSuInfo32(ind, base + NVE4_SU_INFO_FMT);
1842
1843 // get rid of old coordinate sources, make space for fmt info and predicate
1844 su->moveSources(arg, 3 - arg);
1845 // set 64 bit address and 32-bit format sources
1846 su->setSrc(0, addr);
1847 su->setSrc(1, v);
1848 su->setSrc(2, pred);
1849
1850 // prevent read fault when the image is not actually bound
1851 CmpInstruction *pred1 =
1852 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1853 TYPE_U32, bld.mkImm(0),
1854 loadSuInfo32(ind, base + NVE4_SU_INFO_ADDR));
1855
1856 if (su->op != OP_SUSTP && su->tex.format) {
1857 const TexInstruction::ImgFormatDesc *format = su->tex.format;
1858 int blockwidth = format->bits[0] + format->bits[1] +
1859 format->bits[2] + format->bits[3];
1860
1861 // make sure that the format doesn't mismatch
1862 assert(format->components != 0);
1863 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred1->getDef(0),
1864 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
1865 loadSuInfo32(ind, base + NVE4_SU_INFO_BSIZE),
1866 pred1->getDef(0));
1867 }
1868 su->setPredicate(CC_NOT_P, pred1->getDef(0));
1869
1870 // TODO: initialize def values to 0 when the surface operation is not
1871 // performed (not needed for stores). Also, fix the "address bounds test"
1872 // subtests from arb_shader_image_load_store-invalid for buffers, because it
1873 // seems like that the predicate is not correctly set by suclamp.
1874 }
1875
1876 static DataType
1877 getSrcType(const TexInstruction::ImgFormatDesc *t, int c)
1878 {
1879 switch (t->type) {
1880 case FLOAT: return t->bits[c] == 16 ? TYPE_F16 : TYPE_F32;
1881 case UNORM: return t->bits[c] == 8 ? TYPE_U8 : TYPE_U16;
1882 case SNORM: return t->bits[c] == 8 ? TYPE_S8 : TYPE_S16;
1883 case UINT:
1884 return (t->bits[c] == 8 ? TYPE_U8 :
1885 (t->bits[c] == 16 ? TYPE_U16 : TYPE_U32));
1886 case SINT:
1887 return (t->bits[c] == 8 ? TYPE_S8 :
1888 (t->bits[c] == 16 ? TYPE_S16 : TYPE_S32));
1889 }
1890 return TYPE_NONE;
1891 }
1892
1893 static DataType
1894 getDestType(const ImgType type) {
1895 switch (type) {
1896 case FLOAT:
1897 case UNORM:
1898 case SNORM:
1899 return TYPE_F32;
1900 case UINT:
1901 return TYPE_U32;
1902 case SINT:
1903 return TYPE_S32;
1904 default:
1905 assert(!"Impossible type");
1906 return TYPE_NONE;
1907 }
1908 }
1909
1910 void
1911 NVC0LoweringPass::convertSurfaceFormat(TexInstruction *su)
1912 {
1913 const TexInstruction::ImgFormatDesc *format = su->tex.format;
1914 int width = format->bits[0] + format->bits[1] +
1915 format->bits[2] + format->bits[3];
1916 Value *untypedDst[4] = {};
1917 Value *typedDst[4] = {};
1918
1919 // We must convert this to a generic load.
