Merge remote-tracking branch 'public/master' into vulkan
[mesa.git] / src / gallium / drivers / nouveau / codegen / nv50_ir_lowering_nvc0.cpp
1 /*
2 * Copyright 2011 Christoph Bumiller
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include "codegen/nv50_ir.h"
24 #include "codegen/nv50_ir_build_util.h"
25
26 #include "codegen/nv50_ir_target_nvc0.h"
27 #include "codegen/nv50_ir_lowering_nvc0.h"
28
29 #include <limits>
30
31 namespace nv50_ir {
32
33 #define QOP_ADD 0
34 #define QOP_SUBR 1
35 #define QOP_SUB 2
36 #define QOP_MOV2 3
37
38 // UL UR LL LR
39 #define QUADOP(q, r, s, t) \
40 ((QOP_##q << 6) | (QOP_##r << 4) | \
41 (QOP_##s << 2) | (QOP_##t << 0))
42
43 void
44 NVC0LegalizeSSA::handleDIV(Instruction *i)
45 {
46 FlowInstruction *call;
47 int builtin;
48 Value *def[2];
49
50 bld.setPosition(i, false);
51 def[0] = bld.mkMovToReg(0, i->getSrc(0))->getDef(0);
52 def[1] = bld.mkMovToReg(1, i->getSrc(1))->getDef(0);
53 switch (i->dType) {
54 case TYPE_U32: builtin = NVC0_BUILTIN_DIV_U32; break;
55 case TYPE_S32: builtin = NVC0_BUILTIN_DIV_S32; break;
56 default:
57 return;
58 }
59 call = bld.mkFlow(OP_CALL, NULL, CC_ALWAYS, NULL);
60 bld.mkMov(i->getDef(0), def[(i->op == OP_DIV) ? 0 : 1]);
61 bld.mkClobber(FILE_GPR, (i->op == OP_DIV) ? 0xe : 0xd, 2);
62 bld.mkClobber(FILE_PREDICATE, (i->dType == TYPE_S32) ? 0xf : 0x3, 0);
63
64 call->fixed = 1;
65 call->absolute = call->builtin = 1;
66 call->target.builtin = builtin;
67 delete_Instruction(prog, i);
68 }
69
70 void
71 NVC0LegalizeSSA::handleRCPRSQ(Instruction *i)
72 {
73 assert(i->dType == TYPE_F64);
74 // There are instructions that will compute the high 32 bits of the 64-bit
75 // float. We will just stick 0 in the bottom 32 bits.
76
77 bld.setPosition(i, false);
78
79 // 1. Take the source and it up.
80 Value *src[2], *dst[2], *def = i->getDef(0);
81 bld.mkSplit(src, 4, i->getSrc(0));
82
83 // 2. We don't care about the low 32 bits of the destination. Stick a 0 in.
84 dst[0] = bld.loadImm(NULL, 0);
85 dst[1] = bld.getSSA();
86
87 // 3. The new version of the instruction takes the high 32 bits of the
88 // source and outputs the high 32 bits of the destination.
89 i->setSrc(0, src[1]);
90 i->setDef(0, dst[1]);
91 i->setType(TYPE_F32);
92 i->subOp = NV50_IR_SUBOP_RCPRSQ_64H;
93
94 // 4. Recombine the two dst pieces back into the original destination.
95 bld.setPosition(i, true);
96 bld.mkOp2(OP_MERGE, TYPE_U64, def, dst[0], dst[1]);
97 }
98
99 void
100 NVC0LegalizeSSA::handleFTZ(Instruction *i)
101 {
102 // Only want to flush float inputs
103 assert(i->sType == TYPE_F32);
104
105 // If we're already flushing denorms (and NaN's) to zero, no need for this.
106 if (i->dnz)
107 return;
108
109 // Only certain classes of operations can flush
110 OpClass cls = prog->getTarget()->getOpClass(i->op);
111 if (cls != OPCLASS_ARITH && cls != OPCLASS_COMPARE &&
112 cls != OPCLASS_CONVERT)
113 return;
114
115 i->ftz = true;
116 }
117
118 bool
119 NVC0LegalizeSSA::visit(Function *fn)
120 {
121 bld.setProgram(fn->getProgram());
122 return true;
123 }
124
125 bool
126 NVC0LegalizeSSA::visit(BasicBlock *bb)
127 {
128 Instruction *next;
129 for (Instruction *i = bb->getEntry(); i; i = next) {
130 next = i->next;
131 if (i->sType == TYPE_F32) {
132 if (prog->getType() != Program::TYPE_COMPUTE)
133 handleFTZ(i);
134 continue;
135 }
136 switch (i->op) {
137 case OP_DIV:
138 case OP_MOD:
139 handleDIV(i);
140 break;
141 case OP_RCP:
142 case OP_RSQ:
143 if (i->dType == TYPE_F64)
144 handleRCPRSQ(i);
145 break;
146 default:
147 break;
148 }
149 }
150 return true;
151 }
152
153 NVC0LegalizePostRA::NVC0LegalizePostRA(const Program *prog)
154 : rZero(NULL),
155 carry(NULL),
156 needTexBar(prog->getTarget()->getChipset() >= 0xe0)
157 {
158 }
159
160 bool
161 NVC0LegalizePostRA::insnDominatedBy(const Instruction *later,
162 const Instruction *early) const
163 {
164 if (early->bb == later->bb)
165 return early->serial < later->serial;
166 return later->bb->dominatedBy(early->bb);
167 }
168
169 void
170 NVC0LegalizePostRA::addTexUse(std::list<TexUse> &uses,
171 Instruction *usei, const Instruction *texi)
172 {
173 bool add = true;
174 for (std::list<TexUse>::iterator it = uses.begin();
175 it != uses.end();) {
176 if (insnDominatedBy(usei, it->insn)) {
177 add = false;
178 break;
179 }
180 if (insnDominatedBy(it->insn, usei))
181 it = uses.erase(it);
182 else
183 ++it;
184 }
185 if (add)
186 uses.push_back(TexUse(usei, texi));
187 }
188
189 // While it might be tempting to use the an algorithm that just looks at tex
190 // uses, not all texture results are guaranteed to be used on all paths. In
191 // the case where along some control flow path a texture result is never used,
192 // we might reuse that register for something else, creating a
193 // write-after-write hazard. So we have to manually look through all
194 // instructions looking for ones that reference the registers in question.
195 void
196 NVC0LegalizePostRA::findFirstUses(
197 Instruction *texi, std::list<TexUse> &uses)
198 {
199 int minGPR = texi->def(0).rep()->reg.data.id;
200 int maxGPR = minGPR + texi->def(0).rep()->reg.size / 4 - 1;
201
202 unordered_set<const BasicBlock *> visited;
203 findFirstUsesBB(minGPR, maxGPR, texi->next, texi, uses, visited);
204 }
205
206 void
207 NVC0LegalizePostRA::findFirstUsesBB(
208 int minGPR, int maxGPR, Instruction *start,
209 const Instruction *texi, std::list<TexUse> &uses,
210 unordered_set<const BasicBlock *> &visited)
211 {
212 const BasicBlock *bb = start->bb;
213
214 // We don't process the whole bb the first time around. This is correct,
215 // however we might be in a loop and hit this BB again, and need to process
216 // the full thing. So only mark a bb as visited if we processed it from the
217 // beginning.
218 if (start == bb->getEntry()) {
219 if (visited.find(bb) != visited.end())
220 return;
221 visited.insert(bb);
222 }
223
224 for (Instruction *insn = start; insn != bb->getExit(); insn = insn->next) {
225 if (insn->isNop())
226 continue;
227
228 for (int d = 0; insn->defExists(d); ++d) {
229 if (insn->def(d).getFile() != FILE_GPR ||
230 insn->def(d).rep()->reg.data.id < minGPR ||
231 insn->def(d).rep()->reg.data.id > maxGPR)
232 continue;
233 addTexUse(uses, insn, texi);
234 return;
235 }
236
237 for (int s = 0; insn->srcExists(s); ++s) {
238 if (insn->src(s).getFile() != FILE_GPR ||
239 insn->src(s).rep()->reg.data.id < minGPR ||
240 insn->src(s).rep()->reg.data.id > maxGPR)
241 continue;
242 addTexUse(uses, insn, texi);
243 return;
244 }
245 }
246
247 for (Graph::EdgeIterator ei = bb->cfg.outgoing(); !ei.end(); ei.next()) {
248 findFirstUsesBB(minGPR, maxGPR, BasicBlock::get(ei.getNode())->getEntry(),
249 texi, uses, visited);
250 }
251 }
252
253 // Texture barriers:
254 // This pass is a bit long and ugly and can probably be optimized.