1920 su->op = OP_SULDB;
1921
1922 su->dType = typeOfSize(width / 8);
1923 su->sType = TYPE_U8;
1924
1925 for (int i = 0; i < width / 32; i++)
1926 untypedDst[i] = bld.getSSA();
1927 if (width < 32)
1928 untypedDst[0] = bld.getSSA();
1929
1930 for (int i = 0; i < 4; i++) {
1931 typedDst[i] = su->getDef(i);
1932 }
1933
1934 // Set the untyped dsts as the su's destinations
1935 for (int i = 0; i < 4; i++)
1936 su->setDef(i, untypedDst[i]);
1937
1938 bld.setPosition(su, true);
1939
1940 // Unpack each component into the typed dsts
1941 int bits = 0;
1942 for (int i = 0; i < 4; bits += format->bits[i], i++) {
1943 if (!typedDst[i])
1944 continue;
1945 if (i >= format->components) {
1946 if (format->type == FLOAT ||
1947 format->type == UNORM ||
1948 format->type == SNORM)
1949 bld.loadImm(typedDst[i], i == 3 ? 1.0f : 0.0f);
1950 else
1951 bld.loadImm(typedDst[i], i == 3 ? 1 : 0);
1952 continue;
1953 }
1954
1955 // Get just that component's data into the relevant place
1956 if (format->bits[i] == 32)
1957 bld.mkMov(typedDst[i], untypedDst[i]);
1958 else if (format->bits[i] == 16)
1959 bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
1960 getSrcType(format, i), untypedDst[i / 2])
1961 ->subOp = (i & 1) << (format->type == FLOAT ? 0 : 1);
1962 else if (format->bits[i] == 8)
1963 bld.mkCvt(OP_CVT, getDestType(format->type), typedDst[i],
1964 getSrcType(format, i), untypedDst[0])->subOp = i;
1965 else {
1966 bld.mkOp2(OP_EXTBF, TYPE_U32, typedDst[i], untypedDst[bits / 32],
1967 bld.mkImm((bits % 32) | (format->bits[i] << 8)));
1968 if (format->type == UNORM || format->type == SNORM)
1969 bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], getSrcType(format, i), typedDst[i]);
1970 }
1971
1972 // Normalize / convert as necessary
1973 if (format->type == UNORM)
1974 bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << format->bits[i]) - 1)));
1975 else if (format->type == SNORM)
1976 bld.mkOp2(OP_MUL, TYPE_F32, typedDst[i], typedDst[i], bld.loadImm(NULL, 1.0f / ((1 << (format->bits[i] - 1)) - 1)));
1977 else if (format->type == FLOAT && format->bits[i] < 16) {
1978 bld.mkOp2(OP_SHL, TYPE_U32, typedDst[i], typedDst[i], bld.loadImm(NULL, 15 - format->bits[i]));
1979 bld.mkCvt(OP_CVT, TYPE_F32, typedDst[i], TYPE_F16, typedDst[i]);
1980 }
1981 }
1982 }
1983
1984 void
1985 NVC0LoweringPass::handleSurfaceOpNVE4(TexInstruction *su)
1986 {
1987 processSurfaceCoordsNVE4(su);
1988
1989 if (su->op == OP_SULDP)
1990 convertSurfaceFormat(su);
1991
1992 if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
1993 Value *pred = su->getSrc(2);
1994 CondCode cc = CC_NOT_P;
1995 if (su->getPredicate()) {
1996 pred = bld.getScratch(1, FILE_PREDICATE);
1997 cc = su->cc;
1998 if (cc == CC_NOT_P) {
1999 bld.mkOp2(OP_OR, TYPE_U8, pred, su->getPredicate(), su->getSrc(2));
2000 } else {
2001 bld.mkOp2(OP_AND, TYPE_U8, pred, su->getPredicate(), su->getSrc(2));
2002 pred->getInsn()->src(1).mod = Modifier(NV50_IR_MOD_NOT);
2003 }
2004 }
2005 Instruction *red = bld.mkOp(OP_ATOM, su->dType, bld.getSSA());
2006 red->subOp = su->subOp;
2007 if (!gMemBase)
2008 gMemBase = bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, 0);
2009 red->setSrc(0, gMemBase);
2010 red->setSrc(1, su->getSrc(3));
2011 if (su->subOp == NV50_IR_SUBOP_ATOM_CAS)
2012 red->setSrc(2, su->getSrc(4));
2013 red->setIndirect(0, 0, su->getSrc(0));
2014
2015 // make sure to initialize dst value when the atomic operation is not
2016 // performed
2017 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2018
2019 assert(cc == CC_NOT_P);
2020 red->setPredicate(cc, pred);
2021 mov->setPredicate(CC_P, pred);
2022
2023 bld.mkOp2(OP_UNION, TYPE_U32, su->getDef(0),
2024 red->getDef(0), mov->getDef(0));
2025
2026 delete_Instruction(bld.getProgram(), su);
2027 handleCasExch(red, true);
2028 }
2029
2030 if (su->op == OP_SUSTB || su->op == OP_SUSTP)
2031 su->sType = (su->tex.target == TEX_TARGET_BUFFER) ? TYPE_U32 : TYPE_U8;
2032 }
2033
2034 void
2035 NVC0LoweringPass::processSurfaceCoordsNVC0(TexInstruction *su)
2036 {
2037 const int idx = su->tex.r;
2038 const int dim = su->tex.target.getDim();
2039 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2040 const uint16_t base = idx * NVE4_SU_INFO__STRIDE;
2041 int c;
2042 Value *zero = bld.mkImm(0);
2043 Value *src[3];
2044 Value *v;
2045 Value *ind = NULL;
2046
2047 if (su->tex.rIndirectSrc >= 0) {
2048 ind = su->getIndirectR();
2049 if (su->tex.r > 0) {
2050 ind = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(), ind,
2051 bld.loadImm(NULL, su->tex.r));
2052 }
2053 ind = bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ind, bld.mkImm(7));
2054 ind = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(), ind, bld.mkImm(6));
2055 }
2056
2057 // get surface coordinates
2058 for (c = 0; c < arg; ++c)
2059 src[c] = su->getSrc(c);
2060 for (; c < 3; ++c)
2061 src[c] = zero;
2062
2063 // calculate pixel offset
2064 if (su->op == OP_SULDP || su->op == OP_SUREDP) {
2065 v = loadSuInfo32(ind, base + NVE4_SU_INFO_BSIZE);
2066 su->setSrc(0, bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(), src[0], v));
2067 }
2068
2069 // add array layer offset
2070 if (su->tex.target.isArray() || su->tex.target.isCube()) {
2071 v = loadSuInfo32(ind, base + NVE4_SU_INFO_ARRAY);
2072 assert(dim > 1);
2073 su->setSrc(2, bld.mkOp2v(OP_MUL, TYPE_U32, bld.getSSA(), src[2], v));
2074 }
2075
2076 // prevent read fault when the image is not actually bound
2077 CmpInstruction *pred =
2078 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
2079 TYPE_U32, bld.mkImm(0),
2080 loadSuInfo32(ind, base + NVE4_SU_INFO_ADDR));
2081 if (su->op != OP_SUSTP && su->tex.format) {
2082 const TexInstruction::ImgFormatDesc *format = su->tex.format;
2083 int blockwidth = format->bits[0] + format->bits[1] +
2084 format->bits[2] + format->bits[3];
2085
2086 assert(format->components != 0);
2087 // make sure that the format doesn't mismatch when it's not FMT_NONE
2088 bld.mkCmp(OP_SET_OR, CC_NE, TYPE_U32, pred->getDef(0),
2089 TYPE_U32, bld.loadImm(NULL, blockwidth / 8),
2090 loadSuInfo32(ind, base + NVE4_SU_INFO_BSIZE),
2091 pred->getDef(0));
2092 }
2093 su->setPredicate(CC_NOT_P, pred->getDef(0));
2094 }
2095
2096 void
2097 NVC0LoweringPass::handleSurfaceOpNVC0(TexInstruction *su)
2098 {
2099 if (su->tex.target == TEX_TARGET_1D_ARRAY) {
2100 /* As 1d arrays also need 3 coordinates, switching to TEX_TARGET_2D_ARRAY
2101 * will simplify the lowering pass and the texture constraints. */
2102 su->moveSources(1, 1);
2103 su->setSrc(1, bld.loadImm(NULL, 0));
2104 su->tex.target = TEX_TARGET_2D_ARRAY;
2105 }
2106
2107 processSurfaceCoordsNVC0(su);
2108
2109 if (su->op == OP_SULDP)
2110 convertSurfaceFormat(su);
2111
2112 if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
2113 const int dim = su->tex.target.getDim();
2114 const int arg = dim + (su->tex.target.isArray() || su->tex.target.isCube());
2115 LValue *addr = bld.getSSA(8);
2116 Value *def = su->getDef(0);
2117
2118 su->op = OP_SULEA;
2119
2120 // Set the destination to the address
2121 su->dType = TYPE_U64;
2122 su->setDef(0, addr);
2123 su->setDef(1, su->getPredicate());
2124
2125 bld.setPosition(su, true);
2126
2127 // Perform the atomic op
2128 Instruction *red = bld.mkOp(OP_ATOM, su->sType, bld.getSSA());
2129 red->subOp = su->subOp;
2130 red->setSrc(0, bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, su->sType, 0));
2131 red->setSrc(1, su->getSrc(arg));
2132 if (red->subOp == NV50_IR_SUBOP_ATOM_CAS)
2133 red->setSrc(2, su->getSrc(arg + 1));
2134 red->setIndirect(0, 0, addr);
2135
2136 // make sure to initialize dst value when the atomic operation is not
2137 // performed
2138 Instruction *mov = bld.mkMov(bld.getSSA(), bld.loadImm(NULL, 0));
2139
2140 assert(su->cc == CC_NOT_P);
2141 red->setPredicate(su->cc, su->getPredicate());
2142 mov->setPredicate(CC_P, su->getPredicate());
2143
2144 bld.mkOp2(OP_UNION, TYPE_U32, def, red->getDef(0), mov->getDef(0));
2145
2146 handleCasExch(red, false);
2147 }
2148 }
2149
2150 bool
2151 NVC0LoweringPass::handleWRSV(Instruction *i)