255 //
256 // 1. obtain a list of TEXes and their outputs' first use(s)
257 // 2. calculate the barrier level of each first use (minimal number of TEXes,
258 // over all paths, between the TEX and the use in question)
259 // 3. for each barrier, if all paths from the source TEX to that barrier
260 // contain a barrier of lesser level, it can be culled
261 bool
262 NVC0LegalizePostRA::insertTextureBarriers(Function *fn)
263 {
264 std::list<TexUse> *uses;
265 std::vector<Instruction *> texes;
266 std::vector<int> bbFirstTex;
267 std::vector<int> bbFirstUse;
268 std::vector<int> texCounts;
269 std::vector<TexUse> useVec;
270 ArrayList insns;
271
272 fn->orderInstructions(insns);
273
274 texCounts.resize(fn->allBBlocks.getSize(), 0);
275 bbFirstTex.resize(fn->allBBlocks.getSize(), insns.getSize());
276 bbFirstUse.resize(fn->allBBlocks.getSize(), insns.getSize());
277
278 // tag BB CFG nodes by their id for later
279 for (ArrayList::Iterator i = fn->allBBlocks.iterator(); !i.end(); i.next()) {
280 BasicBlock *bb = reinterpret_cast<BasicBlock *>(i.get());
281 if (bb)
282 bb->cfg.tag = bb->getId();
283 }
284
285 // gather the first uses for each TEX
286 for (int i = 0; i < insns.getSize(); ++i) {
287 Instruction *tex = reinterpret_cast<Instruction *>(insns.get(i));
288 if (isTextureOp(tex->op)) {
289 texes.push_back(tex);
290 if (!texCounts.at(tex->bb->getId()))
291 bbFirstTex[tex->bb->getId()] = texes.size() - 1;
292 texCounts[tex->bb->getId()]++;
293 }
294 }
295 insns.clear();
296 if (texes.empty())
297 return false;
298 uses = new std::list<TexUse>[texes.size()];
299 if (!uses)
300 return false;
301 for (size_t i = 0; i < texes.size(); ++i) {
302 findFirstUses(texes[i], uses[i]);
303 }
304
305 // determine the barrier level at each use
306 for (size_t i = 0; i < texes.size(); ++i) {
307 for (std::list<TexUse>::iterator u = uses[i].begin(); u != uses[i].end();
308 ++u) {
309 BasicBlock *tb = texes[i]->bb;
310 BasicBlock *ub = u->insn->bb;
311 if (tb == ub) {
312 u->level = 0;
313 for (size_t j = i + 1; j < texes.size() &&
314 texes[j]->bb == tb && texes[j]->serial < u->insn->serial;
315 ++j)
316 u->level++;
317 } else {
318 u->level = fn->cfg.findLightestPathWeight(&tb->cfg,
319 &ub->cfg, texCounts);
320 if (u->level < 0) {
321 WARN("Failed to find path TEX -> TEXBAR\n");
322 u->level = 0;
323 continue;
324 }
325 // this counted all TEXes in the origin block, correct that
326 u->level -= i - bbFirstTex.at(tb->getId()) + 1 /* this TEX */;
327 // and did not count the TEXes in the destination block, add those
328 for (size_t j = bbFirstTex.at(ub->getId()); j < texes.size() &&
329 texes[j]->bb == ub && texes[j]->serial < u->insn->serial;
330 ++j)
331 u->level++;
332 }
333 assert(u->level >= 0);
334 useVec.push_back(*u);
335 }
336 }
337 delete[] uses;
338
339 // insert the barriers
340 for (size_t i = 0; i < useVec.size(); ++i) {
341 Instruction *prev = useVec[i].insn->prev;
342 if (useVec[i].level < 0)
343 continue;
344 if (prev && prev->op == OP_TEXBAR) {
345 if (prev->subOp > useVec[i].level)
346 prev->subOp = useVec[i].level;
347 prev->setSrc(prev->srcCount(), useVec[i].tex->getDef(0));
348 } else {
349 Instruction *bar = new_Instruction(func, OP_TEXBAR, TYPE_NONE);
350 bar->fixed = 1;
351 bar->subOp = useVec[i].level;
352 // make use explicit to ease latency calculation
353 bar->setSrc(bar->srcCount(), useVec[i].tex->getDef(0));
354 useVec[i].insn->bb->insertBefore(useVec[i].insn, bar);
355 }
356 }
357
358 if (fn->getProgram()->optLevel < 3)
359 return true;
360
361 std::vector<Limits> limitT, limitB, limitS; // entry, exit, single
362
363 limitT.resize(fn->allBBlocks.getSize(), Limits(0, 0));
364 limitB.resize(fn->allBBlocks.getSize(), Limits(0, 0));
365 limitS.resize(fn->allBBlocks.getSize());
366
367 // cull unneeded barriers (should do that earlier, but for simplicity)
368 IteratorRef bi = fn->cfg.iteratorCFG();
369 // first calculate min/max outstanding TEXes for each BB
370 for (bi->reset(); !bi->end(); bi->next()) {
371 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
372 BasicBlock *bb = BasicBlock::get(n);
373 int min = 0;
374 int max = std::numeric_limits<int>::max();
375 for (Instruction *i = bb->getFirst(); i; i = i->next) {
376 if (isTextureOp(i->op)) {
377 min++;
378 if (max < std::numeric_limits<int>::max())
379 max++;
380 } else
381 if (i->op == OP_TEXBAR) {
382 min = MIN2(min, i->subOp);
383 max = MIN2(max, i->subOp);
384 }
385 }
386 // limits when looking at an isolated block
387 limitS[bb->getId()].min = min;
388 limitS[bb->getId()].max = max;
389 }
390 // propagate the min/max values
391 for (unsigned int l = 0; l <= fn->loopNestingBound; ++l) {
392 for (bi->reset(); !bi->end(); bi->next()) {
393 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
394 BasicBlock *bb = BasicBlock::get(n);
395 const int bbId = bb->getId();
396 for (Graph::EdgeIterator ei = n->incident(); !ei.end(); ei.next()) {
397 BasicBlock *in = BasicBlock::get(ei.getNode());
398 const int inId = in->getId();
399 limitT[bbId].min = MAX2(limitT[bbId].min, limitB[inId].min);
400 limitT[bbId].max = MAX2(limitT[bbId].max, limitB[inId].max);
401 }
402 // I just hope this is correct ...
403 if (limitS[bbId].max == std::numeric_limits<int>::max()) {
404 // no barrier
405 limitB[bbId].min = limitT[bbId].min + limitS[bbId].min;
406 limitB[bbId].max = limitT[bbId].max + limitS[bbId].min;
407 } else {
408 // block contained a barrier
409 limitB[bbId].min = MIN2(limitS[bbId].max,
410 limitT[bbId].min + limitS[bbId].min);
411 limitB[bbId].max = MIN2(limitS[bbId].max,
412 limitT[bbId].max + limitS[bbId].min);
413 }
414 }
415 }
416 // finally delete unnecessary barriers
417 for (bi->reset(); !bi->end(); bi->next()) {
418 Graph::Node *n = reinterpret_cast<Graph::Node *>(bi->get());
419 BasicBlock *bb = BasicBlock::get(n);
420 Instruction *prev = NULL;
421 Instruction *next;
422 int max = limitT[bb->getId()].max;
423 for (Instruction *i = bb->getFirst(); i; i = next) {
424 next = i->next;
425 if (i->op == OP_TEXBAR) {
426 if (i->subOp >= max) {
427 delete_Instruction(prog, i);
428 i = NULL;
429 } else {
430 max = i->subOp;
431 if (prev && prev->op == OP_TEXBAR && prev->subOp >= max) {
432 delete_Instruction(prog, prev);
433 prev = NULL;
434 }
435 }
436 } else
437 if (isTextureOp(i->op)) {
438 max++;
439 }
440 if (i && !i->isNop())
441 prev = i;
442 }
443 }
444 return true;
445 }
446
447 bool
448 NVC0LegalizePostRA::visit(Function *fn)
449 {
450 if (needTexBar)
451 insertTextureBarriers(fn);
452
453 rZero = new_LValue(fn, FILE_GPR);
454 carry = new_LValue(fn, FILE_FLAGS);
455
456 rZero->reg.data.id = prog->getTarget()->getFileSize(FILE_GPR);
457 carry->reg.data.id = 0;
458
459 return true;
460 }
461
462 void
463 NVC0LegalizePostRA::replaceZero(Instruction *i)
464 {
465 for (int s = 0; i->srcExists(s); ++s) {
466 if (s == 2 && i->op == OP_SUCLAMP)
467 continue;
468 ImmediateValue *imm = i->getSrc(s)->asImm();
469 if (imm && imm->reg.data.u64 == 0)
470 i->setSrc(s, rZero);
471 }
472 }
473
474 // replace CONT with BRA for single unconditional continue
475 bool
476 NVC0LegalizePostRA::tryReplaceContWithBra(BasicBlock *bb)
477 {
478 if (bb->cfg.incidentCount() != 2 || bb->getEntry()->op != OP_PRECONT)
479 return false;
480 Graph::EdgeIterator ei = bb->cfg.incident();
481 if (ei.getType() != Graph::Edge::BACK)
482 ei.next();
483 if (ei.getType() != Graph::Edge::BACK)
484 return false;
485 BasicBlock *contBB = BasicBlock::get(ei.getNode());
486
487 if (!contBB->getExit() || contBB->getExit()->op != OP_CONT ||
488 contBB->getExit()->getPredicate())
489 return false;
490 contBB->getExit()->op = OP_BRA;
491 bb->remove(bb->getEntry()); // delete PRECONT
492
493 ei.next();
494 assert(ei.end() || ei.getType() != Graph::Edge::BACK);
495 return true;
496 }
497
498 // replace branches to join blocks with join ops
499 void
500 NVC0LegalizePostRA::propagateJoin(BasicBlock *bb)
501 {
502 if (bb->getEntry()->op != OP_JOIN || bb->getEntry()->asFlow()->limit)
503 return;
504 for (Graph::EdgeIterator ei = bb->cfg.incident(); !ei.end(); ei.next()) {
505 BasicBlock *in = BasicBlock::get(ei.getNode());
506 Instruction *exit = in->getExit();
507 if (!exit) {
508 in->insertTail(new FlowInstruction(func, OP_JOIN, bb));
509 // there should always be a terminator instruction
510 WARN("inserted missing terminator in BB:%i\n", in->getId());
511 } else
512 if (exit->op == OP_BRA) {
513 exit->op = OP_JOIN;
514 exit->asFlow()->limit = 1; // must-not-propagate marker
515 }
516 }
517 bb->remove(bb->getEntry());
518 }
519
520 bool
521 NVC0LegalizePostRA::visit(BasicBlock *bb)
522 {
523 Instruction *i, *next;
524
525 // remove pseudo operations and non-fixed no-ops, split 64 bit operations
526 for (i = bb->getFirst(); i; i = next) {
527 next = i->next;
528 if (i->op == OP_EMIT || i->op == OP_RESTART) {
529 if (!i->getDef(0)->refCount())
530 i->setDef(0, NULL);
531 if (i->src(0).getFile() == FILE_IMMEDIATE)
532 i->setSrc(0, rZero); // initial value must be 0
533 replaceZero(i);
534 } else
535 if (i->isNop()) {
536 bb->remove(i);
537 } else
538 if (i->op == OP_BAR && i->subOp == NV50_IR_SUBOP_BAR_SYNC &&
539 prog->getType() != Program::TYPE_COMPUTE) {
540 // It seems like barriers are never required for tessellation since
541 // the warp size is 32, and there are always at most 32 tcs threads.
542 bb->remove(i);
543 } else
544 if (i->op == OP_LOAD && i->subOp == NV50_IR_SUBOP_LDC_IS) {
545 int offset = i->src(0).get()->reg.data.offset;
546 if (abs(offset) > 0x10000)
547 i->src(0).get()->reg.fileIndex += offset >> 16;
548 i->src(0).get()->reg.data.offset = (int)(short)offset;
549 } else {
550 // TODO: Move this to before register allocation for operations that
551 // need the $c register !
552 if (typeSizeof(i->dType) == 8) {
553 Instruction *hi;
554 hi = BuildUtil::split64BitOpPostRA(func, i, rZero, carry);
555 if (hi)
556 next = hi;
557 }
558
559 if (i->op != OP_MOV && i->op != OP_PFETCH)
560 replaceZero(i);
561 }
562 }
563 if (!bb->getEntry())
564 return true;
565
566 if (!tryReplaceContWithBra(bb))
567 propagateJoin(bb);
568
569 return true;
570 }
571
572 NVC0LoweringPass::NVC0LoweringPass(Program *prog) : targ(prog->getTarget())
573 {
574 bld.setProgram(prog);
575 gMemBase = NULL;
576 }
577
578 bool
579 NVC0LoweringPass::visit(Function *fn)
580 {
581 if (prog->getType() == Program::TYPE_GEOMETRY) {
582 assert(!strncmp(fn->getName(), "MAIN", 4));
583 // TODO: when we generate actual functions pass this value along somehow
584 bld.setPosition(BasicBlock::get(fn->cfg.getRoot()), false);
585 gpEmitAddress = bld.loadImm(NULL, 0)->asLValue();
586 if (fn->cfgExit) {
587 bld.setPosition(BasicBlock::get(fn->cfgExit)->getExit(), false);
588 bld.mkMovToReg(0, gpEmitAddress);
589 }
590 }
591 return true;
592 }
593
594 bool
595 NVC0LoweringPass::visit(BasicBlock *bb)
596 {
597 return true;
598 }
599
600 inline Value *
601 NVC0LoweringPass::loadTexHandle(Value *ptr, unsigned int slot)
602 {
603 uint8_t b = prog->driver->io.auxCBSlot;
604 uint32_t off = prog->driver->io.texBindBase + slot * 4;
605 return bld.
606 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
607 }
608
609 // move array source to first slot, convert to u16, add indirections
610 bool
611 NVC0LoweringPass::handleTEX(TexInstruction *i)
612 {
613 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
614 const int arg = i->tex.target.getArgCount();
615 const int lyr = arg - (i->tex.target.isMS() ? 2 : 1);
616 const int chipset = prog->getTarget()->getChipset();
617
618 /* Only normalize in the non-explicit derivatives case. For explicit
619 * derivatives, this is handled in handleManualTXD.
620 */
621 if (i->tex.target.isCube() && i->dPdx[0].get() == NULL) {
622 Value *src[3], *val;
623 int c;
624 for (c = 0; c < 3; ++c)
625 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), i->getSrc(c));
626 val = bld.getScratch();
627 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
628 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
629 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
630 for (c = 0; c < 3; ++c) {
631 i->setSrc(c, bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(),
632 i->getSrc(c), val));
633 }
634 }
635
636 // Arguments to the TEX instruction are a little insane. Even though the
637 // encoding is identical between SM20 and SM30, the arguments mean
638 // different things between Fermi and Kepler+. A lot of arguments are
639 // optional based on flags passed to the instruction. This summarizes the
640 // order of things.
641 //
642 // Fermi:
643 // array/indirect
644 // coords
645 // sample
646 // lod bias
647 // depth compare
648 // offsets:
649 // - tg4: 8 bits each, either 2 (1 offset reg) or 8 (2 offset reg)
650 // - other: 4 bits each, single reg
651 //
652 // Kepler+:
653 // indirect handle
654 // array (+ offsets for txd in upper 16 bits)
655 // coords
656 // sample
657 // lod bias
658 // depth compare
659 // offsets (same as fermi, except txd which takes it with array)
660 //
661 // Maxwell (tex):
662 // array
663 // coords
664 // indirect handle
665 // sample
666 // lod bias
667 // depth compare
668 // offsets
669 //
670 // Maxwell (txd):
671 // indirect handle
672 // coords
673 // array + offsets
674 // derivatives
675
676 if (chipset >= NVISA_GK104_CHIPSET) {
677 if (i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
678 // XXX this ignores tsc, and assumes a 1:1 mapping
679 assert(i->tex.rIndirectSrc >= 0);
680 Value *hnd = loadTexHandle(
681 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
682 i->getIndirectR(), bld.mkImm(2)),
683 i->tex.r);
684 i->tex.r = 0xff;
685 i->tex.s = 0x1f;
686 i->setIndirectR(hnd);
687 i->setIndirectS(NULL);
688 } else if (i->tex.r == i->tex.s || i->op == OP_TXF) {
689 i->tex.r += prog->driver->io.texBindBase / 4;
690 i->tex.s = 0; // only a single cX[] value possible here
691 } else {
692 Value *hnd = bld.getScratch();
693 Value *rHnd = loadTexHandle(NULL, i->tex.r);
694 Value *sHnd = loadTexHandle(NULL, i->tex.s);
695
696 bld.mkOp3(OP_INSBF, TYPE_U32, hnd, rHnd, bld.mkImm(0x1400), sHnd);
697
698 i->tex.r = 0; // not used for indirect tex
699 i->tex.s = 0;
700 i->setIndirectR(hnd);
701 }
702 if (i->tex.target.isArray()) {
703 LValue *layer = new_LValue(func, FILE_GPR);
704 Value *src = i->getSrc(lyr);
705 const int sat = (i->op == OP_TXF) ? 1 : 0;
706 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
707 bld.mkCvt(OP_CVT, TYPE_U16, layer, sTy, src)->saturate = sat;
708 if (i->op != OP_TXD || chipset < NVISA_GM107_CHIPSET) {
709 for (int s = dim; s >= 1; --s)
710 i->setSrc(s, i->getSrc(s - 1));
711 i->setSrc(0, layer);
712 } else {
713 i->setSrc(dim, layer);
714 }
715 }
716 // Move the indirect reference to the first place
717 if (i->tex.rIndirectSrc >= 0 && (
718 i->op == OP_TXD || chipset < NVISA_GM107_CHIPSET)) {
719 Value *hnd = i->getIndirectR();
720
721 i->setIndirectR(NULL);
722 i->moveSources(0, 1);
723 i->setSrc(0, hnd);
724 i->tex.rIndirectSrc = 0;
725 i->tex.sIndirectSrc = -1;
726 }
727 } else
728 // (nvc0) generate and move the tsc/tic/array source to the front
729 if (i->tex.target.isArray() || i->tex.rIndirectSrc >= 0 || i->tex.sIndirectSrc >= 0) {
730 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
731
732 Value *ticRel = i->getIndirectR();
733 Value *tscRel = i->getIndirectS();
734
735 if (ticRel) {
736 i->setSrc(i->tex.rIndirectSrc, NULL);
737 if (i->tex.r)
738 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
739 ticRel, bld.mkImm(i->tex.r));
740 }
741 if (tscRel) {
742 i->setSrc(i->tex.sIndirectSrc, NULL);
743 if (i->tex.s)
744 tscRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
745 tscRel, bld.mkImm(i->tex.s));
746 }
747
748 Value *arrayIndex = i->tex.target.isArray() ? i->getSrc(lyr) : NULL;
749 if (arrayIndex) {
750 for (int s = dim; s >= 1; --s)
751 i->setSrc(s, i->getSrc(s - 1));
752 i->setSrc(0, arrayIndex);
753 } else {
754 i->moveSources(0, 1);
755 }
756
757 if (arrayIndex) {
758 int sat = (i->op == OP_TXF) ? 1 : 0;
759 DataType sTy = (i->op == OP_TXF) ? TYPE_U32 : TYPE_F32;
760 bld.mkCvt(OP_CVT, TYPE_U16, src, sTy, arrayIndex)->saturate = sat;
761 } else {
762 bld.loadImm(src, 0);
763 }
764
765 if (ticRel)
766 bld.mkOp3(OP_INSBF, TYPE_U32, src, ticRel, bld.mkImm(0x0917), src);
767 if (tscRel)
768 bld.mkOp3(OP_INSBF, TYPE_U32, src, tscRel, bld.mkImm(0x0710), src);
769
770 i->setSrc(0, src);
771 }
772
773 // For nvc0, the sample id has to be in the second operand, as the offset
774 // does. Right now we don't know how to pass both in, and this case can't
775 // happen with OpenGL. On nve0, the sample id is part of the texture
776 // coordinate argument.
777 assert(chipset >= NVISA_GK104_CHIPSET ||
778 !i->tex.useOffsets || !i->tex.target.isMS());
779
780 // offset is between lod and dc
781 if (i->tex.useOffsets) {
782 int n, c;
783 int s = i->srcCount(0xff, true);
784 if (i->op != OP_TXD || chipset < NVISA_GK104_CHIPSET) {
785 if (i->tex.target.isShadow())
786 s--;
787 if (i->srcExists(s)) // move potential predicate out of the way
788 i->moveSources(s, 1);
789 if (i->tex.useOffsets == 4 && i->srcExists(s + 1))
790 i->moveSources(s + 1, 1);
791 }
792 if (i->op == OP_TXG) {
793 // Either there is 1 offset, which goes into the 2 low bytes of the
794 // first source, or there are 4 offsets, which go into 2 sources (8
795 // values, 1 byte each).
796 Value *offs[2] = {NULL, NULL};
797 for (n = 0; n < i->tex.useOffsets; n++) {
798 for (c = 0; c < 2; ++c) {
799 if ((n % 2) == 0 && c == 0)
800 offs[n / 2] = i->offset[n][c].get();
801 else
802 bld.mkOp3(OP_INSBF, TYPE_U32,
803 offs[n / 2],
804 i->offset[n][c].get(),
805 bld.mkImm(0x800 | ((n * 16 + c * 8) % 32)),
806 offs[n / 2]);
807 }
808 }
809 i->setSrc(s, offs[0]);
810 if (offs[1])
811 i->setSrc(s + 1, offs[1]);
812 } else {
813 unsigned imm = 0;
814 assert(i->tex.useOffsets == 1);
815 for (c = 0; c < 3; ++c) {
816 ImmediateValue val;
817 if (!i->offset[0][c].getImmediate(val))
818 assert(!"non-immediate offset passed to non-TXG");
819 imm |= (val.reg.data.u32 & 0xf) << (c * 4);
820 }
821 if (i->op == OP_TXD && chipset >= NVISA_GK104_CHIPSET) {
822 // The offset goes into the upper 16 bits of the array index. So
823 // create it if it's not already there, and INSBF it if it already
824 // is.
825 s = (i->tex.rIndirectSrc >= 0) ? 1 : 0;
826 if (chipset >= NVISA_GM107_CHIPSET)
827 s += dim;
828 if (i->tex.target.isArray()) {
829 bld.mkOp3(OP_INSBF, TYPE_U32, i->getSrc(s),
830 bld.loadImm(NULL, imm), bld.mkImm(0xc10),
831 i->getSrc(s));
832 } else {
833 i->moveSources(s, 1);
834 i->setSrc(s, bld.loadImm(NULL, imm << 16));
835 }
836 } else {
837 i->setSrc(s, bld.loadImm(NULL, imm));
838 }
839 }
840 }
841
842 if (chipset >= NVISA_GK104_CHIPSET) {
843 //
844 // If TEX requires more than 4 sources, the 2nd register tuple must be
845 // aligned to 4, even if it consists of just a single 4-byte register.
846 //
847 // XXX HACK: We insert 0 sources to avoid the 5 or 6 regs case.