2152 {
2153 Instruction *st;
2154 Symbol *sym;
2155 uint32_t addr;
2156
2157 // must replace, $sreg are not writeable
2158 addr = targ->getSVAddress(FILE_SHADER_OUTPUT, i->getSrc(0)->asSym());
2159 if (addr >= 0x400)
2160 return false;
2161 sym = bld.mkSymbol(FILE_SHADER_OUTPUT, 0, i->sType, addr);
2162
2163 st = bld.mkStore(OP_EXPORT, i->dType, sym, i->getIndirect(0, 0),
2164 i->getSrc(1));
2165 st->perPatch = i->perPatch;
2166
2167 bld.getBB()->remove(i);
2168 return true;
2169 }
2170
2171 void
2172 NVC0LoweringPass::handleLDST(Instruction *i)
2173 {
2174 if (i->src(0).getFile() == FILE_SHADER_INPUT) {
2175 if (prog->getType() == Program::TYPE_COMPUTE) {
2176 i->getSrc(0)->reg.file = FILE_MEMORY_CONST;
2177 i->getSrc(0)->reg.fileIndex = 0;
2178 } else
2179 if (prog->getType() == Program::TYPE_GEOMETRY &&
2180 i->src(0).isIndirect(0)) {
2181 // XXX: this assumes vec4 units
2182 Value *ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2183 i->getIndirect(0, 0), bld.mkImm(4));
2184 i->setIndirect(0, 0, ptr);
2185 i->op = OP_VFETCH;
2186 } else {
2187 i->op = OP_VFETCH;
2188 assert(prog->getType() != Program::TYPE_FRAGMENT); // INTERP
2189 }
2190 } else if (i->src(0).getFile() == FILE_MEMORY_CONST) {
2191 if (targ->getChipset() >= NVISA_GK104_CHIPSET &&
2192 prog->getType() == Program::TYPE_COMPUTE) {
2193 // The launch descriptor only allows to set up 8 CBs, but OpenGL
2194 // requires at least 12 UBOs. To bypass this limitation, we store the
2195 // addrs into the driver constbuf and we directly load from the global
2196 // memory.
2197 int8_t fileIndex = i->getSrc(0)->reg.fileIndex - 1;
2198 Value *ind = i->getIndirect(0, 1);
2199
2200 if (ind) {
2201 // Clamp the UBO index when an indirect access is used to avoid
2202 // loading information from the wrong place in the driver cb.
2203 ind = bld.mkOp2v(OP_MIN, TYPE_U32, ind,
2204 bld.mkOp2v(OP_ADD, TYPE_U32, bld.getSSA(),
2205 ind, bld.loadImm(NULL, fileIndex)),
2206 bld.loadImm(NULL, 12));
2207 }
2208
2209 if (i->src(0).isIndirect(1)) {
2210 Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2211 Value *ptr = loadUboInfo64(ind, fileIndex * 16);
2212 Value *length = loadUboLength32(ind, fileIndex * 16);
2213 Value *pred = new_LValue(func, FILE_PREDICATE);
2214 if (i->src(0).isIndirect(0)) {
2215 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2216 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2217 }
2218 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2219 i->setIndirect(0, 1, NULL);
2220 i->setIndirect(0, 0, ptr);
2221 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2222 i->setPredicate(CC_NOT_P, pred);
2223 if (i->defExists(0)) {
2224 bld.mkMov(i->getDef(0), bld.mkImm(0));
2225 }
2226 } else if (fileIndex >= 0) {
2227 Value *ptr = loadUboInfo64(ind, fileIndex * 16);
2228 if (i->src(0).isIndirect(0)) {
2229 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2230 }
2231 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2232 i->setIndirect(0, 1, NULL);
2233 i->setIndirect(0, 0, ptr);
2234 }
2235 } else if (i->src(0).isIndirect(1)) {
2236 Value *ptr;
2237 if (i->src(0).isIndirect(0))
2238 ptr = bld.mkOp3v(OP_INSBF, TYPE_U32, bld.getSSA(),
2239 i->getIndirect(0, 1), bld.mkImm(0x1010),
2240 i->getIndirect(0, 0));
2241 else
2242 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2243 i->getIndirect(0, 1), bld.mkImm(16));
2244 i->setIndirect(0, 1, NULL);
2245 i->setIndirect(0, 0, ptr);
2246 i->subOp = NV50_IR_SUBOP_LDC_IS;
2247 }
2248 } else if (i->src(0).getFile() == FILE_SHADER_OUTPUT) {
2249 assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
2250 i->op = OP_VFETCH;
2251 } else if (i->src(0).getFile() == FILE_MEMORY_BUFFER) {
2252 Value *ind = i->getIndirect(0, 1);
2253 Value *ptr = loadBufInfo64(ind, i->getSrc(0)->reg.fileIndex * 16);
2254 // XXX come up with a way not to do this for EVERY little access but
2255 // rather to batch these up somehow. Unfortunately we've lost the
2256 // information about the field width by the time we get here.