848 //
849 int s = i->srcCount(0xff, true);
850 if (s > 4 && s < 7) {
851 if (i->srcExists(s)) // move potential predicate out of the way
852 i->moveSources(s, 7 - s);
853 while (s < 7)
854 i->setSrc(s++, bld.loadImm(NULL, 0));
855 }
856 }
857
858 return true;
859 }
860
861 bool
862 NVC0LoweringPass::handleManualTXD(TexInstruction *i)
863 {
864 static const uint8_t qOps[4][2] =
865 {
866 { QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(MOV2, MOV2, ADD, ADD) }, // l0
867 { QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(MOV2, MOV2, ADD, ADD) }, // l1
868 { QUADOP(MOV2, ADD, MOV2, ADD), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l2
869 { QUADOP(SUBR, MOV2, SUBR, MOV2), QUADOP(SUBR, SUBR, MOV2, MOV2) }, // l3
870 };
871 Value *def[4][4];
872 Value *crd[3];
873 Instruction *tex;
874 Value *zero = bld.loadImm(bld.getSSA(), 0);
875 int l, c;
876 const int dim = i->tex.target.getDim() + i->tex.target.isCube();
877 const int array = i->tex.target.isArray();
878
879 i->op = OP_TEX; // no need to clone dPdx/dPdy later
880
881 for (c = 0; c < dim; ++c)
882 crd[c] = bld.getScratch();
883
884 bld.mkOp(OP_QUADON, TYPE_NONE, NULL);
885 for (l = 0; l < 4; ++l) {
886 Value *src[3], *val;
887 // mov coordinates from lane l to all lanes
888 for (c = 0; c < dim; ++c)
889 bld.mkQuadop(0x00, crd[c], l, i->getSrc(c + array), zero);
890 // add dPdx from lane l to lanes dx
891 for (c = 0; c < dim; ++c)
892 bld.mkQuadop(qOps[l][0], crd[c], l, i->dPdx[c].get(), crd[c]);
893 // add dPdy from lane l to lanes dy
894 for (c = 0; c < dim; ++c)
895 bld.mkQuadop(qOps[l][1], crd[c], l, i->dPdy[c].get(), crd[c]);
896 // normalize cube coordinates
897 if (i->tex.target.isCube()) {
898 for (c = 0; c < 3; ++c)
899 src[c] = bld.mkOp1v(OP_ABS, TYPE_F32, bld.getSSA(), crd[c]);
900 val = bld.getScratch();
901 bld.mkOp2(OP_MAX, TYPE_F32, val, src[0], src[1]);
902 bld.mkOp2(OP_MAX, TYPE_F32, val, src[2], val);
903 bld.mkOp1(OP_RCP, TYPE_F32, val, val);
904 for (c = 0; c < 3; ++c)
905 src[c] = bld.mkOp2v(OP_MUL, TYPE_F32, bld.getSSA(), crd[c], val);
906 } else {
907 for (c = 0; c < dim; ++c)
908 src[c] = crd[c];
909 }
910 // texture
911 bld.insert(tex = cloneForward(func, i));
912 for (c = 0; c < dim; ++c)
913 tex->setSrc(c + array, src[c]);
914 // save results
915 for (c = 0; i->defExists(c); ++c) {
916 Instruction *mov;
917 def[c][l] = bld.getSSA();
918 mov = bld.mkMov(def[c][l], tex->getDef(c));
919 mov->fixed = 1;
920 mov->lanes = 1 << l;
921 }
922 }
923 bld.mkOp(OP_QUADPOP, TYPE_NONE, NULL);
924
925 for (c = 0; i->defExists(c); ++c) {
926 Instruction *u = bld.mkOp(OP_UNION, TYPE_U32, i->getDef(c));
927 for (l = 0; l < 4; ++l)
928 u->setSrc(l, def[c][l]);
929 }
930
931 i->bb->remove(i);
932 return true;
933 }
934
935 bool
936 NVC0LoweringPass::handleTXD(TexInstruction *txd)
937 {
938 int dim = txd->tex.target.getDim() + txd->tex.target.isCube();
939 unsigned arg = txd->tex.target.getArgCount();
940 unsigned expected_args = arg;
941 const int chipset = prog->getTarget()->getChipset();
942
943 if (chipset >= NVISA_GK104_CHIPSET) {
944 if (!txd->tex.target.isArray() && txd->tex.useOffsets)
945 expected_args++;
946 if (txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0)
947 expected_args++;
948 } else {
949 if (txd->tex.useOffsets)
950 expected_args++;
951 if (!txd->tex.target.isArray() && (
952 txd->tex.rIndirectSrc >= 0 || txd->tex.sIndirectSrc >= 0))
953 expected_args++;
954 }
955
956 if (expected_args > 4 ||
957 dim > 2 ||
958 txd->tex.target.isShadow())
959 txd->op = OP_TEX;
960
961 handleTEX(txd);
962 while (txd->srcExists(arg))
963 ++arg;
964
965 txd->tex.derivAll = true;
966 if (txd->op == OP_TEX)
967 return handleManualTXD(txd);
968
969 assert(arg == expected_args);
970 for (int c = 0; c < dim; ++c) {
971 txd->setSrc(arg + c * 2 + 0, txd->dPdx[c]);
972 txd->setSrc(arg + c * 2 + 1, txd->dPdy[c]);
973 txd->dPdx[c].set(NULL);
974 txd->dPdy[c].set(NULL);
975 }
976 return true;
977 }
978
979 bool
980 NVC0LoweringPass::handleTXQ(TexInstruction *txq)
981 {
982 const int chipset = prog->getTarget()->getChipset();
983 if (chipset >= NVISA_GK104_CHIPSET && txq->tex.rIndirectSrc < 0)
984 txq->tex.r += prog->driver->io.texBindBase / 4;
985
986 if (txq->tex.rIndirectSrc < 0)
987 return true;
988
989 Value *ticRel = txq->getIndirectR();
990
991 txq->setIndirectS(NULL);
992 txq->tex.sIndirectSrc = -1;
993
994 assert(ticRel);
995
996 if (chipset < NVISA_GK104_CHIPSET) {
997 LValue *src = new_LValue(func, FILE_GPR); // 0xttxsaaaa
998
999 txq->setSrc(txq->tex.rIndirectSrc, NULL);
1000 if (txq->tex.r)
1001 ticRel = bld.mkOp2v(OP_ADD, TYPE_U32, bld.getScratch(),
1002 ticRel, bld.mkImm(txq->tex.r));
1003
1004 bld.mkOp2(OP_SHL, TYPE_U32, src, ticRel, bld.mkImm(0x17));
1005
1006 txq->moveSources(0, 1);
1007 txq->setSrc(0, src);
1008 } else {
1009 Value *hnd = loadTexHandle(
1010 bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
1011 txq->getIndirectR(), bld.mkImm(2)),
1012 txq->tex.r);
1013 txq->tex.r = 0xff;
1014 txq->tex.s = 0x1f;
1015
1016 txq->setIndirectR(NULL);
1017 txq->moveSources(0, 1);
1018 txq->setSrc(0, hnd);
1019 txq->tex.rIndirectSrc = 0;
1020 }
1021
1022 return true;
1023 }
1024
1025 bool
1026 NVC0LoweringPass::handleTXLQ(TexInstruction *i)
1027 {
1028 /* The outputs are inverted compared to what the TGSI instruction
1029 * expects. Take that into account in the mask.
1030 */
1031 assert((i->tex.mask & ~3) == 0);
1032 if (i->tex.mask == 1)
1033 i->tex.mask = 2;
1034 else if (i->tex.mask == 2)
1035 i->tex.mask = 1;
1036 handleTEX(i);
1037 bld.setPosition(i, true);
1038
1039 /* The returned values are not quite what we want:
1040 * (a) convert from s16/u16 to f32
1041 * (b) multiply by 1/256
1042 */
1043 for (int def = 0; def < 2; ++def) {
1044 if (!i->defExists(def))
1045 continue;
1046 enum DataType type = TYPE_S16;
1047 if (i->tex.mask == 2 || def > 0)
1048 type = TYPE_U16;
1049 bld.mkCvt(OP_CVT, TYPE_F32, i->getDef(def), type, i->getDef(def));
1050 bld.mkOp2(OP_MUL, TYPE_F32, i->getDef(def),
1051 i->getDef(def), bld.loadImm(NULL, 1.0f / 256));
1052 }
1053 if (i->tex.mask == 3) {
1054 LValue *t = new_LValue(func, FILE_GPR);
1055 bld.mkMov(t, i->getDef(0));
1056 bld.mkMov(i->getDef(0), i->getDef(1));
1057 bld.mkMov(i->getDef(1), t);
1058 }
1059 return true;
1060 }
1061
1062 bool
1063 NVC0LoweringPass::handleSUQ(Instruction *suq)
1064 {
1065 suq->op = OP_MOV;
1066 suq->setSrc(0, loadResLength32(suq->getIndirect(0, 1),
1067 suq->getSrc(0)->reg.fileIndex * 16));
1068 suq->setIndirect(0, 0, NULL);
1069 suq->setIndirect(0, 1, NULL);
1070 return true;
1071 }
1072
1073 void
1074 NVC0LoweringPass::handleSharedATOM(Instruction *atom)
1075 {
1076 assert(atom->src(0).getFile() == FILE_MEMORY_SHARED);
1077
1078 BasicBlock *currBB = atom->bb;
1079 BasicBlock *tryLockAndSetBB = atom->bb->splitBefore(atom, false);
1080 BasicBlock *joinBB = atom->bb->splitAfter(atom);
1081
1082 bld.setPosition(currBB, true);
1083 assert(!currBB->joinAt);
1084 currBB->joinAt = bld.mkFlow(OP_JOINAT, joinBB, CC_ALWAYS, NULL);
1085
1086 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_ALWAYS, NULL);
1087 currBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::TREE);
1088
1089 bld.setPosition(tryLockAndSetBB, true);
1090
1091 Instruction *ld =
1092 bld.mkLoad(TYPE_U32, atom->getDef(0),
1093 bld.mkSymbol(FILE_MEMORY_SHARED, 0, TYPE_U32, 0), NULL);
1094 ld->setDef(1, bld.getSSA(1, FILE_PREDICATE));
1095 ld->subOp = NV50_IR_SUBOP_LOAD_LOCKED;
1096
1097 Value *stVal;
1098 if (atom->subOp == NV50_IR_SUBOP_ATOM_EXCH) {
1099 // Read the old value, and write the new one.
1100 stVal = atom->getSrc(1);
1101 } else if (atom->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1102 CmpInstruction *set =
1103 bld.mkCmp(OP_SET, CC_EQ, TYPE_U32, bld.getSSA(1, FILE_PREDICATE),
1104 TYPE_U32, ld->getDef(0), atom->getSrc(1));
1105 set->setPredicate(CC_P, ld->getDef(1));
1106
1107 Instruction *selp =
1108 bld.mkOp3(OP_SELP, TYPE_U32, bld.getSSA(), ld->getDef(0),
1109 atom->getSrc(2), set->getDef(0));
1110 selp->src(2).mod = Modifier(NV50_IR_MOD_NOT);
1111 selp->setPredicate(CC_P, ld->getDef(1));
1112
1113 stVal = selp->getDef(0);
1114 } else {
1115 operation op;
1116
1117 switch (atom->subOp) {
1118 case NV50_IR_SUBOP_ATOM_ADD:
1119 op = OP_ADD;
1120 break;
1121 case NV50_IR_SUBOP_ATOM_AND:
1122 op = OP_AND;
1123 break;
1124 case NV50_IR_SUBOP_ATOM_OR:
1125 op = OP_OR;
1126 break;
1127 case NV50_IR_SUBOP_ATOM_XOR:
1128 op = OP_XOR;
1129 break;
1130 case NV50_IR_SUBOP_ATOM_MIN:
1131 op = OP_MIN;
1132 break;
1133 case NV50_IR_SUBOP_ATOM_MAX:
1134 op = OP_MAX;
1135 break;
1136 default:
1137 assert(0);
1138 return;
1139 }
1140
1141 Instruction *i =
1142 bld.mkOp2(op, atom->dType, bld.getSSA(), ld->getDef(0),
1143 atom->getSrc(1));
1144 i->setPredicate(CC_P, ld->getDef(1));
1145
1146 stVal = i->getDef(0);
1147 }
1148
1149 Instruction *st =
1150 bld.mkStore(OP_STORE, TYPE_U32,
1151 bld.mkSymbol(FILE_MEMORY_SHARED, 0, TYPE_U32, 0),
1152 NULL, stVal);
1153 st->setPredicate(CC_P, ld->getDef(1));
1154 st->subOp = NV50_IR_SUBOP_STORE_UNLOCKED;
1155
1156 // Loop until the lock is acquired.