2257 Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2258 Value *length = loadBufLength32(ind, i->getSrc(0)->reg.fileIndex * 16);
2259 Value *pred = new_LValue(func, FILE_PREDICATE);
2260 if (i->src(0).isIndirect(0)) {
2261 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2262 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2263 }
2264 i->setIndirect(0, 1, NULL);
2265 i->setIndirect(0, 0, ptr);
2266 i->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
2267 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2268 i->setPredicate(CC_NOT_P, pred);
2269 if (i->defExists(0)) {
2270 Value *zero, *dst = i->getDef(0);
2271 i->setDef(0, bld.getSSA());
2272
2273 bld.setPosition(i, true);
2274 bld.mkMov((zero = bld.getSSA()), bld.mkImm(0))
2275 ->setPredicate(CC_P, pred);
2276 bld.mkOp2(OP_UNION, TYPE_U32, dst, i->getDef(0), zero);
2277 }
2278 }
2279 }
2280
2281 void
2282 NVC0LoweringPass::readTessCoord(LValue *dst, int c)
2283 {
2284 Value *laneid = bld.getSSA();
2285 Value *x, *y;
2286
2287 bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0));
2288
2289 if (c == 0) {
2290 x = dst;
2291 y = NULL;
2292 } else
2293 if (c == 1) {
2294 x = NULL;
2295 y = dst;
2296 } else {
2297 assert(c == 2);
2298 if (prog->driver->prop.tp.domain != PIPE_PRIM_TRIANGLES) {
2299 bld.mkMov(dst, bld.loadImm(NULL, 0));
2300 return;
2301 }
2302 x = bld.getSSA();
2303 y = bld.getSSA();
2304 }
2305 if (x)
2306 bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid);
2307 if (y)
2308 bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid);
2309
2310 if (c == 2) {
2311 bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y);
2312 bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst);
2313 }
2314 }
2315
2316 bool
2317 NVC0LoweringPass::handleRDSV(Instruction *i)
2318 {
2319 Symbol *sym = i->getSrc(0)->asSym();
2320 const SVSemantic sv = sym->reg.data.sv.sv;
2321 Value *vtx = NULL;
2322 Instruction *ld;
2323 uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym);
2324
2325 if (addr >= 0x400) {
2326 // mov $sreg
2327 if (sym->reg.data.sv.index == 3) {
2328 // TGSI backend may use 4th component of TID,NTID,CTAID,NCTAID
2329 i->op = OP_MOV;
2330 i->setSrc(0, bld.mkImm((sv == SV_NTID || sv == SV_NCTAID) ? 1 : 0));
2331 }
2332 if (sv == SV_VERTEX_COUNT) {
2333 bld.setPosition(i, true);
2334 bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0), bld.mkImm(0x808));
2335 }
2336 return true;
2337 }
2338
2339 switch (sv) {
2340 case SV_POSITION:
2341 assert(prog->getType() == Program::TYPE_FRAGMENT);
2342 if (i->srcExists(1)) {
2343 // Pass offset through to the interpolation logic
2344 ld = bld.mkInterp(NV50_IR_INTERP_LINEAR | NV50_IR_INTERP_OFFSET,
2345 i->getDef(0), addr, NULL);
2346 ld->setSrc(1, i->getSrc(1));
2347 } else {
2348 bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL);
2349 }
2350 break;
2351 case SV_FACE:
2352 {
2353 Value *face = i->getDef(0);
2354 bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL);
2355 if (i->dType == TYPE_F32) {
2356 bld.mkOp2(OP_OR, TYPE_U32, face, face, bld.mkImm(0x00000001));
2357 bld.mkOp1(OP_NEG, TYPE_S32, face, face);
2358 bld.mkCvt(OP_CVT, TYPE_F32, face, TYPE_S32, face);