1157 bld.mkFlow(OP_BRA, tryLockAndSetBB, CC_NOT_P, ld->getDef(1));
1158 tryLockAndSetBB->cfg.attach(&tryLockAndSetBB->cfg, Graph::Edge::BACK);
1159 tryLockAndSetBB->cfg.attach(&joinBB->cfg, Graph::Edge::CROSS);
1160 bld.mkFlow(OP_BRA, joinBB, CC_ALWAYS, NULL);
1161
1162 bld.remove(atom);
1163
1164 bld.setPosition(joinBB, false);
1165 bld.mkFlow(OP_JOIN, NULL, CC_ALWAYS, NULL)->fixed = 1;
1166 }
1167
1168 bool
1169 NVC0LoweringPass::handleATOM(Instruction *atom)
1170 {
1171 SVSemantic sv;
1172 Value *ptr = atom->getIndirect(0, 0), *ind = atom->getIndirect(0, 1), *base;
1173
1174 switch (atom->src(0).getFile()) {
1175 case FILE_MEMORY_LOCAL:
1176 sv = SV_LBASE;
1177 break;
1178 case FILE_MEMORY_SHARED:
1179 handleSharedATOM(atom);
1180 return true;
1181 default:
1182 assert(atom->src(0).getFile() == FILE_MEMORY_GLOBAL);
1183 base = loadResInfo64(ind, atom->getSrc(0)->reg.fileIndex * 16);
1184 assert(base->reg.size == 8);
1185 if (ptr)
1186 base = bld.mkOp2v(OP_ADD, TYPE_U64, base, base, ptr);
1187 assert(base->reg.size == 8);
1188 atom->setIndirect(0, 0, base);
1189 return true;
1190 }
1191 base =
1192 bld.mkOp1v(OP_RDSV, TYPE_U32, bld.getScratch(), bld.mkSysVal(sv, 0));
1193
1194 atom->setSrc(0, cloneShallow(func, atom->getSrc(0)));
1195 atom->getSrc(0)->reg.file = FILE_MEMORY_GLOBAL;
1196 if (ptr)
1197 base = bld.mkOp2v(OP_ADD, TYPE_U32, base, base, ptr);
1198 atom->setIndirect(0, 1, NULL);
1199 atom->setIndirect(0, 0, base);
1200
1201 return true;
1202 }
1203
1204 bool
1205 NVC0LoweringPass::handleCasExch(Instruction *cas, bool needCctl)
1206 {
1207 if (cas->src(0).getFile() == FILE_MEMORY_SHARED) {
1208 // ATOM_CAS and ATOM_EXCH are handled in handleSharedATOM().
1209 return false;
1210 }
1211
1212 if (cas->subOp != NV50_IR_SUBOP_ATOM_CAS &&
1213 cas->subOp != NV50_IR_SUBOP_ATOM_EXCH)
1214 return false;
1215 bld.setPosition(cas, true);
1216
1217 if (needCctl) {
1218 Instruction *cctl = bld.mkOp1(OP_CCTL, TYPE_NONE, NULL, cas->getSrc(0));
1219 cctl->setIndirect(0, 0, cas->getIndirect(0, 0));
1220 cctl->fixed = 1;
1221 cctl->subOp = NV50_IR_SUBOP_CCTL_IV;
1222 if (cas->isPredicated())
1223 cctl->setPredicate(cas->cc, cas->getPredicate());
1224 }
1225
1226 if (cas->subOp == NV50_IR_SUBOP_ATOM_CAS) {
1227 // CAS is crazy. It's 2nd source is a double reg, and the 3rd source
1228 // should be set to the high part of the double reg or bad things will
1229 // happen elsewhere in the universe.
1230 // Also, it sometimes returns the new value instead of the old one
1231 // under mysterious circumstances.
1232 Value *dreg = bld.getSSA(8);
1233 bld.setPosition(cas, false);
1234 bld.mkOp2(OP_MERGE, TYPE_U64, dreg, cas->getSrc(1), cas->getSrc(2));
1235 cas->setSrc(1, dreg);
1236 cas->setSrc(2, dreg);
1237 }
1238
1239 return true;
1240 }
1241
1242 inline Value *
1243 NVC0LoweringPass::loadResInfo32(Value *ptr, uint32_t off)
1244 {
1245 uint8_t b = prog->driver->io.auxCBSlot;
1246 off += prog->driver->io.suInfoBase;
1247 return bld.
1248 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1249 }
1250
1251 inline Value *
1252 NVC0LoweringPass::loadResInfo64(Value *ptr, uint32_t off)
1253 {
1254 uint8_t b = prog->driver->io.auxCBSlot;
1255 off += prog->driver->io.suInfoBase;
1256
1257 if (ptr)
1258 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1259
1260 return bld.
1261 mkLoadv(TYPE_U64, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off), ptr);
1262 }
1263
1264 inline Value *
1265 NVC0LoweringPass::loadResLength32(Value *ptr, uint32_t off)
1266 {
1267 uint8_t b = prog->driver->io.auxCBSlot;
1268 off += prog->driver->io.suInfoBase;
1269
1270 if (ptr)
1271 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getScratch(), ptr, bld.mkImm(4));
1272
1273 return bld.
1274 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U64, off + 8), ptr);
1275 }
1276
1277 inline Value *
1278 NVC0LoweringPass::loadMsInfo32(Value *ptr, uint32_t off)
1279 {
1280 uint8_t b = prog->driver->io.msInfoCBSlot;
1281 off += prog->driver->io.msInfoBase;
1282 return bld.
1283 mkLoadv(TYPE_U32, bld.mkSymbol(FILE_MEMORY_CONST, b, TYPE_U32, off), ptr);
1284 }
1285
1286 /* On nvc0, surface info is obtained via the surface binding points passed
1287 * to the SULD/SUST instructions.
1288 * On nve4, surface info is stored in c[] and is used by various special
1289 * instructions, e.g. for clamping coordiantes or generating an address.
1290 * They couldn't just have added an equivalent to TIC now, couldn't they ?
1291 */
1292 #define NVE4_SU_INFO_ADDR 0x00
1293 #define NVE4_SU_INFO_FMT 0x04
1294 #define NVE4_SU_INFO_DIM_X 0x08
1295 #define NVE4_SU_INFO_PITCH 0x0c
1296 #define NVE4_SU_INFO_DIM_Y 0x10
1297 #define NVE4_SU_INFO_ARRAY 0x14
1298 #define NVE4_SU_INFO_DIM_Z 0x18
1299 #define NVE4_SU_INFO_UNK1C 0x1c
1300 #define NVE4_SU_INFO_WIDTH 0x20
1301 #define NVE4_SU_INFO_HEIGHT 0x24
1302 #define NVE4_SU_INFO_DEPTH 0x28
1303 #define NVE4_SU_INFO_TARGET 0x2c
1304 #define NVE4_SU_INFO_CALL 0x30
1305 #define NVE4_SU_INFO_RAW_X 0x34
1306 #define NVE4_SU_INFO_MS_X 0x38
1307 #define NVE4_SU_INFO_MS_Y 0x3c
1308
1309 #define NVE4_SU_INFO__STRIDE 0x40
1310
1311 #define NVE4_SU_INFO_DIM(i) (0x08 + (i) * 8)
1312 #define NVE4_SU_INFO_SIZE(i) (0x20 + (i) * 4)
1313 #define NVE4_SU_INFO_MS(i) (0x38 + (i) * 4)
1314
1315 static inline uint16_t getSuClampSubOp(const TexInstruction *su, int c)
1316 {
1317 switch (su->tex.target.getEnum()) {
1318 case TEX_TARGET_BUFFER: return NV50_IR_SUBOP_SUCLAMP_PL(0, 1);
1319 case TEX_TARGET_RECT: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1320 case TEX_TARGET_1D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1321 case TEX_TARGET_1D_ARRAY: return (c == 1) ?
1322 NV50_IR_SUBOP_SUCLAMP_PL(0, 2) :
1323 NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1324 case TEX_TARGET_2D: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1325 case TEX_TARGET_2D_MS: return NV50_IR_SUBOP_SUCLAMP_BL(0, 2);
1326 case TEX_TARGET_2D_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1327 case TEX_TARGET_2D_MS_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1328 case TEX_TARGET_3D: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1329 case TEX_TARGET_CUBE: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1330 case TEX_TARGET_CUBE_ARRAY: return NV50_IR_SUBOP_SUCLAMP_SD(0, 2);
1331 default:
1332 assert(0);
1333 return 0;
1334 }
1335 }
1336
1337 void
1338 NVC0LoweringPass::adjustCoordinatesMS(TexInstruction *tex)
1339 {
1340 const uint16_t base = tex->tex.r * NVE4_SU_INFO__STRIDE;
1341 const int arg = tex->tex.target.getArgCount();
1342
1343 if (tex->tex.target == TEX_TARGET_2D_MS)
1344 tex->tex.target = TEX_TARGET_2D;
1345 else
1346 if (tex->tex.target == TEX_TARGET_2D_MS_ARRAY)
1347 tex->tex.target = TEX_TARGET_2D_ARRAY;
1348 else
1349 return;
1350
1351 Value *x = tex->getSrc(0);
1352 Value *y = tex->getSrc(1);
1353 Value *s = tex->getSrc(arg - 1);
1354
1355 Value *tx = bld.getSSA(), *ty = bld.getSSA(), *ts = bld.getSSA();
1356
1357 Value *ms_x = loadResInfo32(NULL, base + NVE4_SU_INFO_MS(0));
1358 Value *ms_y = loadResInfo32(NULL, base + NVE4_SU_INFO_MS(1));
1359
1360 bld.mkOp2(OP_SHL, TYPE_U32, tx, x, ms_x);
1361 bld.mkOp2(OP_SHL, TYPE_U32, ty, y, ms_y);
1362
1363 s = bld.mkOp2v(OP_AND, TYPE_U32, ts, s, bld.loadImm(NULL, 0x7));
1364 s = bld.mkOp2v(OP_SHL, TYPE_U32, ts, ts, bld.mkImm(3));
1365
1366 Value *dx = loadMsInfo32(ts, 0x0);
1367 Value *dy = loadMsInfo32(ts, 0x4);
1368
1369 bld.mkOp2(OP_ADD, TYPE_U32, tx, tx, dx);
1370 bld.mkOp2(OP_ADD, TYPE_U32, ty, ty, dy);
1371
1372 tex->setSrc(0, tx);
1373 tex->setSrc(1, ty);
1374 tex->moveSources(arg, -1);
1375 }
1376
1377 // Sets 64-bit "generic address", predicate and format sources for SULD/SUST.
1378 // They're computed from the coordinates using the surface info in c[] space.
1379 void
1380 NVC0LoweringPass::processSurfaceCoordsNVE4(TexInstruction *su)
1381 {
1382 Instruction *insn;
1383 const bool atom = su->op == OP_SUREDB || su->op == OP_SUREDP;
1384 const bool raw =
1385 su->op == OP_SULDB || su->op == OP_SUSTB || su->op == OP_SUREDB;
1386 const int idx = su->tex.r;
1387 const int dim = su->tex.target.getDim();
1388 const int arg = dim + (su->tex.target.isArray() ? 1 : 0);
1389 const uint16_t base = idx * NVE4_SU_INFO__STRIDE;
1390 int c;
1391 Value *zero = bld.mkImm(0);
1392 Value *p1 = NULL;
1393 Value *v;
1394 Value *src[3];
1395 Value *bf, *eau, *off;
1396 Value *addr, *pred;
1397
1398 off = bld.getScratch(4);
1399 bf = bld.getScratch(4);
1400 addr = bld.getSSA(8);
1401 pred = bld.getScratch(1, FILE_PREDICATE);
1402
1403 bld.setPosition(su, false);
1404
1405 adjustCoordinatesMS(su);
1406
1407 // calculate clamped coordinates
1408 for (c = 0; c < arg; ++c) {
1409 src[c] = bld.getScratch();
1410 if (c == 0 && raw)
1411 v = loadResInfo32(NULL, base + NVE4_SU_INFO_RAW_X);
1412 else
1413 v = loadResInfo32(NULL, base + NVE4_SU_INFO_DIM(c));
1414 bld.mkOp3(OP_SUCLAMP, TYPE_S32, src[c], su->getSrc(c), v, zero)
1415 ->subOp = getSuClampSubOp(su, c);
1416 }
1417 for (; c < 3; ++c)
1418 src[c] = zero;
1419
1420 // set predicate output
1421 if (su->tex.target == TEX_TARGET_BUFFER) {
1422 src[0]->getInsn()->setFlagsDef(1, pred);
1423 } else
1424 if (su->tex.target.isArray()) {
1425 p1 = bld.getSSA(1, FILE_PREDICATE);
1426 src[dim]->getInsn()->setFlagsDef(1, p1);
1427 }
1428
1429 // calculate pixel offset
1430 if (dim == 1) {
1431 if (su->tex.target != TEX_TARGET_BUFFER)
1432 bld.mkOp2(OP_AND, TYPE_U32, off, src[0], bld.loadImm(NULL, 0xffff));
1433 } else
1434 if (dim == 3) {
1435 v = loadResInfo32(NULL, base + NVE4_SU_INFO_UNK1C);
1436 bld.mkOp3(OP_MADSP, TYPE_U32, off, src[2], v, src[1])
1437 ->subOp = NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
1438
1439 v = loadResInfo32(NULL, base + NVE4_SU_INFO_PITCH);
1440 bld.mkOp3(OP_MADSP, TYPE_U32, off, off, v, src[0])
1441 ->subOp = NV50_IR_SUBOP_MADSP(0,2,8); // u32 u16l u16l
1442 } else {
1443 assert(dim == 2);
1444 v = loadResInfo32(NULL, base + NVE4_SU_INFO_PITCH);
1445 bld.mkOp3(OP_MADSP, TYPE_U32, off, src[1], v, src[0])
1446 ->subOp = su->tex.target.isArray() ?
1447 NV50_IR_SUBOP_MADSP_SD : NV50_IR_SUBOP_MADSP(4,2,8); // u16l u16l u16l
1448 }
1449
1450 // calculate effective address part 1
1451 if (su->tex.target == TEX_TARGET_BUFFER) {
1452 if (raw) {
1453 bf = src[0];
1454 } else {
1455 v = loadResInfo32(NULL, base + NVE4_SU_INFO_FMT);
1456 bld.mkOp3(OP_VSHL, TYPE_U32, bf, src[0], v, zero)
1457 ->subOp = NV50_IR_SUBOP_V1(7,6,8|2);
1458 }
1459 } else {
1460 Value *y = src[1];
1461 Value *z = src[2];
1462 uint16_t subOp = 0;
1463
1464 switch (dim) {
1465 case 1:
1466 y = zero;
1467 z = zero;
1468 break;
1469 case 2:
1470 z = off;
1471 if (!su->tex.target.isArray()) {
1472 z = loadResInfo32(NULL, base + NVE4_SU_INFO_UNK1C);
1473 subOp = NV50_IR_SUBOP_SUBFM_3D;
1474 }
1475 break;
1476 default:
1477 subOp = NV50_IR_SUBOP_SUBFM_3D;
1478 assert(dim == 3);
1479 break;
1480 }
1481 insn = bld.mkOp3(OP_SUBFM, TYPE_U32, bf, src[0], y, z);
1482 insn->subOp = subOp;
1483 insn->setFlagsDef(1, pred);
1484 }
1485
1486 // part 2
1487 v = loadResInfo32(NULL, base + NVE4_SU_INFO_ADDR);
1488
1489 if (su->tex.target == TEX_TARGET_BUFFER) {
1490 eau = v;
1491 } else {
1492 eau = bld.mkOp3v(OP_SUEAU, TYPE_U32, bld.getScratch(4), off, bf, v);
1493 }
1494 // add array layer offset
1495 if (su->tex.target.isArray()) {
1496 v = loadResInfo32(NULL, base + NVE4_SU_INFO_ARRAY);
1497 if (dim == 1)
1498 bld.mkOp3(OP_MADSP, TYPE_U32, eau, src[1], v, eau)
1499 ->subOp = NV50_IR_SUBOP_MADSP(4,0,0); // u16 u24 u32
1500 else
1501 bld.mkOp3(OP_MADSP, TYPE_U32, eau, v, src[2], eau)
1502 ->subOp = NV50_IR_SUBOP_MADSP(0,0,0); // u32 u24 u32
1503 // combine predicates
1504 assert(p1);
1505 bld.mkOp2(OP_OR, TYPE_U8, pred, pred, p1);
1506 }
1507
1508 if (atom) {
1509 Value *lo = bf;
1510 if (su->tex.target == TEX_TARGET_BUFFER) {
1511 lo = zero;
1512 bld.mkMov(off, bf);
1513 }
1514 // bf == g[] address & 0xff
1515 // eau == g[] address >> 8
1516 bld.mkOp3(OP_PERMT, TYPE_U32, bf, lo, bld.loadImm(NULL, 0x6540), eau);
1517 bld.mkOp3(OP_PERMT, TYPE_U32, eau, zero, bld.loadImm(NULL, 0x0007), eau);
1518 } else
1519 if (su->op == OP_SULDP && su->tex.target == TEX_TARGET_BUFFER) {
1520 // Convert from u32 to u8 address format, which is what the library code
1521 // doing SULDP currently uses.
1522 // XXX: can SUEAU do this ?
1523 // XXX: does it matter that we don't mask high bytes in bf ?
1524 // Grrr.
1525 bld.mkOp2(OP_SHR, TYPE_U32, off, bf, bld.mkImm(8));
1526 bld.mkOp2(OP_ADD, TYPE_U32, eau, eau, off);
1527 }
1528
1529 bld.mkOp2(OP_MERGE, TYPE_U64, addr, bf, eau);
1530
1531 if (atom && su->tex.target == TEX_TARGET_BUFFER)
1532 bld.mkOp2(OP_ADD, TYPE_U64, addr, addr, off);
1533
1534 // let's just set it 0 for raw access and hope it works
1535 v = raw ?
1536 bld.mkImm(0) : loadResInfo32(NULL, base + NVE4_SU_INFO_FMT);
1537
1538 // get rid of old coordinate sources, make space for fmt info and predicate
1539 su->moveSources(arg, 3 - arg);
1540 // set 64 bit address and 32-bit format sources
1541 su->setSrc(0, addr);
1542 su->setSrc(1, v);
1543 su->setSrc(2, pred);
1544 }
1545
1546 void
1547 NVC0LoweringPass::handleSurfaceOpNVE4(TexInstruction *su)
1548 {
1549 processSurfaceCoordsNVE4(su);
1550
1551 // Who do we hate more ? The person who decided that nvc0's SULD doesn't
1552 // have to support conversion or the person who decided that, in OpenCL,
1553 // you don't have to specify the format here like you do in OpenGL ?
1554
1555 if (su->op == OP_SULDP) {
1556 // We don't patch shaders. Ever.
1557 // You get an indirect call to our library blob here.
1558 // But at least it's uniform.
1559 FlowInstruction *call;
1560 LValue *p[3];
1561 LValue *r[5];
1562 uint16_t base = su->tex.r * NVE4_SU_INFO__STRIDE + NVE4_SU_INFO_CALL;
1563
1564 for (int i = 0; i < 4; ++i)
1565 (r[i] = bld.getScratch(4, FILE_GPR))->reg.data.id = i;
1566 for (int i = 0; i < 3; ++i)
1567 (p[i] = bld.getScratch(1, FILE_PREDICATE))->reg.data.id = i;
1568 (r[4] = bld.getScratch(8, FILE_GPR))->reg.data.id = 4;
1569
1570 bld.mkMov(p[1], bld.mkImm((su->cache == CACHE_CA) ? 1 : 0), TYPE_U8);
1571 bld.mkMov(p[2], bld.mkImm((su->cache == CACHE_CG) ? 1 : 0), TYPE_U8);
1572 bld.mkMov(p[0], su->getSrc(2), TYPE_U8);
1573 bld.mkMov(r[4], su->getSrc(0), TYPE_U64);
1574 bld.mkMov(r[2], su->getSrc(1), TYPE_U32);
1575
1576 call = bld.mkFlow(OP_CALL, NULL, su->cc, su->getPredicate());
1577
1578 call->indirect = 1;
1579 call->absolute = 1;
1580 call->setSrc(0, bld.mkSymbol(FILE_MEMORY_CONST,
1581 prog->driver->io.auxCBSlot, TYPE_U32,
1582 prog->driver->io.suInfoBase + base));
1583 call->setSrc(1, r[2]);
1584 call->setSrc(2, r[4]);
1585 for (int i = 0; i < 3; ++i)
1586 call->setSrc(3 + i, p[i]);
1587 for (int i = 0; i < 4; ++i) {
1588 call->setDef(i, r[i]);
1589 bld.mkMov(su->getDef(i), r[i]);
1590 }
1591 call->setDef(4, p[1]);
1592 delete_Instruction(bld.getProgram(), su);
1593 }
1594
1595 if (su->op == OP_SUREDB || su->op == OP_SUREDP) {
1596 // FIXME: for out of bounds access, destination value will be undefined !