2359 }
2360 }
2361 break;
2362 case SV_TESS_COORD:
2363 assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL);
2364 readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index);
2365 break;
2366 case SV_NTID:
2367 case SV_NCTAID:
2368 case SV_GRIDID:
2369 assert(targ->getChipset() >= NVISA_GK104_CHIPSET); // mov $sreg otherwise
2370 if (sym->reg.data.sv.index == 3) {
2371 i->op = OP_MOV;
2372 i->setSrc(0, bld.mkImm(sv == SV_GRIDID ? 0 : 1));
2373 return true;
2374 }
2375 addr += prog->driver->prop.cp.gridInfoBase;
2376 bld.mkLoad(TYPE_U32, i->getDef(0),
2377 bld.mkSymbol(FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
2378 TYPE_U32, addr), NULL);
2379 break;
2380 case SV_SAMPLE_INDEX:
2381 // TODO: Properly pass source as an address in the PIX address space
2382 // (which can be of the form [r0+offset]). But this is currently
2383 // unnecessary.
2384 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
2385 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2386 break;
2387 case SV_SAMPLE_POS: {
2388 Value *off = new_LValue(func, FILE_GPR);
2389 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
2390 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2391 bld.mkOp2(OP_SHL, TYPE_U32, off, i->getDef(0), bld.mkImm(3));
2392 bld.mkLoad(TYPE_F32,
2393 i->getDef(0),
2394 bld.mkSymbol(
2395 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
2396 TYPE_U32, prog->driver->io.sampleInfoBase +
2397 4 * sym->reg.data.sv.index),
2398 off);
2399 break;
2400 }
2401 case SV_SAMPLE_MASK: {
2402 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
2403 ld->subOp = NV50_IR_SUBOP_PIXLD_COVMASK;
2404 Instruction *sampleid =
2405 bld.mkOp1(OP_PIXLD, TYPE_U32, bld.getSSA(), bld.mkImm(0));
2406 sampleid->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
2407 Value *masked =
2408 bld.mkOp2v(OP_AND, TYPE_U32, bld.getSSA(), ld->getDef(0),
2409 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
2410 bld.loadImm(NULL, 1), sampleid->getDef(0)));
2411 if (prog->driver->prop.fp.persampleInvocation) {
2412 bld.mkMov(i->getDef(0), masked);
2413 } else {
2414 bld.mkOp3(OP_SELP, TYPE_U32, i->getDef(0), ld->getDef(0), masked,
2415 bld.mkImm(0))
2416 ->subOp = 1;
2417 }
2418 break;
2419 }
2420 case SV_BASEVERTEX:
2421 case SV_BASEINSTANCE:
2422 case SV_DRAWID:
2423 ld = bld.mkLoad(TYPE_U32, i->getDef(0),
2424 bld.mkSymbol(FILE_MEMORY_CONST,
2425 prog->driver->io.auxCBSlot,
2426 TYPE_U32,
2427 prog->driver->io.drawInfoBase +
2428 4 * (sv - SV_BASEVERTEX)),
2429 NULL);
2430 break;
2431 default:
2432 if (prog->getType() == Program::TYPE_TESSELLATION_EVAL && !i->perPatch)
2433 vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0));
2434 ld = bld.mkFetch(i->getDef(0), i->dType,
2435 FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx);
2436 ld->perPatch = i->perPatch;
2437 break;
2438 }
2439 bld.getBB()->remove(i);
2440 return true;
2441 }
2442
2443 bool
2444 NVC0LoweringPass::handleDIV(Instruction *i)
2445 {
2446 if (!isFloatType(i->dType))
2447 return true;
2448 bld.setPosition(i, false);
2449 Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(typeSizeof(i->dType)), i->getSrc(1));
2450 i->op = OP_MUL;
2451 i->setSrc(1, rcp->getDef(0));
2452 return true;
2453 }
2454
2455 bool
2456 NVC0LoweringPass::handleMOD(Instruction *i)
2457 {
2458 if (!isFloatType(i->dType))
2459 return true;
2460 LValue *value = bld.getScratch(typeSizeof(i->dType));
2461 bld.mkOp1(OP_RCP, i->dType, value, i->getSrc(1));
2462 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(0), value);
2463 bld.mkOp1(OP_TRUNC, i->dType, value, value);
2464 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(1), value);
2465 i->op = OP_SUB;
2466 i->setSrc(1, value);
2467 return true;
2468 }
2469
2470 bool
2471 NVC0LoweringPass::handleSQRT(Instruction *i)
2472 {
2473 if (i->dType == TYPE_F64) {
2474 Value *pred = bld.getSSA(1, FILE_PREDICATE);
2475 Value *zero = bld.loadImm(NULL, 0.0);
2476 Value *dst = bld.getSSA(8);
2477 bld.mkOp1(OP_RSQ, i->dType, dst, i->getSrc(0));
2478 bld.mkCmp(OP_SET, CC_LE, i->dType, pred, i->dType, i->getSrc(0), zero);
2479 bld.mkOp3(OP_SELP, TYPE_U64, dst, zero, dst, pred);
2480 i->op = OP_MUL;
2481 i->setSrc(1, dst);
2482 // TODO: Handle this properly with a library function
2483 } else {
2484 bld.setPosition(i, true);
2485 i->op = OP_RSQ;
2486 bld.mkOp1(OP_RCP, i->dType, i->getDef(0), i->getDef(0));
2487 }
2488
2489 return true;
2490 }
2491
2492 bool
2493 NVC0LoweringPass::handlePOW(Instruction *i)
2494 {
2495 LValue *val = bld.getScratch();
2496
2497 bld.mkOp1(OP_LG2, TYPE_F32, val, i->getSrc(0));
2498 bld.mkOp2(OP_MUL, TYPE_F32, val, i->getSrc(1), val)->dnz = 1;
2499 bld.mkOp1(OP_PREEX2, TYPE_F32, val, val);
2500
2501 i->op = OP_EX2;
2502 i->setSrc(0, val);
2503 i->setSrc(1, NULL);
2504
2505 return true;
2506 }
2507
2508 bool
2509 NVC0LoweringPass::handleEXPORT(Instruction *i)
2510 {
2511 if (prog->getType() == Program::TYPE_FRAGMENT) {
2512 int id = i->getSrc(0)->reg.data.offset / 4;
2513
2514 if (i->src(0).isIndirect(0)) // TODO, ugly
2515 return false;
2516 i->op = OP_MOV;
2517 i->subOp = NV50_IR_SUBOP_MOV_FINAL;
2518 i->src(0).set(i->src(1));
2519 i->setSrc(1, NULL);
2520 i->setDef(0, new_LValue(func, FILE_GPR));
2521 i->getDef(0)->reg.data.id = id;
2522
2523 prog->maxGPR = MAX2(prog->maxGPR, id);
2524 } else
2525 if (prog->getType() == Program::TYPE_GEOMETRY) {
2526 i->setIndirect(0, 1, gpEmitAddress);
2527 }
2528 return true;
2529 }
2530
2531 bool
2532 NVC0LoweringPass::handleOUT(Instruction *i)
2533 {
2534 Instruction *prev = i->prev;
2535 ImmediateValue stream, prevStream;
2536
2537 // Only merge if the stream ids match. Also, note that the previous
2538 // instruction would have already been lowered, so we take arg1 from it.
2539 if (i->op == OP_RESTART && prev && prev->op == OP_EMIT &&
2540 i->src(0).getImmediate(stream) &&
2541 prev->src(1).getImmediate(prevStream) &&
2542 stream.reg.data.u32 == prevStream.reg.data.u32) {
2543 i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART;
2544 delete_Instruction(prog, i);
2545 } else {
2546 assert(gpEmitAddress);
2547 i->setDef(0, gpEmitAddress);
2548 i->setSrc(1, i->getSrc(0));
2549 i->setSrc(0, gpEmitAddress);
2550 }
2551 return true;
2552 }
2553
2554 // Generate a binary predicate if an instruction is predicated by
2555 // e.g. an f32 value.