1597 Value *pred = su->getSrc(2);
1598 CondCode cc = CC_NOT_P;
1599 if (su->getPredicate()) {
1600 pred = bld.getScratch(1, FILE_PREDICATE);
1601 cc = su->cc;
1602 if (cc == CC_NOT_P) {
1603 bld.mkOp2(OP_OR, TYPE_U8, pred, su->getPredicate(), su->getSrc(2));
1604 } else {
1605 bld.mkOp2(OP_AND, TYPE_U8, pred, su->getPredicate(), su->getSrc(2));
1606 pred->getInsn()->src(1).mod = Modifier(NV50_IR_MOD_NOT);
1607 }
1608 }
1609 Instruction *red = bld.mkOp(OP_ATOM, su->dType, su->getDef(0));
1610 red->subOp = su->subOp;
1611 if (!gMemBase)
1612 gMemBase = bld.mkSymbol(FILE_MEMORY_GLOBAL, 0, TYPE_U32, 0);
1613 red->setSrc(0, gMemBase);
1614 red->setSrc(1, su->getSrc(3));
1615 if (su->subOp == NV50_IR_SUBOP_ATOM_CAS)
1616 red->setSrc(2, su->getSrc(4));
1617 red->setIndirect(0, 0, su->getSrc(0));
1618 red->setPredicate(cc, pred);
1619 delete_Instruction(bld.getProgram(), su);
1620 handleCasExch(red, true);
1621 } else {
1622 su->sType = (su->tex.target == TEX_TARGET_BUFFER) ? TYPE_U32 : TYPE_U8;
1623 }
1624 }
1625
1626 bool
1627 NVC0LoweringPass::handleWRSV(Instruction *i)
1628 {
1629 Instruction *st;
1630 Symbol *sym;
1631 uint32_t addr;
1632
1633 // must replace, $sreg are not writeable
1634 addr = targ->getSVAddress(FILE_SHADER_OUTPUT, i->getSrc(0)->asSym());
1635 if (addr >= 0x400)
1636 return false;
1637 sym = bld.mkSymbol(FILE_SHADER_OUTPUT, 0, i->sType, addr);
1638
1639 st = bld.mkStore(OP_EXPORT, i->dType, sym, i->getIndirect(0, 0),
1640 i->getSrc(1));
1641 st->perPatch = i->perPatch;
1642
1643 bld.getBB()->remove(i);
1644 return true;
1645 }
1646
1647 void
1648 NVC0LoweringPass::readTessCoord(LValue *dst, int c)
1649 {
1650 Value *laneid = bld.getSSA();
1651 Value *x, *y;
1652
1653 bld.mkOp1(OP_RDSV, TYPE_U32, laneid, bld.mkSysVal(SV_LANEID, 0));
1654
1655 if (c == 0) {
1656 x = dst;
1657 y = NULL;
1658 } else
1659 if (c == 1) {
1660 x = NULL;
1661 y = dst;
1662 } else {
1663 assert(c == 2);
1664 x = bld.getSSA();
1665 y = bld.getSSA();
1666 }
1667 if (x)
1668 bld.mkFetch(x, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f0, NULL, laneid);
1669 if (y)
1670 bld.mkFetch(y, TYPE_F32, FILE_SHADER_OUTPUT, 0x2f4, NULL, laneid);
1671
1672 if (c == 2) {
1673 bld.mkOp2(OP_ADD, TYPE_F32, dst, x, y);
1674 bld.mkOp2(OP_SUB, TYPE_F32, dst, bld.loadImm(NULL, 1.0f), dst);
1675 }
1676 }
1677
1678 bool
1679 NVC0LoweringPass::handleRDSV(Instruction *i)
1680 {
1681 Symbol *sym = i->getSrc(0)->asSym();
1682 const SVSemantic sv = sym->reg.data.sv.sv;
1683 Value *vtx = NULL;
1684 Instruction *ld;
1685 uint32_t addr = targ->getSVAddress(FILE_SHADER_INPUT, sym);
1686
1687 if (addr >= 0x400) {
1688 // mov $sreg
1689 if (sym->reg.data.sv.index == 3) {
1690 // TGSI backend may use 4th component of TID,NTID,CTAID,NCTAID
1691 i->op = OP_MOV;
1692 i->setSrc(0, bld.mkImm((sv == SV_NTID || sv == SV_NCTAID) ? 1 : 0));
1693 }
1694 if (sv == SV_VERTEX_COUNT) {
1695 bld.setPosition(i, true);
1696 bld.mkOp2(OP_EXTBF, TYPE_U32, i->getDef(0), i->getDef(0), bld.mkImm(0x808));
1697 }
1698 return true;
1699 }
1700
1701 switch (sv) {
1702 case SV_POSITION:
1703 assert(prog->getType() == Program::TYPE_FRAGMENT);
1704 if (i->srcExists(1)) {
1705 // Pass offset through to the interpolation logic
1706 ld = bld.mkInterp(NV50_IR_INTERP_LINEAR | NV50_IR_INTERP_OFFSET,
1707 i->getDef(0), addr, NULL);
1708 ld->setSrc(1, i->getSrc(1));
1709 } else {
1710 bld.mkInterp(NV50_IR_INTERP_LINEAR, i->getDef(0), addr, NULL);
1711 }
1712 break;
1713 case SV_FACE:
1714 {
1715 Value *face = i->getDef(0);
1716 bld.mkInterp(NV50_IR_INTERP_FLAT, face, addr, NULL);
1717 if (i->dType == TYPE_F32) {
1718 bld.mkOp2(OP_OR, TYPE_U32, face, face, bld.mkImm(0x00000001));
1719 bld.mkOp1(OP_NEG, TYPE_S32, face, face);
1720 bld.mkCvt(OP_CVT, TYPE_F32, face, TYPE_S32, face);
1721 }
1722 }
1723 break;
1724 case SV_TESS_COORD:
1725 assert(prog->getType() == Program::TYPE_TESSELLATION_EVAL);
1726 readTessCoord(i->getDef(0)->asLValue(), i->getSrc(0)->reg.data.sv.index);
1727 break;
1728 case SV_NTID:
1729 case SV_NCTAID:
1730 case SV_GRIDID:
1731 assert(targ->getChipset() >= NVISA_GK104_CHIPSET); // mov $sreg otherwise
1732 if (sym->reg.data.sv.index == 3) {
1733 i->op = OP_MOV;
1734 i->setSrc(0, bld.mkImm(sv == SV_GRIDID ? 0 : 1));
1735 return true;
1736 }
1737 addr += prog->driver->prop.cp.gridInfoBase;
1738 bld.mkLoad(TYPE_U32, i->getDef(0),
1739 bld.mkSymbol(FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
1740 TYPE_U32, addr), NULL);
1741 break;
1742 case SV_SAMPLE_INDEX:
1743 // TODO: Properly pass source as an address in the PIX address space
1744 // (which can be of the form [r0+offset]). But this is currently
1745 // unnecessary.
1746 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
1747 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
1748 break;
1749 case SV_SAMPLE_POS: {
1750 Value *off = new_LValue(func, FILE_GPR);
1751 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
1752 ld->subOp = NV50_IR_SUBOP_PIXLD_SAMPLEID;
1753 bld.mkOp2(OP_SHL, TYPE_U32, off, i->getDef(0), bld.mkImm(3));
1754 bld.mkLoad(TYPE_F32,
1755 i->getDef(0),
1756 bld.mkSymbol(
1757 FILE_MEMORY_CONST, prog->driver->io.auxCBSlot,
1758 TYPE_U32, prog->driver->io.sampleInfoBase +
1759 4 * sym->reg.data.sv.index),
1760 off);
1761 break;
1762 }
1763 case SV_SAMPLE_MASK:
1764 ld = bld.mkOp1(OP_PIXLD, TYPE_U32, i->getDef(0), bld.mkImm(0));
1765 ld->subOp = NV50_IR_SUBOP_PIXLD_COVMASK;
1766 break;
1767 case SV_BASEVERTEX:
1768 case SV_BASEINSTANCE:
1769 case SV_DRAWID:
1770 ld = bld.mkLoad(TYPE_U32, i->getDef(0),
1771 bld.mkSymbol(FILE_MEMORY_CONST,
1772 prog->driver->io.auxCBSlot,
1773 TYPE_U32,
1774 prog->driver->io.drawInfoBase +
1775 4 * (sv - SV_BASEVERTEX)),
1776 NULL);
1777 break;
1778 default:
1779 if (prog->getType() == Program::TYPE_TESSELLATION_EVAL && !i->perPatch)
1780 vtx = bld.mkOp1v(OP_PFETCH, TYPE_U32, bld.getSSA(), bld.mkImm(0));
1781 ld = bld.mkFetch(i->getDef(0), i->dType,
1782 FILE_SHADER_INPUT, addr, i->getIndirect(0, 0), vtx);
1783 ld->perPatch = i->perPatch;
1784 break;
1785 }
1786 bld.getBB()->remove(i);
1787 return true;
1788 }
1789
1790 bool
1791 NVC0LoweringPass::handleDIV(Instruction *i)
1792 {
1793 if (!isFloatType(i->dType))
1794 return true;
1795 bld.setPosition(i, false);
1796 Instruction *rcp = bld.mkOp1(OP_RCP, i->dType, bld.getSSA(typeSizeof(i->dType)), i->getSrc(1));
1797 i->op = OP_MUL;
1798 i->setSrc(1, rcp->getDef(0));
1799 return true;
1800 }
1801
1802 bool
1803 NVC0LoweringPass::handleMOD(Instruction *i)
1804 {
1805 if (!isFloatType(i->dType))
1806 return true;
1807 LValue *value = bld.getScratch(typeSizeof(i->dType));
1808 bld.mkOp1(OP_RCP, i->dType, value, i->getSrc(1));
1809 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(0), value);
1810 bld.mkOp1(OP_TRUNC, i->dType, value, value);
1811 bld.mkOp2(OP_MUL, i->dType, value, i->getSrc(1), value);
1812 i->op = OP_SUB;
1813 i->setSrc(1, value);
1814 return true;
1815 }
1816
1817 bool
1818 NVC0LoweringPass::handleSQRT(Instruction *i)
1819 {
1820 if (i->dType == TYPE_F64) {
1821 Value *pred = bld.getSSA(1, FILE_PREDICATE);
1822 Value *zero = bld.loadImm(NULL, 0.0);
1823 Value *dst = bld.getSSA(8);
1824 bld.mkOp1(OP_RSQ, i->dType, dst, i->getSrc(0));
1825 bld.mkCmp(OP_SET, CC_LE, i->dType, pred, i->dType, i->getSrc(0), zero);
1826 bld.mkOp3(OP_SELP, TYPE_U64, dst, zero, dst, pred);
1827 i->op = OP_MUL;
1828 i->setSrc(1, dst);
1829 // TODO: Handle this properly with a library function
1830 } else {
1831 bld.setPosition(i, true);
1832 i->op = OP_RSQ;
1833 bld.mkOp1(OP_RCP, i->dType, i->getDef(0), i->getDef(0));
1834 }
1835
1836 return true;
1837 }
1838
1839 bool
1840 NVC0LoweringPass::handlePOW(Instruction *i)
1841 {
1842 LValue *val = bld.getScratch();
1843
1844 bld.mkOp1(OP_LG2, TYPE_F32, val, i->getSrc(0));
1845 bld.mkOp2(OP_MUL, TYPE_F32, val, i->getSrc(1), val)->dnz = 1;
1846 bld.mkOp1(OP_PREEX2, TYPE_F32, val, val);
1847
1848 i->op = OP_EX2;
1849 i->setSrc(0, val);
1850 i->setSrc(1, NULL);
1851
1852 return true;
1853 }
1854
1855 bool
1856 NVC0LoweringPass::handleEXPORT(Instruction *i)
1857 {
1858 if (prog->getType() == Program::TYPE_FRAGMENT) {
1859 int id = i->getSrc(0)->reg.data.offset / 4;
1860
1861 if (i->src(0).isIndirect(0)) // TODO, ugly
1862 return false;
1863 i->op = OP_MOV;
1864 i->subOp = NV50_IR_SUBOP_MOV_FINAL;
1865 i->src(0).set(i->src(1));
1866 i->setSrc(1, NULL);
1867 i->setDef(0, new_LValue(func, FILE_GPR));
1868 i->getDef(0)->reg.data.id = id;
1869
1870 prog->maxGPR = MAX2(prog->maxGPR, id);
1871 } else
1872 if (prog->getType() == Program::TYPE_GEOMETRY) {
1873 i->setIndirect(0, 1, gpEmitAddress);
1874 }
1875 return true;
1876 }
1877
1878 bool
1879 NVC0LoweringPass::handleOUT(Instruction *i)
1880 {
1881 Instruction *prev = i->prev;
1882 ImmediateValue stream, prevStream;
1883
1884 // Only merge if the stream ids match. Also, note that the previous
1885 // instruction would have already been lowered, so we take arg1 from it.
1886 if (i->op == OP_RESTART && prev && prev->op == OP_EMIT &&
1887 i->src(0).getImmediate(stream) &&
1888 prev->src(1).getImmediate(prevStream) &&
1889 stream.reg.data.u32 == prevStream.reg.data.u32) {
1890 i->prev->subOp = NV50_IR_SUBOP_EMIT_RESTART;
1891 delete_Instruction(prog, i);
1892 } else {
1893 assert(gpEmitAddress);
1894 i->setDef(0, gpEmitAddress);
1895 i->setSrc(1, i->getSrc(0));
1896 i->setSrc(0, gpEmitAddress);
1897 }
1898 return true;
1899 }
1900
1901 // Generate a binary predicate if an instruction is predicated by
1902 // e.g. an f32 value.
1903 void
1904 NVC0LoweringPass::checkPredicate(Instruction *insn)
1905 {
1906 Value *pred = insn->getPredicate();
1907 Value *pdst;
1908
1909 if (!pred || pred->reg.file == FILE_PREDICATE)
1910 return;
1911 pdst = new_LValue(func, FILE_PREDICATE);
1912
1913 // CAUTION: don't use pdst->getInsn, the definition might not be unique,
1914 // delay turning PSET(FSET(x,y),0) into PSET(x,y) to a later pass
1915
1916 bld.mkCmp(OP_SET, CC_NEU, insn->dType, pdst, insn->dType, bld.mkImm(0), pred);
1917
1918 insn->setPredicate(insn->cc, pdst);
1919 }
1920
1921 //
1922 // - add quadop dance for texturing
1923 // - put FP outputs in GPRs
1924 // - convert instruction sequences
1925 //
1926 bool
1927 NVC0LoweringPass::visit(Instruction *i)
1928 {
1929 bool ret = true;
1930 bld.setPosition(i, false);
1931
1932 if (i->cc != CC_ALWAYS)
1933 checkPredicate(i);
1934
1935 switch (i->op) {
1936 case OP_TEX:
1937 case OP_TXB:
1938 case OP_TXL:
1939 case OP_TXF:
1940 case OP_TXG:
1941 return handleTEX(i->asTex());
1942 case OP_TXD:
1943 return handleTXD(i->asTex());
1944 case OP_TXLQ:
1945 return handleTXLQ(i->asTex());
1946 case OP_TXQ:
1947 return handleTXQ(i->asTex());
1948 case OP_EX2:
1949 bld.mkOp1(OP_PREEX2, TYPE_F32, i->getDef(0), i->getSrc(0));
1950 i->setSrc(0, i->getDef(0));
1951 break;
1952 case OP_POW:
1953 return handlePOW(i);
1954 case OP_DIV:
1955 return handleDIV(i);
1956 case OP_MOD:
1957 return handleMOD(i);
1958 case OP_SQRT:
1959 return handleSQRT(i);
1960 case OP_EXPORT:
1961 ret = handleEXPORT(i);
1962 break;
1963 case OP_EMIT:
1964 case OP_RESTART:
1965 return handleOUT(i);
1966 case OP_RDSV:
1967 return handleRDSV(i);
1968 case OP_WRSV:
1969 return handleWRSV(i);
1970 case OP_STORE:
1971 case OP_LOAD:
1972 if (i->src(0).getFile() == FILE_SHADER_INPUT) {
1973 if (prog->getType() == Program::TYPE_COMPUTE) {
1974 i->getSrc(0)->reg.file = FILE_MEMORY_CONST;
1975 i->getSrc(0)->reg.fileIndex = 0;
1976 } else
1977 if (prog->getType() == Program::TYPE_GEOMETRY &&
1978 i->src(0).isIndirect(0)) {
1979 // XXX: this assumes vec4 units
1980 Value *ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
1981 i->getIndirect(0, 0), bld.mkImm(4));
1982 i->setIndirect(0, 0, ptr);
1983 i->op = OP_VFETCH;
1984 } else {
1985 i->op = OP_VFETCH;
1986 assert(prog->getType() != Program::TYPE_FRAGMENT); // INTERP
1987 }
1988 } else if (i->src(0).getFile() == FILE_MEMORY_CONST) {
1989 if (i->src(0).isIndirect(1)) {
1990 Value *ptr;
1991 if (i->src(0).isIndirect(0))
1992 ptr = bld.mkOp3v(OP_INSBF, TYPE_U32, bld.getSSA(),
1993 i->getIndirect(0, 1), bld.mkImm(0x1010),
1994 i->getIndirect(0, 0));
1995 else
1996 ptr = bld.mkOp2v(OP_SHL, TYPE_U32, bld.getSSA(),
1997 i->getIndirect(0, 1), bld.mkImm(16));
1998 i->setIndirect(0, 1, NULL);
1999 i->setIndirect(0, 0, ptr);
2000 i->subOp = NV50_IR_SUBOP_LDC_IS;
2001 }
2002 } else if (i->src(0).getFile() == FILE_SHADER_OUTPUT) {
2003 assert(prog->getType() == Program::TYPE_TESSELLATION_CONTROL);
2004 i->op = OP_VFETCH;
2005 } else if (i->src(0).getFile() == FILE_MEMORY_GLOBAL) {
2006 Value *ind = i->getIndirect(0, 1);
2007 Value *ptr = loadResInfo64(ind, i->getSrc(0)->reg.fileIndex * 16);
2008 // XXX come up with a way not to do this for EVERY little access but
2009 // rather to batch these up somehow. Unfortunately we've lost the
2010 // information about the field width by the time we get here.
2011 Value *offset = bld.loadImm(NULL, i->getSrc(0)->reg.data.offset + typeSizeof(i->sType));
2012 Value *length = loadResLength32(ind, i->getSrc(0)->reg.fileIndex * 16);
2013 Value *pred = new_LValue(func, FILE_PREDICATE);
2014 if (i->src(0).isIndirect(0)) {
2015 bld.mkOp2(OP_ADD, TYPE_U64, ptr, ptr, i->getIndirect(0, 0));
2016 bld.mkOp2(OP_ADD, TYPE_U32, offset, offset, i->getIndirect(0, 0));
2017 }
2018 i->setIndirect(0, 1, NULL);
2019 i->setIndirect(0, 0, ptr);
2020 bld.mkCmp(OP_SET, CC_GT, TYPE_U32, pred, TYPE_U32, offset, length);
2021 i->setPredicate(CC_NOT_P, pred);
2022 if (i->defExists(0)) {
2023 bld.mkMov(i->getDef(0), bld.mkImm(0));
2024 }
2025 }
2026 break;
2027 case OP_ATOM:
2028 {
2029 const bool cctl = i->src(0).getFile() == FILE_MEMORY_GLOBAL;
2030 handleATOM(i);
2031 handleCasExch(i, cctl);
2032 }
2033 break;
2034 case OP_SULDB:
2035 case OP_SULDP:
2036 case OP_SUSTB:
2037 case OP_SUSTP:
2038 case OP_SUREDB:
2039 case OP_SUREDP:
2040 if (targ->getChipset() >= NVISA_GK104_CHIPSET)
2041 handleSurfaceOpNVE4(i->asTex());
2042 break;
2043 case OP_SUQ:
2044 handleSUQ(i);
2045 break;
2046 default:
2047 break;
2048 }
2049
2050 /* Kepler+ has a special opcode to compute a new base address to be used
2051 * for indirect loads.
2052 */
2053 if (targ->getChipset() >= NVISA_GK104_CHIPSET && !i->perPatch &&
2054 (i->op == OP_VFETCH || i->op == OP_EXPORT) && i->src(0).isIndirect(0)) {
2055 Instruction *afetch = bld.mkOp1(OP_AFETCH, TYPE_U32, bld.getSSA(),
2056 cloneShallow(func, i->getSrc(0)));
2057 afetch->setIndirect(0, 0, i->getIndirect(0, 0));
2058 i->src(0).get()->reg.data.offset = 0;
2059 i->setIndirect(0, 0, afetch->getDef(0));
2060 }
2061
2062 return ret;
2063 }
2064
2065 bool
2066 TargetNVC0::runLegalizePass(Program *prog, CGStage stage) const
2067 {
2068 if (stage == CG_STAGE_PRE_SSA) {
2069 NVC0LoweringPass pass(prog);
2070 return pass.run(prog, false, true);
2071 } else
2072 if (stage == CG_STAGE_POST_RA) {
2073 NVC0LegalizePostRA pass(prog);
2074 return pass.run(prog, false, true);
2075 } else
2076 if (stage == CG_STAGE_SSA) {
2077 NVC0LegalizeSSA pass;
2078 return pass.run(prog, false, true);
2079 }
2080 return false;
2081 }
2082
2083 } // namespace nv50_ir