2556 void
2557 NVC0LoweringPass::checkPredicate(Instruction *insn)
2558 {
2559 Value *pred = insn->getPredicate();
2560 Value *pdst;
2561
2562 if (!pred || pred->reg.file == FILE_PREDICATE)
2563 return;
2564 pdst = new_LValue(func, FILE_PREDICATE);
2565
2566 // CAUTION: don't use pdst->getInsn, the definition might not be unique,
2567 // delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass
2568
2569 bld.mkCmp(OP_SET, CC_NEU, insn->dType, pdst, insn->dType, bld.mkImm(0), pred);
2570
2571 insn->setPredicate(insn->cc, pdst);
2572 }
2573
2574 //
2575 // - add quadop dance for texturing
2576 // - put FP outputs in GPRs
2577 // - convert instruction sequences
2578 //
2579 bool
2580 NVC0LoweringPass::visit(Instruction *i)
2581 {
2582 bool ret = true;
2583 bld.setPosition(i, false);
2584
2585 if (i->cc != CC_ALWAYS)
2586 checkPredicate(i);
2587
2588 switch (i->op) {
2589 case OP_TEX:
2590 case OP_TXB:
2591 case OP_TXL:
2592 case OP_TXF:
2593 case OP_TXG:
2594 return handleTEX(i->asTex());
2595 case OP_TXD:
2596 return handleTXD(i->asTex());
2597 case OP_TXLQ:
2598 return handleTXLQ(i->asTex());
2599 case OP_TXQ:
2600 return handleTXQ(i->asTex());
2601 case OP_EX2:
2602 bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0));
2603 i->setSrc(0, i->getDef(0));
2604 break;
2605 case OP_POW:
2606 return handlePOW(i);
2607 case OP_DIV:
2608 return handleDIV(i);
2609 case OP_MOD:
2610 return handleMOD(i);
2611 case OP_SQRT:
2612 return handleSQRT(i);
2613 case OP_EXPORT:
2614 ret = handleEXPORT(i);
2615 break;
2616 case OP_EMIT:
2617 case OP_RESTART:
2618 return handleOUT(i);
2619 case OP_RDSV:
2620 return handleRDSV(i);
2621 case OP_WRSV:
2622 return handleWRSV(i);
2623 case OP_STORE:
2624 case OP_LOAD:
2625 handleLDST(i);
2626 break;
2627 case OP_ATOM:
2628 {
2629 const bool cctl = i->src(0).getFile() == FILE_MEMORY_BUFFER;
2630 handleATOM(i);
2631 handleCasExch(i, cctl);
2632 }
2633 break;
2634 case OP_SULDB:
2635 case OP_SULDP:
2636 case OP_SUSTB:
2637 case OP_SUSTP:
2638 case OP_SUREDB:
2639 case OP_SUREDP:
2640 if (targ->getChipset() >= NVISA_GK104_CHIPSET)
2641 handleSurfaceOpNVE4(i->asTex());
2642 else
2643 handleSurfaceOpNVC0(i->asTex());
2644 break;
2645 case OP_SUQ:
2646 handleSUQ(i->asTex());
2647 break;
2648 case OP_BUFQ:
2649 handleBUFQ(i);
2650 break;
2651 default:
2652 break;
2653 }
2654
2655 /* Kepler+ has a special opcode to compute a new base address to be used
2656 * for indirect loads.
2657 */
2658 if (targ->getChipset() >= NVISA_GK104_CHIPSET && !i->perPatch &&
2659 (i->op == OP_VFETCH || i->op == OP_EXPORT) && i->src(0).isIndirect(0)) {
2660 Instruction *afetch = bld.mkOp1(OP_AFETCH, TYPE_U32, bld.getSSA(),
2661 cloneShallow(func, i->getSrc(0)));
2662 afetch->setIndirect(0, 0, i->getIndirect(0, 0));
2663 i->src(0).get()->reg.data.offset = 0;
2664 i->setIndirect(0, 0, afetch->getDef(0));
2665 }
2666
2667 return ret;
2668 }
2669
2670 bool
2671 TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const
2672 {
2673 if (stage == CG_STAGE_PRE_SSA) {
2674 NVC0LoweringPass pass(prog);
2675 return pass.run(prog, false, true);
2676 } else
2677 if (stage == CG_STAGE_POST_RA) {
2678 NVC0LegalizePostRA pass(prog);
2679 return pass.run(prog, false, true);
2680 } else
2681 if (stage == CG_STAGE_SSA) {
2682 NVC0LegalizeSSA pass;
2683 return pass.run(prog, false, true);
2684 }
2685 return false;
2686 }
2687
2688 } // namespace nv50_ir